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ABSTRACT 

Development of an Ammonia Reduction After-treatment Systems for 
Stoichiometric Natural Gas Engines 

 
Saroj Pradhan 

Three-way catalyst (TWC) equipped stoichiometric natural gas vehicles have proven to 

be an effective alternative fuel strategy that shows significant low NOx emissions characteristics. 

However, recent studies have shown the TWC activity to contribute to elevated levels of tailpipe 

ammonia (NH3) emissions. Although a non-regulated pollutant, ammonia is a potent pre-cursor 

to ambient secondary PM formation. Ammonia is an inevitable byproduct of fuel rich operation 

that results in lowest NOx slip through the TWC after-treatment system.   

The main objective of the study is to develop a passive Ammonia Reduction Catalyst 

(passive-ARC) based NH3 reduction strategy that results in an overall reduction of ammonia as 

well as NOx emissions. The study investigated the characteristics of Fe-based and Cu-based 

zeolites SCR catalysts in storage and desorption of ammonia at high exhaust temperature 

conditions, that are typical of stoichiometric natural gas engines. Continuous measurements of 

NOx and NH3 before and after the SCR systems were conducted using a Fourier Transform 

Infrared Spectrometry (FTIR) gas analyzer. Results of the investigation showed that both, the 

Fe- and Cu zeolite SCRs adsorbed above 90% of TWC generated NH3 emissions below 350-

375°C SCR temperatures. Desorption or slipping of NH3 was observed at exhaust gas 

temperatures exceeding 400°C. In terms of NOx conversions, Fe-zeolite showed efficiency 

between 50-80% above temperatures of 300-350°C while Cu-zeolite performed well at lower 

SCR temperature from 250°C and above with a conversion efficiency of greater than 50%. 

In order to efficiently reduce both NOx and NH3 simultaneously over longer durations 

it was found that an engine-based air fuel ratio operation strategy for the passive-ARC system 

must be developed. To this extent, the study extended its objectives to develop an engine-based 

control strategy that results in stoichiometric ammonia production operation followed by brief 

lean operation to regenerate the saturated ammonia reduction catalyst using high NOx slip 

through TWC. The study presents comprehensive results of ammonia storage characteristics of 

SCRs pertaining to stoichiometric natural gas engine exhaust as well as an advanced engine 

control strategy approach to simultaneously reduce both NOx and NH3 using an alternating air 

-fuel ratio approach.   
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CHAPTER 1 Introduction 

Considering today’s in-use emission control devices that aid modern heavy-duty vehicles 

to comply with stringent USEPA emissions and CO2 greenhouse standards, natural gas fueled 

vehicles utilizing three-way catalyst (TWC) technology are known to  provide better  fuel 

consumption and lower tailpipe emission benefits when compared to the SCR equipped diesel 

counterparts (D. W. Stanton 2013). However, natural gas engines are precisely controlled to 

operate at a narrow stoichiometric combustion regime to effectively and simultaneously convert 

major toxic emissions such as nitrogen oxides (NOx), carbon monoxide (CO) and hydrocarbons 

(HC) in the TWC system. This has notably limited natural gas vehicles to operate the majority 

of their activity close to stoichiometric ratio, hence, leaving less room for fuel reduction 

improvements.  

Efficiently converting the three major pollutants simultaneously from natural gas 

engine’s exhaust stream over a TWC is commonly achieved by dithering the air-fuel ratio (AFR), 

a periodical switch between rich and lean combustion window operation (Defoort, Olsen, and 

Willson 2004). During the lean window, the three-way catalyst formulation is able to oxidize 

HC and CO, and during the rich window favors redox reactions to reduce oxides of nitrogen 

(Shi et al. 2015). In addition to the standard reactions, studies have shown that under rich 

operating conditions, oxygen deficiency in the exhaust also promotes other two kinds of 

reactions known as water gas-shift and steam reforming reactions (Barbier and Duprez 1994). 

In such events, CO which is not oxidized due to lack of oxygen reacts with water vapor (H2O) 

to form CO2 and hydrogen (H2). Further, under suitable conditions, the H2 molecules react with 

available NO and CO in the exhaust stream to form ammonia (NH3), considered as a precursor 

emission (Suarez-Bertoa, Zardini, and Astorga 2014).  

Gas-phase NH3 is also considered to be a critical atmospheric pollutant contributing to 

the formation of airborne particulate matter (Renner and Wolke, 2008). These secondary 

formed particles in the atmosphere have been studied by many researchers and institutions, and 

tend to show risk factors pertaining to human health (Suarez-Bertoa et al., 2014). As stated by 

International Agency for Research on Cancer, a part of the World Health Organization (WHO), 

particulate matter are the major constituents of outdoor air pollution and can cause cancer in 

humans (IARC, 2013). In addition to human health effects, secondary ammonia also impacts 
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terrestrial vegetation  (Krupa, 2003), and threatens ecosystem health by contributing to critical 

amount of nitrogen in remote ecosystems (Sun et al., 2016).  

Numerous emission measurement conducted in laboratories, on-road in-use tests, 

roadside/tunnel studies by means of remote sensing methods and more have indicated high 

levels of tailpipe NH3 emissions from both gasoline and  natural gas vehicles equipped with a 

TWC after-treatment system operating under stoichiometric combustion regime (Huai et al. 

2003; Livingston, Rieger, and Winer 2009; Quiros et al. 2016). An emission inventory report 

published in August of 2000 by the South Coast Air Quality Management District estimated 

that mobile sources were the third largest source of NH3 emissions in the greater Los Angeles 

area, apart from agricultural and livestock waste sources, and accounted for approximately 18% 

of the inventory. Similarly, a study conducted around the same time period showed that motor 

vehicles accounted for about 6% in North Carolina and 14% in San Joaquin Valley 

(Battye  Viney P., Roelle, Paul A. 2003). In Europe, a report published by the European 

Environment Agency’s road transport sector showed an increase of 378% in ammonia emission 

between 1990 and 2010.  

Elevated levels of NH3 emission from natural gas vehicles could be attributed to several 

factors that promotes NH3 formation. Aging of the TWC over extensive vehicle operation has 

evidently shown to be one of the major contributor. Indeed, recent studies conducted by WVU 

have indicated high NH3 emission from such natural gas vehicles, and also reporting vehicle age 

attributing in varying levels of NH3 being emitted (Thiruvengadam et al. 2016). The 

deterioration of vehicle components and aging of the after-treatment system, as illustrated by 

the researchers, have shown to play a significant role in the operating characteristics of the TWC 

system. In specific to three-way catalyst performance, studies have shown that degradation of 

catalyst over time affects the chemical and/or thermal mechanisms of the catalyst material being 

used (Matam et al. 2012), and tend to influence oxidation storage capacity (Sabatini et al. 2016), 

emission conversion efficiencies, and light-off temperatures (Nagashima et al. 2000).  

Although, a non-regulated pollutant in the US, increasing trend in NH3 emission from 

mobile sources, especially in urban areas and densely populated cities have received critical 

concerns over the years. In the heavy-duty transportation sector, natural gas-fueled vehicle 

population share a significantly lower market than the diesel-fueled vehicles. However, market 

studies have shown substantial penetration of natural gas-fueled vocational vehicles within 

urban areas, especially in the US (Delgado and Muncrief 2015). In vocational application captive 
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fleets such as transit buses, refuse trucks, food/beverage delivery trucks and similar types, 

natural gas fueled vehicles are trending upward, attributed to the increasing number of fueling 

stations and vehicle procurement incentive programs at different federal and state levels. 

According to a conference paper presented by Stanton, a 11.9% average annual growth rate is 

projected between 2011 and 2040 for natural gas vehicles in the US (D. Stanton, Charlton, and 

Vajapeyazula 2013). As a result, such a trend could potentially increase vehicular NH3 emissions 

within major populated cities causing immediate as well as long term urban air quality 

degradation. 

The above highlights pose a critical need to monitor NH3 emission from stoichiometric 

natural gas vehicles and develop strategies to capture or abate tailpipe NH3 emissions. In 

addition, NH3 reduction pathways can also lead to further reduction in NOx and GHG 

emissions, to potentially meet more stringent future regulations. The USEPA has initiated 

rulemakings for low-NOx emission standards, and if in force, the new standard would require 

all heavy-duty vehicles to meet 0.02 g/bhp-hr NOx regulation starting 2024 (USEPA 2016). 

This would force vehicle manufactures to reduce NOx emissions by almost 90% from the 

current standards, and would require significant advancement in emission control strategies and 

technologies. 

1.1 Problem Statement 

The study investigates the application of coupling an ammonia reduction technology to 

an existing stoichiometric natural gas after-treatment system downstream of the three-way 

catalyst (TWC) in order to reduce observed precursor-NH3 emissions. According to current 

industry practices, SCR systems have proven effective in reducing NOx emission by supplying 

of precisely controlled NH3, to aim selective reduction reactions over the catalyst. However, 

conversion performance of SCR system differs based on the catalyst formulation, where 

temperature and NH3 storage capability plays a critical role. The study considers investigating 

the characteristics and effects of different zeolite based SCR catalyst formulation on NH3 

storage and NOx conversion efficiency operated over dynamic loading of a commercially used 

heavy-duty stoichiometric natural gas engine equipped with a TWC system. 

A SCR system outlet of the TWC has mostly been explored for gasoline applications, as 

a lean-burn combustion strategy.  This work however, demonstrates an active engine control 

regeneration approach to simultaneously reduce NOx and NH3, while at the same time obtain 
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fuel reduction benefits. The regeneration process is initiated by precise control of air-fuel ratio, 

alternating between rich (NH3 production mode) and lean (NH3 regeneration mode) modes, 

where the ammonia absorbed during the normal stoichiometric operation in the SCR brick 

could be regenerated with the effect of high NOx slip through the TWC. The approach involves 

continuous monitoring of the SCR activity via utilizing additional NH3 and NOx sensors. 

1.2 Objective 

The global objective of this study is to demonstrate the applicability of an SCR system 

similar to one used in diesel application, to be used as an added Ammonia Reduction System 

(passive-ARC) that can store NH3 generated by the TWC system and then regenerated by brief, 

high NOx events when shifting the engine to lean-burn combustion. The theory behind the 

approach also leads to a pathway in further reducing overall NOx emissions and improve fuel 

consumption benefits for stoichiometric natural gas engines. The study is divided into two 

specific aims to achieve the global objective, and are provided as follows:  

Specific Aim 1: Investigate NOx and NH3 reduction characteristics of different SCR 

catalyst over stoichiometric natural gas engine operating conditions. In summary, the specific aim 

is to identify a suitable system that performs well in ammonia storage capacity and NOx 

conversion characteristics over the wide operating conditions of a stoichiometric natural gas 

engine, and under the central hypothesis that a SCR catalyst is considered to be an adequate passive 

NH3 reduction system. The hypothesis was tested by performing SCR catalyst evaluation 

experiments over engine dynamometer procedure. Evaluation criteria included NOx conversion 

and NH3-slippage over different temperature ranges, emission constituent levels, and engine 

operating conditions. The SCR catalyst can then be used as a passive-ARC with a dual purpose 

of storing NH3 under specific conditions and then utilize the stored NH3 as a reducing agent in 

a strategic event of brief, lean-burn, high-NOx for ammonia regeneration (purge) which leads 

to the second specific aim of the study. 

Specific Aim 2: Develop a SCR performance controlling technique consisting of a 

decision-making control feature, designed for actively regenerate ammonia stored within the 

catalyst by alternating between rich (NH3 production) and lean (NH3 regeneration using NOx 

reduction) modes with real-time feedback sensing based on either a physical sensor or from 

model-based estimation approach. Furthermore, the specific aim will also consider sensor 
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reduction evaluation in conjunction to model-based control approach with SCR activity 

estimation methods focused on real-time, in-ECU application.   
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CHAPTER 2 Literature Review 

Three-way catalyst equipped stoichiometric natural gas vehicles have proven to be an 

effective alternative fuel strategy that has shown superior low NOx benefits in comparison to 

diesels equipped with SCR. However, in recent years, studies evaluating tailpipe emissions have 

shown the TWC activity to contribute to elevated levels of tailpipe ammonia emissions. 

Although a non-regulated pollutant, ammonia is a potent pre-cursor to ambient secondary PM 

formation. Ammonia is an inevitable catalytic byproduct of TWC during that results also 

corresponds to lowest NOx emissions. This chapter will focus on NH3 formation in the TWC, 

along with its known effects on the environment and human health. Also, an extensive review 

of available SCR technology utilizing NH3 will be presented. Additionally, a review will also be 

done on several types of after-treatment control strategies. In summary, the literature gathered 

for the study focuses on available research in the scientific and industry community that would 

potentially help in achieving the studies objectives.  

2.1 Three-way catalyst reactions 

The exhaust stream from a natural gas combustion primarily comprises of unburned 

hydrocarbons (HC), carbon monoxide (CO) and oxides of nitrogen (NOx). These emissions are 

effectively controlled with the help of commonly used three-way catalyst system, which uses 

combination of platinum (Pt), rhodium (Rh), and palladium (Pd) as the active catalytic 

substances. Studies have shown that natural gas vehicles operated over stoichiometric 

combustion provide better performance over the older technology vehicles equipped with 

oxygen catalyst operated with lean-burn combustion in order to meet the more stringent 2010 

NOx emission standards from the  USEPA (Karavalakis et al. 2016). With the adequately 

designed three-way formulation, the catalyst promotes two kinds of reactions, oxidation 

reaction in the presence of oxygen to reduce HC and CO (given by Equation (1 and Equation 

(2), and reduction reaction to reduce NOx with presence of CO (given by Equation (3). 
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 CO + ½ O2  CO2  (1) 

 CH4 + 2O2  CO2 + H2O (2) 

 NO + CO  2N2 + CO2 (3) 

 

Simultaneous reduction via the above-mentioned reaction of the three major gases in 

the natural gas exhaust is achieved via frequently varying the air-fuel ratio (AFR) of the engine 

combustion between rich and lean mixture, a commonly known strategy as fuel-dithering. This 

process have shown to be an effective approach in achieving greater efficiency in reducing  NOx 

and CO during slightly rich operation and HC during slight lean operation (Defoort, Olsen, and 

Willson 2004). From a fuel-dithering optimization study for natural gas engine showed that the 

optimal dithering lambda-midpoint resides in slightly rich combustion, and precise control of  

frequency and amplitude of the fuel dithering tend to affect the overall performance 

characteristics of the TWC system (Shi et al. 2015).  

In addition to the major chemical mechanism, two more reactions, water-gas shift 

reaction and steam reforming reactions have also known to commonly occur over the TWC 

system. Under suitable rich operating conditions of the engine when there is oxygen deficiency 

in the exhaust stream, favors unoxidized CO and HC to form CO2 and hydrogen (H2) (Barbier 

and Duprez 1994; Ohtsuka 2015), and expressed by Equation ((4) and ((5) below. Precursor 

NH3 is then generated over the catalyst in the presence of molecular H2 with available NO and 

CO (Nagashima et al. 2000), expressed mainly by the Equation (6) and (7). 

 CO + H2O  CO2 + H2 (4) 

 CH4 + 2H2O  CO2 + 4H2 (5) 

 2NO + 5H2  2NH3 + 2H2O (6) 

 2NO + 2CO + 3H2  2NH3 + 2CO2 (7) 

 

From the above-mentioned reaction mechanisms, it shows that NH3 formation over the 

TWC is a chain effect of species and their kinetic behavior, and significantly impacted by varying 
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AFR, either fuel rich combustion or oxygen rich combustion. Hence, different operating 

conditions lead to NH3 formation at different levels, which are reviewed in more details in the 

following sections. 

2.2 Ammonia emission characteristics in stoichiometric natural 

gas vehicles with TWC 

Ammonia formation mechanism have not been well studied in stoichiometrically 

operated heavy-duty natural gas engines equipped with a TWC system, however there have been 

multiple studies evidently showing high ammonia emission levels from such engine 

configuration and similar TWC system used in gasoline applications. These studies have shown 

that the characteristics in ammonia production is significantly dominated by engine operating at 

different AFR regime mainly to meet the required load demands and hence, directly affecting 

the amount of NH3 being produced over the catalyst (Defoort, Olsen, and Willson 2004). Figure 

1 shows an example of how AFR impacts the dynamics of different species along with NH3 

emission observed after a TWC operated in a gasoline engine application. According to the 

chart, the highest levels of TWC out NH3 occurs close to stoichiometric region in a typical 

gasoline engine exhaust. 

 

Figure 1. Effect of AFR sweep on NH3 formation over a TWC fir gasoline engine 
source (Li et al. 2010) 
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From the point of power demand during on-road activity, driving behavior have shown 

as an influenceable factor in higher ammonia emissions seen from natural gas and gasoline 

sourced engines. Detailed emission measurement studies have shown that aggressive driving 

patterns or hard acceleration events result in high NH3 peaks in the exhaust (Huai et al. 2003). 

Sudden power demand with high acceleration corresponds to have richer AFR indicating 

sharper excursions in NH3 produced after the TWC. Recent studies conducted by WVU, also 

tend to evidently report such cycle trends in peak NH3 emissions (Thiruvengadam et al. 2016). 

The study measured NH3 concentration using Fourier Transform Infrared Spectroscopy (FTIR) 

analyzer from various natural gas transit buses and the study reported elevated levels of NH3 

concentration, as high as 800 ppm, mainly produced during acceleration events as depicted in 

the Figure 2 (NH3 formation observed only when the vehicle is in motion). In addition, studies 

have also shown high levels of NH3 emissions due to significant change in road grade, in 

instances where NH3 emission factors almost doubled when the road grade was increased from 

0 to 7% (Sun et al. 2016). 

 

Figure 2. NH3 emission from a transit bus natural gas vehicle (Veh 4) over UDDS test 

(Thiruvengadam et al. 2016) 

In extension to the aforementioned WVU study that also tested similar natural gas 

vehicles having different accumulated vehicle mileage evidently showed higher brake-specific 

NH3 emissions, indicating vehicle age as a crucial factor. Figure 3 obtained from the study 

presents brake specific NOx and NH3 emissions for five different natural gas vehicles with two 

specific types of vocational application (Thiruvengadam et al. 2016). All five vehicles equipped 

with TWC system as the after-treatment technology were tested on a heavy-duty chassis 



10 
 

dynamometer over the Urban Dynamometer Driving Schedule (UDDS) cycle. Results from the 

study highlights the fifth vehicle (Veh 5 as referred in the Figure 3) having the highest 

accumulated mileage, emitted the highest amount of NH3 emissions when compared to the 

other four vehicles. The brake-specific NOx results obtained from this vehicle also appeared to 

exceed the 0.2 g/bhp-hr USEPA 2010 NOx regulation levels for heavy-duty vehicle which was 

still considered to be below its useful life standards (USEPA 2011). The chart also shows result 

obtained from the fifth vehicle tested over real-world driving conditions which produced similar 

amounts of NH3 emission than the same vehicle tested over the chassis cycle but exhibit lower 

than 0.2 g/bhp-hr of NOx level.  

  

Figure 3. NOx and NH3 emissions (g/bhp-hr) from five vocational natural gas 
vehicles (Thiruvengadam et al. 2016) 

Thiruvengadam et al. indicated degradation of emission control, such as the aging of an 

on-board feedback oxygen sensor could potentially cause sluggish response in the actual oxygen 

measurement, which in return affects the fuel dithering. And, this imbalance in engine operation 

control of the air-fuel ratio for the optimum TWC performance could lead to variability in 

tailpipe NH3 emissions (Thiruvengadam et al. 2016). A study by Wang et. al specifically studied 

the impact of oxygen sensor degradation on air-fuel ratio and emissions, and reported that a 

small shift in the signal from the oxygen sensor, for example, weather its upward, downward or 

even a slight delay in the sensor response, would deviate the conversion of the HC, CO and 

NOx to either increase or decrease (Dongliang Wang et al. 2011).  
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Additionally, extensive experimental studies have also shown degradation of TWC due 

to catalyst aging, and are typically caused under chemical and/or thermal process of the TWC 

over repeated use in time, affecting the overall performance of the catalyst. Matam et al. studied 

the thermal and chemical aging in a model TWC with Pd/Al2O3 for compressed natural gas 

vehicles exhaust and results showed that thermal aging leads to simply physical modification 

such as decreased surface area and dispersion of the catalyst material (Matam et al. 2012). The 

authors also highlights that physical modification clogs support pores along fouling of Pd 

nanoparticles. On the other hand, chemical aging was shown to be more detrimental than 

thermal aging for TWC performance, drastically decreasing the efficiency. The performance 

activity for a TWC to start converting CO, HC and NOx above a certain efficiency greatly 

depends upon the light-off temperatures of catalyst material used, and such effect has been 

widely researched. For example, from a thermal aging study for a typical (Pd-Pt-Rh) 

combination based TWC, significant differences were observed in performance between fresh 

and aged catalyst (González-velasco et al. 2000). In this study it was shown that the light-off 

temperatures tend to shift towards a higher temperature with an aged catalyst and also 

considerably degrades performance in NOx conversion, as referred to the bottom right chart in 

Figure 4.  

 

Figure 4. Light-off curves corresponding to fresh versus aged TWC with different 
formulation (González-velasco et al. 2000) 
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Similarly, Sanatini et al. characterized the effects of aging on TWC, and reported aging 

substantially affects the oxygen storage dynamics of the catalyst and hence, affects the overall 

performance and formation of high NH3 emissions (Sabatini et al. 2016). The study mentions 

the importance of monitoring the oxygen concentration after the TWC to better understand the 

oxygen storage dynamics and proposes using a post lambda sensor as a good aging indicator. In 

order to better optimize oxygen storage capacity of the catalyst, loading interaction between Pt-

Rh and Pd-Rh in the TWC have contributed to be a major factor in achieving high performance 

even after extensive thermal aging (Nagashima et al. 2000). In addition to formulation loading, 

optimization of the substrate material such as alumina and Ce, also helps in compensating the 

high mobility of Pt at the high aging temperatures. Effects of Sulfur poising have also been 

studied for TWC activity which shown the degrade the TWC performance. Ohtsuka et. al 

examined Pt-Rh/CeO2-Al2O3 TWC aged with SO2 under 400-500ºC temperatures operating 

conditions, and presented results indicating significant decrease in performance activity, 

especially CH4 conversion (Ohtsuka 2015).  

2.3 Health and environmental effects of ammonia emissions  

Gas-phase ammonia has shown to contribute to the formation of airborne particulate 

matter (Renner and Wolke 2008). Research in this area has indicated that ammonia in ambient 

air neutralizes nitric and sulfuric acid to form ammonia nitrate (NH4NO3) and sulfate 

(NH4)2SO4, a two important components contributing to airborne fine particles or PM2.5 

(Tengyu Liu Boguang Wang, Xiang Ding, Wei Deng, Sujun Lü, Yanli Zhang 2014). These 

secondary formed particulate matter in the atmosphere have been examined by many 

researchers and institutions, and tend to show risk factors pertaining to human health (Suarez-

Bertoa, Zardini, and Astorga 2014). As has been stated by International Agency for Research 

on Cancer, a part of the World Health Organization (WHO), particulate matter are the major 

constituents of outdoor air pollution and can cause cancer in humans (IARC 2013). In addition 

to human health effects, secondary ammonia also impact terrestrial vegetation  (Krupa 2003), 

and threatens ecosystem health by contributing to critical amounts of nitrogen in remote 

ecosystems (Sun et al. 2016).  

Although studies have shown that exposure to ammonia at environmental concertation 

is unlikely to have direct adverse effects on human health, however, exposure to high 

concentration could cause irritation of the eyes, nose and throat as well as burning of the skin 
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from direct contact. Ammonia, even at low concentrations, when released into air gives 

unpleasant odor, but most notably harm vegetation, particularly at high concentrations (Krupa 

2003). On the other hand, ammonia in water bodies causes more serious harm due to the toxicity 

to aquatic organisms. 

2.4 Use of SCR technology for NH3 storage and reduction 

The use of SCR catalyst technologies have widely been investigated and proven to be 

an effective technology in removing NOx emissions from modern automotive vehicles 

equipped with compression ignited diesel engines (Tennison, Lambert, and Levin 2004; Johnson 

2009; D. W. Stanton 2013; Nova  Enrico 2014; Delgado and Muncrief 2015; Franco   S. 

Francisco;  German, John; Mock, Peter 2014). As widely adopted technology to reduce majority 

of the engine-out NOx emissions, large numbers of heavy-duty vehicle manufactures have also 

utilized engine-based control strategies in addition with the SCR system (D. Stanton, Charlton, 

and Vajapeyazula 2013). Engine-based strategy such as the exhaust gas recirculation (EGR) 

technology has provided manufactures in further meeting the stringent NOx emission standards.  

Several studies have also demonstrated coupled after-treatment configurations with use 

of a SCR system downstream of the TWC, typically in spark ignited direct gasoline engines to 

achieve lean-burn fuel consumption benefits with NOx emission reductions (V. Y. Prikhodko 

et al. 2016; Li et al. 2010; Theis, Kim, and Cavataio 2015; Guralp et al. 2011). Researchers Guralp 

et al. demonstrated using a passive ammonia SCR system on an underfloor (U/F) SCR for 

storage of ammonia which is produced by the close-coupled TWC systems (Guralp et al. 2011). 

The study looked into oxygen tolerance and temperature requirements for the added SCR under 

stoichiometric conditions using a lab reactor experiment, and found that oxygen concentration 

was an important factor in order to get efficient NOx reduction over the catalyst. Based on the 

findings that NOx reduction efficiency was very low in the absence of oxygen, researchers 

experimented rich pulses operation where the SCR catalyst was able to store the ammonia 

produced on the close-coupled TWC and during lean pulse, NO was reduced by ammonia-SCR 

reaction over SCR catalyst. The study was also looked with use of combining with Deceleration 

Fuel Cut-Off (DFCO) and lean-idle (LI) operation strategies with the passive-SCR integration 

for fuel consumption improvement. The result indicated that in urban section of the FTP fuel 

consumption improved by 8.9% and additional improvement with a total of 11.1% when lean-

idle strategy also enabled. The work also highlights the benefits of using passive-SCR for 
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stoichiometric application where the TWC can benefit from PGM loading requirements, 

performance improvement under varying operating strategies, increasing flexibility of air-fuel 

control and simplicity in the control techniques.  

Study conducted by Prikhodko et al. demonstrated a 2.0L lean burn gasoline direct 

injection (GDI) engine utilizing a TWC system as an onboard NH3 producer, acquired during 

periodic rich engine operation and subsequently storing NH3 over a SCR (Cu-based) catalyst 

(V. Y. Prikhodko et al. 2016).  The stored NH3 in the catalyst brick was then allowed to react 

with brief high levels of unreacted NOx slipped through the TWC during lean combustion 

operation. The study presented results of NOx conversion greater than 99% with the added 

passive SCR system and fuel consumption benefit ranging between (6-11%) under certain 

engine condition when compared with its baseline stoichiometric operation. On the other hand, 

Prikhodko et al also studied a hybrid LNT+SCR system used to control NOx from a light-duty 

diesel engine with in-cylinder regeneration controls (J. P. and V. Prikhodko 2009). The results 

from the study showed that the NH3 formation increased strongly with extended regeneration 

of the LNT and cycling he control to lean-rich parameters enables controlling the ratio of NOx 

reduction between LNT and SCR catalysts. Additionally, the stored NH3 after multiple lean-

rich cycles can enable continued NOx reduction by the SCR the lean-rich period stops, assisting 

in better optimization during transient operation.  

General Motors (GM) have published few different papers demonstrating passive 

ammonia-SCR system (PASS) indicating a potential low cost, simple and urea-free-system to 

enable the implementation of lean-burn gasoline engines (Li et al., 2010, Kim, Perry, Viola, Li, 

& Narayanaswamy, 2011). In the paper published by Li et al. showed NOx conversion efficiency 

greater than 85% with passive SCR system for a 2.2L GDI engine. The experiments were 

evaluated with two kinds of zeolite-based SCRs, Cu- and Fe- tested over New European Driving 

Cycles (NEDC). On the other hand, the study published by Kim et al., indicated that the PASS 

needs to be adequately optimized for the PGM loading and oxygen storage control for HC/CO 

control during both stoichiometric and rich operations. Some of the key parameters the authors 

mentions are the TWC wash-coat formulation that maximizes the efficiency of ammonia 

generation under mildly rich operating conditions, SCR formulation that maximizes NH3 

storage and thermal stability at temperature greater than 400ºC. Comparison on ammonia yield 

and response time of a TWC and Pd/Al2O3 catalyst combined with a passive SCR catalyst under 

dynamic engine operating conditions has also been investigated. It was observed that the yield 
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of ammonia under rich condition was able to be maximized by using minimal valve overlap and 

an advanced spark timing, and additionally, use of low lambda values reduced the oxygen 

content of the exhaust gas, raising the H2 content resulting in increasing trend of the rate of NO 

conversion into ammonia. A study performed by Ford Motor Company also demonstrated a 

TWC but combining a lean-NOX trap (LNT) and a SCR catalyst for lean NOx control (Theis, 

Kim, and Cavataio 2015). The study showed equivalent NOx conversion and lower NH3 

emissions, however, the approach resulted in higher fuel consumption due to LNT purge 

requirement and/or to generate NH3 for the SCR as compared to TWC+SCR only system. 

Additionally, the study also examined effect of sulfur poisoning on the combine configuration, 

and indicates that the SCR catalyst does not significantly get affected by sulfur poisoning, but 

the NH3 production and steam reforming capability of the TWC significantly degrades by sulfur 

during continuous operations at temperature near 500ºC. The authors also indicate that the 

closed coupled configuration would tend to remain in desulphated state with events caused 

from hot rich conditions during cold start, accelerations, and high load operations.  

2.5 NH3-SCR operation mechanism  

The basis of SCR application in diesel exhaust and, the main chemical reaction that 

occur over the SCR catalyst are provided by three main mechanisms. The first reaction provided 

by Equation (8), interpreted as “standard-SCR” (Koebel, Elsener, and Madia 2001), between 

NH3, NO and O2, where four mole of NH3 reacts with four mole of NO and one mole of O2 

to produce N2 and H2O. However, due to low availability of oxygen present in a typical 

stochiometric operated natural engine’s exhaust, the reaction would occur at much slower rate, 

and potentially hinder NO to NH3 selective reduction reaction. 

4NH3 + 4NO + O2  4N2 + 6H2O (8) 

Subsequently, a faster known reaction (Bosch and Janssen 1988) between the reducing 

agent NH3, and mixture of an even ration of 1:1 between NO2 and NO is given by Equation   

(9). This reaction is also recognized as “fast-SCR” reaction.  

2NH3 + NO + NO2  2N2 + 3H2O   (9) 
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Conversely, the reaction is slower when NO2/NOx ratio exceeds 50% (Bosch and 

Janssen 1988), and such reaction, solely with NO2  is provided by the following Equation (10). 

8NH3 + 6NO2  7N2 + 12H2O (10) 

In the SCR system, the ammonia decomposes on the catalyst surface and reacts with 

NOx. The unreacted NH3 is stored in the catalyst through adsorption and the stored ammonia 

is either further reacted with NOx and oxidized with O2 or desorbs from the surface. The 

potential adsorption, desorption, oxidation and NOx conversion capability of the SCR catalyst 

to the ammonia depends on temperature, surface area and catalyst loading (Haga et al. 2015). 

For example, the amount of NH3 that can be stored in a SCR catalyst, decreases with rise in 

catalyst bed temperature. Additionally, the storage capacity as a function of temperature also 

tend to differ with the type catalyst formulation used.  Eijnden et. al. showed zeolite based SCRs 

can store higher levels of NH3 at lower temperatures than for a Vanadium based catalyst SCR, 

and also indicates a non-linear behavior of storage with respect to temperature, as depicted in 

Figure 5 (Eijnden et al. 2009).  

 

Figure 5. Ammonia storage capacity for two SCR formulation as a function of 
temperature (Eijnden et al. 2009) 



17 
 

2.6 NH3-SCR activity dependency 

The main target of the SCR system is the conversion efficiency of NOx, and this 

efficiency highly depends upon multiple factors such as type of ammonia storage ratio, catalyst 

material, NO-to-NO2 ratio, and most importantly the catalyst temperatures at which the 

reaction takes place inside the SCR system (Keuper et al. 2011). Additionally, it presents that 

above mentioned parameters have interdependency within each other for optimum SCR 

functionality. 

As reviewed earlier, the effect of temperature on SCR efficiency also depends on the 

type of catalyst coating used. Different catalysts-based material within the SCR system have 

varying light-off temperatures along with different temperature ranges for optimum catalyst 

activity. Figure 6 compares the catalytic activity of iron-based (Fe), copper-based (Cu) and 

vanadium-based (V) coated catalysts given by the symbols (), () and (•), respectively.  

 

Figure 6. NOx conversion efficiency for vanadium-based and metal-exchanged 
zeolite-based SCR activity at varying temperatures under standard-SCR conditions 

(Kröcher 2007)   

A similar pathway could be approached towards a lean-burn natural gas engine 

application, and catalyst formulations plays a vital role in the overall performance of converting 

ammonia and NOx emissions. Based on different SCR formulation, the performance due to 

lean-burn catalytic operation can be varied with temperature, in changing the catalysts light-off 

temperatures (the minimum temperature at which the catalyst starts aiding the selective reaction) 

and the optimum conversion temperature ranges, where the catalyst effectively reacts in 

converting the targeted component (Colombo, Nova, and Tronconi 2010). In specific to  heavy-
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duty diesel market, Cu-zeolite and Fe-zeolite based and V-based are the two commonly used 

base metal SCRs that are adopted (Skaf et al. 2014). However, the Cu-zeolite based catalyst 

formulation are more dominantly used than compared to the other two due to its observed 

lower temperature performance suitable for after-treatment activity seen in modern heavy-duty 

diesel vehicles (Kamasamudram et al. 2010). In terms of their performances at different active 

temperature ranges, Cu-zeolite based have operating range between (150-450°C), Fe-zeolite 

based have between (350-600°C), and V-based have between (300-450°C) (Majewski 2005). On 

the other hand, natural gas SI engines are typically known to operate at high combustion 

temperatures resulting in high exhaust stream temperatures. From a recent on-road study 

conducted by WVU with a 2013 CNG vehicle, show exhaust temperatures as high as 600°C 

measured right after the TWC (Quiros et al. 2016). The zeolite-based SCRs seems more suitable 

in high exhaust temperature activity of natural gas engines; however, it is to be noted that the 

ammonia is a precursor of TWC reaction and its known to be generated irrespective to the after-

treatment state. Consequently, the ammonia storage capacity of the select SCR would be 

considered as an important factor in selecting the right formulation of a passive reduction 

system. A study performed by Frobert et al. indicated that the exhaust temperature, NO2/NOx 

ratio, and air mass flow were the three main parameters that influenced the ammonia storage 

characteristics (Frobert et al. 2009). Studies have also shown ammonia storage capacity tend to 

be higher at lower catalyst temperatures and decreases as temperature increases (Li et al. 2010). 

Li et al. specifically highlights results for Cu-zeolite based catalyst observing higher ammonia 

storage capacity as compared to the Fe-zeolite based catalyst, however, both catalyst showed 

ammonia storage at their lowest levels and an initiation of increasing trend in NH3 slippage 

(desorption) at temperatures of 400°C and above. 

In contrast to any specific SCR catalyst, the NH3 adsorption and desorption 

characteristics highly depends upon factors like the gaseous concentration, catalyst surface 

temperature and the exhaust flow rates (Zhao et al. 2011; Colombo et al. 2012; I. Nova 2011; 

Keuper et al. 2011). Additionally, the SCR systems are highly nonlinear in behavior due to 

transient operations, reaction kinetics and the nature of thermal effects on the catalyst brick 

along with the catalysis processes occurring at different time scales (Figura et al., 2016) 

(McKinley and Alleyne 2009; Skaf et al. 2014). In regards to different time scales, author Skaf 

et al. distinguishes three time scales for an SCR system from a control point of view of NH3 

dosing in their study (Skaf et al. 2014). From the three-time scale explained, the fastest time 
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scale (referred to as Quasi stationary) occurs during the transport and reaction in the gas phase, 

which typically takes fraction of a second. The medium time scale (referred to as short term) is 

due to catalyst state, where effects from NH3 coverage and substrate temperature dynamics 

plays a role. And, then the third-time scale (referred to as long term) happens over long period 

of time due to sensor and actuator drifts and catalyst aging. Therefore, various control 

approaches have been exploited and implemented especially in performance of diesel after-

treatment devices which are oriented around the dynamics of the type catalyst system used and 

the performance targeted.  

2.7 Control strategies used in SCR applications  

In effective utilization of urea-SCR control technology, several advanced control 

techniques have been developed and studied for active urea dosage rates which are aimed at 

highest NOx conversion targets and minimum NH3 slippage. Development of such SCR 

controls related task require satisfying some of the key challenges of the complex after-treatment 

system. The sections below reviews some of the control strategies and the development in the 

research area of SCR control. The review also illustrates some of the control challenges, 

especially in today’s modern heavy-duty after-treatment configuration and complexity of the 

systems working together to keep NOx emissions below the enforced limits.  

2.7.1 Traditional SCR control methods 

The control techniques typically involve either a feedforward open-loop control or 

feedback closed-loop control or combination of both architecture to improve the overall SCR 

performance (Haga et al. 2015; Chavannavar 2014). As described by Haga et al., the open-loop 

control technique which are considered as the conventional method in SCR control uses 

variables obtained from model based state estimation generally summarized in table lookups or 

maps which are defined either during offline (requiring calibration time) or even online (real-

time learning/adaptive) basis. These methods are simple and less complex to implement but 

usually lack measurement error compensations causing inconsistency in catalyst performance 

over its usage time (Skaf et al. 2014). Plus, majority of the open-loop control strategies are based 

on the stoichiometric assumption of the SCR catalyst surface reactions which are limited due to 

the fact that not all the reactions taking place on the surface are known or have been identified 

(Chi 2009).  
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On the other hand, closed-loop control technique uses feedback from its output 

quantity signal and, hence the control output becomes a function of the desired output error 

compensation, giving a dynamic control over more transient system response. Closed-loop 

based SCR control methods have become the prime technique in modern heavy duty after-

treatment technologies but are known to have its own challenges mainly due to its nature of 

dependency in measuring accurate output signals as most of the time delivered from physical 

sensors (Willems et al. 2007). Willems et al. mentions some of the major aspects that limits the 

proper applicability of the SCR performance controlling technique which are seen from slow 

catalyst dynamics, cross-sensitivity of the NOx and NH3 sensor to respective species, and time 

delay in the urea dosage system. The author also discusses relevant control strategies conducted 

via using combination of closed-loop along with open-loop control schemes as an integrated 

controller where the open-loop control kicks in as a fallback strategy in the case of feedback 

sensor failure. With similar approaches seen in SCR control systems, conventional controllers 

such as close-loop Proportional-Integral-Derivative (PID) controller mechanism have also 

widely been designed and implemented for error regime compensation along with including 

feedforward and adaptive compensator to overcome some of the inherent variability in the 

signal sources, model and hardware aging effects (Ong et al. 2010). 

 Furthermore, design challenges may include additional complexity underlying the 

dynamic changing process of the system and, eventually require rigorous tuning/calibration of 

the PID parameters of the control response, taking into account the control stability and the 

nonlinearity dependency on the temperature of the catalyst. The robustness of the closed-loop 

urea-SCR controllers greatly depends upon the feedback signal and its response to different 

transient behavior, in case of occurrence of over-dosage of urea and therefore, proper NH3 slip 

detection is critical. 

2.7.2 Model-based SCR control  

The characteristics of the SCR dynamics due to reaction kinetics, different catalyst state 

at different time scales, and strong nonlinearities originated from chemical reaction and 

temperature affect the adequacy of the control behavior. In a paper published by the Jiri Figura 

(Figura et al. 2016), the author briefly reviews different model-based estimators from numerous 

literature survey and identifies important set of features where the estimators have to satisfy in 

order to adequately characterize the SCR system and its performance. For example, the 
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estimator needs to have moderate stability under feasible operating conditions, good steady-

state and transient estimation, robustness to modeling uncertainties and measurement over 

different ambient and temperature conditions along with cost-effectiveness and low 

computational complexity. The author also mentions some of the proposed techniques in study 

and development of estimation of NOx concentration and NH3 coverage ratio. A better 

dynamic operation model-based control has been shown using a state estimation via NH3 

coverage ratio, which is not directly measurable but can be estimated from kinetic model. 

Model-based SCR control strategy based on estimating the state of the SCR system has 

been an effective methods in reducing design complexity, usually witnessed in classical 

controller methods (Herman et al. 2009). The state feedback and state estimation control feature 

with linear and nonlinear observer techniques have shown SCR control benefits than relying 

only on inlet-out SCR NOx and NH3 values, and in majority has led to sensor reduction. 

However, depending upon the inaccuracy of state estimation, such approach are known to 

sensitive to disturbance and error accumulation which causes variation in the SCR control (Skaf 

et al. 2014),. Simplified models on state estimation with assuming linearized SCR system, in 

order to predict gas phase NH3 slip and catalyst ammonia coverage ratio has also been studied 

(Upadhyay and Van Nieuwstadt 2006; Devarakonda, Johnson, and Parker 2012). Although such 

approach works well within a narrow operating conditions of the SCR, their accuracies are 

limited due to presence of nonlinearities, uncertainties and high variable disturbance (Skaf et al. 

2014). Likewise, there have multiple studies using nonlinear models to estimate internal species 

along with NH3 coverage ratio. Studies have shown to use different estimation technique using 

non-linear models, such as sliding mode observer design for estimation of NH3 coverage ratio 

with incorporating temperature and inlet and out NOx sensors signals but require a mid-catalyst 

NH3 sensor to give robustness against the NH3 cross-sensitivity (M.-F. Hsieh and Wang 2011). 

Similarly, Chen et al. proposed an alternative design which did not require the NH3 sensor and 

estimated the mid-catalyst NH3 concentration with minimum NH3 cross sensitivity (Chen and 

Wang 2015). Some studies have also utilized using Extended Kalman Filter (EKF) technique as 

the nonlinear model estimator with different outlet sensor configuration with and without 

considering NOx sensor cross sensitivity to NH3 (M. F. Hsieh and Junmin Wang 2010; Figura 

et al. 2016). Numerous model-based studies have been considered with or even without using 

physical sensors such as the NOx and NH3 sensors as these sensors tend to add cost to the 

overall system (Chen and Wang 2014).  



22 
 

2.7.3 Control approach using Artificial Intelligence Techniques  

Currently, artificial intelligent techniques have been gaining lot of attraction in 

developing automotive virtual sensors mainly in the area of on-board after-treatment 

diagnostics, delivering similar accuracy, dynamic performance and faster time response (Arsie 

et al., 2013). Few examples of fuzzy-logic usage in automotive applications are: fault diagnosis 

for engine vacuum leak detection  (Lu et al., 1998), control methods for plug-in hybrid electric 

vehicles (Ivanov, 2015), vehicle speed controller (Altrock, 1997), and more famously used in 

active vehicle suspension systems  (Jinzhi et al., 2002). Some vehicle manufactures have also 

used it as engine-control solution in ECU architecture  replacing some of the loop-up-tables 

(Altrock, 1997). A study published by Jinzhi et al. also demonstrated using fuzzy-logic controller 

with combination of other artificial technique such as GA-based optimization method for PID 

tuning and NN for parameter estimation (Jinzhi et al., 2002).  

Similarly, fuzzy-logic decision-making strategy has also been efficiently utilized for after-

treatment controls (Niewiadomski and Kacprowicz, 2014, Meierjurgen et al., 2013, Theodore, 

2008). In the field of SCR control development, Fuzzy-Logic (FL) based control algorithm   has 

also been widely utilized in urea-dosage application (Soliman et al., 1998). In a thesis research, 

carried out by Theodore R. Adams from WVU (Theodore, 2008), studied a controller design 

developed for an open loop non-sensor based fuzzy logic urea dosage controller with employing 

development of urea injection maps. The study presented results with more than 50% NOx 

reduction over two different transient cycles with maximum NH3 slippage of 10ppm and less. 

In a another study aimed at complete sensorless SCR system approach, two ANN was trained, 

one for predicting engine out NOx using engine parameters and the other for predicting SCR 

NH3 coverage ratio using a non-linear state-space plant model that simulated reduction 

reactions in the SCR (Meierjurgen et al., 2013). A fuzzy-logic based controller was then 

developed to control urea-dosing utilizing two inputs, consisting of the error function calculated 

from the output NOx of ANN with predetermined NOx target and NH3 surface coverage 

predicted from the second ANN.  

The fuzzy-logic based control strategies can be designed for non-linear systems with just 

basic minimum knowledge of depended multiparametric behavior of the desired system using 

experimental experiences. This tends to reduce the complexity in decision-making mechanism 

approach by applying data-driven engineering heuristics and makes the control logic qualitative 

in nature.  
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2.8 Control-oriented model based on physical NOx and NH3 

sensors 

Utilizing in conjunction with one or multiple sensors in order to monitor SCR state and 

activity have been common control approach, mainly in open-loop controls, in targeting 

efficient NOx reduction as a result of adequate urea injection upstream of the catalyst. For 

example, NH3 sensors has been used for pre-SCR ammonia concentration and mixing as a 

feedback signal to controllers for urea-dosage purpose. Similarly, such method is also further 

refined by including NOx signals monitoring NOx downstream of the SCR catalyst as an 

additional feedback signal. Combination of using NOx sensor pre-and-post of SCR also 

provides advantages, especially in the OBD applications. The flexibility and performance of the 

control related task also depends upon he integrity of the sensors used, for example, cross 

sensitivity of NOx sensor to NH3 play a key challenge in effective SCR activity.   The following 

paragraphs reviews literature on using NOx and NH3 sensor for commercial SCR control 

applications and their ongoing development in widely available model-based and adaptive 

control techniques.  

Similar to oxygen sensors, NOx sensors have been in development from early as 1990s, 

and was commercially introduced in 2002 for gasoline cars and extended onto diesel SCR system 

in 2005 (Jääskeläinen and Majewski 2016). The on-board applied NOx sensors have commonly 

been working under the same principle based on yttrium-stabilized ZrO2-based electrochemical 

sensing and have progressed over time on measurement ranges, accuracy and durability. Figure 

7 provides the common layout of the working principle of the ZrO2-based NOx sensor used in 

common exhaust path. NOx sensor manufactured by NGK and in partnered with Continental, 

known as the UniNOx sensor, measures ranges of 0-500ppm or 0-1500ppm depending on the 

application used for, with accuracy of ±10% at 100ppm to 500ppm and ±10ppm at 0 ppm 

(NGK 2017).  
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Figure 7. Schematic of a NOx-ZrO2 sensor (Blanco-Rodriguez 2014) 

Current NOx sensor measurement method has a major challenge, that is such sensors 

are typically cross-sensitive to other nitrogen compounds at various levels. More importantly, 

cross-sensitivity due to gaseous NH3 have shown to corrupt NOx sensing measurement and 

varies with temperature (Zhang, Wang, and Wang 2015). This could potentially impact SCR 

urea control dependent upon NOx sensor feedback to accurately control at dynamic conditions 

of the exhaust. These could also lead to over or under dosing of urea, causing either urea cost 

or impact catalyst performance. There have been studies on eliminating the NOx sensor cross-

sensitivity to NH3 and estimate actual NOx concentration using cross-sensitivity correction 

factors, and typically modeled using the following expression (M. F. Hsieh and Junmin Wang 

2010; Marins 2000): 

 𝐶𝑁𝑂,𝑠𝑒𝑛𝑠𝑜𝑟 = 𝐶𝑁𝑂
∗ + 𝐾𝐶𝑆𝐶𝑁𝐻3 (11) 

where, 𝐶𝑁𝑂
∗  is the actual NOx concentration, 𝐾𝐶𝑆 is the cross-sensitivity factor, and 

𝐶𝑁𝐻3 is the actual NH3 concentration. The model is used in predicting the actual NOx 

concentration using the sensor model as expressed above. The 𝐾𝐶𝑆 cross-sensitivity factor is 

obtained using ammonia measurement. The authors address that the level of cross-sensitivity 

factor changes and varies between sensors. It shows that sensor aging causes inaccuracy in the 
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factor, slowly with time, and becomes a challenge to develop models to adequately. Design 

based on Extended Kalman Filter (EKF) was proposed in the study to estimate NOx 

concentration and cross-sensitivity factor based on approximated model and the stochastic 

character of signals. Results obtained on FTP75 test cycle indicated the approach to accurately 

eliminate cross-sensitivity error caused by presence of ammonia and able to predict actual NOx 

concentration. In a recent study, the same authors utilized a different approach to remove NOx 

sensor ammonia cross-sensitivity from measurement in diesel SCR systems (Zhang, Wang, and 

Wang 2015). The study evaluates using H2/H∞ approach, a design for gain-scheduling strategy 

consisting of an adaptive compensation for the existing nonlinearities and the involved time-

varying parameters of the SCR model. Experiment results from the study indicated that the 

proposed model performed better over the EKF on estimating the cross-sensitivity of NOx 

sensor to ammonia, as shown in Figure 8. Additionally, EKF approach was also found to be 

slower than the alternative proposed method. 

 

Figure 8. Performance of NOx sensor NH3 cross-sensitivity factor using different error 
estimation designs (Zhang, Wang, and Wang 2015) 

NOx sensors have also been used to estimate NH3 concentration without requiring NH3 

sensor through cross-sensitivity correlation between NOx and NH3. A method based on two 

NOx sensors with different temperature dependent NH3 cross-sensitivity characteristics at the 
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SCR outlet was proposed to estimate also the SCR-out NH3 concentration (Chen and Wang 

2015).  

 

Figure 9. Schematic of NH3 sensor based on non-equilibrium electrochemical sensing 
principle (Moos et al. 2002) 

Application of using NH3 sensors have also been widely used for measure NH3 

concentration and provided benefits in developing robust SCR feedback control. The developed 

control strategies have also been used in conjunction with model-based approach in estimating 

NH3 storage capacity of the SCR as such storage characteristics is not directly measurable but 

including it in models benefits in state-estimation of the SCR under time and temperature 

dependent non-linear dynamics of the system. There have been only limited commercially 

developed NH3 sensors in market, operation based on a non-equilibrium electrochemical 

sensing principle where the sensing element used co-fired zirconia and alumina layers with NH3 

sensing, a Pt reference electrode and an integrated heater circuit (Moos et al. 2002). Figure 9 

presents a schematic of a commercially available NH3 sensor. Typically, the NH3 sensors are 

used post-SCR to detect any ammonia leak, and are designed to detect the range of ammonia in 

the exhaust. NH3 sensor designed by Delphi, has a measurement range of 0 to 100ppm with a 

tolerance of ±5ppm NH3 at 10 ppm range (D Wang et al. 2007). However, these sensors are 

observed to be relatively insensitive to interference from nitrogen compounds and along with 

HC and CO but are reported to sensitive to interference from water and oxygen (D Wang et al. 

2007). According to the study conducted by Wang et. al with the Delphi NH3 sensors, the water 

and oxygen tend to have inverse interference effect to the NH3 sensor. But at narrow range of 

water and oxygen in the exhaust, self-compensation effect is possible and is also possible with 

model based correction using air-fuel ratio and air humidity information. Ongoing work is being 
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done for NH3 sensors for real-world applications and alternative technologies are being looked 

at by the industry and different research institutes.    

2.9 Summary 

When compared between diesel versus natural gas fueled vehicles in heavy-duty 

transportation application, diesel vehicles significantly dominates the market share (Delgado 

and Muncrief 2015). However, future demands in low fossil fuel dependent and low emission 

emitter vehicles are causing a trending technology shift, consequently resulting in popularity in 

the alternative fueled natural gas vehicles (Stanton, 2013). From a 2016 statistics data reported 

by the NGV Global, the natural gas powers roughly 24.4 million vehicles worldwide and 

projected to reach more than 30 million by the year 2024 (NGV Global 2017). Based on 

Stanton’s review on development of efficient and clean engines to meet future GHG norms, an 

estimated 11.9% average annual growth rate is projected between 2011 and 2040 in the US. The 

growth in the use of heavy-duty natural gas vehicles in the US has been seen largely in centrally 

fueled fleets attributed by increasing domestic fuel availability and fueling stations along with 

increasing vehicle procurement incentives provided at different state and federal levels. Natural 

gas vehicles equipped with TWC system have shown to produce elevated levels of precursor 

ammonia emission. Gas-phase ammonia was considered to be a critical atmospheric pollutant 

contributing to the formation of airborne particulate matter (Renner and Wolke, 2008), 

threatening the ambient air quality and predominately effecting both human health  (Krupa, 

2003) and the ecosystem (Sun et al., 2016). The current regulation for heavy-duty engines 

excludes ammonia emission as a regulated criterion, however for the reasons discussed above 

there is critical need for ammonia reduction from heavy-duty stoichiometric natural gas vehicles.  

The literature survey was conducted to identify a viable pathway in mitigating tailpipe 

NH3 emission produced in stoichiometric natural gas engine. Application of SCR technologies 

were reviewed in modern-heavy-duty diesel applications along with gasoline fueled engines to 

increase fuel benefits from lean-burn operation. However, exhaust temperature becomes a key 

challenge in maintaining overall performance of the SCR depending on the type of catalyst used. 

As catalyst formulations observed to be a key factor in NOx and NH3 performance over 

different temperature range, the study reviewed the three-major catalyst formulations used in 

SCRs. Furthermore, the study considered reviewing different traditional and AI based SCR 

control techniques which can be potentially utilized in developing active regeneration strategies 
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to lower NOx and NH3. Finally, the study reviewed NOx and NH3 sensors from both, a physical 

sensor and estimator (virtual sensor) standpoint which are used for controlling the proposed 

passive-ARC system activity.   
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CHAPTER 3 Experimental Setup 

This chapter provides the general overview of the experimental setups, instrumentation 

and specifications used during the study. All measurement of the study presented herein were 

conducted at the Engine and Emissions Research Laboratory (EERL) at West Virginia 

University. The EERL is a part of West Virginia University’s Center for Alternative Fuels, 

Engines and Emissions (CAFEE) and the transient engine dynamometer test cell is designed 

and operated according to recommendations set forth by Code of Federal Regulations (CFR), 

Title 40, Part 1065 (USEPA). It is to be noted that different sections of the experiments, herein, 

were conducted at different time due to unavailability in laboratory space and instruments 

required for the study. The following sections outlines details in experimental setup and 

procedure in order to meet the study’s objectives.  

3.1 Test engine specification 

The after-treatment system analysis conducted using a stoichiometric natural gas engine 

on a heavy-duty engine dynamometer under controlled laboratory conditions. The study 

procured a commercial natural gas engine with its stocked after-treatment configuration as 

provided in Table 1 below. 

Table 1. Test Engine and After-treatment Specification  

Manufacturer Cummins 

Model [MY] ISL-G280 [MY2008] 

Capacity 8.9 Liter 

Rated Power 280 hp @ 2200 rpm 

Engine Hours 13,800 hrs 

Fuel Type [Storage] Natural Gas [CNG] 

After-treatment System Three-way catalyst (TWC) 

After-treatment Strategy Stoichiometric Combustion + Cooled EGR 

Engine Family 8CEXH0540LBD 

NOx/PM Standards [g/bhp-hr] 0.20/0.01 USEPA 2010 compliant 

 

The Cummins ISL-G engines have found to be heavily used in urban fleet vehicles with 

major vocational application such as transit buses, refuse and food/beverage delivery trucks. 

The developed Cummins natural gas engine show significant advancement over other previous 

model year engines, in terms of fueling technology and after-treatment performance. The study 
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used a 2008 model year Cummins ISL-G engine with baseline specification of 280hp rated 

power at 2200 rpm. The engine consisted of stoichiometrically fueling strategy with cooled EGR 

and was equipped with a TWC configuration which were manufacturer certified to comply to 

the USEPA 2010 emissions norms. The study also considered an older model high mileage 

vehicle to investigate the ranges (NOx and NH3) of emission characteristics as observed from 

WVU’s prior experience in testing natural gas vehicles. From ECU interrogation, the engine 

showed approximately 13,800 hours of operation before the experimental study.   

3.2 Engine laboratory setup 

The procured Cummins ISL-G engine and the stocked after-treatment system 

originated from a Class-8 transit bus application vehicle, and was integrated to the engine 

dynamometer setup at EERL. The baseline engine experiments were conducted on a 500 HP 

DC engine dynamometer capable of engine speeds up to 2500 rpm was used for the 

experimental study and the baseline (engine + TWC) setup is shown by Figure 10. Due to 

unavailability of the 500HP dyno during the SCR evaluation, a 300HP AC engine dynamometer 

capable of engine speeds up to 3000 RPM was used for the remainder of the study. The baseline 

setup with the added SCR system is shown in Figure 11.  

 

Figure 10. Baseline Cummins ISL-G test cell setup 
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The test engine was coupled with the test cell dynamometer via a universal joint 

dynamometer shaft adapted to the engine flywheel. Throttle input and speed control were 

provided using WVU CAFEE’s in-house engine dynamometer test cell software. CAN bus 

communication with SAE J1939 protocol was used between the test cell controller and the 

engine control unit ECU. The study conducted engine mapping procedure in order the map the 

engine to its rated power and torque, and verify proper functionality of the engine. Constant 

monitoring of the engine and after-treatment fault codes were also made to insure no fault 

detection detected during operating of the integrated systems.  

 

Figure 11. Cummins ISL-G (TWC+SCR) test cell setup 

3.3 Gaseous emission measurement system using FTIR 

analyzer 

There are numerous methods and systems commercially available in the current market 

to analyze various levels of constituents of gases in the exhaust from combustion sources. In 

order to characterize the exhaust species as raw measurement, the study utilized the MultiGasTM 

2030 Fourier-Transform Infrared Spectroscopy (FTIR) continuous gas analyzer. The FTIR 

works in the principle of adsorption spectroscope and measures high spectral resolution data 

over a wide spectral gas range which had the gas speciation capability of 20 different exhaust 
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species at a time. The FTIR consist of two infrared beams which originates from the same 

infrared source but sent to two different optical paths that varies in beam frequency, where one 

beam gets reflected onto a fixed mirror and the second onto a vibrating mirror as shown in the 

Figure 12. The combined beams are then passed through the gas chamber or cell where the gas 

molecules absorb energy at different levels based on spectral distribution of the molecules. 

Finally, the beam exiting the chamber is sent back to the detector to yield an interferogram. 

Fourier-transformation, a mathematical method is then used to obtain the intensity distribution 

of the interferometer as a function of frequency and wavelength. Intensity distribution in the 

infrared adsorption spectra of different gases are calibrated and given by the manufacturers and 

concentration of each gas measured during the continuous sampling are obtained using the pre-

loaded calibrations.  

 

Figure 12. Schematic diagram of an FTIR interferometer (Sanchonx 2017) 

The FTIR used in sampling the exhaust gases measured concentrations at 5 

measurements per second (5Hz) at parts per million (ppm) level. A pre-calibrated natural gas 

method obtained from the manufacture was used which typically consist of traditional emission 

components with ranges observed in natural gas engine exhaust. Since, the major objective of 

this study was to characterize NH3 and NOx before and after the after-treatment systems, the 

FTIR additionally had the capability of also measuring complete speciation of oxides of nitrogen 



33 
 

compounds, such as NO and NO2. The analyzer did not measure monoatomic molecules such 

as O2 and N2, that’s also present in the exhaust.  

In order for the FTIR to continuously sample and measure emissions under transient 

and steady-state engine operating conditions, a sampling setup was built to draw part of the 

exhaust at a flow rate of (10-12) liters per minute and maintain the FTIR’s cell pressure close to 

1atm (as per manufacturers specification). Figure 13 provides the FTIR instrument with the in-

house built sampling setup. The setup consists of a dual head diaphragm pump, which was 

specifically used to minimize sample pulsation and provide low flow characteristics required by 

the analyzer. The entire sampling lines carrying the exhaust gases entering and exiting the FTIR 

were controlled and maintained at 191ºC temperature specification to avoid sample 

condensation. Additionally, the sampling setup also included a heated filter which was 

maintained at 191ºC temperature. The heated filter was used to capture any solid particles 

entering the FTIR gas chamber to avoid beam obstructions. More detailed information of the 

FTIR specification used in the study are provided in APPENDIX A. 

 

Figure 13. FTIR sampling setup 

3.4 Gaseous measurement system using CVS method 

The study also utilized the EERL’s gaseous emission measurement system designed to 

be capable of measuring continuous engine exhaust under Constant Volume Sampling (CVS) 

FTIR Sample 

Out
FTIR 

Sample In

Sample from the 

Exhaust

FTIR Back 

Panel

Sampling 

Pump

FTIR Front 

Panel

Temperature and 

Flow Controller 

Box

Nitrogen for 

zero-air



34 
 

method. Under this method the gaseous exhaust emission were measured on diluted basis using 

a full-flow constant volume sampling dilution tunnel as recommended by the Code of Federal 

Regulations, Title 40, Part 1065 (CFR40/1065/SubB 2017). The schematic of the gaseous 

sampling setup using CVS system is shown in Figure 14. The diluted samples are extracted from 

the dilution tunnel and routed via 191ºC maintained heated line into the gaseous emission 

gaseous analyzer. Regulated gaseous emissions, including CO, THC, NOx as well as CO2, NO 

and CH4 were measured using a Horiba® MEXA 7200D automotive emissions analyzer system 

which is also shown in the schematic below. The analyzer uses methods such as non-dispersive 

infrared (NDIR) to detect CO and CO2, chemiluminescence for NOx and NO, and heated-

flame ionization detector (HFID) for THC and CH4. The analyzer system did not have the 

capability of detecting NH3 emission. CO, CO2, NO and NOx are measured using dry method 

(removes water in the sample using chilled mirror maintained below sample dewpoint), whereas 

THC and CH4 are measured wet. All analyzers were verified for operation as per Code of 

Federal Regulations, Title 40, Part 1065, Subpart D (CFR40/1065/SubD 2017) including 

manufacture’s specifications.  

 

Figure 14. Schematic of dilute gaseous measurement system using CVS method 

3.5 Engine lean-ON operation control setup  

The tested stoichiometric engine used an oxygen sensor feedback signal to control the 

engine AFR. Since there were no access over the engine’s ECU parameters, the study used an 

external signal that was designed to provide necessary feedback signal to the ECU in order to 

operate the engine into a modified AFR ratio when compared to baseline operation. This was 
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I-L) setup built for the study. The H-I-L setup basically consisted of using an Arduino DUI 

board with a relay shield and a National Instrument’s (NI) multifunction I/O USB DAQ device 

(provide in Figure 15). The breadboard was used to connect pins between the Arduino, NI 

DAQ and the engine’s O2 sensor signal wires.  

 

Figure 15. Manual lean-ON hardware control setup 

Figure 16 presents the schematic showing the technique used in manually switch 

between the modified (shown by the blue signal) and the on-board O2 sensor signal (shown by 

the red signal).  The Arduino board was used to code the voltage profile signal curves and a 

relay switch (added Arduino’s Relay Shield) on the Arduino board was incorporated to switch 

between the baseline signal and the modified signal voltages. The power to switch the relay 

control was provided by NI’s USB-6009 DAQ device and manually trigger using NI’s device 

monitor, also shown in the schematic (referred to Figure 16). The stoichiometric engine utilized 
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engine diagnostic tool. The desired engine lean AFR operation was obtained based on the profile 

of the modified signal. Providing a dithering profile with higher duration of 0.8V and a lower 

duration of 0.2V converted the engine’s ECU to interpret the engine’s operation to be at rich 

side, hence eventually shifting the AFR to a leaner operation. Time of 2000ms for rich-duration 

and 500ms for lean-duration were found appropriate for the lean-ON operation trigger which 

was also based on observing the engine stability. High engine power fluctuation due to due 

fueling destabilization was the main visually inspected criteria used in maintaining the engine 

stability during the lean-ON operations. 

 

Figure 16. Schematic of manual lean-ON control setup for intercepting on-board O2 
sensor signal to the ECU  
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CHAPTER 4 Approach 

The study evaluated a stoichiometric natural gas engine equipped with a TWC system 

for emission performance, and investigated feasible pathways required to control precursor 

ammonia emission observed from such vehicles. This chapter presents and discusses the studies 

approach in evaluating a 2008 Cummins ISL-G engine equipped with a stock TWC system and 

analysis required to investigate a SCR system to capture NH3 emission downstream of the TWC. 

To minimize slippage of NH3 from the proposed passive-ARC catalyst, the study extends its 

work with an engine based control strategy. The chapter further details the studies approach in 

estimating NH3 emissions after the TWC during different engine operating conditions and 

NOx/NH3 and NH3 storage capacity from the stand-point of control-oriented and sensorless 

based application.   

4.1 Baseline after-treatment evaluation  

The baseline engine performance with the TWC system was evaluated under engine’s 

dynamic operation to better understand the secondary NH3 production characteristics. Figure 

17 depicts the schematic of the baseline experiment setup required for conducting the baseline 

engine plus TWC combined system. Inlet and outlet exhaust gas path of the TWC was 

instrumented with k-type thermocouples for temperature measurement. Two FTIR analyzer 

were setup to sample and measure up to 20 different exhaust constituents before and after the 

TWC system. The exhaust outlet of the TWC was routed to the CVS dilution tunnel to evaluate 

total emissions based on iterative carbon balance method for the baseline engine and after-

treatment configurations.  

 

Figure 17. Schematic of the experimental setup for the baseline (engine + TWC) 
evaluation 
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4.1.1 Transient test cycles 

For the dynamic evaluation of the baseline setup, two heavy-duty transient cycles, 

Federal Transient Procedure (FTP) cycle and the World Harmonic Transient Cycle (WHTC) 

were selected. The cycles consisted of 1208 seconds and 1800 seconds of engine operation for 

the FTP and WHTC cycles, respectively. The normalized traces of the speed and torque profiles 

are given by Figure 18 for the FTP cycle and by Figure 19 for the WHTC cycle.  

 

Figure 18. FTP normalized speed and torque profiles 

 

Figure 19. WHTC normalized speed and torque profiles 

In the US, the FTP cycle is commonly used for regulatory emission testing of heavy-

duty engines, where the cycle was specifically designed to represents variety of heavy-duty truck 

and transit bus driving conditions, typically seen in urban city roads and highways. On the other 

hand, the WHTC cycles are used internationally as an engine dynamometer testing procedure, 

and the cycle was designed to represents world-wild pattern of real heavy commercial vehicles. 
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The study selects these two cycles based on the two distinct characteristics observed between 

the engine speed and load combinations. In specific to engine operating conditions, majority of 

the FTP’s points operated at a higher speed of (70-100%) band width whereas for the WHTC 

lie between engine speeds of (30-60%) band width, as depicted from the normalized points in 

Figure 20. The two cycles would potentially result in different output results both in fueling and 

emission characteristics. Additionally, also providing different range of temperature profiles 

which would assist further in evaluating after-treatment performance. Actual engine speed in 

rpm and engine torque in ft-lbs are calculated from the normalized FTP and WHTC profile 

using maximum torque curves obtained during the engine mapping procedure. The motoring 

torques were also corrected to simulate the actual engine friction torque obtained from the 

engine-dynamometer motoring test procedure.  

 

Figure 20. Normalized distribution of engines operating points for the FTP and 
WHTC cycles 

4.1.2 Steady-state test matrix 

For the steady-state evaluation of the engine and the after-treatment performance, the 

study selected twenty mode engine operating conditions, where each mode was given four 

minutes of stabilization time to reach a steady after-treatment state. A 20-mode test matrix was 

developed from using methodology based on Design of Experiment (DOE) with a space-filling 

design approach to obtained efficiently spaced operating points under the engines maximum 
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torque curve (engines overall operating range). The space-filling design was generated and 

analyzed using a statistical software called JMP®, where the approach efficiently characterizes 

operating points for a wide area of operating modes within the engines given boundaries. Engine 

speed and torque was used as two boundary parameters for the space-filling DOE design factor 

which were segmented down into multiple levels after the normalization process. The design 

efficiently selects a specified number of combination points (20-Mode) considering maximizing 

the minimum distance between points within the space of the two-normalized speed and torque 

boundaries. Figure 21 shows the 20-Mode points (labeled in circles) selected by the space-filling 

DOE design under the maximum torque curve (shown by black curve in the figure). Along with 

points within the engine’s operating region (area in grey), the test matrix also added four more 

operating points (Mode 12, 16, 19 and 20) on the maximum torque curve. 

 

Figure 21. 20 engine operating modes for steady-state evaluation  

4.2 TWC+SCR after-treatment system evaluation  

Different SCR systems downstream of the TWC exhaust were installed for the ammonia 

reduction catalyst evaluation. A similar setup as described in Section 4.1 was used for the SCR 

evaluation but the two FTIR’s were used to sample exhaust gases before and after the added 

SCR system. Figure 22 depicts the schematic of the test setup for passive-SCR system. The 
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exhaust outlet of the SCR was routed to the CVS dilution tunnel for evaluating total emissions 

of the combined engine and after-treatment configurations.  

 

Figure 22. Schematic of the experimental setup for the (engine + TWC + SCR) 
evaluation 

4.2.1 Types of SCR formulation  

The study conducted five SCRs with three types of catalyst formulations that are 

commercially used and well-studied in the field of heavy-duty diesel applications. Four canned 

SCR catalysts were directly procured from two different catalyst manufacturers, i.e. Corning Inc. 

and AP Exhaust. Only two type of SCR catalysts (Fe-based and V-based) were available from 

the two manufactures. Since it was important for the study to also evaluate a widely used Cu-

zeolite based SCR catalyst by the heavy-duty OEMs, a stocked SCR system manufactured by 

Cummins Inc. was also included in the list of tested SCRs. Based on the manufactures 

specification, the Cu-zeolite based SCR catalyst which was directly procured from a heavy-duty 

diesel vehicle consisted of a bigger volume catalyst. The specifications of the SCR catalysts 

tested are provided in Table 2.  

Table 2. List of five experimented SCR catalyst for ammonia reduction evaluation 

SCR Number Manufacturer Catalyst Type Cell Density [cpsi] Volume [Lt] 

SCR 1 AP Exhaust Fe- Zeolite 100 7.07 

SCR 2 AP Exhaust Fe- Zeolite 400 6.39 

SCR 3 Corning Fe- Zeolite 400 7.83 

SCR 4 Cummins Cu- Zeolite 400 17.04 

SCR 5 AP Exhaust V-based 400 6.39 
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4.2.2 SCR evaluation test matrix 

The study then selected one out of the five tested SCR formulation for the development 

of the regeneration control logic and mode-based prediction, which are discussed in the 

following sections. A specific SCR was selected based on the performance in NH3 and NOx 

characteristics at different temperature ranges over the transient FTP cycle. NH3 storage 

adsorption and desorption characteristics were evaluated within binned temperature ranges, 

averaged over the three repeated FTP cycles. NOx conversion efficiencies were also evaluated 

over the defined temperature bins.  

The study further investigated the selected SCR as the passive-ARC candidate over 

different steady-state operation with less number of modes as opposed to the 20-mode steady-

state experiments as detailed in the TWC evaluation. The steady-state modes were selected 

representing the actual engine operation of the real world on-road vehicle activity. An on-road 

data-set collected from a similar natural gas engine equipped in transit bus application conducted 

for PEMS evaluation under a WVU CAFEE research program, was used to obtain specific 

steady-state modes. Figure 23 depicts the engine speed and torque distribution concatenated 

from multiple selected on-road tests which include low-to-medium vehicle speed urban-driving 

to high-speed highway driving activity. Eight steady-state modes representing different engine 

operation were picked from the engine speed-and-torque distribution based on a data clustering 

method where the clustering algorithms adequately groups engine speed/toque combination 

points to a desired number of groups. The k-mean clustering method was used for the grouping 

of the points where the algorithm utilizes a heuristic data classification approach to gather the 

data set into ‘k’ number of clusters based on the measure of single mean vector method. The 

data set are assigned into the nearest mean (centroid of clusters) using the Euclidian distance as 

a metric, where the sum of distances with respect to each data point in a cluster is minimized. 

The result from clustering the on-road engine speed and torque distribution are shown in Figure 

23, where the points (x) represent the centroid of each cluster (colored spheres), and a total of 

eight clusters were selected for the study. The size and shape of the colored eclipses represent 

the data density with 95% data coverage. The eight clustered central data points were considered 

as the representative steady-state modes to be conducted using the same SCR evaluation setup 

as discussed in the previous sections. Two-minute stabilization time was given for each mode 

to have an adequate stable reading of both after-treatment temperatures and overall emission 

constituents. 
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Figure 23. Transient bus real-world engine operation and 8-mode steady-state from 
clustering method 

4.3 Fuzzy-logic based control method 

This section provides the design overview of the engine-based control approach that 

works on minimizing overall NOx and NH3 slippage after the passive-ARC system. With the 

complexity of the approached configuration, a decision-making algorithm based on AI’s fuzzy-

logic controller was designed to trigger regeneration command for lean-operation in order to 

meet two basic goals; (1) reduce ammonia slip from the passive-ARC system with induced NOx 

regeneration (lean-ON modes) intervals, and (2) maintain low to zero NOx emissions over the 

entire duration of operation. Hence, the controller needs to observe the SCR state in both NH3 

and NOx slippage and provide a clear output for engine to operate lean air-fuel ratio. 

MATLAB’s inbuilt fuzzy logic toolbox was used in order to design and setup the control 

features of the fuzzy-logic algorithm (Mathworks 2016).  

Under the boundaries of the above-mentioned objectives, the fuzzy-logic controller was 

designed taking into consideration three input parameters; (Input-1) Ammonia Slip {AS}, 

(Input-2) Rate of Ammonia Slip {RAS}, and (Input-3) NOx Slip {NOS}. AS and NOS inputs 

are obtained from direct measurement, whereas, the ASR is computed by taking the difference 

of ammonia slip concentration between the NH3 concentration at (t) second and (t-n) second 
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in the continuous data. The “n” would be defined from observing the data’s response to avoid 

high sudden peaks attributed due to signal noise. The output of the developed controller will, 

hence, define the engine AFR status to either be on lean-ON status (NH3 regeneration) or lean-

OFF status (baseline operation).  

The fuzzy-logic based controller consists of three main processes; fuzzification, 

inferences, and de-fuzzification. Figure 24 provides the flow-chart of the fuzzy-logic’s decision-

making algorithm design for the study, and their detailed steps of the processes are discussed in 

the sections below. The fundamentals and the approach used in developing the fuzzy control 

were reference from MATLAB’s Fuzzy Logic ToolboxTM user’s guide (Mathworks 2016) and 

handouts provided by Dr. Mario Perhinschi’s MAE565 AI Techniques in MAE class at WVU 

(Perhinschi 2016). Snippets of MATLAB’s Fuzzy Logic ToolboxTM used in designing the fuzzy 

logic controller are provided in APPENDIX B. 

 

Figure 24. Flow-chart showing the fuzzy-logic based controller for controlling the 
passive-ARC regeneration status 
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4.3.1 Fuzzification  

Fuzzification is a process which takes crisp input from the input interface and converts 

it into a fuzzy input sets. The three inputs (AS, RAS and NOS), also named as linguistic variables 

in the fuzzy-logic terminology, are derived into three input domains having its own fuzzy sets, 

that is defining the linguistic values for each linguistic variable and is provided in Table 3. The 

linguistic values represent the nature of the linguistic variables and degree to which the crisp 

measurements belong to each linguistic value is defined by membership function, as discussed 

in the next section. 

Table 3. List of linguistic variables and linguistic values 
Linguistic Variables Linguistic Values 

Ammonia Slip (AS) 

Negligible Slip (NS) 

Small Slip (SS) 

Moderate Slip (MS) 

Large Slip (LS) 

Rate of Ammonia of Slip (RAS) 

Increasing (IR) 

Constant (CR) 

Decreasing (DR) 

NOx Slip (NOS) 

Negligible Slip (NS) 

Small Slip (SS) 

Moderate Slip (MS) 

Large Slip (LS) 

 

4.3.2 Membership function 

In fuzzy-logic control theory, the membership function is designed to represent the 

extent or degree to which a value of a linguistic variable belongs to a fuzzy set, i.e. linguistic 

values. This maps the three input variables given in its respective membership function of the 

linguistic values in relationship with the desired output. The shape of the membership function 

is designed based on arbitrary numbers which are placed based on data range of the three 

selected inputs. For this study, the values in approximating the linguistic values in shaping the 

membership function is only obtained after conducting the SCR evaluation. The study elects to 

utilize trapezoidal shaped membership function for the input linguistic variables. With the 

trapezoidal shape, the end fuzzy sets of the linguistic values are shaped based on increasing and 

decreasing type functions. Figure 25 depicts the shape of the membership function of the input 

variables, indicating the trapezoidal functions with increasing and decreasing types and the 

degree of overlap between the functions. On the other hand, the output function was given a 
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triangular shaped membership function. The output variable determines the regeneration status, 

which is “Lean-ON” or “Regen-OFF”, and dictates a distinct mode to be on either of these 

statuses. The lean-ON status was further defined to be in two separate modes, based on 

dithering and defined as short-dithering (SD) and long-dithering (LD) as represented in Figure 

26. As an engine-based control strategy to regenerate the passive-ARC system, the lean-ON is 

set to a fixed dithering time instead of a feedback-loop based control strategy. For example, in 

such event, the engine is continuously operated for a given time and the length of lean-period 

is given in two types (short-dithering and long-dithering). This would potentially benefit in 

transient operation which consist of hard-acceleration events, causing sudden emission peaks 

and rise-rates. Additionally, this could also avoid potential control fluctuations in the controlling 

the engine operation which are known to have response delays at different load demands.  

  

Figure 25. Membership function shapes for three input linguistic variables and its 
values 
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Figure 26. Membership function for output variable 

4.3.3 Inference engine 

The inference engine of the decision-making controller generates the fuzzy commands 

based on the inference rules defined in the design process using some understanding of the 

after-treatment behavior. In considering the three linguistic variables and combination of (4, 3 

and 4) levels of linguistic values for each linguistic variable, resulted in a total of 48 inference 

rules that defined the regeneration status. All 48 input-output combinations of rules are 

provided in Figure 27. Below are some examples of the decision statements (“IF-THEN” rules) 

used in determining the conditions in the inference rules with respect to the three-linguistic 

variable and its linguistic values to the three the outputs: 

Example Rule: If ammonia slip (AS) is negligible slip (NS) and rate of ammonia is slip 

(RAS) is increasing rate (IR) and NOx slip is negligible (NS), then regen status is off (Off) 

Example Rule: If ammonia slip (AS) is large slip (LS) and rate of ammonia is slip (RAS) 

is increasing rate (IR) and NOx slip is negligible (NS), then regen status is on and large dithering 

(On-LD) 

Example Rule: If ammonia slip (AS) is small slip (SS) and rate of ammonia is slip (RAS) 

is increasing rate (IR) and NOx slip is small slip (SS), then regen status is on and small dithering 

(On-SD) 
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Figure 27. 48 inference rule based matrix for fuzzy-logic output 

Individual-rule based inference method was used for rule firing, to obtain the fuzzy 

commands using the inference rule matrix. For given number of three inputs, we get three sets 

of fuzzy input and using a composition rule method will provide in obtaining the membership 

value associated to the intersection of the fuzzy set to the inputs. From fuzzy methodology of 

logical operators in fuzzy sets, three definitions were considered for computing the intersection 

region of the fuzzy set and are given by the relationships below: 

i. Multiplicative definition: 

𝑉1 ∩ 𝑉2 ∩ 𝑉3 = {𝑥 | 𝜇𝑉1∩𝑉2∩𝑉3
(𝑥) = 𝜇𝑉1

(𝑥). 𝜇𝑉2
(𝑥). 𝜇𝑉3

(𝑥)} 

ii. Minimum definition: 

 𝑉1 ∩ 𝑉2 ∩ 𝑉3 = {𝑥 | 𝜇𝑉1∩𝑉2∩𝑉3
(𝑥) = min [𝜇𝑉1

(𝑥), 𝜇𝑉2
(𝑥), 𝜇𝑉3

(𝑥)]} 

iii. Additive definition: 

𝑉1 ∩ 𝑉2 ∩ 𝑉3 = {𝑥 | 𝜇𝑉1∩𝑉2∩𝑉3
(𝑥) = 𝜇𝑉1

(𝑥) + 𝜇𝑉2
(𝑥) + 𝜇𝑉3

(𝑥)} 

 

The multiplicative and the minimum are the two most commonly used definitions of 

intersection for control purposes, the minimum fuzzy set intersection method is the one utilized 

for this study.  
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4.3.4 De-fuzzification 

De-fuzzification, considered as the output interface, is the process of converting the 

fuzzy commands into user defined crisp values, i.e. the regeneration status with command basic 

command logic (On/Off) that can be executed by the ECU interface module. The uses the use 

of fuzzification of clipped or scaled membership function for the output linguistic variables. 

The study used “the middle of maximum” or basically the average of the maximum value of the 

output set as the De-fuzzification method, due to the fact the only three statuses is executed by 

the fuzzy output interface. The relationship of computing the states is given below by Equation 

(12) and Equation (13). This entails the center of area under the curve from the aggregated 

output of all the clipped fuzzy sets as depicted in Figure 28 and center of the maximum area is 

selected as the regen status (example indicating fuzzy output of 0.25 with crisp output of Regen-

OFF).  

         𝑢∗ = 𝑐𝑖 𝑚𝑎𝑥,𝑗 𝑚𝑎𝑥 (12) 

                                                𝑑𝑖 𝑚𝑎𝑥,𝑗 𝑚𝑎𝑥 = max
𝑖,𝑗

(𝑑𝑖𝑗) (13) 

 

Figure 28. De-fuzzification of the fuzzy-logic output using middle of maximum 
method 
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4.3.5 Fuzzy logic control summary 

In summary, the control algorithm approached consists of fuzzy-logic inferenced logic 

features specifically designed to command engine based SCR regeneration using feedback from 

only two sensor outputs, i.e. NOx and NH3 values after the SCR. Linguistic values of the fuzzy-

logic sets will be based on experimental profiles obtained from transient and steady-state test 

conducted during the selected SCR evaluation. The analysis of this approach will focus on 

validating closed-loop NH3 slip control along with meeting low NOx emission requirement. 

Different regeneration duration (amount of time the engine is operated at lean AFR condition) 

along with transient compensations will be looked at in order to understand the engine behavior 

and the after-treatment response.  

The fuzzy logic controller can also be designed with incorporating additional input 

variables such as temperature and ammonia storage ratio for wider control of the regen events 

even in the situation where there is no noticeable amount of ammonia slip with low levels of 

NOx trace. This can be performed by monitoring the SCR’s state with estimation of high 

ammonia storage conditions and brief lean-ON trigger can be initiated further extending the 

control strategy under wider range of engine operation. Such approach could possibly provide 

feasible robust control of a real time on-board NH3 generation and regeneration strategy. 

Additionally, possibility of expanding the overall range of natural gas engine operation beyond 

its tight stoichiometric regime to more lean burn operation. This leads into the work of mode-

based approach as discussed in the follow sections. 
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4.4 Model-based estimator methods 

The intent of the following approach is to evaluate proposed after-treatment activity 

models for estimating the state of the passive-ARC system, mainly in estimating NH3 storage 

ratio along and NH3 concentration values outlet of the passive-ARC system. The study 

investigates into evaluating after-treatment activity models, which can also be used as real-time 

in-ECU basis for predicting NH3 concentration before and after the SCR system based on 

various engine and after-treatment parameters.  

Figure 29 illustrates the modeling schematic, depicting the two after-treatment models 

(Model-1 and Model-2) with its input parameters (X1 to X7 shown by red arrows) and the 

output parameters (Y1, Y2 and Y3) shown by the blue arrows). The Model-1 includes engine 

plus the TWC as one combined system and estimates NH3 concentration post-TWC using eight 

different engine and after-treatment parameters as model inputs. Whereas, Model-2 includes 

only the SCR system model which will use pre-and-post SCR parameters, estimating post-SCR 

NH3 slippage as the model output (Y2). Although not considered in the fuzzy-logic control 

inputs, the study will also focus on estimating the NH3 storage ratio of the SCR catalyst. The 

estimated NH3 (Y1) from the proposed Model-1 output is also used as input variable for Model-

2. The focus of this approach is to develop an SCR catalyst model which can be implemented 

as a control-oriented model.  

The study considers identifying major SCR kinetics that governs the characteristics of 

reactions in both gas and solid phase species for NOx and NH3. Higher order SCR models have 

shown to represent SCR systems dynamics accurately and has helped in the better control of 

the urea-injection process in diesel applications. However, such approach in the vehicle 

application could be computationally intensive, leading to impracticality in on-ECU real time 

implementation. Therefore, these studies utilize reduce order models that were necessary to 

identify the dynamic behavior of the SCR and was adequate to estimate model parameters. The 

approach towards estimating NO and NH3 after the SCR is carried with step-by-step 

identification of physical and chemical processes of species entering the SCR catalyst. From the 

basic principle of the SCR operation, it was necessary to formulate model that uses mechanism 

of ammonia of adsorption/desorption, reduction and oxidation of NO and NH3 over the 

selected SCR catalyst. 
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Figure 29. Schematic of model-based NH3 estimation approach for the fuzzy-logic 
based controller 

4.4.1 Post-TWC NH3 estimation method 

Model 1 utilizes a data driven artificial neural-network (ANN) fitting methodology to 

map the selected seven input parameters to estimate the NH3 concentration after the TWC 

system. The ANN methods are known to be a good predictor when there is not enough 

information to describe the functional form of a system response or the relationship between 

the inputs and the output (De Cesare and Covassin 2011). Therefore, ANN has been a viable 

tool and approach using data driven modeling in adequately predicting certain system output 

even without understanding the exact mathematical and physical aspects of a system in relation 

to factors influencing its complex behavior. Use of such techniques were formed from the 

notion of how human brain’s networking architecture operates. Like multiple number of 
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neurons in the brain transmitting information efficiently within different networks, the basic 

architecture of ANN does consist of similar functional layers (analog to neurons and networks) 

which process information with multiple inputs and outputs. Within such layers, there could be 

multiple nodes or neurons and each neuron receives information from respective inputs or from 

other neurons through networks or paths. And these paths are then modified with computed 

weights through leaning process to achieve desirable outputs. In similar note, it approximates 

arbitrary continuous functions with certain degree of accuracy, if the sets of dependent and 

independent variables are known with adequate information of input and output data set (Prié 

et al. 2015). The network of inputs-neurons-outputs or connecting input to output with hidden 

layers of pathway are modeled with defined activation functions and the model can be used in 

predicting the future behavior of the same system with certain accuracy.   

 

Figure 30. Example flow model architecture of ANN with seven inputs, three hidden 
layers and one output  

The selection of the seven input parameters were founded on the basic of influential 

factors in characterizing the after-treatment system based on similar research studies and open 

literatures. Figure 30 depicts the flow model of the neural-network (N-N) setup showing an 

example of a network with connecting seven inputs with the single output using three hidden 

layers. The study does realize that there could be additional high-impacting factors as input 



54 
 

parameters in the model which could potentially help in better estimating NH3 concentration, 

but due to limited availability in ECU parameters, the study utilizes the readily available channels 

and evaluates the accuracy level of prediction appropriate in using as an on-board control 

feedback approach. Towards on-ECU implementation standpoint, it also becomes extremely 

important in understanding the computational time utilizing such models and processing in real-

time application. 

For the purpose of this study, a two-layer feed-forward function fitting network using 

MATLAB®’s inbuilt ANN toolbox was used in evaluating and identifying different training 

algorithms and appropriate network connection. Utilizing MATLAB’s step-by-step approach 

helped to create, train and visualize models. The overview of the network flow obtained from 

MATLAB®’s net is provided by Figure 31. The performance of the N-N architecture to fit the 

target with the given sets of inputs depends on different network parameters. Based on work 

conducted in the area of N-N, the two major parameters that tend to alter the network 

performance is the size of the hidden layers and pre-defined training functions used.  

 

Figure 31. MATLAB’s Neural-Network view 

The study looks into evaluating different feed-forward based network architecture to 

achieve improvements in training, if any, in the output estimation i.e. concentration of NH3 

being produced by the TWC during transient and steady-state operation of the engine. The two 

types of training algorithm used to evaluate the network are the Levenberg-Marquardt and 

Bayesian Regularization functions. The first method, Leavenberg-Marquardt uses a 

backpropagation (of errors) based algorithm to train and optimize weights and bias with 

minimizing sum of square error (Mathworks 2017). Similarly, the Bayesian regularization is built 

on using the Levenberg-Marquardt algorithm to optimize weight and bias values but additionally 

uses error minimization technique using linear combination of squared errors and weights. Due 

to the additional training computation in Bayesian Regularization backpropagation technique, 
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Levenberg-Marquardt is typically considered as a faster approach in generalizing networks. The 

summary of the configuration chosen for evaluating the training of the N-N are given Table 4. 

For the training of the models, the input-output data set is selected to be divided into three 

subsets, training, validation and testing as also provided in the table. The present of the training 

data set is used for computing the gradient and updating the network weights and biases, 

whereas, the validation set is used for monitoring the error during the training process. It 

essentially helps in understanding and avoiding potential overfitting of the data, if any during 

the event of training and validating the input-output relationships. These are observed from the 

mean-square error plots, where high deviation in the error between the training set and the 

validation set starts to increase in differing paths. On the other hand, the third division, which 

is the testing set’s error is not used during the training events and can be used to evaluate against 

different trained models and data set. All the N-N properties in terms of training the model and 

input-out fitting performance and results, will be evaluated in terms of computational time.  

Table 4. Neural-Network Training Parameters 

Number of Inputs 7 

Size of Hidden Layers [10, 20, 30, 40] 

Training Functions [Levenberg-Marquardt, Bayesian Regularization] 

Data Set Division Training = 70%; Validation = 15%; Testing = 15% 

 

As for the input-output data set, a transient FTP test is used to train the model initially 

with the seven selected input parameters to estimate the transient NH3 production after the 

TWC. As the computational time of neural networks are known to increase with using higher 

number of input parameters, the study also considers examining the cross-correlation between 

the input and output parameters to eliminate the number of inputs in the overall modelling 

approach.  

4.4.2 Post-SCR NH3 estimation method 

Model 2 utilizes a control oriented modeling approach steered more towards a model-

based online estimation application. Due to dynamics of SCR system in NH3 storage and 

reaction, it becomes crucial to better understand kinetics of SCR over the transient behavior of 

the exhaust with which it gets introduced. The study approaches NH3 estimation after the SCR 

catalyst from a model-based method with utilizing kinetic models over the chosen SCR catalyst. 
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From the obtained literatures as discussed SCR formulation review section system, various 

reactions mechanism is important in order to describe the true behavior of the SCR in 

outputting certain levels of NOx and NH3. Hence, identifying the adsorption and desorption 

response of the NH3 over the catalyst surface is vital in capturing the dynamic behavior of the 

system in different operating condition. The SCR system are known to be highly non-linear in 

nature and the internal mechanism operates in different time scale along with its operation being 

strictly varied due to changing temperatures in the exhaust. The temperature strongly influences 

the rate of chemical reactions are known to depend exponential on temperature (Figura et al. 

2016). From kinetic model approach, the follow section discusses the estimation of 

concentration and coverage ratio of ammonia over the added SCR system for the study.  

4.4.3 SCR kinetic analysis 

The ammonia entering the SCR system gets adsorbed and desorbed by the SCR 

substrate and the two-way adsorption and desorption of the ammonia reaction is given by the 

following expression (M. F. Hsieh and Junmin Wang 2010): 

𝑁𝐻3 +  𝜃𝑓𝑟𝑒𝑒 →  𝑁𝐻3
∗ (14) 

where, 𝜃𝑓𝑟𝑒𝑒 represents the surface that is not covered by the NH3 and has potential for 

ammonia adsorption. The rate of reactions of the following above for adsorption/desorption 

processes can be modeled using the Arrhenius equations and presented below: 

𝑅𝑎𝑑𝑠 = 𝑘𝑎𝑑𝑠𝑒𝑥𝑝 (−
𝐸𝑎𝑑𝑠

𝑅𝑇
) 𝐶𝑁𝐻3(1 − 𝜃𝑁𝐻3)𝛺 (15) 

𝑅𝑑𝑒𝑠 = 𝑘𝑑𝑒𝑠𝑒𝑥𝑝 (−
𝐸𝑑𝑒𝑠

𝑅𝑇
) 𝜃𝑁𝐻3𝛺 (16) 

where, Rads and Rdes are the two reaction rates for adsorption and desorption reactions (in 

mole/s), respectively. T is the temperature in K, CNH3 represent the model concentration of 

ammonia in mole/m3, 𝐸𝑎𝑑𝑠 & 𝐸𝑑𝑒𝑠 are the activation energy and kads & kdes are the rate constant 

from the Arrhenius reaction models. 𝜃𝑁𝐻3 are the ammonia coverage ratio which is defined by 

Equation (17), where 𝑀𝑁𝐻3
∗  represents the mode number of ammonia absorbed by the catalyst 
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and 𝛺 is the ammonia storage capacity of the catalyst in moles and which tend to vary with 

temperature and is typically modeled by Equation (17), where S1 and S2 are the storage 

parameters and positive constants. The ammonia coverage ratio goes from 0 to 1, where 0 

stands for no ammonia stored and 1 stands for saturated SCR brick. V is the catalyst volume 

expressed in m3.However, these parameters needs to change accordingly to capture the effect 

of catalyst aging as an adaptive approach (M. F. Hsieh and Junmin Wang 2010). 

𝜃𝑁𝐻3 =
𝑀𝑁𝐻3

∗

𝛺
 (17) 

𝛺 = 𝑆1𝑒−𝑆2𝑇 (18) 

The adsorbed ammonia is either desorbed as described from above mechanism or 

further reacts with NOx as by the process of reduction reaction. The standard NOx reduction 

reaction, as discussed in the literature reviewed Section 15, is the dominant reaction due to 

presence of only NO in the exhaust. Reiterating the reaction (8) with only the adsorbed 

ammonia 𝑁𝐻3
∗, Equation (19) expresses the reaction between the stored NH3 over the SCR 

surface and exhaust NO species in the presence of O2. The rate of reaction for the following 

NOx reaction is ones again defined from the Arrhenius reaction rates provided by Equation 

(20), where 𝐶𝑁𝑂 and 𝐶𝑂2
 represents the mole concentration of NO and O2, respectively. All the 

reaction rates were defined as a function stored ammonia (𝜃𝑁𝐻3) and gaseous NO. 

4NH*
3 + 4NO + O2  4N2 + 6H2O (19) 

𝑅𝑟𝑒𝑑 = 𝑘𝑟𝑒𝑑𝑒𝑥𝑝 (−
𝐸𝑟𝑒𝑑

𝑅𝑇
) 𝐶𝑁𝑂𝐶𝑂2

𝜃𝑁𝐻3𝛺 (20) 

Additionally, the adsorbed 𝑁𝐻3
∗ also has the tendency to get oxidize in the presence of 

O2 as expression by reaction (21). Such reactions are typically known to occur at temperatures 

higher than 450ºC (Jinbiao and Fengjun 2015). The reaction rate of the NH3 oxidation is 
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provided by Equation (22), where  𝑘𝑜𝑥𝑖 is the rate constant for oxidation and 𝐸𝑜𝑥𝑖 is the 

activation energy for the oxidation process. 

 4NH*
3 + 3O2  2N2 + 6H2O (21) 

 𝑅𝑜𝑥𝑖 = 𝑘𝑜𝑥𝑖𝑒𝑥𝑝 (−
𝐸𝑜𝑥𝑖

𝑅𝑇
) 𝐶𝑂2

𝜃𝑁𝐻3𝛺 (22) 

4.4.4 Steady-state estimator for SCR modeling 

For solving the reaction mechanisms, the study assumes the SCR catalyst to be a 

continuous stirred tank reactor (CSTR) in order to develop is simplified 0-D model (M. F. Hsieh 

and Wang 2011). This assumes the SCR to be a single unit reactor with the states being 

homogenous within the catalyst as depicted in Figure 32.  

 

Figure 32. Schematic of ammonia storage distribution and CSTR model of SCR 
catalyst  

In additional to the main assumption, the following assumptions were also made to 

formulate the SCR model and are listed below (Devarakonda, Parker, and Johnson 2008): 

1. All chemical kinetics over the catalyst surface are reaction control with no mass 

transfer. 

2. Surface phase concentration of varied species are neglected except for NH3 storage 

3. NOx reaction with NH3 is assumed to be with NO only 

4. Reaction rate are defined as a function of SCR inlet temperature, NH3 storage ratio 

and concentration of NO at the SCR inlet. 

Tin, CNO,in,CNH3,in, CO2

Exhaust Flow (F)

 SCR Catalyst

Ammonia Storage 

T, CNO,CNH3, CO2T, CNO,CNH3, CO2

SCR Volume (V)

Tailpipe Flow
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Using the conservation of mass balance law and the above mentioned CSTR 

assumptions, the three state model equations are expressed by the following three equations 

below.  

 �̇�𝑁𝑂 = �̅�(𝐶𝑁𝑂,𝑖𝑛 − 𝐶𝑁𝑂) − 𝑅𝑟𝑒𝑑 (23) 

 �̇�𝑁𝐻3 =  𝑅𝑎𝑑𝑠 − 𝑅𝑑𝑒𝑠 − 𝑅𝑟𝑒𝑑 − 𝑅𝑜𝑥𝑖 (24) 

 �̇�𝑁𝐻3 = �̅�(𝐶𝑁𝐻3,𝑖𝑛 − 𝐶𝑁𝐻3) + 𝑅𝑑𝑒𝑠 −  𝑅𝑎𝑑𝑠 (25) 

where �̅� is the normalized exhaust flow rate (1/s) obtained from volumetric exhaust flowrate 

(F) divided by total catalyst gas volume (V). The 𝐶𝑁𝑂,𝑖𝑛 and 𝐶𝑁𝐻3,𝑖𝑛, are NO and NH3 

concentration upstream of the catalyst. The above equations are rearranged to a state-space 

model form which are shown in Equation (26). 

[

ĊNO

θ̇NH3

ĊNH3

] = [

−rredCNOCO2θNH3Ω − �̅�CNO

−θNH3(radsCNH3 + roxdCO2 + rdesCNOCO2) + radsCNH3

−CNH3(Ωrabs(1 − θNH3) + �̅�) + rdesΩθNH3

] + [

0
0

�̅�
] CNH3,in + [

�̅�
0
0

] CNO,in (26) 

where 𝑟𝑖 =  𝑘𝑖𝑒𝑥𝑝 (−
𝐸𝑖

𝑅𝑇
) , 𝑖 = 𝑎𝑑𝑠, 𝑑𝑒𝑠, 𝑟𝑒𝑑, 𝑜𝑥𝑖 

The study incorporates the above mentioned three SCR mechanisms to be considered 

in the control-oriented SCR model. The state coupled SCR equation model is a system of first-

order Ordinary Differential Equations (ODEs) which includes rate of reaction of dependent 

variables NO and NH3 along ammonia storage ratio. The study used differential equation 

solvers using MATLAB’s ODE15s method to solve the system of kinetic equations, 

simultaneously (MathWorks 2017). The solver numerically solves using numerical 

differentiation formulas (NDF’s) of orders 1 to 5. The time derivative reaction rate was 

formulated as objective function in MATAB workspace to solve the ODE problem with given 

initial values of NO, NH3 and θ̇NH3.  
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For the model to estimate the SCR reaction outcomes, the reaction parameters (ki and 

Ei) in the reaction mechanisms needs to be given, and the values are usually obtained from 

conducting controlled reactor experiments and was out of the scope of the study. There exist 

several literature that have looked at identifying the reaction rate parameters based on lab reactor 

experiments conducted for similar SCR systems (Clark et al. 2009; Song 2013; Pant and Schmieg 

2011). However, studies have also shown using optimization or search based techniques for 

parameter identification (M. F. Hsieh and Wang 2011; Devarakonda, Parker, and Johnson 2008; 

Song et al. 2013). The approach taken in this study is discussed in the following section by 

solving the ODE model with different combination of parameters and then comparing the 

obtained model values with the actual measured values.  

4.4.5 Model parameter identification method  

The approach uses MATLAB®’s multi-objective Genetic Algorithm (GA) method to 

obtained the reaction parameters by solving the reactor model with combination of varying 

values of the parameters to be optimized. The multi-objective optimization technique is used in 

minimizing multiple objective functions which are subject to set of constraints. Likewise, the 

model consists of three state variables as objective function that needs to be optimized for the 

given set of parameters, i.e. activation energies and rate constant for each reaction. Figure 33 

presents the parameter identification schematic formulated for the GA based optimization 

problem in MATLAB®.   

 

Figure 33. Schematic for model parameter identification 
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The goal here is to minimize the error between the simulated value from the model and 

the measurement obtained from the experiment for a set of reaction parameters. The SCR 

model calibration was targeted to match the concentration of NO and NH3 to the SCR outlet 

values obtained in the steady-states experiments. The accuracy of the estimating the output 

variables evaluated by calculating the cost function, defined as sum of squared of accumulated 

error between the model prediction and the experimental measurement over the entire test. The 

equation for the considered cost function for each output variable is expressed as: 

𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖 =
1

𝑁
∑ (𝐶𝑖,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 − 𝐶𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)

2
𝑁

𝑡0=1

 (27) 

where, i in the cost function is for the two species, NO and NH3. t0 is the initial time and N is 

the total time of evaluation. For the GA optimization algorithm properties, the study uses the 

following default settings and are provided in the Table 5 below. Performance in changing 

optimization criterions were not examined for the study. 

Table 5. GA Optimization Algorithm Criteria’s 

GA Criteria Name Criteria Used 

Population Size 100 

Initial Range Given (E’s and k’s ranges obtained from literature) 

Parameter Bounds Given (E’s and k’s ranges obtained from literature) 

Parent Selection Criteria Tournament (Size = 2) 

Reproduction Crossover fraction with 0.8 

Mutation Constraint dependent (Gaussian distribution) 

Crossover Two Point 

Migration Forward with last two individuals with 20 intervals  

Multi-objective Algorithm Setting Distance measure with 0.35 pareto front population fraction  

Stopping Criteria 
Time Limit = 36000 seconds 
Stall Generation = 50 
Function Tolerance = 0.0001 
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CHAPTER 5 Results and Discussion 

As the global objective of this study was to develop an ammonia reduction after-

treatment system for a heavy-duty natural gas engine which are subjected to stoichiometric 

combustion operation and consequently shown to produce high precursor ammonia tailpipe 

emission; the study addresses by conducting experimental evaluation on a 2008 8.9L natural gas 

engine which are known to have heavy market penetration in the vocational heavy-duty 

transport sector. The experiments and data analysis were performed in a sequential step and 

findings are summarized as per the studies approach towards the specific objectives.   

5.1 Baseline engine and after-treatment evaluation  

Baseline evaluation study was conducted to obtain the performance and emission levels 

of the procured 8.9L engine equipped with its stocked TWC system which were in-use 

application. Both the engine and TWC together already had approximately 13,800 hours of 

operating usage before the engine was installed on the engine dynamometer. The engine was 

tested under both transient and steady-state operating conditions in observe the dynamic 

characteristics of engine performance and composition of emission characteristics under such 

engine behavior and theirs results are provided in the following sections. 

5.1.1 Transient evaluation 

Table 6 summarizes the transient test matrix for ten experimental tests to evaluate the 

baseline setup. During the duration of the baseline testing, one of the FTIR system encountered 

sampling issues, and consequently the test was conducted with only one FTIR instrument 

sampling before or after the TWC system, as depicted by the test matrix in Table 6. The study 

conducted additional transient tests in order to obtain adequate information of the baseline 

engine and TWC setup evaluation. 
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Table 6. Transient Test Matrix  
Test Cycles FTIR [pre-TWC] FTIR [post-TWC] CVS System 

FTP 1 Measured Measured Measured 

FTP 2 Measured NA Measured 

FTP 3 Measured NA Measured 

FTP 4 Measured NA Measured 

FTP 5 NA Measured Measured 

FTP 6 NA Measured Measured 

FTP 7 NA Measured Measured 

WHTC 1 Measured NA Measured 

WHTC 2 NA Measured Measured 

WHTC 3 NA Measured Measured 

 

Table 7 provides the summary results obtained from the carbon balanced iterative 

method with gaseous samples measured using the CVS system for the ten transient test cycles. 

It is to be noted that the engine was not preconditioned, and hence, each test cycle would differ 

in initial engine and after-treatment temperature state which could potentially affect the TWC 

temperature characteristics during the duration of the cycle. Additionally, some of the test cycles 

were not tested back-to-back, and the study considered using the initial TWC out temperature 

to define the test start type (i.e. cold start, warm start and hot start). In terms of total cycle work 

and brake specific CO2 values for the two-separate type of transient cycles (FTP and WHTC), 

the tests were repeatable with small variation, and potentially be due to test start type. Results 

indicated distinct observed in brake specific NOx emissions between cold-start, warm-start and 

hot-start test. Compared to cold-start test from the FTP results, the NOx emissions were on 

average of 38% and 71% lower than the warm-start and hot-start test, respectively. Similarly, 

from the WHTC results, the warm-start test showed on average 30% lower brake specific NOx 

emission than the cold-start test. Results showed that the temperature activity of the after-

treatment TWC system does plays an important role in defining emission characteristics, 

especially for NOx.  
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Table 7. Summary results from transient test cycles with baseline setup, CVS 
measured brake specific emission values 

Test 
Cycles 

Start Type 
Cycle 
Work 

[bhp-hr] 

Brake Specific Emissions [g/bhp-hr] 

CO2 NOx CO THC 

FTP 1 Warm-Start 19.3 442.2 0.32 2.08 1.77 

FTP 2 Hot-Start 19.3 442.2 0.14 2.08 1.44 

FTP 3 Warm-Start 19.2 425.8 0.35 3.68 2.75 

FTP 4 Hot-Start 19.0 427.3 0.17 1.95 1.92 

FTP 5 Warm-Start 19.5 429.1 0.35 2.46 2.82 

FTP 6 Cold-Start 19.5 434.4 0.52 3.35 2.61 

FTP 7 Cold-Start 19.5 432.5 0.59 3.10 2.69 

FTP Average 19.3 433.4 0.35 2.67 2.29 

FTP Std. Deviation 0.2 6.7 0.16 0.70 0.56 

WHTC 1 Warm-Start 26.0 407.2 0.45 2.86 2.93 

WHTC 2 Cold-Start 26.1 404.6 0.70 2.89 3.39 

WHTC 3 Warm-Start 26.0 406.9 0.53 2.51 3.21 

WHTC Average 26.0 406.2 0.56 2.75 3.17 

WHTC Std. Deviation 0.02 1.42 0.13 0.21 0.23 

 

The transient experiments were also instrumented to measure concentration pre-and-

post the TWC system to better understand the conversion efficiency of some of the anticipated 

emission species. Figure 34 shows averaged NOx, NH3, CO and THC concentration values 

calculated over the entire FTP cycles and the seven FTP test repeats. For abovementioned 

species, the bar chart represents average concentration before and after the TWC system. In 

summary, the TWC reduced approximately 88%, 81% and 43% of NOx, CO and THC 

components on average, respectively. On the other, the TWC produced approximately 39 ppm 

of NH3 on average over the test cycles with standard deviation of 3 ppm within the FTP tests. 

Figure 35 includes result from the WHTC test results, showing similar trends in TWC 

reduction. For these cycles, the TWC reduced 89%, 84% and 27% of NOx, CO and THC 

components, respectively. The THC conversion is observed lower than the FTP cycle which 

could also be due to the temperature activity of the WHTC cycle which included more low load 

operations than compared to FTP cycle. The cycles average NH3 concentration was observed 

to be at 61 ppm with standard deviation of 4 ppm within the WHTC tests.  
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Figure 34. Averaged NOx, NH3, CO and THC emission concentration before and 
after the TWC system over transient (FTP cycle) tests 

 

Figure 35. Averaged NOx, NH3, CO and THC emission concentration before and 
after the TWC system over transient (WHTP cycle) tests 
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The experimental study had only one FTP test (FTP-1) which measured concentration 

before and after the TWC using the two FTIR setup, and was hence used for the continuous 

evaluation of the selected species. Figure 36 shows the transient profile of the engine operation 

during the FTP cycle. The chart also includes the temperature profile (shown by the blue trace) 

averaged before and after the TWC. The maximum temperature was observed to be 

approximately 492ºC for this specific cycle but did vary between different test repeats and cycle 

types. Results from the continuous NOx concentrations traces show that the sudden NOx 

peaks closely follow the transient engine behavior, and higher reductions of NOx are observed 

when the average temperature are at the higher thermal activity ranges, mainly above the light-

off temperatures of the catalyst. The light-off temperatures for any given species (defined as the 

temperature necessary to achieve 50% conversation efficiency, T50) differ between catalyst 

formulation, and also between fresh versus aged catalyst (González-velasco et al. 2000). The 

traces of ammonia tend to correlate well with the transient behavior in the cycle, matching 

closely to change and aggressiveness of the engine power, agreeing well with relevant emission 

studies (Thiruvengadam et al. 2016). No inference can be made on the formation of precursor 

ammonia in the effect of changing temperature from the obtained charts but will be further 

analyzed based on grouping data into different temperatures ranges.  

 

Figure 36. Engine transient operating (FTP-1 test) profiles showing engine speed 
(rpm), engine torque (ft-lbs), engine power (bhp) and averaged TWC temperature (ºC) 
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Figure 37. NOx and NH3 concentration before and after the TWC system over 
transient (FTP-2 test) operating condition 

As the study looks into a passive-SCR system after the TWC as an ammonia reduction 

strategy, understanding the levels of available NO2/NO ratio before the SCR catalyst is also 

important. Figure 38 shows the continuous trace of NO2 and N2O concentration before and 

after the TWC system for the same FTP test (FTP-1). With the levels of NO2 observed at post-

TWC (average concentration of 1.5 ppm) and NO being the dominant species in total NOx, 

leading to a more standard-SCR reaction mechanism. Higher concentration of N2O traces were 

also observed after the TWC especially at lower temperatures during the first half of the cycle. 

Studies have shown the indication of N2O produced during operation of gasoline engine 

emission converters and the formation of N2O emission significantly correlates to the aggressive 

power demand in the cycle and are typically formed during redox reaction with NO by CO at 

lower temperatures (200-400ºC) (Mejía-Centeno and Fuentes 2009).  
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Figure 38. NO2 and N2O concentration before and after the TWC system over 
transient (FTP-1 test) operating condition  

Figure 39 shows the average concentration of NOx and NH3 observed after the TWC 

evaluated from all the transient test cycles and grouped with respect to post-TWC temperature. 

The temperature consists of six bins with bin size of 50ºC. The result indicated higher NOx 

levels at lower temperature bins but with more variation in the values, and as observed from 

previous cases, a downward trend was observed with increasing temperature due to better 

conversion activity of the TWC at higher temperatures. On the other hand, we see a clear 

inclination in the rise of NH3 levels at higher temperature bins, indicating that the amount of 

NH3 formation in the TWC as a function of after-treatment temperature. The grey line with “x” 

markers represents the calculated NH3 to NOx ratio (ANR) using only the averaged NOx and 

NH3 values for each temperature bins. For three the temperature (200-350 ºC) bin ranges, the 

ANR were calculated to be around 0.5 ratio with 1 (1:1 NH3:NOx) being observed right around 

the 350-400ºC temperature region, and then quickly rising with higher temperatures.  
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Figure 39. Averaged post-TWC NOx and NH3 concentration for temperature bins 
from FTP and WLTC cycles 

5.1.2 Steady-state evaluation 

The section here presents results obtained from the testing the engine under the 20-

different steady-state modes. The results of NOx and NH3 concentration for each mode are 

averaged over the two-minute stabilization period of the test and the averaged concentration 

are plotted as a contour map under the engine speed and torque area, as shown by Figure 40. 

The results from the steady-state modes indicate NOx produced by the engine is distinctly 

higher in the upper region of low speed and high torque, and decreased at lower speed and 

torque modes. This engine parameters play a big role in combustion NOx formation which are 

closely related to combustion timings and fueling strategies, EGR rates which have shown to 

affect in-cylinder temperatures to promote NOX formation. The post-NOx results show mainly 

the TWC reduction characteristics, indicating adequate efficiency through the engine operation 

to quickly reach passed the light-off temperatures. On the other hand, the formation of 

ammonia is observed more in the region where higher NOx levels were observed, at low-speed 

high torque engine operations, directly relating to high temperature and richer air fuel ratio 

operating conditions. Further analysis showed that highest levels of N2O were observed at speed 

and torque operating modes during lower exhaust temperature TWC activity. 
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Figure 40. Concentration counter plots from 20 steady-state mode tests represented 
under engine speed and torque region; (a) pre-TWC NOx (b) post-TWC NOx, (c) 

post-N2O and (d) post-TWC NH3  

5.2 TWC+SCR after-treatment evaluation  

This section summarizes and discusses results obtained from conducting the five SCRs with 

three several types of catalyst formulation that were obtained from three separate catalyst 

manufactures. Details of the catalyst evaluation test matrix are provided by Table 8. The study 

evaluated all five SCR catalyst over the FTP transient cycles with three repeats for each catalyst. 

Due to the size of the test matrix and availability of test time/budget, the SCRs were not tested 

over the WHTC cycle and the 20-mode steady-state study. Additional experiments and analysis 

were conducted for the SCR selected from the result obtained from the results obtained in this 

work.  
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Table 8. Test matrix from the five SCR evaluation study 
SCR 

Number 
SCR Type Test Cycle 

FTIR 

pre-TWC 

FTIR 

post-TWC 

CVS 

Measurement 

SCR 1  
Fe-Zeolite (Mfg: AP 

Exhaust/ 100 cpsi) 

FTP-1 Measured Measured NA 

FTP-2 Measured Measured Measured 

FTP-3 Measured Measured Measured 

SCR 2 
Fe-Zeolite (Mfg: AP 

Exhaust/ 400 cpsi) 

FTP-4 Measured Measured Measured 

FTP-5 Measured Measured Measured 

FTP-6 Measured Measured Measured 

SCR 3 
Fe-Zeolite (Mfg: 

Corning/ 400 cpsi) 

FTP-7 Measured Measured Measured 

FTP-8 Measured Measured Measured 

FTP-9 Measured Measured Measured 

SCR 4 
Cu-Zeolite 

(Cummins/400 cpsi) 

FTP-10 Measured Measured Measured 

FTP-11 Measured Measured Measured 

FTP-12 Measured Measured Measured 

SCR 5 
V (Mfg: AP Exhaust/ 

100 cpsi) 

FTP-13 Measured Measured Measured 

FTP-14 Measured Measured Measured 

FTP-15 Measured Measured Measured 

 

The study evaluated the five SCR catalyst type based on the NOx conversion efficiency 

and NH3 storage characteristics over the transient FTP cycle. The SCRs activity in NH3 storage 

and NOx reduction in the presence the stored NH3 have shown to significantly depend upon 

the exhaust temperatures. It has been well observed from studies that the SCR substrate typically 

holds NH3 at lower temperatures and tend to gradually desorb NH3 as temperature of the SCR 

increases. Additionally, the efficient redox reactions are less likely to be observed at lower SCR 

temperatures due to catalyst inactivity below minimum activation or the light-off temperatures. 

And, this have shown to vary between SCR to SCR catalyst with different formulation and 

geometric characteristics (Colombo, Nova, and Tronconi 2010; Nagashima et al. 2000).  

Figure 41 presents an example of the SCR 3 experimented over an FTP cycle, and the 

results are represented in terms of continuous NOx and NH3 concentration before and after 

the selected SCR. From initial visual inspection of the NOx profiles (referred to the top chart 

in the figure), its shows that NOx reduction tend to vary with temperature as commonly known 

property of SCR, especially Fe-zeolite based SCRs. We observed better NOx reduction at higher 

temperatures than the lower temperature seen in the first half of the FTP cycle. In addition to 

the temperatures, oxygen in exhaust also plays a significant role in promoting the standard-SCR 

reaction (Guralp et al. 2011). These can be observed from the high peak events during the 

instant power demands, especially during first half into the FTP cycle, where due to rich air-fuel 

operating conditions causes lack of lack of oxygen, and therefore inhibiting NOx reduction over 
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the catalyst. In terms of NH3 slippage or storage characteristics (referred to the bottom chart in 

Figure 41), negligible slip in NH3 were observed after the SCR till 490 seconds into the FTP 

cycle, indicating complete NH3 adsorption. However, as temperature increased, low 

concentration of NH3 was observed, which indicates desorption, and the rate of NH3 slippage 

or desorption started increasing drastically with rise in temperature (around 400ºC and above), 

around 650 seconds into the cycle. Further observing the profiles indicate that the NH3 releases 

by the SCR shows a slow cyclic response than compared to the inlet NH3 concentration profile, 

and these could be attributed to occurrence of ammonia desorption and part of inlet gaseous 

ammonia stored and slipped through the catalyst at different time periods. Additionally, the rate 

of adsorption and desorption are not uniform over the catalyst surface, which could vary with 

temperature dispersal within the SCR catalyst and differences in residence time due to change 

in exhaust flowrates. 

 

Figure 41. Profiles of NOx and NH3 concentration before and after the evaluated SCR 
over the FTP cycle (SCR 3) 

The difference in the two curves (moles of NH3 entering and moles of NH3 leaving the 

SCR) provides a rough understanding of how much ammonia, in moles, are stored in the SCR 

catalyst at a given time and is provided by Figure 42 in moles of NH3 per catalyst volume 

Start of NH3 

slippage

Low NOx 

reduction

Improved NOx 

reduction
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(mole/m3). The analysis also shows that the ammonia storage value levels off at around 10-15 

moles/m3, indicating that the SCR can no longer absorb or store NH3 as a result of reaching 

the maximum ammonia storage capacity. The NH3 storage ratio at a given time cannot be 

directly measured and can only be estimated with prior knowledge the ammonia storage 

capacity. The ammonia storage ratio estimation also becomes challenging due to the uncertainty 

in how much ammonia had already been stored on the catalyst prior to the test and what percent 

of the stored ammonia has been used via different reactions. Additional the ammonia storage 

capacity of an SCR is not constant value and varies with temperature (Ciardelli et al. 2004).  

 

Figure 42. Cumulative profile of inlet NH3, NH3 storage and NH3 slippage from the 
evaluated SCR 3 over the FTP cycle  

Based on the above-mentioned SCR characteristics, the study chooses to evaluate the 

five SCR for NOx conversion efficiency and NH3 storage over different temperature categories 

(bins) observed during the transient cycle from each test. The SCR inlet temperatures were 

categorized into six different ranges with a size range of 50ºC. The time-aligned concentration 

of NOx and NH3 before and after the SCR were subsequently averaged within the obtained 

temperature bins. Although, few tests did include data points below 200ºC and above 500ºC, 

the chooses to evaluate the SCR performance only within the two given temperature ranges 

where majority of data were observed.  



74 
 

Figure 43 provides the NOx conversion efficiencies obtained from the three repeated 

FTP tests and averaged for the six temperature ranges as represented by the horizontal axis. On 

comparing the five SCRs over different temperature ranges, SCR 1 (Fe-zeolite with 100cpsi) 

clearly indicates lowest conversion of NOx, resulting in efficiencies below 20% at both lower 

(200-300)ºC and higher (350-500)ºC temperature ranges. This could be attributed to the lower 

cell density formulation than compared to the other four SCRs, and studies have shown by 

increasing the cell density increases the SCR performance due to higher surface area (Chatterjee 

et al. 2005). This effect of higher cell density is indicative by the NOx conversion performance 

of SCR 2, an Fe-zeolite based SCR from the same manufacture with similar formulation but 

with cell density of 400 cpsi. However, both SCRs, 1 and 2 showed lower NOx conversion 

efficiency ay higher temperatures (350-500)ºC when compared to other SCRs, although, Fe- 

zeolite are known to perform well at these temperatures (Kröcher 2007). The observed 

performances from the two Fe-zeolite catalysts could be attributed to the wash-coat loading 

amount and the specific type of proprietary zeolite used to make the catalyst that was procured 

at the time of the study. 

 

Figure 43: Comparison of averaged percent NOx conversion efficiency as a function of 
temperature over the FTP cycle 

SCR 3, also a Fe-zeolite based catalyst (with 400 cpsi) but from a different manufacture, 

indicated improved conversion efficiency than compared to the other two Fe-zeolites based 
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SCRs at higher temperature ranges. A peak of 88.5% NOx conversion was observed at the 350-

400ºC temperature range but showed gradual decrease in conversion efficiency below these 

temperatures. The thermal activity of this SCR tends to agree with findings obtained in 

literatures.  

The Cu-zeolite based (SCR 4 with 400 cpsi) catalyst, resulted in NOx conversion 

efficiencies within 40 to 60% over all evaluated temperatures ranges.  However, most literatures 

have shown that Cu-zeolite based SCRs tend to operate well than Fe- and V-based SCRs, 

especially at lower operating temperatures (Kröcher 2007). The lower observed Cu-zeolite 

performance could be significantly attributed to using a highly aged SCR catalyst obtained from 

a high mileage vehicle where durability studies have indicated deterioration of the SCR 

performance over time as a result of high thermal deactivation (Cavataio et al. 2008).  

The last SCR evaluated, SCR 5 (V-based) catalyst, performed well on NOx conversion 

efficiency over all the temperature ranges when compared to majority of other four SCRs. It 

also showed the highest conversion efficiency at lower temperatures when compared against 

the two zeolite based SCRs. Several studies have indicated that V-based catalyst operates at best 

in temperature ranges between (250-450)ºC (Majewski 2005; Kröcher 2007), which tracks to the 

result obtained in this study.   

In concluding the SCR evaluation on NOx conversion performance, it is to be noted 

that the study evaluated the SCR’s performance using averaged pre-and-post SCR temperatures 

and concentrations over extremely dynamic behavior of the engine and after-treatment 

operating conditions. Additionally, due to studies experimental limitations, the SCR properties 

were not held at same input parameters, and therefore could have led to disparities in 

performance curves as observed in multiple literatures. Further investigation needs to be 

performed to elaborate the performance of different input variables under such temperature 

ranges and conditions observed in stoichiometric natural gas exhaust downstream of a TWC. 
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Figure 44: Comparison of averaged percent NH3 slip as a function of temperature over 
the FTP cycles 

On the other hand, Figure 44 shows the averaged ammonia slippage in percent for all 

five SCR catalyst tested over the same six binned temperature ranges. Results indicate a similar 

trend from all five SCRs with NH3 being absorbed at lower temperature ranges, and as 

temperature increased the slippage of NH3 also showed to increase. Cu-zeolite based catalyst 

(SCR 4) indicated the least percent of NH3 slip from (200-400)ºC temperature ranges when 

compared to other four SCRs, and NH3 slippage was observed from 400 ºC and above. SCR 3 

which showed higher conversion efficiency for NOx at higher temperatures above 400ºC 

resulted in slipping 100% of NH3 entering the catalyst. The Fe-zeolite based catalyst with 400 

cpsi (SCR 2) resulted in the highest NH3 slippage, specifically at lower temperatures, even 

though it performed well on NOx conversion efficiency when compared to the other two Fe-

zeolite based SCRs.  

Figure 45 presents the overall percent result of the NOx conversion efficiency and NH3 

slippage averaged over the entire cycle test. The chart basically provides the averaged 

performance of the added SCR systems to reduce NOx that wasn’t reduced by the TWC, and 

capture the precursor NH3 emission that was formed during the TWC reactions. In summary, 

the V-based catalyst (SCR 5) resulted in maximum NOx conversion efficiency of 76.2% on 

average but with a higher NH3 slippage percent of 40.9%. On the other hand, the Fe-zeolite 

with 100 cpsi (SCR 1) gave the lowest NOx reduction with average value of 18.8% but had a 
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moderate slippage of NH3 (25.5%) when compared to other SCRs. SCR 4 (Cu-zeolite) catalyst 

with average NOx reduction of 52.7% and lowest NH3 slippage percent of 17.5% was 

considered for further adsorption/desorption study that was utilized for the development of 

the control regeneration strategy and SCR modeling. Another reason for the study to select this 

SCR was based on the overall higher temperature activity evident in stoichiometric natural gas 

engines, where ammonia storage capacity and NOx conversion efficiency becomes important 

factors in developing a passive-ARC system. 

 

Figure 45. Average NOx conversion efficiency and NH3 slippage for all five SCR 
catalyst over the entire three repeated FTP cycles 

5.3 Ammonia adsorption/desorption evaluation (SCR 4)  

The NH3 storage ratio cannot be directly measured due to the process adsorption and 

desorption observed at different time scales over the catalyst surface. However, the storage 

behavior of the catalyst can be estimated based on prior knowledge catalyst ammonia storage 

capacity and storage ratio over the SCR surface. Therefore, any steady-state mode under a given 

engine operations and duration must be analyzed as time dependent rate. This section includes 

a comprehensive analysis of the eight steady-state mode tests results in order to evaluate the 

adsorption/desorption characteristics under stable engine operating conditions.  Table 9 list the 

engine operating condition along pre-and-post SCR temperatures averaged over stable ready of 

each 8-steady state modes. The duration of each mode varied in total duration based on visual 

SCR 1 SCR 2 SCR 3 SCR 4 SCR 5

NOx Conv. [%] 18.8 46.4 57.4 52.7 76.2

NH3 Slippage [%] 25.5 55.9 36.4 17.5 40.9
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inspection of the FTIR concentration traces and different stabilization time under different 

engine operating conditions.  Each mode also includes manual control of lean-ON periods in 

order to induce variation in NH3 and NOx dynamics and recognize rate of stabilize time on 

various species based on lean-ON durations. The results and analysis from this study will be 

used in control and model development as presented in the follow sections.  

Table 9. Steady-State mode test for SCR 4, engine and SCR temperature operating 
conditions 

Mode 
Engine Speed 

[rpm] 

Engine Torque 

[ft-lbs] 

Engine 

Power 

[bhp] 

Average pre-SCR 

Temperature [°C] 

Average post-

SCR Temperature 

[°C] 

1 751 247 35.4 320.0 190.3 

2 851 84 13.6 330.8 218.0 

3 1249 316 75.1 508.8 403.4 

4 1296 37 9.2 319.9 222.6 

5 1480 597 168.3 572.6 473.4 

6 1521 162 46.8 468.2 275.9 

7 1575 337 101.1 554.2 433.3 

8 1611 683 209.4 572.7 486.4 

 

Figure 46 displays results from mode 1, a low speed and load engine condition operated 

for 1000 second duration resulting in an average pre-SCR temperature of approximately 320°C. 

For the entire duration of the mode, the catalyst absorbed ammonia without any noticeable 

ammonia slippage after the SCR. Reduction of NOx is well observed in the beginning of the 

mode (20 to 290 secs), with NOx conversion decreasing as SCR inlet NOx stabilizes around 

550 ppm. And, this could potentially be due to low availability of NH3 stored in the catalyst, as 

NH3 entering the catalyst is also low. From the stoichiometric form of NOx reduction, shows 

that 1 mole of NH3 is needed to react with 1 mole of NOx. Hence, the number of mole of 

ammonia used for reduction of NOx is equal to the number of moles of NOx. In a steady-state 

condition where the exhaust flow rate is constant, it can be said that the different between NOx 

concentration before and after the SCR should account for the number of NH3 value used in 

the catalyst, assuming no reaction other than the reduction (NOx and NH3) occurs.  However, 

at the end of the steady-state value of NOx, at around 220 seconds, we notice traces of NO2 at 

the SCR outlet and this can be interpreted from possible oxidation reactions between NH3 and 

O2 or NO and O2 (Grossale, Nova, and Tronconi 2008; M. F. Hsieh and Wang 2011). It is to 

be noted that, NO2 values before the SCR was observed to be close to zero, and would have 
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negligible effect in NOx reduction in the catalyst, hence, were not provided in the charts below. 

At 300 seconds into the mode, the lean-ON mode was manually turned on to operate the engine 

into a more leaner operation instead of stoichiometric baseline operation. The start of the lean-

ON period can be noticed from the rise of NOx before the SCR due to reduced efficiency of 

TWC in converting NOx during high oxygen exhaust events. The pre-SCR NOx rises and 

stabilizes around roughly 860 ppm. We observe a noticeable difference in post-SCR NOx rate 

in the beginning of the lean-ON period due to NOx conversion reactions and slowly 

approached the SCR inlet NOx levels. In terms of NOx split at the SCR outlet, NO remained 

approximately stable but gradual rise in NO2 was observed. Concentration of NO2 increased 

and stabilized close to the NO concertation value. Higher oxygen content due to lean operation 

of the engine could have contributed it favor more of an oxidation reaction between NO and 

O2 than compared to the reaction between NH3 and O2. The oxidation of the absorbed NH3 

reactions are observed typically at temperatures higher than 450ºC (M. F. Hsieh and Junmin 

Wang 2010), and the modes average pre-and-post SCR temperature was at 255ºC. At about 596 

seconds, the lean-ON period was turned off, and the experiment was operated back to baseline 

stoichiometric engine condition. However, only minimum to no difference in total NOx value 

were observed during this period of the mode 1, but with an average approximate split of 30% 

NO2 and 70% NO. In summary, the oxidation reaction was seen to be more dominant than the 

reduction reaction due to low NH3 availability in the catalyst.  
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Figure 46: Mode 1 [engine speed = 751 rpm, engine torque = 247 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes lean-ON period (300-596 

seconds) 

Another similar engine operating condition, steady-state Mode 2 results are provided in 

Figure 47 having on average of 10ºC higher SCR inlet temperature than the previous mode 

(Mode 1). Similar to the previous modes NOx observation, Mode 2 also had higher NOx 

conversion in the beginning of the mode and showing a decreasing trend as inlet NOx stabilized 

around 400 seconds into the mode. The NH3 entering the SCR was observed to be significantly 

low (4 ppm on average for entire 1000 second mode duration), and all NH3 produced by the 

TWC was stored in the SCR catalyst. The lean-ON period was switched on at 480 seconds and 

turned off at 700 seconds into the mode.  Majority of the reaction could be contributed to NH3 

and NO reduction reaction in presence of excess oxygen. Similar trend in rise of NO2 was 

observed doe to occurrence of oxidation reaction.  
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Figure 47: Mode 2 [engine speed = 851 rpm, engine torque = 84 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes lean-ON period (480-700 

seconds) 

Figure 48, displays Mode 3, a mid-engine speed and high load condition resulting in 

higher pre-SCR temperature (on average of 509°C), than compared to the previous two modes. 

This mode had a higher amount of NH3 entering the SCR catalyst, where the catalyst stored 

NH3 for about 530 seconds into the mode, and then NH3 desorption at observed based on the 

NH3 slippage from the SCR. It is also observed that the rate of ammonia being slipped is stable 

with an average value of 6 ppm till 810 seconds into the mode, and starts rising with a faster 

rate to a peak of 203 ppm in roughly 170 second duration. This release or desorption 

characteristics could be contributed to rise in SCR temperature, as can been depicted from the 

SCR inlet temperature provided by the grey line and the sudden rise is NH3 slippage could also 

be due to passing a certain desorption threshold which tend to depend on the catalyst surface 

temperature. After the NH3 peak observed at around 900 seconds, the rate of desorption drops 

at a slower pace till 15400 seconds and tend to stabilize in a cyclic behavior, with an average 

concertation of 80 ppm. NOx reduction was well observed with almost 100% conversion by 
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the catalyst during the baseline engine operation due to availability of enough stored NH3 in the 

catalyst. The lean-ON period was triggered at 2040 seconds and turned off at 2280 seconds into 

the mode. During the start of lean operating condition, the pre-SCR NOx quickly rises and 

stabilizes around 900 ppm, while we observe slow rise in the post-SCR NOx values due to 

mainly reduction reaction occurring between stored NH3 with NO and O2. No noticeable NO2 

was seen during the entire mode 3, indicating negligible oxidation of either NO or NH3. The 

NH3 produced by the TWC also gradually drops in the beginning of the lean period to almost 

negligible trace of NH3. On the other hand, we also observe gradual reduction in NH3 slippage 

after the SCR, indicating that the NOx reduction is utilizing the stored NH3 for the conversion 

reactions. Similarly, the NH3 slippage goes to almost zero slip, and starts to absorb all the NH3 

being produced by the TWC ones the lean operation was shut off. At around 2850 seconds, we 

notice another NH3 desorption and at around 2970 seconds when NH3 slippage reached roughly 

27 ppm, based on visual inspection, the lean-ON was again switched on. In comparable manner, 

as the previous lean-ON period, NOx after the TWC increased but NOx outlet of the SCR did 

not increase till about 17 seconds, indicating 100% reduction within this period. The entire 

mode 3 was ran for 3072 seconds at steady-state condition. Additionally, during the initial 

periods of the lean-ON operation, the temperature after the TWC increased with approximately 

14ºC difference, and then started dropping gradually over the period of the steady-state mode. 

The lean condition operating the engine in higher air-fuel ratio caused the exhaust temperature 

to slightly drop from the baseline condition. 

Figure 49 presents mode 4, similar engine speed compared to the previous mode 3 but 

lower torque engine operating conditions. The mode is more comparable to mode 1 and mode 

2, resulting in similar trend on NOx reduction., NH3 adsorption and in NO2 reaction in the SCR 

catalyst. No desorption of NH3 was observed for the tested steady-states duration.  
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Figure 48: Mode 3 [engine speed = 1249 rpm, engine torque = 316 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes two lean-ON periods (2040-2280 

seconds & 2970-3034 seconds) 

 

Figure 49: Mode 4 [engine speed = 1296 rpm, engine torque = 37 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes lean-ON period (310-550 

seconds) 



84 
 

Figure 50 shows mode 5 steady-state results, which consist of higher engine speed and 

load operating conditions. The average temperature before the SCR catalyst from the entire 

steady-state 572.6ºC with a maximum temperature of 585ºC. It is to be noted that these elevated 

temperatures at steady conditions are usually not observed in real-world dynamic operation of 

the engine and only depicted under constant steady-state high load operation as performed for 

under this study. For this particular mode, the lean-ON period was switched on even before the 

observing any NH3 slippage after the SCR, in order to evaluate the NOx reduction with stored 

NH3 before any desorption. Right after switching the lean-ON period, the NOx after TWC 

indicated a sharp rise. We also observe the post-SCR NOx rise with minimum NOx reduction 

and quickly following the pre-SCR NOx levels. This was primarily done to understand if the 

SCR could be completely emptied (or regenerated) from the prior stored NH3 and initiate a 

condition with minimal ammonia storage ratio. Accordance to experimental reactor studies, 

researchers utilizes elevated temperature effect to completely desorb NH3 from the catalyst 

(Ciardelli et al. 2004). However, it becomes a challenge with the engine operations and 

experimental setup where NH3 dynamics and temperature after the TWC cannot be directly 

controlled or held constant.  

In elaborating further for mode 5, in Figure 50 , traces of NH3 desorption was observed 

at 345 seconds into the mode and increased rapidly with respect to the increasing temperature. 

The post-SCR NH3 slippage peaked at approximately 60 ppm and 410 seconds into the mode, 

roughly taking 65 seconds from detecting NH3 slip to maximum slippage concentration. After 

the NH3 peak, gradual drop in NH3 slippage was observed and reached a stabilizing 

concentration within (20-25) ppm. The second lean-ON was switched on at 774 seconds into 

the mode, causing the pre-SCR NH3 to drop along with the post-SCR which could be attributed 

to the availability of NH3 storage instigating reduction reaction at high NOx and oxygen levels. 

The lean operation was then turned off at around 1010 seconds into the mode. From the NH3 

slippage trace, NH3 started to desorb at a higher rate after 90 seconds into turning the lean 

operation off and stabilizing around the same level as then let NH3, approximately (20-25) ppm. 

The mode showed no indication of NO2 formation in the SCR catalyst, even during the lean-

ON periods as observed in the previous modes.  
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Figure 50: Mode 5 [engine speed = 1480 rpm, engine torque = 597 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes two lean-ON periods (65-122 

seconds & 774-1010 seconds) 

Figure 51 present mode 6, a high engine speed but low load operating condition. The 

average temperature for the mode was more stable at approximately 468.2ºC.  It can be observed 

that almost all the NOx entering the SCR is being reduced by the catalyst reaction during the 

baseline operation period of the mode. For this mode, the lean-ON was switched on for just 

brief periods. The first lean-ON was switched on at 412 seconds for only 7 seconds while the 

second lean-ON was switched on at 460 seconds but for a longer duration, i.e. 19 seconds. 

Comparing the pre-and-post NOx traces for the two lean-ON periods, the first lean-ON 

indicated that the duration was short enough to avoid the post-SCR NOx peak as seen in the 

second lean-ON period. However, the second lean-ON period with 19 seconds of duration was 

enough to result in decreasing the NH3 slippage trend as seen by the red curve around 460 

seconds on the bottom chart of Figure 51. Evaluation of different lean-ON periods on NH3 

slippage rates and NOx conversion control are presented in Section 5.3.2. 
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Figure 51: Mode 6 [engine speed = 1521 rpm, engine torque = 162 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes two lean-ON periods (412-419 

seconds & 460-479) 

Figure 52 and Figure 53 displays mode 7 and mode 8, with similar high engine speed 

operations but with two different load levels. Mode 8 operated at higher torque value producing 

the maximum power among all other modes. Both modes showed similar characteristics in NH3 

adsorption and desorption rates during baseline and lean-ON periods. However, during the first 

lean-ON period in mode 7, NO2 formation was also observed after SCR (shown by the green 

dashed lines). Investigating this further, it was observed that the temperatures of the inlet and 

outlet of the SCR catalyst were at lower ranges (445 ºC at the inlet and 264 ºC at the outlet; 

averaged temperatures during the lean-ON periods) and additional attributed to potential 

oxidation reaction aiding NO2 formation in the SCR catalyst. No noticeable NO2 was observed 

in any of the three lean-ON periods in the mode 8 test. 
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Figure 52: Mode 7 [engine speed = 1575 rpm, engine torque = 337 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes two lean-ON periods (182-789 

seconds & 1245-1464 seconds) 

 

Figure 53: Mode 8 [engine speed = 1611 rpm, engine torque = 683 ft-lbs]; comparing 
pre-and-post NOx and NH3 concentrations; includes three lean-ON periods (90-219 

seconds, 577-752 seconds & 1211-1362 seconds) 
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5.3.1 Engine performance evaluation during lean-ON Modes 

This section presents results comparing the baseline versus the lean-ON engine 

operation obtained from previous stead-state experiments. Table 10, summarizes the difference 

in power and carbon-based components obtained from the CVS iterative carbon balance 

method averaged over two engine operating conditions for all 8 modes along. 

Table 10. Summary comparison between baseline operation versus lean operation over 
eight steady-state modes 

Steady-
State 
Mode 

Engine 
Operation  

Average 
Power 
[bhp] 

Power 
COV 

Fuel CB 
[g/bhp-

hr]  

CO2 
[g/bhp-

hr] 

CO 
[g/bhp-

hr] 

THC 
[g/bhp-

hr] 

1 

BASE 35.6 0.1 135.4 366.4 0.05 3.61 

Lean-ON 33.0 0.3 133.5 362.1 0.05 3.23 

% Difference  7.5%   1.4% 1.2% -0.2% 10.6% 

2 

BASE 13.2 0.3 219.6 602.0 0.00 3.12 

Lean-ON 12.9 0.4 212.8 579.0 0.00 4.55 

% Difference  2.3%   3.1% 3.8% 0.0% -45.7% 

3 

BASE 76.2 0.8 132.6 367.1 0.06 0.53 

Lean-ON 76.6 1.7 129.1 355.1 0.04 1.41 

% Difference  -0.5%   2.6% 3.3% 30.1% -167.4% 

4 

BASE 9.6 0.1 376.9 1028.4 0.00 7.11 

Lean-ON 9.2 0.2 381.2 1039.5 0.00 7.43 

% Difference  4.7%   -1.1% -1.1% 0.0% -4.5% 

5 

BASE 168.9 1.1 127.7 354.0 0.65 0.06 

Lean-ON 169.5 4.0 123.8 341.4 0.02 0.97 

% Difference  -0.4%   3.1% 3.5% 96.4% -1395.2% 

6 

BASE 45.3 0.3 160.3 444.3 0.46 0.27 

Lean-ON 37.4 0.5 183.1 505.7 0.04 1.24 

% Difference  17.6%   -14.2% -13.8% 90.3% -358.7% 

7 

BASE 100.8 0.4 140.8 390.3 0.18 0.32 

Lean-ON 100.8 0.8 135.6 374.5 0.00 0.92 

% Difference 0.1%   3.7% 4.1% 99.9% -186.5% 

8 

BASE 207.9 1.4 125.9 348.4 0.91 0.06 

Lean-ON 207.4 6.2 123.7 340.1 0.01 1.41 

% Difference 0.3%   1.7% 2.4% 99.4% -2252.1% 

 

Comparing the average power between the two engine operations, baseline and lean-

ON, we observe some higher difference, especially at lower engine operation modes. During 

the steady-state modes, the dynamometer control and the engine were manually operated via 

throttle controller manner to reach the desired engine power, the engine switching to leaner 

operation caused the power to drop for the same set throttle position. The throttle was then 

adjusted to match the intended power levels under stable engine conditions. For some modes, 

it was not possible to hold at the specific torque value due to high torque fluctuation and the 
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engine’s response to the throttle control resolution (or step in throttle position). An example of 

such mode would be mode6, where a difference of 17.6% is observed between the baseline and 

the lean-ON operation. On the other hand, in the event of lean-ON periods, the engine did 

exhibit higher torque fluctuation than compared to the stochiometric baseline operation, and 

the level of fluctuation can be interpreted based on observing the coefficient of variation (COV). 

The COV for the lean operation were observed to be higher than the baseline operation and 

the cause in such variation in the engine torque stabilization could depended upon different 

combustion operating parameters, such as, fuel quantity, dithering profiles and/or spark 

timings. The study did not have access or control over such engine parameters, and further 

work needs to be done to understand the effects of engine calibration under the lean-ON 

operation performed for the 8 steady-state modes. The table also provides brake specific fuel 

consumption during each steady state operation calculated using the carbon balance method 

from the CVS measurement system.  

 

Figure 54. Comparison of brake specific fuel consumption between baseline operation 
versus lean-ON operation 

The graphical representation of the percent difference comparison between the baseline 

and lean-ON operation is provided in Figure 54. Due to high power differences observed in 

mode 6, the fuel consumption value was excluded in calculating the overall average percent 

difference between the two operating modes. By operating the engine into leaner condition 
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under the same power levels resulted on average of 2.1% lower brake specific fuel consumption.  

A maximum fuel benefit of 3.7% was observed in mode 7.  

On the other hand, CO emissions were significantly lower, especially at higher engine 

power modes, when operating the engine in lean operation. Differences of up to 90% and above 

were observed for modes (5, 6, 7 and 8). However, the comparisons also indicate significantly 

higher THC emissions at these modes in lean-ON operations. It is to be noted that, both CO 

and THC values are direct consequence of TWC performance and engine out exhaust 

conditions due to operating the engine under lean combustion, and the SCR did not have any 

effect in the change of these two species.  

5.3.2 Lean-ON duration evaluation  

It has been observed that switching the lean-ON operation changes the TWC output 

NOx and NH3 characteristics and this simultaneously affects the dynamics of NH3 adsorption 

and NOx reduction characteristics of the passive-SCR system. Additionally, amount of NOx 

that can be reduced by the SCR catalyst depends up the stored NH3, as the surface reaction of 

NOx reduction happens over the catalyst with prior NH3 adsorbed. Hence, the duration of the 

lean-ON period significantly plays a big role in both NOx reduction and NH3 regeneration 

process during dynamic conditions.  

Figure 55 shows results of conducting a steady-state mode (Mode-3) with different lean-

ON duration and the effect on the SCR performance. The lean-ON periods were manually 

triggered to start and stop. The duration of the lean-ON period was further calculated based on 

the rise and fall of the oxygen sensor signal which indicated the engine’s response in being 

operated under lean-operation. The chart depicts nine lean-ON periods and all points were 

triggered when there was noticeable NH3 slip after the SCR catalyst. Lean-ON with less than 2 

seconds period did not gave any change in the steady-state operation in terms of NOx and NH3 

from the TWC. However, increasing the lean-ON period for above 2 seconds showed increase 

in the TWC NOx, indicated by the red diamond points (⧍), with highest (1919 ppm) observed 

approximately 7 seconds. The blue circles indicate average NOx reduction during the lean-ON 

periods and higher reduction are observed between (2 to 3) seconds of lean-ON periods. It also 

shows that as we go higher in duration the overall NOx reduction decreases, since the maximum 

NOx reduction mainly occurs during the initial rise of the NOx when NOx molecules comes 

in direct contact with stored NH3 and unreacted NOx tends to slip through the catalyst. On the 
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other hand, decrease in NH3 slippage response after the lean-ON trigger were only observed 

for higher duration events. The points with solid fills indicate the downward trend in post SCR 

NH3 concentration, followed by the consequences of the lean-ON respective lean-ON periods. 

Out of all events, the duration with 3 seconds lean-ON period resulted in 25% NOx reduction 

and forced a downward trend in NH3 slip. Evaluating reactions mechanism in molar balance 

will better indicate the duration needed for complete regeneration. In summary, the ammonia 

storage ration becomes an important parameter in control-oriented model for SCR regeneration 

using lean operation events. For simplicity, the study selects 3 seconds for the short-duration 

and 4 seconds for the long-duration triggers, to be used by the fuzzy logic regen trigger output 

variable.  

 

Figure 55. Comparison of varying lean-ON periods (Mode 3) 

5.4 Regeneration control using Fuzzy-Logic  

An inference rule based fuzzy logic controller which required two sensor signals as input 

variables in order to initiate regeneration trigger modes were developed and presented in this 

section. Ranges for each membership function were chosen based on experimental data for the 

observed values of NH3 and NOx after the SCR catalyst. Figure 56 presents the membership 

function for each three fuzzy inputs used in designing the fuzzy logic controller. The size of 
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each membership function within each defined linguistic variable varies based on the desired 

control within the data range. Finer control of the ammonia slip is expected at lower range for 

observed NH3 slip and potentially regen events. The control avoids large slip of NOx and, 

hence, small slip levels of rules are given to maintain excessive NOx slip. In order to avoid large 

variation in calculated rate of ammonia slip (RAS) due to fluctuation in the measured 

concentration, it was calculated on the larger time scale observing the difference between the 

current and prior concertation at 5 seconds of time interval.  

  

Figure 56. Ammonia Slip (AS), Rate of Ammonia Slip (RAS), and NOx Slip (NOS) 
Membership Function 

Figure 57, Figure 58 and Figure 59 presents the controller response when making uses 

of membership function and inference rules developed fuzzy logic controller. Since, it was not 

possible to model the combined (engine + TWC + SCR) system response due to complexity of 
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the system behavior, controller performance was investigated qualitatively against different 

obtained test data from the steady-state and transient experiments. The charts show the fuzzy-

logic controller making regeneration triggers smoothly over NH3 slip and turning off in the 

events of high NOx slip or low NH3 slip with decreasing rate of slip. The highlighted region 

shows the area where the controller commands the regeneration state to be ON. The y-axis on 

the right indicates the fuzzy output obtained from using middle of maximum method in the 

membership function leading to crisp output of either be at regen-OFF, regen-ON with short-

dithering (0.625 fuzzy output), and on with long dithering (0.875 fuzzy output) modes.  It’s well 

observed that lean-ON periods would change the SCR behavior and the dynamic behavior of 

very test would completely be different if the engine was operated with the fuzzy-logic 

controller, based on feedback obtained from the two sensors. Additionally, the controller is a 

time-based looped controller, meaning the control would turn on the regen event for a fixed 

duration, either (SD or LD) and then operate back to a feedback loop observing the sensor 

values.  

The fuzzy-logic control was not validated on an actual test experiment, and hence, the 

true nature of the controller performance on SCR regeneration would be inconclusive. The 

controller needs to be tested, evaluated and fine-tuned with the help of hardware-in-loop (H-I-

L) setup which can be powered by the Arduino-DUE board as built in this study for the manual 

lean-ON evaluation. The author recommends future validation for complete evaluation of the 

controller performance over real-world conditions. This method can be seen as a viable choice 

in stoichiometric natural gas engine operation to further meet fuel and emission standards with 

scope of lean operation regime.  
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Figure 57. Fuzzy-logic controller response for steady-state Mode 8 (SCR 4) 

 

Figure 58. Fuzzy-logic controller response for steady-state Mode 3 (SCR 4) 
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Figure 59. Fuzzy-logic controller response for transient FTP cycle (SCR 3)  
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5.5 Post-TWC NH3 estimation using ANN 

This section summarizes the results obtained from utilizing ANN technique to estimate 

post-TWC NH3 concentration using different engine parameters as training inputs. For the 

input data set, two combined transient FTP tests were used to train the model initially with 

seven different inputs and the measured NH3 concentration as the network output. The data 

set consisted of 23,980 data points which is equivalent to 23,980 seconds of the transient cycle 

measured. Figure 60 presents the input profile for all seven inputs used in training and evaluating 

the AN-N model. 

 

Figure 60. Transient FTP profile of the seven input variables   
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The selected network was trained with different network properties and resulted were 

evaluated based on the estimated performance of the output parameter, i.e. NH3 concertation 

after the TWC.  Table 11 and Table 12, presents results obtained from training the input-output 

network using two different training functions (Levenberg-Marquardt and Bayesian 

Regularization). The tables also include using these training function with different number of 

neurons. The results clearly show that with increasing neurons, we get better estimation of the 

output, provided by the R-squared number (indicates how the close the data fitted to a linear 

regression line) and Mean Square Error (MSE) number (indicates the quality of the estimation). 

However, with computational time to train the network increases due to added neurons through 

the network. It is also known that increasing the neurons increases the possibility of over 

training and over fitting the dataset, and to avoid certain circumstances, the errors were 

compared between the training, validation and test performances during each training iterations. 

Further training would stop if six consecutive errors would increase between the trained and 

validated errors. When comparing the performance between the two training functions, 

Bayesian Regularization provide slightly better performance, especially at lower number of 

neurons. The computational time for this function was significantly higher than Levenberg-

Marquardt. 

Table 11. Comparison of performance using different number of neurons and 
Levenberg-Marquardt training function 

Number of Neurons 10 20 30 40 

R-squared 0.799 0.850 0.899 0.916 

Overall MSE 578.4 422.2 278.3 235.2 

Number of Iterations 50 68 134 109 

Training Time [sec] 2.8 7.9 32.5 36.9 

Table 12. Comparison of performance using different number of neurons and Bayesian 
Regularization training function 

Number of Neurons 10 20 30 40 

R-squared 0.844 0.889 0.902 0.916 

Overall MSE 432.6 301.0 272.9 231.4 

Number of Iterations 300 300 300 300 

Training Time [sec] 16.0 40.7 64.5 104.5 
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Figure 61 and Figure 62, shows the estimated continuous traces of the NH3 

concentration for Levenberg-Marquardt and Bayesian Regularization training functions, 

respectively. The figures also provide the residual charts for visualization differences between 

the actual and the measured. Examining the continuous traces, we see that the estimated NH3 

concentration follows well with the actual measured curves (shown by the black line), but with 

observed noise. The trained network was able estimate better for the first few peaks seen from 

the profiles, especially when using 40 number of neurons (as depicted from the residual plots).   

 

Figure 61. Results for measured versus estimated NH3 concentration using number of 
neurons and Levenberg-Marquardt training function  
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Figure 62. Comparison of measured and estimated NH3 concentration using different 
number of neurons and Bayesian Regularization training function  

The study also evaluated performance of ANN using additional model inputs. The first 

derivatives of the pre-and-post TWC temperatures were calculated as using as inputs in the 

training a network with Bayesian Regularization and the four-same number of neurons as used 

earlier for the evaluation. The study uses these inputs in order to identify and estimate any 

additional correlation that would provide the formation of NH3 from in TWC system. Table 13 

provides the performance with adding the two temperature derivatives as input to training of 

the model. The result indicates slight improvement in the R-squared and MSE compared to 

previous values. Adding the additional inputs resulted in taking more time in training the 

network.  
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Table 13. Comparison of performance for four different number of neurons with 
Bayesian Regularization training function and additional two first derivative input 

parameters 

Number of Neurons 10 20 30 40 

R-squared 0.858 0.896 0.919 0.921 

Overall MSE 399.1 276.3 222.7 221.9 

Number of Iterations 300 300 300 300 

Training Time [sec] 19.8 47.8 88.4 133.9 

 

The measured NH3 concertation were observed to be smoother, with sharp rises and 

slower falls. The sudden rise in NH3 peaks follows the immediate rise in power causing higher 

exhaust flowrate through the TWC during the cycle. On the other hand, the longer response in 

the NH3 drop could potentially be from the thermal and chemical inertia accompanied by the 

low flowrate at such conditions. The study further investigated data smoothening or filtering 

methods to see if certain distinct response behavior could be captured and at the same time 

minimize data fluctuation at lower power demand conditions. A filtering method known as 

exponential weighted moving average (EWMA) was evaluated for the obtained results. EWMA 

have been commonly used in statistical sensor estimation cases, one of its few applications in 

the area of on-board diagnostics for vehicle emission control systems. Unlike, other simple 

moving average which gives equal weighing on a period of data size provide as a time window 

by the user, EWMA on the other hand, applies weighting factors which decrease exponentially 

within the specified filtering period (FP). The filter was applied to the estimated dataset to 

examine if this potentially reduces the lag by applying higher weights to the estimated peaks and 

lower weights to the slow response of the trace. The filter performance for the best estimated 

data set were evaluated based on the improvement in the MSE value. Figure 63 provides the 

MSE results for using EWMA filter with different averaging period, and it is observed that for 

a period of six data points resulted in the lowest MSE value for the given data set.  Figure 64, 

shows the comparison of the estimated NH3 concentration using between the filtered versus 

the unfiltered results using EWMA filtering method with period 6. Based on the residual curves, 

we do notice slight improvement in noise reduction.  
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Figure 63: Comparison of MSE using EWMA filter with different filtering periods 

 

Figure 64. Comparison of measured and estimated NH3 concertation applying the 
EWMA filter (Filter Period = 6) 
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Figure 65, shows the final estimated NH3 concentration trace using the best network 

properties obtained from the above parametric analysis. The following estimation resulted in 

having MSE equals to 218 and with a R-squared value of 0.93. It shows that, ANN method 

using different engine and after-treatment parameters as in input factors can be used to capture 

the formation of NH3 through the catalyst with some accuracy.  

 

Figure 65. Comparison of measured and estimated NH3 concentration; (Number of 
Inputs = 9, Number of Neurons = 40, Fitting Function = Bayesian Regularization, 

EWMA with Period = 6)  

The primary objective of this specific work was to understand if precursor NH3 can be 

accurately predicted from the TWC using engine parameters, especially under transient 

conditions and then used the estimated value (instead of sensor based value) into the passive-

SCR model as one of the input parameter. The dynamics of adsorption and desorption behavior 

is significantly influenced by the amount of NH3 entering and being stored on the surface of 

the SCR catalyst. As in terms of quantity, the NH3 entering the SCR can be estimated and 

evaluated in terms of moles per catalyst volume. The obtained estimated NH3 concertation from 

the ANN is converted into estimated number of moles of NH3 per SCR catalyst volume 

(moles/m3).  

Figure 66 shows the cumulative profile of the estimated moles of NH3 per catalyst 

volume over the duty-cycle. This representation provides the estimation of the available NH3 

that is entering the SCR and can be stored by the catalyst.  From basic visual inspection, the 

estimated profile closely matches with the value obtained from actual measurement. The 
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difference in the number of moles at a given movement into the cycle is provide by Figure 67, 

with a maximum value of approximately 0.28 moles/m3 at 943 seconds into the data cycle. For 

the given cycle, the total moles of NH3 was calculated to be at 15.45 moles/m3 and 15.65 

moles/m3, using actual measurement and AN-N estimated values, respectively.  

 

Figure 66. Comparison of number of moles of NH3 per catalyst volume (moles/m3) 
calculated from actual versus estimated NH3 concentration. 

 

Figure 67. Difference between actual and estimated number of moles of NH3 per 
catalyst volume 
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The best trained network obtained from the above analysis where then used to validate 

on a different data set. Two similar FTP tests were used for the validation process and the 

estimated NH3 concentration using the pre-trained network are provided by Figure 68 and 

Figure 70. The first data set (FTP Data Set 1) validation resulted in MSE of 330.9 and r-squared 

of 0.7485, and the second set (FPT Data Set 2) resulted in MSE of 859.02 and r-squared of 

0.7003. The high NH3 concentration peaks observed did vary between the two FTP cycles, and 

the network was able to define the higher peak but not the shorter peaks. The estimated profiles 

also show high data fluctuation but overall followed the trend of the measured trace (shown by 

the red curve). The adequacy of an AN-N trained model depend upon how well it validates a 

diverse set of system behavior in predicting certain response. The study does realize the 

shortcoming of models’ limitation along with not having appropriate parameters that influence 

the dynamics of the TWC system in producing NH3 at various levels.  

 

Figure 68. Comparison of actual versus estimated NH3 concertation using validation 
FTP Data Set 1 
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Figure 69 Comparison of actual versus estimated NH3 concertation using validation 
FTP Data Set 2 

Figure 70 and Figure 71, represents the cumulative profile of the actual versus estimated 

moles of NH3 per catalyst volume over the duty-cycle. From the observation, the values using 

estimated concentration tend to over-predict the moles of available ammonia with a difference 

of 24% for Set 1 and 18.8% for the Set 2 at the end of the cycle.  

 

Figure 70. Comparison of actual versus estimated number of moles of NH3 per 
catalyst volume (moles/m3) for FTP Data Set 1 
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Figure 71. Comparison of actual versus estimated number of moles of NH3 per catalyst 
volume (moles/m3) for FTP Data Set 2 

Considering the results obtained from the validation sets, the ammonia availability 

model can be further optimized by reducing variation in the NH3 concentration estimation. The 

estimated results from FTP Data Set 2 was further processed using EWMA filtering with 

different number of filtering periods. Although, this approach might not be practical in 

observing NH3 availibiltiy at a shorter resolution in the cycle but can be utilized in larger time-

scale observation methods.    

Figure 72, shows results from applying EWMA filtering with different period numbers. 

There wasn’t any notable change seen in NH3 availability profile when using filtering with 6 

seconds and 15 seconds periods but better improvement when using a 30 second period. This 

can also be observed from provided Figure 73, obtained from calculating the difference between 

the actual and the estimated profiles. The number of moles from using 30 second settings 

estimation under-predicts during first half of the cycle (due to smoothening of the NH3 high 

peaks) and over-predicts for the other half of the cycle. This results in final estimated value of 

6.91 moles/m3, i.e. 10% higher than actual measured 6.28 moles/m3. 
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Figure 72. Comparison of actual versus estimated number of moles of NH3 per 
catalyst volume (moles/m3) periods for FTP Data Set 2 using three different EWMA 

filtering 

 

Figure 73. Difference between actual versus estimated number of moles of NH3 per 
catalyst volume (moles/m3) periods for FTP Data Set 2 using three different EWMA 

filtering 
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5.6 SCR model calibrated to experimental data  

Parameters of the SCR model were identified by solving the system of reaction using 

ODE solver and then calibrating the model against the experimental obtained data. The model 

calibration was aimed at matching the solved gaseous concentration to the outlet of the SCR 

using cost function, where the parameters are identified by minimaxing the least-square errors. 

The developed model results with the obtain reaction parameters was validated with the steady 

state mode 1 data. 

Table 14 shows the reaction rate parameters identifies in the SCR state model based on 

the experimental data. The values obtained here closely matches with the values seen in similar 

literatures (Song 2013; Clark et al. 2009). The ammonia storage capacity (Ω) was assumed 

constant at 100 moles/m3 in the calculation. The initial value for the ammonia storage ratio was 

assumed to be at 0.15.   

Table 14. Reaction rate identified parameters in the three state SCR model  
Parameter 
Number 

Parameter 
Optimized 

Values 
Unit 

1 kreduction 3.63E+06 m3/mol-s 

2 Ereduction 65.2 kJ/mol 

3 kadsorption 5.48E+06 m3/mol-s 

4 Eadsorption 47.6 kJ/mol 

5 kdesorption 3.36E+06 1/2s 

6 Edesorption 131 kJ/mol 

 

Figure 74 displays comparison of model predicted NOx values with the measured 

concentration using FTIR pre-and-post SCR. It can be seen the simulated NOx after the SCR 

matches well before the 40th second but then overpredicts for the rest of the part. The initial 

value of the ammonia storage ratio plays a key role due to the difference of the initial guess of 

the ammonia storage for the model and the true storage ratio inside the SCR catalyst. This can 

also be observed from the simulated ammonia storage ratio curve (shown by the dashed green 

line in the figure) where ammonia storage ratio rapidly drops to zero indicating no NH3 stored 

for NOx reduction reaction. Additionally, the reaction rates of the SCR reactions are highly 

dependent on the NH3 storage capacity and changed the model outcome since the value 

participates in all three state reactions. The simulation was rerun for a higher initial ammonia 

storage value (0.7) using the same reaction parameters and comparison is shown inn   Figure 
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75. The result indicates higher ammonia storage ratio till the 250 second with closer NOx 

prediction than compared to the previous results.  

 

Figure 74. Comparison of post-SCR NOx, post-SCR NH3 and NH3 storage ratio 
predicted by 3-state SCR model storage ratio for steady-state Mode 1 (baseline 

operation); Initial ammonia storage ratio = 0.15 

 

Figure 75. Comparison of post-SCR NOx, post-SCR NH3 and NH3 storage ratio 
predicted by 3-state SCR model for steady-state Mode 1 (baseline operation); Initial 

ammonia storage ratio = 0.7;  
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Figure 76 provides results simulated from considering the NH3 oxidation mechanism 

and adding three more parameters (E and k for oxidation, and Ω) as in the identification process. 

The initial NH3 storage ratio was set at 0.15 for this simulation. The comparison of the simulated 

NOx profile and the measured show good agreement till 150th second and then tend to 

underestimate into rest of the cycle duration, except between (305-420) seconds. And, these 

disparities could be due to NO2 formation that was seen in the actual measurement. The study 

did not include NO2 formation mechanism in the SCR model.  

 

Figure 76. Comparison of post-SCR NOx, post-SCR NH3 and NH3 storage ratio 
predicted by 3-state SCR model for steady-state Mode 1 (baseline operation); Initial 

ammonia storage ratio = 0.15; Ω as identified parameter  

Table 15 summarizes the identified values of 9 model parameters using GA’s 

optimization tool. Ones again the obtained parameter correlates well with the ones provided in 

literatures.  
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Table 15. Reaction rate identified parameters in the three state SCR model  
Parameter 
Number 

Parameter Optimized Values Units 

1 kreduction 2.84E+05 m3/mol-s 

2 Ereduction 70.92 kJ/mol 

3 kadsorption 5.45E+06 m3/mol-s 

4 Eadsorption 46.6 kJ/mol 

5 kdesorption 3.33E+09 1/s 

6 Edesorption 125.1 kJ/mol 

7 koxidation 6.57E+07 1/s 

8 Eoxidation 129.8 kJ/mol 

9 Ω 76.63 moles/m3 
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CHAPTER 6 Conclusions 

The study presents evaluation of a pathway in mitigating secondary NH3 emission 

produced by the TWC during stoichiometric operation of natural gas engines. The study 

approaches the development of a passive ammonia reduction system by conducting experiments 

on a heavy-duty natural gas engine and utilizing selective catalytic reduction units typically used 

in diesel engines. The MY08 ISL-G Cummins engine equipped with the TWC after-treatment 

system was evaluated for baseline performance and emission characteristics and tested over 

transient and steady-state operating conditions. The study further evaluates an engine-based 

control strategy to minimize both NH3 and NOx control over the TWC+SCR configuration. 

The following sections highlights the major findings, provides recommendations, and 

contextualizes studies contribution to relevant areas of interest.   

6.1 Experimental Findings 

The results obtained from the baseline evaluation indicated elevated levels of tailpipe 

NH3 emission, with an average concentration of 37 ppm and 61 ppm for the FTP and WHTC 

transient cycles, respectively. The high peaks of NH3 observed were caused by isolated rich AFR 

conditions due to aggressive power demands within the tested cycles. Additionally, exhaust 

temperatures were a crucial factor in NOx reduction and NH3 formation, where improved NOx 

conversions were observed at higher TWC inlet temperatures but also resulted in increased NH3 

formation over the TWC.  

Correspondingly, the results obtained from evaluating five different formulated SCRs 

showed that SCR 3 (Fe-zeolite with 400 cpsi) and SCR 4 (Cu-zeolite) absorbed above 90% of 

the TWC’s generated NH3 below 375°C of averaged SCR temperatures. However, the Fe-zeolite 

performed with 60-85% efficiency in NOX conversion above 300°C, while the Cu-zeolite 

performed moderately between (40-65%) at all temperature ranges. Performance-based on NOx 

conversion efficiency and storage capacity at both low and higher temperature ranges, observed 

under dynamic natural gas engine operations, the study considered the Cu-zeolite SCR for an 

adsorption and desorption study over eight steady-state modes. From these steady-state mode 

experiments, it was observed that NH3 storage ratio and SCR catalyst temperature were the two 

main factors in initiating desorption. Furthermore, from switching the engine to lean-burn 

operation, the high NOx activity after the TWC could regenerate the stored NH3, however, the 
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levels in NH3 regeneration and NOx conversion depended upon different lean-ON duration. 

The study compared different lean-ON periods evaluated for a medium speed/load operation 

mode (Mode 6). Lean-ON duration between (2.5-3.5) seconds resulted in low moderate NOx 

slip after the TWC, improved NOx conversion by the SCR and initiated NH3 regeneration 

process. The study also evaluated fuel consumption differences, and the results indicated on 

average a 2.1% brake specific fuel consumption improvement for the lean-ON operation when 

compared to baseline stoichiometric operation over the entire 8 steady-state modes.  

The study further investigated model-based estimator methods from a stand-point of 

control-oriented passive-SCR regeneration approach. Results obtained from Model 1 indicated 

that the ANN fitting method estimated accumulated pre-SCR NH3 in moles per SCR volume 

to be 1.3% higher than the actual measured when using 9 different inputs form two combined 

FTP data sets for training. However, during the validation process, the ANN estimated 

significantly higher differences of 25.6% and 16.8% for two different individual FTP data sets. 

The study further evaluated using an EWMA filter with different filtering windows, and showed 

that the accumulation of NH3 at the SCR inlet could be estimated more accurately at a larger 

time scale. 

On the other hand, results obtained from Model 2 adequately estimated post-SCR NOx 

and NH3 adsorption for lower speed/load steady-state modes but the model was not able to 

estimate NH3 desorption rise at higher steady-state modes. The differences observed in post-

SCR NOx and NH3 could be attributed to assuming an initial NH3 storage ratio that could have 

been different from the actual NH3 storage of the SCR in the beginning of each steady-state 

test. Additionally, the ammonia storage capacity, which have shown to vary with SCR surface 

temperature from other related studies, was kept constant during the parameter identification 

process. 

6.2 Recommendations 

The current study was limited by the SCR design parameters, and the performance of 

the SCR in NH3 storage and NOx reduction characteristics could be improved with specifically 

designed catalyst to meet the natural gas engine operation’s ranges. In addition, the study 

observed NO2 being formed over the Cu-zeolite SCR catalyst with NO2/NO ratios as close to 

1:1 under certain conditions. As a result, a two stage SCR system could potentially allow 

improvements that considers the fast-SCR reactions.  
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Beside from the adequate SCR system downstream of the TWC, the engine based 

control strategy that was developed using fuzzy logic method, can be improved in an 

experimental study using a H-I-L setup to fine-tune possible input-output parameters. For 

example, the size of membership functions and the inference rule matrix could be increased for 

better regeneration status control. Along with the size, other shapes in defining the membership 

functions could also be considered. 

Ammonia storage ratio has shown to be a good indicator in estimating the state of the 

SCR, and utilizing this as one of the fuzzy input parameters would allow wider range of SCR 

regeneration control. For example, the regen status could be switched to ON mode by 

monitoring the ammonia storage ratio which indicates saturation level of the SCR catalyst over 

a duty cycle, even when there is no NH3 or NOx being slipped after the SCR. This would allow 

improved fuel consumptions due to more frequent lean-ON operations. 

The study was limited with engine and after-treatment parameters that were used in the 

ANN Model-1. However, the estimation could be improved by conducting further analysis with 

other influential factors that links to formation of NH3 over the TWC. For example, using 

engine parameters such as actual measured air fuel ratio, mass rate of EGR, in-cylinder 

combustion parameters, and more. Using additional emission sensors at the inlet of the TWC 

and instrumenting mid-brick temperatures would potentially help in improving the estimation 

accuracy but could lead to adding hardware cost and increasing computational time.  

On the other hand, Model-2 could also be improved by assuming more higher order 

reaction processes and adding potential SCR mechanisms that were not considered in this study. 

Although, the study used only the inlet SCR temperatures, using catalyst temperature models 

through the catalyst could potentially help in determining desorption characteristics as observed 

during the transient and steady-state tests.  

6.3 Contributions 

This dissertation contributes to the area of alternative fueled vehicles and their emission 

reduction challenges. Few researchers have addressed the concerns over high emission levels of 

ammonia observed from stoichiometric operated natural gas vehicles equipped with a TWC 

system, and previous work primarily focused on gasoline fueled engines only. As a preliminary 

part of this work, the study investigated a heavy-duty natural gas engine with a comprehensive 

evaluation of ammonia formation over the three-way catalyst in relation to dynamic engine 
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operating parameters. The results obtained in this study pose a critical need to monitor NH3 

emission from stoichiometric natural gas vehicles which in the near future could be regulated at 

tailpipe levels as seen in diesel vehicles with urea-SCR technology. 

In addition, the passive ammonia reduction pathway utilizing an SCR system that was 

evaluated in this study could also lead to meeting the low-NOx emission standards. The USEPA 

has initiated rulemaking for low-NOx emission standards, and if in force, the new standard 

would require all new heavy-duty vehicles to meet 0.02 g/bhp-hr NOx regulation starting from 

the year 2024. This would involve vehicle manufacturers to reduce NOx emission by almost 

90% from the current standards, and would require significant after-treatment development 

strategies. 

As a final remark, this study specifically introduces techniques in operating dedicated 

natural gas engines at or near stoichiometric point to more lean-burn combustion regimes. 

Engines deigned for more lean-burn operation can make use of higher compression ratios, and 

thus provide improved performance and more efficient fuel use than those in conventional 

spark ignited engines. The engine-based air-fuel ratio dithering strategy using a fuzzy-logic 

controller was designed to lower both NH3 and NOx emissions, however, has also shown to 

provide fuel consumption improvements. The fuzzy-logic controller which needs only two 

sensor values as inputs can further be expanded into using ammonia storage ratios as one of the 

linguistic variables. In addition, with the two-regeneration outputs, short-dithering and long-

dithering modes, would further expand the operation of lean-burn activity to a much larger 

scale. This would be a promising pathway for off-road and stationary dedicated natural gas 

engines since the air-fuel ratio could be precisely controlled over steady-state duty cycles, also 

from a model-based ammonia storage and control development standpoint. 
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APPENDIX A FTIR Specification  

Table 16. FTIR Specification from Manufacturer  

 

Model MultiGas
TM

 2030-HS

Measurement Technique FTIR Spectrometry

Gases and Vapors Measurable Most molecules except for N2, H2, and O2

Ranges Concentration setting between 100ppb and 100% full scale

FTIR 2102 Process FTIR

Spectral Resolution 0.5 - 128cm
-1

Scan Speed 5 scans/sec @ 0.5cm
-1

Scan Time 0.2 sec or longer

Infrared Source Silicon Carbide @ 1200°C

Reference Laser Helium Neon (15798.2cm
-1

)

Detector LN2 -cooled MCT; TE -cooled MCT

Purge Pressure 20 psig (1.5 bar) max.

Spectrometer Purge Flow 0.2 L/min of dry nitrogen or CO2 free clean dry air with dewpoints below -70°C

Optics Purge Flow 0.2 L/min of dry nitrogen or CO2 free clean dry air with dewpoints below -70°C

Pressure Transducer MKS Baratron
®

Purge Connection Swagelok® quick connect

Computer High speed xeon™ processor supplied with analyzer

Communications RJ-45 cross-over Ethernet

Output Options xML, analog, AK, others (please inquire)

Dimensions 17.5"W x 12.5"H x 25.5"D

Installation 19" rack mount chassis

Power 120 or 240 VAC, 50/60 Hz, 3 amps

Weight 110 lbs. (50 kg)

Sample Temperature Ambient to 200°C (calibration temperature dependant)

Sample Flow 1 - 100+ L/min

0.0 - 1.3 atm (calibration pressure dependant)

0.95 - 1.05 atm (nominal)

Construction Nickel coated Al; Welded 316 stainless steel optional

Fittings ½" Swagelok®

Tubing Heated ½" stainless steel

Mirrors Nickel plated aluminum substrate, with rugged gold coating

Windows KBr; CaF2 (others available)

O-rings Viton® (others available)

Name (formula) Lowest Detectable Limit with 20/20™ Cell and 0.2 sec Measurement

Ammonia (NH3) 0.5 ppm

Carbon Dioxide (CO2) 0.2 ppm

Carbon Monoxide (CO) 1.0 ppm

Formaldehyde (H2CO) 0.6 ppm

Methane (CH4) 1.0 ppm

Nitrogen Dioxide (NO2) 0.5 ppm

Nitric Oxide (NO) 1.0 ppm

Sulfur Dioxide (SO2) 1.0 ppm

xylenes (C8H10) 1.0 ppm

Analyzer

Sampling Parameters

Sample Pressure

Gas Cell

Detection Limits

Low-level detection limits for the 5.11 meter gas cell and a mercury-cadmium-telluride (MCT) detector at 0.5 cm
-1

 resolution for typical 
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APPENDIX B Fuzzy Logic Controller Design and Program Code 

 

Figure 77. MATLAB®’s Fuzzy-Logic Toolbox (FL Main Design Interface) 

 

 

Figure 78. MATLAB®’s Fuzzy-Logic Toolbox (FL Membership Function Design 
Interface) 
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Figure 79. MATLAB®’s Fuzzy-Logic Toolbox (FL Inference Rule Design Interface) 

 

 

Figure 80. MATLAB®’s Fuzzy-Logic Toolbox (FL Rule Viewer) 
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~~~~ passive-ARC Regeneration Fuzzy-Logic Simulation Program ~~~~ 

  

clc 

clear all 

  

% Import FL Controller:: 

    FLController = 'passiveARC FLC.fis'; 

    FLC = readfis(FLName); 

  

% Import Input Data:: 

    ExpData      = 'FTP_1.mat'; 

    NOS   = Data.SensorNOx(:,1); % [Units: ppm] 

    AS   = Data.SensorNH3(:,1);  % [Units: ppm] 

    load(ExpData) 

  

% Evaluate Inputs:: 

    % Linguistic Variable-1 [Ammonia Slip, post SCR NH3] 

        AS(AS < 0 ) = 0; 

    % Linguistic Variable-2  [Rate of Ammonia Slip] 

        RateDelay = 5; % [Units: sec] 

        for i = 1:length(AS) 

            if i > RateDelay 

                RAS(i) = AS(i)-AS(i-RateDelay); 

            else 

                RAS(i) = 0; % [Units: ppm/period in secs] 

            end 

        end 

    % Linguistic Variable-3 [NOx slip] 

        NOS(NOS < 0 ) = 0; 

         

% Evaluate Output [Regeneration Status] 

    RegenStatus = evalfis([AS,RAS,NOS],FLC); 

     

     

FLC.fis 

     

     

[System] 

name        ='passiveARC FLC' 

Type        ='mamdani' 

Version     =2.0 

NumInputs   =3 

NumOutputs  =1 

NumRules    =48 

AndMethod   ='min' 

OrMethod    ='max' 

ImpMethod   ='min' 

AggMethod   ='max' 

DefuzzMethod='mom' 

  

[Input1] 

Name    ='AmmoniaSlip(AS)' 
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Range   =[0 250] 

NumMFs  =4 

MF1     ='NS':'trapmf',[0 0 8 10] 

MF2     ='SS':'trapmf',[8 10 18 20] 

MF3     ='MS':'trapmf',[18 20 36 40] 

MF4     ='LS':'trapmf',[36 40 250 500] 

  

[Input2] 

Name    ='RateofAmmoniaSlip(RAS)' 

Range   =[-20 20] 

NumMFs  =3 

MF1     ='DR':'trapmf',[-20 -20 -1 -0.5] 

MF2     ='CR':'trapmf',[-1 -0.5 0.5 1] 

MF3     ='IR':'trapmf',[0.5 1 20 20] 

  

[Input3] 

Name    ='NOxSlip(NOS)' 

Range   =[0 1500] 

NumMFs  =4 

MF1     ='NS':'trapmf',[0 0 20 50] 

MF2     ='SS':'trapmf',[20 50 70 100] 

MF3     ='MS':'trapmf',[70 100 500 530] 

MF4     ='LS':'trapmf',[500 530 1500 1500] 

  

[Output1] 

Name    ='SCR_Regeneration_Status' 

Range   =[0 1] 

NumMFs  =3 

MF1     ='RegenOFF':'trimf',[0 0.25 0.5] 

MF2     ='RegenONShort':'trimf',[0.5 0.65 0.8] 

MF3     ='RegenONLong':'trimf',[0.8 0.85 1] 

  

[Rules] 

1 1 1, 1 (1) : 1 

1 1 2, 1 (1) : 1 

1 1 3, 1 (1) : 1 

1 1 4, 1 (1) : 1 

1 2 1, 1 (1) : 1 

1 2 2, 1 (1) : 1 

1 2 3, 1 (1) : 1 

1 2 4, 1 (1) : 1 

1 3 1, 1 (1) : 1 

1 3 2, 1 (1) : 1 

1 3 3, 1 (1) : 1 

1 3 4, 1 (1) : 1 

2 1 1, 2 (1) : 1 

2 1 2, 1 (1) : 1 

2 1 3, 1 (1) : 1 

2 1 4, 1 (1) : 1 

2 2 1, 2 (1) : 1 

2 2 2, 2 (1) : 1 

2 2 3, 1 (1) : 1 
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2 2 4, 1 (1) : 1 

2 3 1, 3 (1) : 1 

2 3 2, 2 (1) : 1 

2 3 3, 1 (1) : 1 

2 3 4, 1 (1) : 1 

3 1 1, 3 (1) : 1 

3 1 2, 2 (1) : 1 

3 1 3, 1 (1) : 1 

3 1 4, 1 (1) : 1 

3 2 1, 3 (1) : 1 

3 2 2, 2 (1) : 1 

3 2 3, 1 (1) : 1 

3 2 4, 1 (1) : 1 

3 3 1, 3 (1) : 1 

3 3 2, 3 (1) : 1 

3 3 3, 1 (1) : 1 

3 3 4, 1 (1) : 1 

4 1 1, 3 (1) : 1 

4 1 2, 2 (1) : 1 

4 1 3, 1 (1) : 1 

4 1 4, 1 (1) : 1 

4 2 1, 3 (1) : 1 

4 2 2, 2 (1) : 1 

4 2 3, 1 (1) : 1 

4 2 4, 1 (1) : 1 

4 3 1, 3 (1) : 1 

4 3 2, 3 (1) : 1 

4 3 3, 1 (1) : 1 

4 3 4, 1 (1) : 1 
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