109 research outputs found

    Analysis of Various Decentralized Load Balancing Techniques with Node Duplication

    Get PDF
    Experience in parallel computing is an increasingly necessary skill for today’s upcoming computer scientists as processors are hitting a serial execution performance barrier and turning to parallel execution for continued gains. The uniprocessor system has now reached its maximum speed limit and, there is very less scope to improve the speed of such type of system. To solve this problem multiprocessor system is used, which have more than one processor. Multiprocessor system improves the speed of the system but it again faces some problems like data dependency, control dependency, resource dependency and improper load balancing. So this paper presents a detailed analysis of various decentralized load balancing techniques with node duplication to reduce the proper execution time

    Failure analysis and reliability -aware resource allocation of parallel applications in High Performance Computing systems

    Get PDF
    The demand for more computational power to solve complex scientific problems has been driving the physical size of High Performance Computing (HPC) systems to hundreds and thousands of nodes. Uninterrupted execution of large scale parallel applications naturally becomes a major challenge because a single node failure interrupts the entire application, and the reliability of a job completion decreases with increasing the number of nodes. Accurate reliability knowledge of a HPC system enables runtime systems such as resource management and applications to minimize performance loss due to random failures while also providing better Quality Of Service (QOS) for computational users. This dissertation makes three major contributions for reliability evaluation and resource management in HPC systems. First we study the failure properties of HPC systems and observe that Times To Failure (TTF\u27s) of individual compute nodes follow a time-varying failure rate based distribution like Weibull distribution. We then propose a model for the TTF distribution of a system of k independent nodes when individual nodes exhibit time varying failure rates. Based on the reliability of the proposed TTF model, we develop reliability-aware resource allocation algorithms and evaluated them on actual parallel workloads and failure data of a HPC system. Our observations indicate that applying time varying failure rate-based reliability function combined with some heuristics reduce the performance loss due to unexpected failures by as much as 30 to 53 percent. Finally, we also study the effect of reliability with respect to the number of nodes and propose reliability-aware optimal k node allocation algorithm for large scale parallel applications. Our simulation results of comparing the optimal k node algorithm indicate that choosing the number of nodes for large scale parallel applications based on the reliability of compute nodes can reduce the overall completion time and waste time when the k may be smaller than the total number of nodes in the system

    GPUs as Storage System Accelerators

    Full text link
    Massively multicore processors, such as Graphics Processing Units (GPUs), provide, at a comparable price, a one order of magnitude higher peak performance than traditional CPUs. This drop in the cost of computation, as any order-of-magnitude drop in the cost per unit of performance for a class of system components, triggers the opportunity to redesign systems and to explore new ways to engineer them to recalibrate the cost-to-performance relation. This project explores the feasibility of harnessing GPUs' computational power to improve the performance, reliability, or security of distributed storage systems. In this context, we present the design of a storage system prototype that uses GPU offloading to accelerate a number of computationally intensive primitives based on hashing, and introduce techniques to efficiently leverage the processing power of GPUs. We evaluate the performance of this prototype under two configurations: as a content addressable storage system that facilitates online similarity detection between successive versions of the same file and as a traditional system that uses hashing to preserve data integrity. Further, we evaluate the impact of offloading to the GPU on competing applications' performance. Our results show that this technique can bring tangible performance gains without negatively impacting the performance of concurrently running applications.Comment: IEEE Transactions on Parallel and Distributed Systems, 201

    Voltage, throughput, power, reliability, and multicore scaling

    Get PDF
    This article studies the interplay between the performance, energy, and reliability (PER) of parallel-computing systems. It describes methods supporting the meaningful cross-platform analysis of this interplay. These methods lead to the PER software tool, which helps designers analyze, compare, and explore these properties

    Energy Awareness and Scheduling in Mobile Devices and High End Computing

    Get PDF
    In the context of the big picture as energy demands rise due to growing economies and growing populations, there will be greater emphasis on sustainable supply, conservation, and efficient usage of this vital resource. Even at a smaller level, the need for minimizing energy consumption continues to be compelling in embedded, mobile, and server systems such as handheld devices, robots, spaceships, laptops, cluster servers, sensors, etc. This is due to the direct impact of constrained energy sources such as battery size and weight, as well as cooling expenses in cluster-based systems to reduce heat dissipation. Energy management therefore plays a paramount role in not only hardware design but also in user-application, middleware and operating system design. At a higher level Datacenters are sprouting everywhere due to the exponential growth of Big Data in every aspect of human life, the buzz word these days is Cloud computing. This dissertation, focuses on techniques, specifically algorithmic ones to scale down energy needs whenever the system performance can be relaxed. We examine the significance and relevance of this research and develop a methodology to study this phenomenon. Specifically, the research will study energy-aware resource reservations algorithms to satisfy both performance needs and energy constraints. Many energy management schemes focus on a single resource that is dedicated to real-time or nonreal-time processing. Unfortunately, in many practical systems the combination of hard and soft real-time periodic tasks, a-periodic real-time tasks, interactive tasks and batch tasks must be supported. Each task may also require access to multiple resources. Therefore, this research will tackle the NP-hard problem of providing timely and simultaneous access to multiple resources by the use of practical abstractions and near optimal heuristics aided by cooperative scheduling. We provide an elegant EAS model which works across the spectrum which uses a run-profile based approach to scheduling. We apply this model to significant applications such as BLAT and Assembly of gene sequences in the Bioinformatics domain. We also provide a simulation for extending this model to cloud computing to answers “what if” scenario questions for consumers and operators of cloud resources to help answers questions of deadlines, single v/s distributed cluster use and impact analysis of energy-index and availability against revenue and ROI

    An agent-based visualisation system.

    Get PDF
    This thesis explores the concepts of visual supercomputing, where complex distributed systems are used toward interactive visualisation of large datasets. Such complex systems inherently trigger management and optimisation problems; in recent years the concepts of autonomic computing have arisen to address those issues. Distributed visualisation systems are a very challenging area to apply autonomic computing ideas as such systems are both latency and compute sensitive, while most autonomic computing implementations usually concentrate on one or the other but not both concurrently. A major contribution of this thesis is to provide a case study demonstrating the application of autonomic computing concepts to a computation intensive, real-time distributed visualisation system. The first part of the thesis proposes the realisation of a layered multi-agent system to enable autonomic visualisation. The implementation of a generic multi-agent system providing reflective features is described. This architecture is then used to create a flexible distributed graphic pipeline, oriented toward real-time visualisation of volume datasets. Performance evaluation of the pipeline is presented. The second part of the thesis explores the reflective nature of the system and presents high level architectures based on software agents, or visualisation strategies, that take advantage of the flexibility of the system to provide generic features. Autonomic capabilities are presented, with fault recovery and automatic resource configuration. Performance evaluation, simulation and prediction of the system are presented, exploring different use cases and optimisation scenarios. A performance exploration tool, Delphe, is described, which uses real-time data of the system to let users explore its performance

    Parallel simulation techniques for telecommunication network modelling

    Get PDF
    In this thesis, we consider the application of parallel simulation to the performance modelling of telecommunication networks. A largely automated approach was first explored using a parallelizing compiler to speed up the simulation of simple models of circuit-switched networks. This yielded reasonable results for relatively little effort compared with other approaches. However, more complex simulation models of packet- and cell-based telecommunication networks, requiring the use of discrete event techniques, need an alternative approach. A critical review of parallel discrete event simulation indicated that a distributed model components approach using conservative or optimistic synchronization would be worth exploring. Experiments were therefore conducted using simulation models of queuing networks and Asynchronous Transfer Mode (ATM) networks to explore the potential speed-up possible using this approach. Specifically, it is shown that these techniques can be used successfully to speed-up the execution of useful telecommunication network simulations. A detailed investigation has demonstrated that conservative synchronization performs very well for applications with good look ahead properties and sufficient message traffic density and, given such properties, will significantly outperform optimistic synchronization. Optimistic synchronization, however, gives reasonable speed-up for models with a wider range of such properties and can be optimized for speed-up and memory usage at run time. Thus, it is confirmed as being more generally applicable particularly as model development is somewhat easier than for conservative synchronization. This has to be balanced against the more difficult task of developing and debugging an optimistic synchronization kernel and the application models

    An insight in cloud computing solutions for intensive processing of remote sensing data

    Get PDF
    The investigation of Earth's surface deformation phenomena provides critical insights into several processes of great interest for science and society, especially from the perspective of further understanding the Earth System and the impact of the human activities. Indeed, the study of ground deformation phenomena can be helpful for the comprehension of the geophysical dynamics dominating natural hazards such as earthquakes, volcanoes and landslide. In this context, the microwave space-borne Earth Observation (EO) techniques represent very powerful instruments for the ground deformation estimation. In particular, Small BAseline Subset (SBAS) is regarded as one of the key techniques, for its ability to investigate surface deformation affecting large areas of the Earth with a centimeter to millimeter accuracy in different scenarios (volcanoes, tectonics, landslides, anthropogenic induced land motions). The current Remote Sensing scenario is characterized by the availability of huge archives of radar data that are going to increase with the advent of Sentinel-1 satellites. The effective exploitation of this large amount of data requires both adequate computing resources as well as advanced algorithms able to properly exploit such facilities. In this work we concentrated on the use of the P-SBAS algorithm (a parallel version of SBAS) within HPC infrastructure, to finally investigate the effectiveness of such technologies for EO applications. In particular we demonstrated that the cloud computing solutions represent a valid alternative for scientific application and a promising research scenario, indeed, from all the experiments that we have conducted and from the results obtained performing Parallel Small Baseline Subset (P-SBAS) processing, the cloud technologies and features result to be absolutely competitive in terms of performance with in-house HPC cluster solution
    corecore