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ABSTRACT 

 
Energy Awareness and Scheduling in Mobile Devices and High End Computing 

Sachin S. Pawaskar, Ph.D. 

University of Nebraska, 2013 

Advisor: Dr. Hesham Ali 

In the context of the big picture as energy demands rise due to growing economies and 

growing populations, there will be greater emphasis on sustainable supply, conservation, 

and efficient usage of this vital resource. Even at a smaller level, the need for minimizing 

energy consumption continues to be compelling in embedded, mobile, and server systems 

such as handheld devices, robots, spaceships, laptops, cluster servers, sensors, etc. This is 

due to the direct impact of constrained energy sources such as battery size and weight, as 

well as cooling expenses in cluster-based systems to reduce heat dissipation. Energy 

management therefore plays a paramount role in not only hardware design but also in 

user-application, middleware and operating system design. At a higher level Datacenters 

are sprouting everywhere due to the exponential growth of Big Data in every aspect of 

human life, the buzz word these days is Cloud computing. This dissertation, focuses on 

techniques, specifically algorithmic ones to scale down energy needs whenever the 

system performance can be relaxed. We examine the significance and relevance of this 

research and develop a methodology to study this phenomenon. 

Specifically, the research will study energy-aware resource reservations 

algorithms to satisfy both performance needs and energy constraints. Many energy 

management schemes focus on a single resource that is dedicated to real-time or non-

real-time processing. Unfortunately, in many practical systems the combination of hard 



 
 

 
 

and soft real-time periodic tasks, a-periodic real-time tasks, interactive tasks and batch 

tasks must be supported. Each task may also require access to multiple resources. 

Therefore, this research will tackle the NP-hard problem of providing timely and 

simultaneous access to multiple resources by the use of practical abstractions and near-

optimal heuristics aided by cooperative scheduling. We provide an elegant EAS model 

which works across the spectrum which uses a run-profile based approach to scheduling. 

We apply this model to significant applications such as BLAT and Assembly of gene 

sequences in the Bioinformatics domain. We also provide a simulation for extending this 

model to cloud computing to answers “what if” scenario questions for consumers and 

operators of cloud resources to help answers questions of deadlines, single v/s distributed 

cluster use and impact analysis of energy-index and availability against revenue and ROI.  

 

KEYWORDS: 

Energy Awareness, Scheduling, High Performance Computing, Bioinformatics, 

Heuristics, Parallel Processing, Optimal Algorithms, Run-Profile, Cloud Computing, 

Alignment, Sequencing, Energy Aware Scheduling, Mobile Computing, Simulation. 
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Chapter 1: Introduction 

1.1 Research Problem 

1.1.1 High End Computing 

US Data centers consumed 5 MKW of energy in 2005 (Snyder, 2008), which is 

equivalent to five 1000 MW power plants. The total energy utility bills in the US alone 

amount to $2.7 billion annually and world consumption is estimated to cost $7.2 billion 

annually (AMD, 2007) (He, 2008).  Major California companies are being forced to 

relocate due to high energy costs, e.g. Google has opened a new datacenter in the 

Midwest in Council Bluffs (Foley, 2008) and despite economic slump; Yahoo plans a 

new datacenter in La Vista, Nebraska (Yahoo, 2008). Clearly “Energy” is becoming a 

key business driver. 

 

Figure 1: World IT Spending - Energy Cost Increase 

Given these facts it has become imperative for us to consider the efficient usage of 

energy is all aspects of data center management. In this section we will also focus on 
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studying energy aware scheduling mechanism in a high end computing environment such 

as a grid cluster. We will use applications in the bio-informatics domain which will be 

scheduled on the Holland Computing Center (HCC) grid. This study will come up with 

an Energy Aware scheduling layer for High End Computing (HEC) such as clusters and 

grids and make intelligent scheduling decisions which will balance energy minimization 

requirements against performance based upon user needs. 

The need for minimizing energy consumption continues to be compelling in 

embedded, mobile, and server systems such as handheld devices, robots, spaceships, 

laptops, cluster servers, etc. This is due to the direct impact of constrained energy sources 

(e.g., battery size and weight), as well as cooling expenses in cluster-based systems to 

reduce heat dissipation (Rajkumar, 2005). Battery-operated portable devices are now 

ubiquitous and are widely used in mobile computing and wireless communication 

applications. Maximizing battery lifetime is the most important design metric for such 

systems. This problem is quite challenging due to the non-linear behavior of the battery. 

Since the amount of energy delivered by the battery depends on the discharge current 

profile (Martin, August 1999) (Battery life challenge, 2004), the battery life can be 

extended by controlling the discharge current level and shape. In recent years, there has 

been significant amount of work done in studying battery characteristics (Martin, August 

1999) (Battery life challenge, 2004) and using these characteristics to shape the discharge 

profile (Rakhmatov, Vrudhula, & Chakrabarti, 2002) (Chowdhary & Chakrabarti, 16-18 

Oct. 2002). All of the earlier work on battery aware task scheduling has been for static 

tasks where complete information about the tasks is known a priori. Task scheduling for 

real-time tasks has been investigated in the context of ideal power sources (Chowdhary & 
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Chakrabarti, 16-18 Oct. 2002). Some work has also been done on battery aware 

scheduling for real-time tasks (Ahmed & Chakrabarti, 2004). In my opinion not enough 

emphasis has been placed on making software applications aware of energy usage to the 

extent that this knowledge can drive the running of tasks on these devices based on some 

policy (such as mission criticality, time, etc); which leads us in the direction of how do 

we best schedule these tasks on battery operated devices such that we maximize the 

energy property (such as usage, efficiency) of these devices and the related applications 

that run on them. 

1.1.2 Mobile Devices 

Mobile computing has become a reality. Through the Wireless Verification Program, 

Intel® and leading wireless LAN service providers have verified more than 40,000 

hotspots around the world, with more cropping up each day (Battery life challenge, 

2004). Mobile technology is continually advancing to keep up with the needs of the 

mobile user. But as we work to make the ideal mobile experience, we find ourselves up 

against an inherent struggle between extending battery life and improving mobile 

performance. Power consumption has been a critical design constraint in the design of 

digital systems due to widely used portable systems such as cellular phones and PDAs, 

which require low power consumption with high speed and complex functionality. The 

design of such systems often involves reprogrammable processors such as 

microprocessors, microcontrollers, and DSPs in the form of off-the-shelf components or 

cores. Furthermore, an increasing amount of system functionality tends to be realized 

through software, which is leveraged by the high performance of modern processors. As 
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a consequence, reduction of the power consumption of processors is important for the 

power-efficient design of such systems. 

Battery operated portable devices are widely used in mobile computing and 

wireless communication applications. Maximizing battery lifetime is the most important 

design consideration for such systems. Since the amount of energy delivered by the 

battery depends on the discharge current profile, the battery life can be extended by 

controlling the discharge current level and shape (Ahmed & Chakrabarti, 2004) (Shin & 

Choi, 1999). Broadly, there are two kinds of methods to reduce power consumption of 

processors. The first is to bring a processor into a power-down mode, where only certain 

parts of the processor such as the clock generation and timer circuits are kept running 

when the processor is in an idle state. Most power-down modes have a tradeoff between 

the amount of power saving and the latency incurred during mode change. Therefore, for 

an application where latency cannot be tolerated, such as for a real-time system, the 

applicability of power-down may be restricted. Another method is to dynamically change 

the processor speed by varying the clock frequency along with the supply voltage when 

the required performance on the processor is lower than the maximum performance. A 

significant power reduction can be obtained by this method because the dynamic power 

of a CMOS circuit is quadratically dependent on the supply voltage (Shin & Choi, 1999). 

In recent years there has been a significant amount of work done on studying battery 

characteristics and using these characteristics to shape the discharge profile. Most of the 

earlier work for battery-aware task scheduling has been for static tasks where complete 

information about the tasks is known apriori (Ahmed & Chakrabarti, 2004).  
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1.3 Energy Management 

Energy management clearly plays a paramount role in not only hardware design but also 

in user-application, middleware and operating system design. This project focuses on 

techniques, specifically algorithmic ones to scale down energy needs whenever the 

system performance can be relaxed. Specifically, the project will study energy-aware 

resource reservations algorithms to satisfy both performance needs and energy 

constraints. Many energy management schemes also focus on a single resource that is 

dedicated to real-time or non-real-time processing. Unfortunately, in many practical 

systems such as Personal Digital Assistants (PDA), cellular phones, robots and personal 

computers, the combination of hard and soft real-time periodic tasks, a-periodic real-time 

tasks, interactive tasks and batch tasks must be supported. Each task may also require 

access to multiple resources (Rajkumar, 2005). Therefore, we will tackle the NP-hard 

problem of providing timely and simultaneous access to multiple resources by the use of 

practical abstractions and near-optimal heuristics aided by cooperative scheduling. 

Approaches where power management is carried out in different islands separately will 

also be compared. 

1.4 Research Questions 

The purpose of this research is to build a model for studying energy aware scheduling in 

mobile devices and high end computing where energy resources are constrained and heat 

dissipation is a major concern. Thus, the general research questions are as follows: 

1) Is there a general model for performing energy aware scheduling of tasks in mobile 

devices and HEC? 
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2) What are some of the general algorithms that we can use to schedule tasks in an energy 

aware environment? 

3) Are there special cases of the energy aware scheduling problem and can we come up 

with specific algorithms that have polynomial runtime for them? 

4) Are there specific domains where this problem exists and can we apply this some specific 

solutions to these domains? 

To answer these questions, additional research questions must also be answered: 

 Is the consumer energy aware and is society willing to fund research in this area? 

o How likely and how much additional cost is the consumer willing to pay for energy 

aware devices and/or applications? 

o Is it the responsibility of the consumer or the manufacturers who make mobile devices to 

be energy aware? 

 How can we model the problem using techniques in graph theory? 

o What makes graphs such as pervasive data structure for modeling this problem? 

o Are there general scheduling techniques that can be directly applied to the energy aware 

scheduling problem? 

o Given that the general scheduling problem is NP-Hard, What approximation algorithms 

and heuristics can we use for polynomial solutions? 

 Can we solve these for special cases of the general problem? 
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o What are the special cases of the general problem? 

o What is the usefulness of the special cases? 

o Are there polynomial algorithms for the special cases? 

The energy aware problem will be expressed through a conceptual model, which is a 

means of communicating specifications, and defining the problem space using events, or 

processes in a graphical format (Wand & Weber, 2002). Algorithmic graph theory will be 

used to provide polynomial time solution to the problem.  

1.5 Research Motivation 

1.5.1 Professional Motivation 

Humanity has always shown great resolve in finding solutions to problems and grand 

challenges that go far beyond mere intellectual curiosity. The NITRD program defines a 

grand challenge as “A Grand Challenge is a long-term science, engineering, or societal 

advance, whose realization requires innovative breakthroughs in information technology 

research and development (IT R&D) and which will help address our country’s 

priorities.” (Strawn, Howe, & King, November 2006). In the latter half of the twentieth 

century information technology has amplified our intellectual and physical abilities. 

Scientific and Engineering marvels such as the internet, the global positioning system 

(GPS), DNA fingerprinting, facial recognition, and the human genome project have 

become possible only with advances in information technology. “Today there are eight 

billion computers in the world. Most are embedded invisibly in products, making goods 

and services safer, more secure, flexible, and energy-efficient, and less expensive than 
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ever before. The tremendous advances in productivity that we have witnessed in the past 

decade rest on this foundation.” (Feigenoff & al., 2003).  

We are moving beyond stand-alone computers or components to build large, 

integrated, distributed information systems which mobile and ubiquitous that are in 

service to society. In the future, we can expect our computational infrastructure to offer 

an even more impressive range of social and economic benefits as it grows to include 

billions of people worldwide. Information technologies have the potential to reduce 

energy consumption, provide improved health care at lower cost, enhance security, 

reduce pollution, enable further creation of worldwide communities, engender new 

business models, and contribute to the education of people anywhere in the world. The 

CRA with funding from NSF, convened a group of researchers, who during a 3 day 

conference discussed the specific and urgent challenges related to building the systems of 

the future. As a result of that discourse, the participants selected five grand research 

challenges that will provide a focus for more directed and immediate relevant research. 

These are listed below (Feigenoff & al., 2003): 

1) Create a Ubiquitous Safety.Net. 

2) Build a Team of Your Own. 

3) Provide a Teacher for Every Learner. 

4) Build Systems You Can Count On. 

5) Conquer System Complexity. 
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1.5.1 A National Priority 

The NITRD illustrative grand challenges were formulated to stimulate current and future 

generations of NITRD and applications researchers. The operative word here is 

illustrative because there are easily hundreds if not thousands of grand challenges that 

could be identified. By describing these challenges, NITRD intends to explain, justify, 

and galvanize the IT R&D community to solve IT hard problems that are important to 

society. The NITRD Program’s illustrative grand challenges are shown in Appendix A. 

The national priorities and the IT hard problems are the key pillars on which the grand 

challenges are structured. By describing the relationship between a grand challenge and 

national priorities, the grand challenge’s significance is connected to the highest 

aspirations of our country. The IT hard problems, whose solution the grand challenge 

requires, tie the grand challenge to core elements of information technology research and 

development and the NITRD Program. The NITRD grand challenges were specifically a 

call to update the list called for in the High-Performance Computing (HPC) Act of 1991, 

which formally established the High Performance Computing and Communications 

(HPCC) Program. Through the HPCC Program, the U.S. Government coordinated multi-

agency investments in developing and using high-performance computing systems and 

advanced networking technologies to meet the mission needs of the participating 

agencies and larger national goals. The Act’s objectives included to: 

1) Develop teraops (trillions of operations per second) computing systems. 

2) Develop gigabit (billions of bits per second) networks. 

3) Develop advanced algorithms and software. 



10 
 

 
 

4) Demonstrate innovative solutions to “grand challenge” problems using HPCC 

technologies. 

Relationship of IT Hard Problem Areas and IT Hard Problems: IT hard problems 

areas are broad categories of topics of interest to the information technology research and 

development community and the NITRD Program. The Task Force identified 14 IT hard 

problem areas (Appendix). It was shown in (Strawn, Howe, & King, November 2006) 

that Algorithms and Applications had direct relationship with most of the illustrative 

Grand Challenges. 

1.5.2 Scholarly Motivation 

Our research in Energy Aware Scheduling based on Algorithmic Graph Theory can be 

used in wireless mobile devices, sensor networks, parallel computing, grid computing, 

high end computing, etc. This is due to the direct and indirect ability to manage energy 

consumption of battery operated devices and sensors as well as regulating heat in grid 

computing and high end computing by scheduling tasks away from over-heated 

components. Some of the areas identified by the grand challenges that are directly related 

to this research are: 

1) Embedded multimodal sensor/actuator nodes. 

2) Self-adaptive systems 

3) Network reliability and availability will be key features of all large systems, our research 

will help address the critical aspect network nodes being able communicate their energy 

levels and node temperatures so as to avoid catastrophic failure of these nodes due to 
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draining of battery capacity or over-heating, thus helping improve the overall reliability 

and availability of the network and system. 

1.6 Key Contributions 

In this dissertation we take the challenge of coming up with a model that addresses the 

Energy Awareness question across the spectrum from High End Computing to Mobile & 

Sensor devices and we propose our EAS model which uses scheduling heuristics to 

balance opposing criterions of energy minimization and performance across the 

spectrum. We first provide an overarching EAS model and then focus on each segment of 

this spectrum and tailor our approach based on the uniqueness of that spectrum and 

propose solutions that are then incorporated into the EAS model, thus allowing the model 

to scale along the spectrum yet handle the nuances within each segment. At one end of 

the spectrum we are challenged with reducing costs and at the other we have to optimize 

battery and energy utilization Figure 2.  

 

Figure 2: EAS model working across the spectrum 
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Our other key contributions include the following. 

1) We provide a robust EAS Model which works in all High Performance Cluster 

environments that allow the use of MPI.  

2) We apply this EAS Model to the Bioinformatics domain and apply it to specific 

applications and extend the knowledge gained using the concept of run profiles. 

3) We provide a new cloud simulation package as part of our work, which allows us to 

run simulations across cloud resources to see if task deadlines can be met and 

simulate more complex scenarios for cloud operators such as impact of cluster 

availability v/s ROI. 

4) We provide a Run-Queue Peek scheduling heuristic at the low end of the spectrum to 

address devices that run periodic tasks. 

5) We also provide an enhanced Expected Execution Task heuristic which builds on the 

earlier scheduling heuristic to provide additional energy efficiency gains. 

6) The need to carefully develop a parallel model based on the importance of 

understanding of the data within the specific application domain. 
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Chapter 2: Literature Survey, Basic Terminology & Problem 

Definition 

2.1 Introduction to Scheduling 

Scheduling is a classical field with several interesting problems and results. A scheduling 

problem emerges whenever there is a choice. The choice could be the order in which a 

number of tasks can be performed, and/or in the assignment of tasks to servers for 

processing. A problem may involve jobs that need to be processed in a manufacturing 

plant, bank customers waiting to be served by tellers, aircrafts waiting for landing 

clearances, or program tasks to be run on a parallel or a distributed computer. Clearly, 

there is a fundamental similarity to scheduling problems regardless of the difference in 

the nature of the tasks and the environment.  

The scheduling problem has been described in a number of different ways in different 

fields. The classical problem of job sequencing in production management has influenced 

most of what has been written about this problem. Most manufacturing processes involve 

several operations to transform raw material into a finished product. The problem is to 

determine some sequences of these operations that are preferred according to certain (e.g. 

economic) criteria. The problem of discovering these preferred sequences is referred to as 

the sequencing problem. Over the years, several methods have been used to deal with the 

sequencing problem such as complete enumeration, heuristic rules, integer programming, 

and sampling methods. It is clear that complete enumeration is impractical because the 

problem is exponential, which means that it requires too much time, sometimes years of 

computation time would be required even for a small number of tasks. Hence optimal 

solutions cannot be obtained in real time (Ullman, 1975) (Coffman, et al., 1976). 

However, many heuristic methods have been used to deal with most general case of the 
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problem. Such methods include traditional priority-based algorithms (Hesham, Lewis, & 

Hesham, 1994), task merging techniques (Aronsson & Fritzson, Jan 8-10, 2003), critical 

path heuristics (Hesham, Lewis, & Hesham, 1994) (Khan, McCreary, & Jones, 1994). In 

addition, distributed algorithms have been designed to address different versions of the 

scheduling problem (Xie, Rus, & Stein, Dec, 2001). 

2.1.1 The Scheduling Problem 

In general, the scheduling problem assumes a set of resources and a set of consumers 

serviced by these resources according to a certain policy. Based on the nature of and the 

constraints on the consumers and the resources, the problem is to find an efficient policy 

(schedule) for managing the access to and the use of the resources by various consumers 

to optimize some desired performance measure such as the total service time (schedule 

length). Accordingly, a scheduling system can be considered as consisting of a set of 

consumers, a set of resources, and a scheduling policy as shown in Figure 3. 

Consumers Scheduler Resources

Policy

 

Figure 3: The Scheduling System 

Examples of consumers are a task in a program, a job in a factory, or a customer in a 

bank. Examples of resources are a processing element in a computer system, a machine in 

a factory, or a teller in a bank. First-come-first-served is an example of a scheduling 

policy. Scheduling policy performance varies with different circumstances. While first-

come-first-served may be appropriate in a bank environment, it may not necessarily be 
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the best policy to be applied to jobs on a factory floor. Performance and efficiency are 

two parameters used to evaluate a scheduling system. It’s customary to evaluate a 

scheduling system based on the goodness of the produced schedule and the efficiency of 

the policy. 

In the general scheduling problem, we are concerned with scheduling dependent program 

tasks on parallel and distributed systems. The tasks are the consumers and will be 

represented using directed graphs called task graphs. Task graphs are used to represent 

precedence relationships between tasks. The processing elements are the resources and 

their interconnection networks will be represented using undirected graphs. The 

“scheduler” (Figure 4) generates a schedule using a timing diagram called the Gantt chart. 

The scheduler performs allocation, which means it will tell which tasks go on which 

processor, but does not give their order. Whereas “scheduling” will perform allocation as 

well as provide an order for the tasks on the individual processors. The Gantt chart 

illustrates the allocation of the parallel program tasks onto the target machine processors 

and their execution order. A Gantt chart consists of a list of all processors in the target 

machine and, for each processor, a list of all tasks allocated to that processor ordered by 

their execution time. The term tasks, nodes and jobs will be regarded as equivalent to the 

term “consumers”. Also, resources may be referred to as processors or processing 

elements. 

2.1.2 Task Scheduling Model 

The model that we will study in this thesis is deterministic and static in the sense that all 

information governing the scheduling decisions are assumed to be known in advance. In 
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particular, the task graph representing the parallel program and the target machine is 

assumed to be available. 

There are four components in any scheduling system: the target machine, the parallel 

tasks, the generated schedule, and the performance criterion. In our task-scheduling 

model we will ignore the communication delays and consider all tasks to have the same 

unit execution time. Also most of the time, we deal with the same machine, i.e. multiple 

processors on the same machine. Nowadays we have such similar environments that it 

leads to almost same communication delay times. We will discuss and define the 

scheduling problem in more detail later in the thesis. 

Scheduler

Task Graph

1 2

3

4 5

Target Machine

P1 P2 Gnatt Chart

P1 P2

ti
m

e 1 2

3

4 5

 

Figure 4: A Scheduler 

2.1.3 Energy Aware Scheduling 

Energy Aware Scheduling is a special case of the general scheduling problem in which 

our scheduling policy is the optimization of the energy or power of the battery. 

Minimizing the battery power utilization becomes the most important consideration in a 
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system that is energy aware, at the same time one must realize that along with this there 

are certain parameters that must be met such as tasks meeting their deadlines. 

Consumers Scheduler Resources

Energy 

Aware Policy
 

Figure 5: Energy Aware Scheduling System 

Simply put an Energy Aware Scheduling System is a scheduling problem which assumes 

a set of resources and a set of consumers serviced by these resources according to a 

Energy Aware policy. Based on the nature of and the constraints on the consumers and 

the resources, the problem is to find an efficient policy (schedule) for managing the 

access to and the use of the resources by various consumers to optimize the desired 

performance measure which in this case is minimum amount of battery energy. 

Accordingly, an Energy Aware scheduling system can be considered as consisting of a 

set of consumers, a set of resources, and an Energy Aware scheduling policy as shown in 

the Figure 5 above. 

2.2 From Static to Dynamic to Dynamic Energy aware scheduling  

Our study initially focus on feasibility of the schedule, followed by, honoring the 

restrictions and meeting the requirements. Our research aims to move scheduling research 

from the classical static scheduling approaches of the 1910 - 1970, to dynamic scheduling 

approaches of 1990’s to take advantage of the slack generated due to the difference 

between WCET and AET, and finally take the dynamic approach to the next level with a 

focus on energy utilization, given the latest advances in DVS technology and the business 
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driven need for reducing energy costs with dynamic energy aware scheduling. The figure 

below Figure 6 shows a conceptual model of 2 tasks T1 and T2 as they evolve through the 

various models from static to dynamic to dynamic energy aware scheduling. 

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

(a)

(d)

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

(b)

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

(c)

If static schedule is 

followed T2

 would be executed 

as shown

Dynamic schedule taking into 

account the slack generated 

based on the AET of T1 

Dynamic energy aware 

schedule taking into account 

the slack generated based on 

the AET of T1 and the would 

be completion time of T2

accomplished  by reducing 

voltage and hence energy 

utilized as shown.

Static schedule before 

actual execution

Static schedule after 

Actual execution

Dynamic schedule after 

actual execution

Dynamic energy aware 

schedule after actual 

execution

 

Figure 6: Static to Dynamic to Dynamic Energy Awareness Scheduling 
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2.3 Basic Terminology & Problem Definition 

In this section we define a few terms that will be used in the later sections of this paper. 

We discuss the NP-completeness of the scheduling problem and present a complexity 

comparison of the various scheduling problems.  

Task Graph: A task graph G = (T, A) is a directed acyclic graph. For a pair of tasks ti, tj 

T, a directed edge (i, j) A between the two tasks specifies that ti must be completed 

before tj can begin. Figure 7 shows a task graph. 

Density or Sparseness: The density or sparseness of a graph G=(T,A) is computed as a 

ratio of the number of edges |A| in the graph as a percentage to the maximum number of 

edges that graph can have which is of order (|T| * |T-1|) / 2. So a graph with density of 0.5 

will have half the number of maximum edges possible for that graph.  

Task Level: Let the level of a node x in a task graph be the maximum number of nodes 

(including x) on any path from x to a terminal task. In a tree, there is exactly one such 

path. A terminal task is at level 1. Given the graph in Figure 7, we can say that nodes 1, 2 

and 3 are at level 1, 4 and 5 are at level 2, nodes 6,7,8,9 and 10 are at level 3, and so on. 

 

Figure 7: A Task Graph 
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Schedule Length or Schedule Time: Given a task graph G = (T, A) and its schedule on 

m processors, f, the length of schedule f of G is the maximum finishing time of any task 

in G. 

2.3.1 NP-Completeness of the Scheduling Problem 

In general, the time complexity of an algorithm refers to its execution time as a function 

of its input. We specify the complexity of a scheduling algorithm as a function of the 

number of tasks and the number of processors. A scheduling algorithm whose time 

complexity is bounded by a polynomial is called a polynomial-time algorithm. An 

optimal algorithm is considered to be efficient if it runs in polynomial time. Inefficient 

algorithms are those, which require a search of the whole enumerated space and have an 

exponential time complexity. The problem of scheduling parallel programs tasks on 

multiprocessor systems is known to be NP-complete in its general form. There are few 

known polynomial-time scheduling algorithms even when severe restrictions are placed 

on the task graph representing the program and the parallel processor models. In general 

we can say classify the known results as follows: 

1) The NP-Completeness of several versions of the scheduling problems (Ullman, 1975). 

2) Optimal “efficient” algorithms, for solving restricted versions of the scheduling 

problems (Coffman, et al., 1976), (Hesham, Lewis, & Hesham, 1994). 

3) Heuristic algorithms for tackling more general cases of the scheduling problems 

(Hesham, Lewis, & Hesham, 1994). 

4) Table 1 summarizes the complexity of several versions of the scheduling problem 

when the target machine is fully connected. Note that n is the number of tasks and e is 

the number of arcs in the task graph. Note also that the results in Table 1 are obtained 
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when communication costs are not considered. Forest and interval-order are special 

classes of task graphs. For more detailed definition and the formal discussion of NP-

completeness please refer (Ullman, 1975) (Hesham, Lewis, & Hesham, 1994). 

Table 1: Complexity comparison of scheduling problem 

Task Graph Task Execution 

Time 

Number of 

Processors 

Complexity 

Tree Identical Arbitrary O(n) 

Interval order Identical Arbitrary O(n) 

Arbitrary Identical 2 O(e + n(n)) 

Arbitrary Identical Arbitrary NP-complete 

Arbitrary 1 or 2 time units  2 NP-complete 

Opposing forest Identical Arbitrary NP-complete 

Interval order Arbitrary  2 NP-complete 

Arbitrary Arbitrary Arbitrary NP-complete 

 

As mentioned earlier a number of scheduling heuristic have been developed to deal with 

many versions of the scheduling problem. Among the developed heuristics, List 

scheduling has been used often due to its simplicity and over all good results. List 

scheduling is a class of scheduling heuristics in which tasks are assigned priorities and 

placed in a list ordered in decreasing magnitude of priority. Whenever tasks contend for 

processors, the selection of tasks to be immediately processed is done on the basis of 

priority with the higher-priority tasks being assigned processors first. If there is more than 

one task of a given priority, ties are broken randomly.  

2.3.1 Scheduling and the Battery Operated Device Model 

Our research will focus in the software – application area and will specifically try to 

address the question of energy aware scheduling of application tasks. There are several 

models for which different algorithms have been proposed (see Appendix B). We take 

look at one such model, discuss the scheduling algorithm proposed for this model (battery 



22 
 

 
 

operated devices), its variations and finally present our improvement for scheduling on 

this model. 

Let us understand the basic characteristics of this Battery Operated Model. 

1. The model assumes fixed priority scheduling. 

2. The model is for a real time system, in which task deadlines must be met. 

The system configuration for the battery-operated processor under consideration is 

described in Figure 8. The system consists of one DVS processor driven by a single 

battery. The battery is used to power the processor through a DC-DC converter. The DC-

DC converter has an efficiency η = Iproc*Vproc/Ibatt*Vbatt, where Vbatt and Ibatt are the 

battery voltage and current and Vproc and Iproc are the processor voltage and current. 

Battery
DC-DC 

Converter

DVS 

Processor

Vbatt Vproc

Ibatt Iproc

 

Figure 8: System Level Configuration 

 

Non-linear properties of the battery: 

There are several important properties of the battery with respect to voltage scaling that 

have been derived from the analytical model. We present two of the properties used for 

developing the real-time scheduling heuristics (Ahmed & Chakrabarti, 2004) 

(Chowdhary & Chakrabarti, 16-18 Oct. 2002): 
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Property 1: For a fixed voltage assignment (only task start times can be changed), 

sequencing tasks in the non-increasing order of their currents is optimal when the task 

loads are constant during the execution of the task. 

Property 2: Given a pair of two identical tasks in the profile and a delay slack to be 

utilized by voltage down-scaling, it is always better to use the slack on the later task than 

on an earlier task. 

c
u

rr
e

n
t

time

AET

 AETk 

WCET

Inherent

Slack

Generated Slack

(AET < WCET)

Ik

ak tk dk

 WCETk 

ak = Arrival time of Task Tk

dk = Deadline of Task Tk

tk = Start time of Task Tk

Ik = Current utilized for executing Task Tk

AETk = Actual execution time of Task Tk

WCETk = Worst case execution time of Task Tk

 

Figure 9: Task Description 

Task description: A given task k is associated with the following parameters: the current 

Ik , the worst case execution time WECTk, the arrival time ak, the start time tk, the actual 

execution time AETk, the deadline dk and the period Pk. The slack associated with a task 

is due to two factors: (1) the inherent slack due to the difference between the deadline and 

the WCET and (2) the slack generated due to the actual execution time being less than the 

worst case execution time. 
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Power-Down Modes: 

In most embedded systems, a processor often waits for some events from its environment, 

wasting its power. To reduce the waste, modern processors are often equipped with 

various levels of power modes. In the case of the PowerPC 603 processor (Gary, et al., 

1994), there are four power modes, which can be selected by setting the appropriate 

control bits in a register. Each mode is associated with a level of power saving and delay 

overhead. For example, in sleep mode, where only the PLL and clock are kept running, 

power consumption drops to 5% of full power mode with about 10 clock cycles delay to 

return to full power mode. 

For the rest of the dissertation, we assume that the problem is deterministic in the sense 

that all information governing the scheduling decisions are assumed to be known in 

advance. In particular, the task graph representing the parallel program and the target 

machine is assumed to be available before the program starts execution. As in the 

standard scheduling system, our system has four components: the target machine, the 

parallel tasks (represented as a task graph), the generated schedule and the performance 

criterion. The minimization of the schedule length is the performance criterion considered 

in our scheduling model.  
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Chapter 3: Our Proposed Model and Research Approach 

3.1 The Model 

The current state of research is dominated by parallelization of code and how to achieve 

high degree of speedup. The discussion about tradeoff between performance and energy 

is limited based mainly on mathematical model with no concrete working model. Even on 

the applied side there is a feeling that hardware is cheap, so let’s take advantage of it. 

Hence, we felt the need for a robust model that incorporates key information from the 

application domain is essential to study the tradeoff. We call our model the Energy 

Aware Scheduling (EAS) Model (Figure 10). 

 

Figure 10: Our EAS Model 

Our main motivation is to move this from a simple speedup to the realm of energy 

awareness. Now when we speak of energy awareness, a new constraint is placed on the 

scheduling system. It now has to adopt a scheduling policy which is both traditional 

performance focused and energy aware. The goal is to find the right harmony between 
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these two, slightly divergent goals. One is focused simply on getting the results as 

quickly as we can whereas the other is focused on minimizing the energy used in getting 

the results, which inherently means slowing down if necessary. The crucial question 

which follows is how one achieves the right balance between these two differing 

optimization criteria. We follow a simple 2-step approach.  

3.1.1 Step 1: Offline Phase – Build Run Profile 

We perform some runs to understand the degree of parallelization (also called run profile) 

of a program. Based on this we seed our energy aware scheduling (EAS) algorithm in the 

EAS Engine with the run profile (meaning understanding of the number of nodes 

required, and time it takes to run the task). Using this we can then first allocate a set of 

nodes for a given deadline. 

3.1.2 Step 2: Online Phase – Dynamic Resource Adjustment 

Here we dynamically adjust the number of nodes either up or down based upon actual 

execution time (AET). This then becomes a continuous feedback loop to the EAS Engine, 

which looks at the tasks expected execution time (EET), its actual execution time and 

then takes measures to adjust the schedule by adjusting the overall nodes assigned or in 

future the Dynamic Voltage Scaling (DVS) of each node to meet the overall deadline. 

This allows us to meet two the two divergent goals of minimizing energy utilization and 

performance. 

3.2 The Model – Logical View 

In general the program consists of a Master and Several worker processes. The Master 

process builds the work queue and handles all scheduling of work tasks to the respective 

worker processes. It goes through the work queue and makes scheduling decisions based 
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on performance and energy criteria. Once all the work has been distributed, it then waits 

and gathers information back from the worker processes. After each worker process 

replies back the master process it calls the Energy Aware Scheduling (EAS) Engine and 

sends a terminate message to each worker process/node. The Worker processes simply 

wait for work from the master process, execute the work given and wait for more work or 

notification from master to terminate. The EAS Engine takes information about the EET 

and AET of the task, makes decisions if any node level adjustments need to be made 

(and/or DVS adjustments) and sends an appropriate feedback message back to the Master 

process. The feedback mechanism is used as a learning mechanism to refine future 

decisions made by the EAS Model (Figure 11). 

 

Figure 11: EAS Model - Logical View 
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3.2 Research Vision for our Model 

Our EAS – Model is designed to address the issue of energy aware in using computing 

resources based on scheduling of tasks/jobs in such a manner that we no longer just focus 

on performance meaning returning results as fast as we can but also try and minimize 

energy utilized in the process while still meeting the desired deadline. Our EAS Model is 

designed to handle this issue across the broad spectrum from larger “Cloud” computing – 

HPC to small Node – Mobile devices (Figure 12).  

 

Figure 12: Research Vision for our EAS Model 

At the highest level we apply our model at the High Performance Computing – Cluster 

level by adjusting the number of nodes used to complete a set of tasks and by simulation 

show that this can be extended to the “Cloud” by introducing the concept of energy-index 

for Cloud datacenters. Finally we extend the model to the node level and show how we 

can minimize energy and still meet deadlines by using DVS techniques. 

3.3 Research Approach 

Conducting research in Algorithmic Graph Theory and related areas is no different from 

say research conducted in the area of Artificial Intelligence, Computer Sciences or Social 
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Sciences at least in terms of the research methodology that the researcher has to follow. 

In this article, I will discuss the research methodology or shall I say approach that I 

intend to take in conducting my research in “Energy Aware Scheduling”. 

For the purpose of this research study, I intend to adapt Cohen and Howe’s cyclic 

multistage process for conducting research (Cohen & Howe, How evaluation guides AI 

research, 1988) (Cohen & Howe, Toward AI research methodology, 1989). First I need to 

step back and try and answer the question why do I need to define a methodology for my 

research? By defining my research methodology, I intend to accomplish two things, first I 

will be able to objectively answer the questions surrounding evaluation of the research 

being conducted and secondly it will provide me a framework that will guide me and 

keep me focused throughout the research. That being said; let us briefly discuss Cohen’s 

cyclic multistage process for conducting research; which can be viewed as a five-stage 

cycle (Figure 13).  

Refining the topic to a task and view

Design the Method

Design and build the program

Need a program?

Design experiments

Analyze experimental results

Evaluation

Evaluation

Evaluation

Evaluation

Evaluation

Yes

No

Stage 1

Stage 2

Stage 3

Stage 5

Stage 4
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Figure 13: Cycle of Research (Cohen & Howe, How evaluation guides AI research, 1988) 

Cohen defines evaluation as a mechanism of progress both within and across research 

projects. Evaluation can tell us how and why our methods and programs work and so, tell 

us how our research should proceed. For the community, evaluation expedites the 

understanding of available methods and so, their integration into further research. 

3.4 Research Methodology 

3.4.1 Stage 1: Relevance and Refinement 

When researchers find particular topics fascinating the first stage of the research cycle 

involves simultaneously refining the research topic to a task and identifying a view. A 

task is something we want a computer to do, and a view is a pre-design, a rough idea of 

how to do it. An important point to note is that this in itself is an iterative process (Cohen 

& Howe, How evaluation guides AI research, 1988). Cohen provides a list of criteria for 

evaluating research problems which is presented in Figure 14. 

The Big Picture: Energy is fundamental to the quality of our lives. Nowadays, we are 

totally dependent on an abundant and uninterrupted supply of energy for living and 

working. It is a key ingredient in all sectors of modern economies. We know that energy 

demand will increase significantly in the future. How then will we satisfy this huge 

energy requirement in an environmentally friendly way? (The importance of energy, 

2005) 

Future directions: Energy supply must be sustainable and diverse, and energy needs to 

be used more efficiently. A sustainable energy supply, both in the short- and the long-

term, is needed for promoting both economic development and people's quality of life, as 

well as protecting the environment. We also need a greater diversification of energy 
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resources - if we are largely dependent on one fuel source, we risk price rises and supply 

disruptions. Energy is a precious resource which must be conserved. Improved energy 

efficiency, therefore, in our homes, factories, transport and in our day to day activities 

needs to be strongly encouraged. 

1. Is the task significant? Why?

(a) If previously defined, how is your reformulation an improvement?

2. Is your research likely to meaningfully contribute to the problem? Is the task tractable?

3. As the research task becomes specifically defined, is it still a representative class of tasks?

4. Have any interesting aspects been abstracted away or simplified?

5. What are the sub-goals of the research? What key research tasks will be or have been 

addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to the task? Is the 

task one in which a solution can be demonstrated?

 

Figure 14: Criteria for Evaluating Research Problems 

A sub-goal of this research will be to understand level of energy awareness amongst 

consumers and consumer attitudes to energy and related issues. I intend to accomplish by 

preparing a questionnaire dealing with energy awareness and attitudes and then 

performing statistical analysis on the data collected based on various demographics to 

identify with variables have significance. In the dissertation, I hypothesize that people are 

becoming more and more energy aware and want to incorporate energy awareness in 

various aspects of their lives and since mobile devices are becoming ubiquitous and more 

prevalent in our lives and their energy constraint, the problem of research in this 

dissertation namely “Energy aware scheduling” is significant for a social standpoint. 
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There is a lot of research being done in Europe on intelligent energy usage (Intelligent 

Energy Europe, 2007). There have also been various survey studies done on Energy 

conservation and awareness in households sector (Jaber, Mamlook, & Awad, Dec 2003), 

saving money through energy efficiency (Saving money through Energy Efficiency, Feb 

2004), energy home improvements (Ulrich & Flagg, 2003), etc. The Canadian Electricity 

Association studied the attitudes to Canadians towards energy efficiency (Canadian 

Electricity Association, 2006). Here in the United States, the U.S Department of Energy 

(DOE) is spearheading research in several directions related to energy awareness and 

energy efficiency. Research has been done with regards to home appliance buying trends 

(U.S. Department of Energy, 1999). 

3.4.2 Stage 2: Design the Method 

At this stage one’s view is refined to a method for solving the task. The method could be 

a single algorithm such as List Scheduling, Coffman and Graham’s 2-P Scheduling 

algorithm, etc. We maintain this design the method step to remind us that we don’t jump 

immediately into building programs and writing code but first decide how we want to 

solve the tasks. Cohen presents a list of criteria for evaluating methods; which are listed 

below in Figure 15 (Cohen & Howe, How evaluation guides AI research, 1988) (Cohen & 

Howe, Toward AI research methodology, 1989). 



33 
 

 
 

1. How is the method an improvement over existing methodology?

(a) Does it account for more situations (inputs)?

(b) Does it produce a wider variety of desired behaviors (outputs)?

(c) Is the method expected to be more efficient (space, solution time, and so on)?

(d) Does it hold more promise for further development (new paradigm)?

2. Does a recognized metric exist for evaluating the performance of your method?

3. Does it rely on other methods?

4. What are the underlying assumptions?

5. What is the scope of the method?

(a) How extendible is it? Will it easily scale up to a larger knowledge base?

(b) Does it exactly address the task? Portions of the task? A class of tasks?

(c) Could it or parts of it be applied to other problems?

(d) Does it transfer to complicated problems?

6. When it cannot provide a good solution, does it do nothing or does it provide bad solutions 

or does it provide the best solution given the available resources?

7. How well is the method understood?

(a) Why does it work?

(b) Under what circumstances, won’t it work?

(c) Are the limitations of the method inherent or simply not yet addressed?

(d) Have the design decisions been justified?

8. What is the relationship between the problem and the method? Why does it work for this 

task?

 

Figure 15: Criteria for evaluating methods 

3.4.3 Stage 3: Build a Program 

After the second stage of “Design the method” we will move on to the next stage which 

is “Build a Program”.  Cohen’s criteria for evaluating method implementation are 

presented in Figure 16 below. In this stage we will actually implement our scheduling 

algorithms and other comparative algorithms. We will be able to set up different energy 

policy functions and then run these different policies and compare them in terms of how 

effective were they in effectively utilization of the available energy in a battery and HPC 

environment using MPI and build a simulation for extending the model to “Cloud” 

computing.  
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1. How demonstrative is the program?

(a) Can we evaluate its external behavior?

(b) How transparent is it? Can we evaluate its internal behavior?

(c) Can the task capabilities be demonstrated by a well-defined set of test cases?

(d) How many test cases does it demonstrate?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

(a) Can you determine the program’s limitations?

(b) Have parts been left out or kludged? Why and to what effect?

(c) Has implementation forced detailed definition or reevaluation of the method?

(d) If reevaluation was required, How was this accomplished?

4. Is the program’s performance predictable?

 

Figure 16: Criteria for Evaluating Method Implementation 

3.4.4 Stage 4: Design Experiments 

After the third stage of “Build a Program” we will move on to the next stage which is 

“Design Experiments”.  Cohen’s criteria for evaluating the experiments design are 

presented in Figure 17 below. 

1. How many examples can be demonstrated?

(a) Are they qualitatively different?

(b) Do the examples illustrate all the claimed capabilities?

(c) Do the examples illustrate the limitations?

(d) Is the number of examples sufficient to justify the inductive generalizations?

2. Should the program’s performance be compared to a standard such as another program, or 

experts or novices, or its own tuned performance?

3. What are the criteria for good performance? Who defines the criteria?

4. Does the program purport to be general (domain independent)?

(a) Can it be tested on several domains?

(b) Are the domains qualitatively different?

(c) Do they represent a class of domains?

(d) Should there be inter-domain performance comparisons?

(e) Is the set of domains sufficient to justify inductive generalization?

5. Is a series of related programs being evaluated?

(a) Can differences in programs and their behavioral manifestations be determined?

(b) Do the implementation differences of programs affect the generalizations?

(c) Were difficulties encountered in implementing the method in other programs?

 

Figure 17: Criteria for Evaluating the Experiment Design 
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Various experiments will be run on the proposed energy management algorithm, other 

static scheduling algorithms, and the list scheduling heuristic using different graphs. The 

two most important properties of the graphs that the algorithms will be tested against are: 

a) Number of nodes in the graph, and  

b) The Density/Sparseness of the graph 

3.4.5 Stage 5: Analyze the Experimental Results 

After the fourth stage of “Design Experiments” we will move on to the next stage which 

is “Analyze the Experimental Results”.  Cohen’s criteria for evaluating what the 

experiments told us are presented in Figure 18 below. 

1. How did program performance compare to its selected standard (other programs)?

2. Is the program’s performance different from predictions of how the method should perform?

3. How efficient is the program in terms of space and knowledge requirements?

4. Did the program demonstrate good performance?

5. Did you learn what you wanted from the program and experiments?

6. Is is easy for the intended users to understand?

7. Can you define the program’s performance limitations?

8. Do you understand why the program work or doesn’t work?

(a) What is the impact of changing the program even slightly?

(b) Does it perform as expected on examples not used for debugging?

(c) Can the effect of different control strategies be determined?

(d) How does the program respond if input is rearranged, noisy, or missing?

(e) What is the relationship of characteristics of the test problems and performance?

(f) How generalized is the understanding of the method and its characteristics?

 

Figure 18: Criteria for Evaluating What the Experiments Told Us 

In this stage we will compare the performance results of our proposed energy 

management policy algorithm with that of the other static scheduling algorithms as well 

the heuristic list scheduling algorithm. We will also provide the Big-O for our proposed 



36 
 

 
 

algorithm and compare it with that of the other algorithms; this will also be accompanied 

with the space analysis for each program. This will be followed by an understanding of 

the limitation of the proposed algorithm such as communication costs/delays and how 

these may or may not affect the generalizations of the findings. 

3.5 Application Domains for the Energy Aware Scheduling Problem 

Any academic research has to be eventually related to specific application domains in 

which that research can be applied. Our energy aware scheduling problem is prevalent in 

several application domains such as mobile technology applications, wireless sensor 

networks, grid computing, animal field studies, oceanography, space technology, etc. 

Basically anywhere battery technology is being used or minimizing energy utilization is a 

key objective function. In this research we will focus on two application domains; one is 

the mobile devices and the second is the grid/parallel computing domain. In the 

grid/parallel computing domain we plan on teaming with the bioinformatics group to run 

several long running programs on a grid computing cluster and simultaneously minimize 

various objective functions key amongst which will be the minimization of energy. 

The rest of the dissertation is organized as follows. 

1) In chapter 4 we apply our EAS model to a HPC environment and more specifically to 

a commonly used application called BLAT (which is similar to BLAST) in the 

Bioinformatics domain. 

2) In chapter 5 we extend our EAS model to incorporate a feedback mechanism. Our 

EAS Engine uses the concept of “Run-Profiles” to make intelligent scheduling 

decisions based on previous AET knowledge to adjust the schedule so as to minimize 

energy utilization while still meeting task/job deadlines. 
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3) In chapter 6 we extend and apply our EAS model to a more complex application 

within the Bioinformatics domain namely “Assembling of Short Reads”. Assembling 

of sequences is a very important and frequently used application by bioinformatics 

researchers. 

4) In chapter 7 we take the next big step and extend our EAS model to the new paradigm 

of “Cloud” computing. We use simulation techniques which applies our EAS Model 

to answer important “What if” scenarios for both customers/users and operators of 

“Cloud” systems/clusters. 

5) In chapter 8 we stretch our EAS Model to touch the other end of the spectrum, 

namely small Node level and Mobile devices and introduce additional algorithms 

such as Run-Queue peek and use DVS techniques to address the “Energy Awareness” 

aspects for scheduling purposes. 

6) Finally in chapter 9 we present our overall conclusions and future research directions. 
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Chapter 4: Energy aware scheduling in High End Computing 

US Data centers consumed 5 MKW of energy in 2005 (Snyder, 2008), which is 

equivalent to five 1000 MW power plants. The total energy utility bills in the US alone 

amount to $2.7 billion annually and world consumption is estimated to cost $7.2 billion 

annually (AMD, 2007) (He, 2008).  Major California companies are being forced to 

relocate due to high energy costs, e.g. Google has opened a new datacenter in the 

Midwest in Council Bluffs (Foley, 2008) and despite economic slump; Yahoo plans a 

new datacenter in La Vista, Nebraska (Yahoo, 2008). Clearly “Energy” is becoming a 

key business driver. Given these facts it has become imperative for us to consider the 

efficient usage of energy is all aspects of data center management. In this section we will 

also focus on studying energy aware scheduling mechanism in a high end computing 

environment such as a grid cluster. We will use applications in the bio-informatics 

domain which will be scheduled on the Holland Computing Center (HCC) grid. This 

study will come up with an Energy Aware scheduling layer (Figure 19) for HEC such as 

clusters and grids and make intelligent scheduling decisions which will balance energy 

minimization requirements against performance based upon user needs. 

Grid Monitoring & Management

Energy Aware HEC Layer

Applications

 

Figure 19: Energy aware scheduling layer for HEC 
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We will take the following approach to test our solution and proposed energy aware 

scheduling algorithms. 

1) We will begin studying our proposed algorithm using simulation techniques where 

we will tailor the environment using various parameters and test our proposed 

scheduling algorithms. 

2) Next we will run some simple bio-informatics applications which are inherently 

parallel, such as running a program to find if a particular gene sequence is present in a 

particular chromosome. In this problem we can run the program with the given gene 

sequence and a chromosome from 1 – 23 on 1 – 23 nodes on a cluster, this is because 

there is no dependency in running the gene sequence against the different 

chromosomes. 

3) Next we will increase the complexity of the problem by introducing dependency 

within the problem space such that output of one run is input to the following run. 

This will require the scheduling algorithm to be smart enough to dynamically adjust 

to the runtime slack and schedule the follow-up task appropriately. Here we may have 

to deal with communication costs and handle task deadlines. 

4) We will also study solutions from the standpoint of feasibility versus performance in 

the backdrop of energy utilization, the main objective being to understand how these 

impacts and influence energy utilization. 

4.1 High Performance Computing and Amdahl’s Law 

In a High Performance Computing (HPC) environment, the objective is to parallelize as 

much of the program as we can, because of the restrictions placed by Amdahl’s Law 

(Amdhal, 1967). Amdahl's law is defined by the formula:  
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1

(1 − P) +  
P
N

 

As N → ∞, the maximum speedup tends to 1 (1 − P)⁄ . In practice, performance/price 

falls rapidly as N is increased once there is even a small component of (1 − P) (Amdhal, 

1967) (Cho & Melhem, 2008) (Amdahl’s Law, n.d.) (Hill & Marty, 2008). A great part of 

the craft of parallel programming consists of attempting to reduce (1 – P) to the smallest 

possible value. The Figure 20 below shows the speedup curves for various values of P. 

 

Figure 20: Amdahl's Law 

For our experiments we will be using the HPC environments available at UNO 

(University of Nebraska at Omaha). We initially start out with the Blackforest cluster (16 

nodes) (Blackforest Computing Cluster, n.d.), and then move to the Firefly cluster, a true 

commercial strength HPC at Holland Computing Center. The Firefly is a 1,151-node 

super-computer cluster of Dell SC1435 servers.  Each node contains two sockets, and 
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each socket holds a quad-core (four 64-bit AMD Opteron 2.2 GHz processors) (Holland 

Computing Center, n.d.). 

4.2 Bioinformatics & High End Computing 

Bioinformatics can be broadly defined as the creation and development of advanced 

information and computational techniques for problems in biology/genetics domain. It is 

the set of computing techniques used to manage and extract useful information from the 

DNA/RNA/protein sequence data which is continually being generated (at very high 

volumes) by automated techniques (e.g., DNA sequencers, DNA microarrays) and stored 

in large public databases (e.g., GenBank, Protein DataBank). Most methods used for 

analyzing genetic/protein data have been found to be extremely computationally 

intensive, providing motivation for the use of powerful computers or systems with high 

throughput characteristics.  

Comparing biological sequences is one of the most important Bioinformatics problems 

because it is critical for recognition and classification of organisms. The software 

package BLAST (Basic Local Alignment Search Tool) has been the method of choice for 

many biomedical researchers to measure the degree of similarity among biological 

sequences. Recently, a modified version, called BLAT (the BLAST-Like Alignment 

Tool) is quickly becoming a very popular tool for similarity measures using the concept 

of sequence alignment. BLAT, developed by Jim Kent at UCSC to identify similarities 

between DNA and protein sequences, is an alignment tool like BLAST, but it is 

structured differently. On DNA, BLAT works by keeping an index of an entire genome in 

memory. Thus, the target database of BLAT is not a set of GenBank sequences, but 

instead an index derived from the assembly of the entire genome. The index which uses 

http://en.wikipedia.org/wiki/BLAST
http://en.wikipedia.org/wiki/Jim_Kent
http://en.wikipedia.org/wiki/University_of_California_Santa_Cruz
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less than a gigabyte of RAM consists of all non-overlapping 11-mers except for those 

heavily involved in repeats (Sequence and Annotations downloads, n.d.) (Genome 

Bioinformatics, n.d.). 

In this section we propose an energy aware scheduling (EAS) technique for programs in a 

cluster environment and apply the EAS technique to the bioinformatics domain and more 

specifically to the BLAT software package. It is important to note that we can parallelize 

the BLAT program without losing any biologically significant information relevant to the 

output of the program. This means that parallelizing the program does not impact the 

conclusions that bioinformatics researchers may draw from the output of BLAT.  

Bioinformatics includes methodologies for processing information characterized by large 

volume, in order to speedup researches in molecular biology. Sequence analysis, genome 

sequence comparison, protein structure prediction, pathway research, sequence 

alignment, phylogeny tree construction, etc. are some of the common operations 

performed on such biological data (Dayde, 2006). However, bioinformatics applications 

typically are distributed in different individual projects and they require high 

performance computational environments.  

Most of the previous work done focuses on performance curves that are inherent when 

one moves a parallelizable application from a single desktop to a HPC cluster 

environment. Earlier work in parallel sequence search mostly adopts the query 

segmentation method (Braun, Pedretti, Casavant, Scheetz, & Roberts, 2001) (Chi, Shoop, 

Carlis, Retzel, & Riedl, 1997), which partitions the sequence query set. This is relatively 

easy to implement and allows the BLAST search to proceed independently on different 
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processors. However, as databases are growing larger rapidly, this approach will incur 

higher I/O costs and have limited scalability. Other work follows the more recent trend of 

pursuing database segmentation (Bjornson, Sherman, Weston, Willard, & Wing, 2002), 

where databases are partitioned across processors. This approach better utilizes the 

aggregate memory space and can easily keep up with the growing database sizes. Our 

approach and experiments uses both these approaches and tries to find which approach is 

suitable under what circumstances. We use database segmentation approach in the 

experiment with All query sequences per chromosome, a query merge approach with the 

experiment of merged query sequences per chromosome (Note here that the query 

segmentation approach would not have been because BLAT is optimized for running 

large number of query sequences which are loaded in memory), and finally a combination 

of the query & database segmentation approach with the experiment of all query files 

against all chromosome files. 

Unlike BLAST, which has been around for a while, the BLAT program which is an 

alignment tool like BLAST, but it is structured differently is fairly new and there are not 

a lot of studies on the performance of BLAT in a High Performance Computing 

environment. We feel this is warranted because BLAT is starting to be more widely used 

(Sequence and Annotations downloads, n.d.) (Genome Bioinformatics, n.d.). Along with 

this we would like to consider energy utilized as an optimizing criterion and understand 

its relationship with performance and come up with an energy aware scheduling 

algorithm that balances the both energy utilized and performance for tasks run in a HPC 

environment.  
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4.3 From Simple Speedup to the Realm of Energy Awareness 

Our main motivation is to move this from a simple speedup to the realm of energy 

awareness. Now when we speak of energy awareness, a new constraint is placed on the 

scheduling system. It now has to adopt a scheduling policy which is both traditional 

performance focused and energy aware. The goal is to find the right harmony between 

these two, slightly divergent goals. One is focused simply on getting the results as 

quickly as we can whereas the other is focused on minimizing the energy used in getting 

the results, which inherently means slowing down if necessary. The crucial question 

which follows is how one achieves the right balance between these two differing 

optimization criteria. 

This research also highlights the need to carefully develop a parallel model with energy 

awareness in mind, based on our understanding of the application and then appropriately 

designing a parallel model that works well for the specific application and potentially 

similar applications within that domain. The Figure 21 describes the general program flow 

for our implementation of the Energy Aware Scheduler on the HPC cluster (Blackforest 

and Firefly). The easblat program is written in C++ and uses MPI (Message Passing 

Interface) to handle communication between multiple nodes in the cluster (A Portable 

Implementation of MPI, n.d.) (Gropp, Lusk, & Skjellum, Using MPI: Portable Parallel 

Programming with the Message Passing Interface, Oct 1994) (Gropp, Lusk, & Thakur, 

Using MPI-2: Advanced Features of the Message Passing Interface, Nov 1999). In 

general the program consists of a Master and Several worker processes. The program first 

initializes the MPI environment and then the process with rank=0 is designated as the 

master process and the rest are designated as worker processes 
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Figure 21: Process Flow Diagram for EAS Program 

The Master process builds the work queue and handles all scheduling of work tasks to the 

respective worker processes. It goes through the work queue and makes scheduling 

decisions based on performance and energy criteria. Once all the work has been 

distributed, it then waits and gathers information back from the worker processes. After 

each worker process replies back the master process sends a terminate message to each 

worker process/node. The Worker processes simply wait for work from the master 

process, execute the work given and wait for more work or notification from master to 

terminate.  
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4.4 Implementation and Results for BLAT in HPC 

A key contribution of this dissertation is the importance of data design. We hypothesize 

that this data design will improve the degree of parallelism, by modifying the why data is 

structured to maximize the usage of parallelism. In order to support this we design the 

following experiments. 

1) All query sequences per chromosome 

2) Merged query sequences per chromosomes, and  

3) All query files against all chromosome files.  

Our goal is to make energy awareness and scheduling decisions so as to run the BLAT 

program against given query sequences for a given genome/chromosome file. In most 

cases researchers today are running this on local desktops and each sequence search is 

run sequentially and the entire result set may take several hours to days depending on the 

number of search sequences. Our intention is to first bring some amount of parallelism to 

this process and then a degree of energy awareness to the scheduling aspects to such tasks 

from various researchers. With that in mind we had to parallelize the process. Hence we 

decided to run the following experiments which afforded varying degrees of parallelism 

and compare them.  

The human chromosome files used for these experiments were downloaded from the 

UCSC Genome bio-informatics website (Sequence and Annotations downloads, n.d.). 

We used build 36.1 finished human genome assembly (hg18, Mar. 2006). The 

chromosomal sequences were assembled by the International Human Genome Project 

sequencing centers. We used the ChromFa.zip file which is the latest dataset as of Dec 
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2008 (Sequence and Annotations downloads, n.d.) (Genome Bioinformatics, n.d.). We 

used MPI (GNU) to parallelize the runs on multiple nodes, which was a configurable 

parameter. Our experiments used sequences gathered from researchers at UNMC 

(University of Nebraska Medical Center) and parallelize the runs to study the 

performance characteristics under three different conditions. For our tests we used 24 

query sequences from a researcher at UNMC. The table below (Table 2) shows some 

characteristics of these sequences.  

Table 2: Query Sequences used for Analysis 

QUERY 

FILES 

.fa size 

(kb) 

.2bit size 

(kb) 

# of 

lines 

# of 

seqs 

MCL_chr1.txt 3311705 1089176 14186 7093 

MCL_chr2.txt 2378142 785204 10254 5127 

MCL_chr3.txt 1772666 584699 7640 3820 

MCL_chr4.txt 1432124 466415 5970 2985 

MCL_chr5.txt 1722396 546919 36481 3541 

MCL_chr6.txt 1771709 582893 7520 3760 

MCL_chr7.txt 1863885 614151 8108 4054 

MCL_chr8.txt 1492613 493893 6458 3229 

MCL_chr9.txt 1700540 564950 7404 3702 

MCL_chr10.txt 1486654 492908 6438 3219 

MCL_chr11.txt 2299625 759437 9970 4985 

MCL_chr12.txt 1849123 609289 7854 3927 

MCL_chr13.txt 703781 231659 2962 1481 

MCL_chr14.txt 1302834 430629 5598 2799 
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Each query file was a FASTA format text file of sequences with varying number of 

sequences in each file. Note that the number of nodes 25 comes from the fact that in the 

human genome we have Chromosome 1 to Chromosome 22 and we have Chromosome 

X, Chromosome Y and Mitochondrial DNA material. We run the merged query 

experiment to study the benefits of merging the query files because BLAT is optimized to 

run large number of sequences in memory. 

Firefly Cluster: The firefly cluster is a large commercial strength cluster at the Holland 

Computing Center which comprises of 1,151-node supercomputer cluster of Dell SC1435 

servers. Each node contains two sockets, and each socket holds a quad-core (four 64-bit 

AMD Opteron 2.2 GHz processors). The computational network utilizes an 800 MB/sec 

MCL_chr15.txt 1024197 338618 4448 2224 

MCL_chr16.txt 2320925 763311 10058 5029 

MCL_chr17.txt 2863504 943539 12372 6186 

MCL_chr18.txt 530863 176476 2376 1188 

MCL_chr19.txt 3584718 1193013 15994 7997 

MCL_chr20.txt 1297151 430415 5752 2876 

MCL_chr21.txt 736972 243709 3202 1601 

MCL_chr22.txt 1236062 410443 5464 2732 

MCL_chrX.txt 1293959 423823 5438 2719 

MCL_chrY.txt 53658 17006 200 100 

Total 40029806 13192575 202147 86374 
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Infiniband interconnect. Each node has its own 8 GB of memory, and 73 GB of disk 

space (Holland Computing Center, n.d.).  

The experiments below were conducted on the Holland Computing Center’s firefly 

cluster.  

Experiment 1: The chart below (Figure 22) shows the execution time of all query files 

per chromosome by nodes. When node = 1 it would be the same as running it 

sequentially on a local desktop. In this case when node is 1 we get a total execution time 

of 6:16 (hh:mm). When number of nodes = 25 we get a total execution time of 0:28, 

which is a speedup of 13. Note however that when we vary nodes from 20 – 25, we do 

not see any additional gains, this is because we have already used the inherent slack in 

the schedule and there are no additional gains to be made by increasing the number of 

processors. 

 

Figure 22: QbyChr execution on Firefly Cluster 
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Experiment 2: The chart below (Figure 23) shows the execution time of a single merged 

query file per chromosome by nodes. The merged file contains all the query sequences 

from the submitted files. When node = 1 it would be the same as running it sequentially 

on a local desktop. In this case when node is 1 we get a total execution time of 4:45 

(hh:mm). When nodes = 25 we get a total execution time of 0:22, which is a speedup of 

12. Note however that when we vary nodes from 20 – 25, we do not see any additional 

gains; this is because we have already used the inherent slack in the scheduling and there 

can be no gains made by increasing the number of processors.  

 

Figure 23: QBigbyChr execution on Firefly Cluster 

We also see a certain amount of speedup when we merge query files. This is because 

BLAT is optimized to handle large number of sequences and we do not have the 

additional overhead of opening, reading and closing multiple files as all the sequences are 

loaded upfront into memory since they are in a single file. The average speed up achieved 

0:00

1:12

2:24

3:36

4:48

6:00

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Ti
m

e 
in

 h
o

u
rs

Number of Nodes

QBigbyChr execution on Firefly Cluster

Qbig by Chr



51 
 

 
 

by merging is 1.31 and varies between 1.24 and 1.39 depending on number of processors 

used. 

Experiment 3: The chart below (Figure 24) shows the execution time of all query files v/s 

all chromosome files by nodes. When node = 1 it would be the same as running it 

sequentially on a local desktop. In this case when node is 1 we get a total execution time 

of 6:20 (hh:mm). When nodes = 25 we get a total execution time of 0:16, which shows a 

speedup of 22 compared to the query execution by chromosome method. With nodes = 

150 we see an execution time of 0:04 which is a speedup of 86. If we had 1176 

processors (24 query files times 49 chromosome files) we would have seen this go down 

to the max execution for one combination of query file and chromosome file out of the 

1176 combinations this is the best we can hope to achieve. Now this can vary depending 

on the capability of the hardware used.  

 

Figure 24: AllAll execution on Firefly Cluster 

 

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

7
5

1
5

0

2
5

0

Ti
m

e 
in

 h
o

u
rs

Number of Nodes

AllAll execution on  Firefly Cluster

AllQ by AllC

1 node: 6:18 and 200 nodes: 0:03 (hh:mm)



52 
 

 
 

Comparisons:  

The chart below (Figure 25) shows a comparison of all the 3 experiments by nodes. When 

node = 1 it would be the same as running it sequentially on a local desktop. In this case 

when node is 1 we see that the merged query approach is better than the other two 

approaches.  

 

Figure 25: AllAll, QBig & QbyChr on Firefly Cluster 
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Figure 26: Details on Nodes 1 - 10 

The charts suggest that the Merged Query approach and the All Query All Chromosome 
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Figure 27: Details on Nodes 11 - 25 

Let us try and answer the question how parallelizable is the program? In-order to answer 

this question we try and plot the speedup for each node and place these by the curves in 

Figure 28. From the curves below we can conclude that the QBigbyChr and QbyChr have 

a speedup of around 25 times (97% parallelizable) and the AllAll approach has close to 

100 times the speedup (99% parallelizable). 

 

Figure 28: Number of Nodes v/s Speedup 
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4.5 Scheduling – Energy & Deadline aware 

In this section we bring together our understanding of scheduling, High Performance 

Computing and our specific knowledge about BLAT in HPC. Using our understanding of 

the speedup profile for the BLAT application, we develop a simple machine learning 

energy aware scheduling algorithm that takes into account the run profile, the number of 

sequences that were processed, the number of nodes that were used for processing and 

the time it took to execute. Now when new BLAT queries are submitted along with their 

desired deadline, the algorithm uses information on the number of sequences that need to 

be processed, to allocate the least number of nodes needed to meet that deadline, thus 

managing performance as well as energy to finish the tasks. We used 4 groups of query 

files each group had 5 files with varying number of sequences as shown in the table 

below (Table 3). 

Table 3: Query Groups used for Analysis 

Groups Query Files Total # of Sequences 

G1 5 22566 

G2 10 40530 

G3 15 55946 

G4 20 79222 

 

Each group of query sequence files was run against 5 different deadlines (15, 30, 45, 60, 

and 75 minutes). In each instance we found (Figure 29 below) that the actual execution 

time (AET) met the given deadline based on the minimum number of nodes assigned for 

each task group, thus optimizing both performance and energy considerations.  
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Figure 29: Scheduling – Energy & Deadline aware 
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58 60 5 

68 75 4 

G3 

13 15 22 

28 30 12 

41 45 8 

56 60 6 

71 75 5 

G4 

13 15 30 

26 30 15 

43 45 9 

55 60 7 

64 75 6 

4.6 Summary of Results 

This section provides a research methodology for conducting research in Algorithmic 

Graph Theory with the focus on Energy Aware Scheduling in the computer science 

discipline. It addresses the most important question for conducting research, which is its 

“significance”. The why questions are dealt with and supporting arguments are made for 

the importance of improving energy efficiency in general and in the specific for mobile 

battery operated devices. It is argued that energy management plays a vital role not only 

in hardware design but also in user-application, middleware and operating system design. 

The main research goal is the focus on techniques, specifically algorithmic ones to scale 

down energy needs whenever the system performance can be relaxed. The dissertation 

identifies the research strategy that will be followed with clearly defined stages for the 
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research life cycle. Each stage in the research life-cycle is considered carefully and 

appropriate evaluation criteria are imposed at every stage before we move to the next 

stage. This ensures that we build the appropriate internal and external validity factors for 

conducting this research at every stage of the research life cycle. 

In this section we have also proposed an enhanced dynamic task scheduling 

algorithm using task run-queue peek technique for battery operated DVS systems that 

further maximize the residual charge and the battery voltage. This algorithm is expected 

to have a better battery performance compared to the other algorithms. Our future 

research will focus on using the information regarding expected execution time (EET) 

instead of WCET because WCET is a very conservation approach used in the Off-line 

Phase to schedule tasks. We intend to explore both the suggested approaches of 

computing EET namely conservative and risky and study their performance relative to 

each other. 

In this section we proposed a HPC based approach to BLAT, implemented the approach 

and ran multiple experiments for different datasets. We found that the BLAT program is 

highly parallelizable and has a speedup of 99%. The experiments suggests that the 

merged query approach and the hybrid approach of all query segmentation and database 

segmentation consistently performs better that just the database segmentation approach. 

We also find that we one has only about 5 nodes it is better to use the merged query 

approach, for number of nodes 6 – 10, we would be better off using the merged query 

approach, and then beyond 10 nodes we do see a whole lot of performance gains, but this 

is also the space in which we can do more research to find the right balance between 
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performance and energy utilized by scheduling the BLAT jobs such that they run in a 

reasonable time yet utilize minimum energy and resources. 

This research highlights the need to carefully develop a parallel model with energy 

awareness in mind, based on our understanding of the data and application. This will help 

us in designing a parallel model that works well for the specific application and 

potentially similar applications within that domain. Many of the bioinformatics 

application follow a similar structure/pattern, where we have a set of input query 

sequences, which go against an existing set of database genome sequences (such as 

DNA/RNA/Protein) and output results in a specified output file(s) or directory. These 

programs also take optional parameters which are used as tuning options for the program 

itself such as MinScore.  

Our future research will focus on moving away from a simple heuristic and explore the 

use of additional AI techniques such as machine learning algorithms to enhance the 

modeling, which would allow for a more automated way of dealing with energy 

utilization and performance of the HPC environment. 
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Chapter 5: Run-Profile Approach towards Energy aware scheduling 

Our main motivation is to move this from a simple speedup to the realm of energy 

awareness. Now when we speak of energy awareness, a new constraint is placed on the 

scheduling system. It now has to adopt a scheduling policy which is both traditional 

performance focused and energy aware. The goal is to find the right harmony between 

these two, slightly divergent goals. One is focused simply on getting the results as 

quickly as we can whereas the other is focused on minimizing the energy used in getting 

the results, which inherently means slowing down if necessary. The crucial question 

which follows is how one achieves the right balance between these two differing 

optimization criteria.  

5.1 Enhancing our Two Step approach 

We follow a simple 2-step approach as proposed in (Pawaskar & Ali, 2010). However in 

Phase 1 we use the different run profiles created based on the experiments conducted 

above. The run profiles are based on the 3 experimental approaches namely (1) Database 

segmentation, (2) Query merge and (3) Hybrid. Our goal is to study and examine the 

behavior of the EAS Model proposed in () when the first phase is seeded with differing 

run profiles. Obviously each of these run profiles will result in varying schedules during 

the initial runs, but can the EAS Model adjust appropriately over time and how long 

(number of runs) does it take for the EAS Model to return comparable results. 

Step 1: Offline Phase – Build Run Profile  

We perform some runs to understand the degree of parallelization (also called run profile) 

of a program. Based on this we seed our energy aware scheduling (EAS) algorithm in the 
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EAS Engine with the run profile (meaning understanding of the number of nodes 

required, sequence size and time it takes for the program (BLAT) to run. Using this we 

can then first allocate a set of nodes for any input sequences based on the number of 

sequences and given deadline. 

Step 2: Online Phase – Dynamic Resource Adjustment  

Here we dynamically adjust the number of nodes either up or down based upon actual 

execution time (AET). This then becomes a continuous feedback loop to the EAS Engine, 

which looks at the tasks expected execution time (EET), its actual execution time and 

then takes measures to adjust the schedule by adjusting the overall nodes assigned or in 

future the Dynamic Voltage Scaling (DVS) of each node to meet the overall deadline. 

This allows us to meet two the two divergent goals of minimizing energy utilization and 

performance. 
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Figure 30: Process Flow Diagram for MPI Program with EAS Engine & Run Profiles 

This research also highlights the need to carefully develop a parallel model with energy 

awareness in mind, based on our understanding of the application and then appropriately 

designing a parallel model that works well for the specific application and potentially 

similar applications within that domain. Figure 30 describes the general program flow for 

our implementation of the Energy Aware Scheduling (EAS) Engine on the HPC clusters 

(blackforest and firefly). The easblat program is written in C++ and uses MPI (Message 

Passing Interface) to handle communication between multiple nodes in the cluster 

(Gropp, Lusk, & Skjellum, Using MPI: Portable Parallel Programming with the Message 

Passing Interface, Oct 1994), (Gropp, Lusk, & Thakur, Using MPI-2: Advanced Features 

of the Message Passing Interface, Nov 1999). In general the program consists of a Master 

and Several worker processes. The program first initializes the MPI environment and 
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then the process with rank=0 is designated as the master process and the rest are 

designated as worker processes. The Master process builds the work queue and handles 

all scheduling of work tasks to the respective worker processes. It goes through the work 

queue and makes scheduling decisions based on performance and energy criteria. Once 

all the work has been distributed, it then waits and gathers information back from the 

worker processes. After each worker process replies back the master process it calls the 

Energy Aware Scheduling (EAS) Engine and sends a terminate message to each worker 

process/node. The Worker processes simply wait for work from the master process, 

execute the work given and wait for more work or notification from master to terminate. 

The EAS Engine takes information about the EET and AET of the task, makes decisions 

if any node level adjustments need to be made (and/or DVS adjustments) and sends an 

appropriate feedback message back to the Master process. 

5.1.1 Step 1 Enhancement. 

Our goal is to make energy awareness and scheduling decisions so as to run the BLAT 

program against given query sequences for a given genome/chromosome file. In most 

cases researchers today are running this on local desktops and each sequence search is 

run sequentially and the entire result set may take several hours to days depending on the 

number of search sequences. Our intention is to first bring some amount of parallelism to 

this process and then a degree of energy awareness to the scheduling aspects to such 

tasks. With that in mind we parallelized the process using the 3 different approaches 

discussed above namely (1) All query sequences per chromosome, (2) Merged query 

sequences per chromosomes, and (3) All query files against all chromosome files. We 

used the run profile generated to seed the initial scheduling decision by the EAS Engine 



64 
 

 
 

and then compared the results of final node adjustments. If no run profile is used the 

initial schedule defaults to WCET (worst case execution time) schedule This will allow 

us to see if using different run profiles has an impact on the performance of the EAS 

Engine.  

The chart below (Figure 31) shows a comparison of all the 3 experiments by nodes. When 

node = 1 it would be the same as running it sequentially on a local desktop. In this case 

when node is 1 we see that the merged query approach is better than the other two 

approaches.  

 

Figure 31: AllAll, QBig & QbyChr on Firefly Cluster 

We also note that this true when nodes 1 – 5. After five nodes we see that the “All Query 

All Chromosome” approach gives us better results. With nodes equal to 25 – 30, we will 

get twice the speedup with the “All Query All chromosome” approach. One can also note 

that the Merged Query approach always performs better that the Query by Chromosome 

approach.  
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5.1.2 Step 2 Enhancement 

In Step 2 of the process, which is the Online Phase of the algorithm we dynamical adjust 

resource levels. The EAS Engine adjusts the number of nodes either up or down based 

upon the difference between EET and AET to meet the overall deadline. We maintain a 

continuous feedback loop between the EAS Engine and the Master process. The energy 

aware scheduling algorithm within the EAS Engine uses our understanding of the run 

profile from Step 1 and then adjusts to realities during the actual execution of tasks using 

information such as the number of sequences that were processed, the number of nodes 

that were used for processing, the EET and the AET for that task. The information 

gathered from these new runs is then transformed into knowledge to update the existing 

run profile allowing the EAS Engine to build a knowledge map that is used for future 

allocation of HPC resources. Now when new BLAT queries are submitted along with 

their desired deadline, the algorithm uses this information to allocate the least number of 

nodes needed to meet that deadline, thus managing performance as well as energy to 

finish the tasks. We used the same 4 groups of query files as in (Pawaskar & Ali, 2010), 

each group had 5 files with varying number of sequences as shown in the table below 

(Table 5). 

Table 5: Query Groups used for Analysis 

Groups 
Query 

Files 

Total # of 

Sequences 

G1 5 22566 

G2 10 40530 

G3 15 55946 

G4 20 79222 
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Each group of query sequence files was run against 5 different deadlines (15, 30, 45, 60, 

and 75 minutes). Each of these jobs was assigned a starting number of nodes based on the 

run profile according to Step 1.  

As the tasks were completed, in accordance to Step 2, variances between EET and AET 

resulted in the EAS engine adjusting the number of nodes up (+N) or down (–N), if there 

were equal number of (+N) and (–N) adjustments it resulted in a net (0) adjustment and 

finally the scenario of  no adjustments being made (–).  

 

Figure 32: EAS Engine – AllAll Profile Adjustments 

We ran the experiments using the three different run profiles in step 1 of the algorithm. 

When the AllAll run profile was used (Figure 32) in all instances we found that the actual 

execution time (AET) met the given deadline based on the minimum number of nodes 

assigned for each task group, thus optimizing both performance and energy 

considerations.  
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Figure 33: EAS Engine – QByChr Profile Adjustments 

The Figure 33 above for the “QbyChr” run profile suggests that for lower deadlines more 

node adjustments had to be made to meet deadline than what was allocated step 1. 

 

Figure 34: EAS Engine – QBig Profile Adjustments 

The Figure 34 above for the “QBigbyChr” run profile also suggests that for lower 

deadlines more node adjustments had to be made to meet deadline than what was 

allocated in step 1. 
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When no run profile is seeded to step 1 the EAS engine defaults to using the WCET 

schedule. This graph is presented in (Figure 35) below. The graph shows that using WCET 

schedule we have significantly more node adjustments compared to using a run profile. 

 

Figure 35: EAS Engine – No Profile Adjustments 

The Table 6 below shows the node adjustments made by the EAS Engine to meet the 

deadline depending upon which run profile was chosen in step 1, meaning the run profile 

used in the initial scheduling of the tasks. It suggests that for large number of sequences 

and lower deadline thresholds it is better to use the AllAll run profile as the other two run 

profiles were both unable to meet the lower deadlines (15 min.). For higher deadline and 

smaller number of sequences, the AllAll and QBigbyChr run profile approaches are 

mostly comparable.. The experiments also show that “QbyChr” run profile approach 

results in the most node adjustments. 
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Table 6: Nodes used to meet deadline based on Profile 

Groups 
AllAll 

Adjustments 

QBigbyChr 

Adjustments 

QbyCht 

Adjustments 

WCET  

(no profile) 

G1 

(+2) (+2) (+2) (-8) 

(+1) (+1) (+1) (-7) 

(0) (0) (0) (-6) 

(-1) - (-1) (-5) 

- - - (-5) 

G2 

(+2) (+1) (+1) (-11) 

(-1) (-1) (-1) (-9) 

(0) (0) - (-10) 

- - - (-8) 

(0) - - (-6) 

G3 

(+3) (+3) (+4) (-10) 

(0) - (+2) (-10) 

(-1) (-1) (+1) (-8) 

(0) (0) - (-8) 

- - - (-7) 

G4 

(+3) (+5) (+7) (-9) 

(+1) (+1) (+4) (-10) 

(+1) (+1) (+2) (-8) 

(-1) - (+1) (-7) 

- - - (-6) 
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5.2 Summary of Results 

In this section we proposed an energy aware scheduling model in a HPC environment 

based on a 2-step approach. The Off-line Phase uses the knowledge of the run-profile of 

the program based on previous runs and the On-line Phase used a dynamic feedback loop 

to adjust the resources (# of nodes) to minimize energy utilized while still meeting the 

deadline. The run-profile and experiments were done for the BLAT program in the bio-

informatics domain. We found that the BLAT program is highly parallelizable and has a 

speedup of 99%. We also found that the EAS Engine was able to dynamically take react 

to the difference between EET and AET and adjust the number of nodes up or down to 

balance the minimization of energy and performance criteria for all our experimental 

datasets. Our experiments suggest that the choice of run profile in step 1 of the algorithm 

has an impact on the overall performance of the algorithm because it impacts the number 

of adjustment the algorithm has to make to meet deadlines. Each adjustment has an 

associated overhead which impacts the energy optimization. Clearly there are various 

strategies one could use in the conservative to risk spectrum, but this is also the space in 

which we can do more research to find the right balance.  

Our future research will focus on further automation of the EAS Engine to accommodate 

other programs in the same domain or similar domains. We would also like to explore the 

nuances between conservative and risky approaches to the Off-line scheduling of node 

resources. We believe that eventually OS capabilities will evolve, allowing existing 

hardware DVS capabilities to be controlled at a program level, thus enabling software 

programs to have more control and flexibility in handling energy considerations. This 

will allow programs written with intimate knowledge about a specific domain and an 
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understanding of deadline needs of the user for result sets to scale the application in such 

a way that resources can be added on-demand, and processor speed controlled (hence 

controlling energy) to either speedup or slowdown the application to manage the 

divergent goals of performance and energy. Another key focus of our future research will 

be to incorporate the ability to incorporate Dynamic Voltage Scaling (DVS) at the node 

level. This will allow us to add another level of granularity to the EAS algorithm’s ability 

to adjust energy at the node level. 
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Chapter 6: An EAS Application for Assembling Short Reads in HPC 

6.1 Assembling of Next Generation Sequencing Data 

Since its inception in the mid 2000's, next generation sequencing has produced massive 

amounts of genetic information, making a large impact on numerous research fields. As 

next generation sequencing systems and centers become more readily available, 

massively parallel sequencing has become the cornerstone of many diverse research 

endeavors, including those such as cancer transciptome and gene expression analysis 

studies (Meyerson, 2010) and microbiomics (Qin, 2010). Next generation sequencing 

technologies are capable of producing millions to even billions of short reads per run. 

Individually each read represents only a fraction of the original genome and provides no 

information in itself.  However, sequencing reads are produced at a high coverage of the 

original genome such that many of these reads overlap with one another. Relationships 

between overlapping sequence reads assist the identification of fragments that are 

consecutive within the genome, allowing the recursive merging of these overlapping 

sequences until long stretches of contiguous genetic data, known as contigs, are 

recovered.  

The assembly of next generation sequencing data still remains a challenging task due to 

the massive size of read datasets, short read lengths, and underlying target sequence 

composition such as repeat content. The assembly of short reads produced by these 

devices is a critical and computationally intensive process. Fortunately, many steps of 

this process are good candidates for parallel computing.  The parallel implementation of 

the read overlap detection phase of assembly is relatively straightforward. High 
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performance computing has been successfully applied to help reduce the computational 

burden of detecting read overlaps in large datasets (Huang, 2003). However, 

straightforward parallel applications developed for overlap detection could achieve an 

unnecessary high degree of parallelism at the expense of significant energy consumption.  

6.2 Assembly Algorithm Overview 

Merge and Traverse assembler follows the traditional overlap-layout-consensus paradigm 

that has been successfully employed by various assemblers (Huang, 2003) (Sommer, 

2007) (Myers, A whole-genome assembly of Drosophila, 2000). Our algorithm assembles 

reads into contigs in three stages: 1) overlap detection and alignment, 2) graph 

construction and manipulation, and 3) consensus sequence generation by multiple 

alignment (Miller, 2010).   

6.2.1 Overlap Detection and Alignment 

The Merge and Traverse algorithm uses short k-mer words to seed overlaps between 

reads. These short seed matches are extended into full alignments using dynamic 

programing. The overlap relationships found during the overlapping phase are placed into 

two categories by the assembly algorithm. The first type of overlap that the assembly 

algorithm considers is the dovetail overlap.  The dovetail overlap occurs when the reads 

align such that they form a suffix-prefix relationship as shown in Figure 36.  

The second type of overlap that the assembly algorithm considers is the containment 

overlap. The containment overlap occurs when the sequence of one read is fully 

contained in another read. For the purpose of simplifying the overlap graph in subsequent 

assembly phases, our algorithm disregards containment overlap relationships. Each read 
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that is contained in one or more other reads is mapped to a suitable representative read 

using a clustering approach detailed in section four. 

 

Figure 36: Read Overlaps 

6.2.2 Graph Construction and Manipulation 

The second phase of the assembly process builds an overlap graph using high quality 

dovetail overlaps between the remaining representative reads. In this graph theoretic 

model, each node represents a sequencing read.  An edge joins two nodes if their 

corresponding reads overlap. As shown in example below reads map to nodes and 

overlaps map to edges; each edge is assigned a weight representing the length of the 

overlap shared between the reads. 

 

Figure 37: The overlap graph.  
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After graph construction is complete, the algorithm preforms transitive reduction of the 

graph (Myers, The Fragment Assembly String Graph, 2005) revealing non-branching 

paths that likely correspond to unique regions of the target sequence being assembled. 

The algorithm identifies and merges these non-branching paths into super-nodes in the 

overlap graph (Figure 37). Remaining graph structural features such as dead-end paths and 

bubbles, where two paths start and end at a common node, are in many cases caused by 

sequencing error present in the read data set. The algorithm identifies this noise using a 

Dijkstra shortest path method.  Each dead-end path that is shorter than a user-provided 

threshold is removed from the overlap graph. For each bubble whose component paths 

are shorter than the user-provided threshold, the least covered path in the bubble is 

removed. After graph trimming is complete, the algorithm extracts all maximal non-

branching paths from the graph for use in the consensus phase of the assembly process to 

construct contigs.  

6.2.3 Consensus Sequence Generation 

In the final consensus phase, progressive multiple alignment guided by the read path 

layout is used to determine contig consensus sequence.  

6.3 Read Overlap Detection 

In this section, we provide a description of our three-step approach for read overlap 

detection. The first step orders a read dataset S in descending read length and partitions it 

into subsets. The second step maps each read that forms a containment overlap with one 

or more other reads to a suitable representative read following a hierarchical clustering 

scheme introduced by CD-Hit (Myers, The Fragment Assembly String Graph, 2005). 
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After clustering is complete, the final step identifies dovetail overlap relationships among 

the remaining representative reads.   

6.3.1 Read Preprocessing 

The containment clustering step of the overlap detection phase requires that the reads are 

sorted by descending length. First the reverse complements of an input read dataset R are 

generated to form the read set S = (R, R ). It then sorts S into descending order of length 

by a merge sort algorithm, and partitions S into n subsets = {S0, S1, … Sn-1} of size m, 

where n is specified by the user.  Each read subset Sk is sorted in descending read length 

and the subsets are ordered such that readLengths(S0) ≥ readLengths(S1)  ≥ … ≥  

readLengths(Sn-1). 

6.3.2 Containment Clustering 

The initial read clustering step follows the greedy hierarchical clustering scheme 

introduced by the CD-hit algorithm (Li & Godzik, 2006). The longest read becomes the 

first representative. It is used to search for containment overlaps among the remaining 

reads using the exact matching and alignment methods described in the section three. If a 

read forms a containment overlap with the current representative and its alignment meets 

minimum length and alignment identity requirements, it is mapped to that representative 

read.  The algorithm considers each read in the order of descending length. If a read is not 

already mapped to an existing representative, it becomes a new representative read and is 

used to query the remaining reads in the dataset for containment overlaps (Figure 38). In 

the example below we have reads r2 and r4 cluster to r1 and read r5 cluster to r3. 
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Figure 38: Containment clustering – reads r2 & r4  r1 and read r5  r3. 

A read that has been mapped to a previous representative read but forms a containment 

overlap with the current representative is remapped to the current representative if its 

alignment identity with the current representative is greater than its alignment identity 

with the previous representative.  After this process has completed, all read to 

representative mappings are recorded for use in the consensus phase of the assembly 

process. 

6.3.3 Dovetail Overlaps 

After containment clustering is complete, the remaining representative reads are used to 

query the read dataset for dovetail overlaps with other representative reads.  The exact 

matching and alignment methods of section three are used to locate dovetail overlap 

relationships. If a dovetail overlap meets minimum alignment length and alignment 

identity requirements, it is recorded for use in the graph construction phase of the 

assembly algorithm. 

6.3.4 Implementation Details 

The containment clustering and dovetail overlapping steps accept two read subsets Si and 

Sj as input. The subset Si is the query dataset and the subset Sj is the reference dataset, 

where i ≤ j.   
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To facilitate the identification of exact matches between reads, a suffix array constructed 

by Larsson and Sadakane’s algorithm (Larsson & Sadakane, 1999) is used to index the 

reference dataset. In succession, each read in the query dataset is broken into all of its 

possible subwords of size k (denoted as k-mers). These k-mers are used to query the 

suffix array for exact matches. If one or more exact matches are found between the query 

read and a reference read indexed by the suffix array, then both reads are passed to an 

alignment algorithm for evaluation. The k-mers shared by the reads are chained 

(Ohlebusch & Abouelhoda, 2006) and the Needle-Wunsh algorithm (Needleman & 

Wunsch, 1970) is used to align the regions between k-mers and to align the beginning 

and end regions of the reads.   

After the alignment of the two reads is complete, the computed overlap is evaluated by its 

alignment length and alignment percent identity. If the overlap does not meet the user-

provided minimums for these measurements, it is not included in subsequent steps of the 

assembly process.  

Since the containment clustering step is dependent on the read ordering, each subset Sj 

must be ran against each Si as a reference dataset, where i < j, before it can be used as a 

query dataset against any other read subset. The dovetail-overlapping step is not 

dependent on read ordering and can accept read subsets in any order.  

6.4 Parallel Implementation using the EAS Model 

The input read dataset S is partitioned into n subsets = {S0, S1, … Sn-1} of size m during 

the initial read sorting and preprocessing step. A master thread sends each unique subset 

combination of size two as input to worker processors running serial versions of the 
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containment clustering and dovetail overlapping algorithms.  The master thread manages 

the execution order constraints of the containment clustering step.    

The EAS engine runs the pre-processor (Figure 39) on the input fasta file, the output of 

which is the n-split read subsets. Let us assume that the large file has m sequences, and 

then each of the smaller files will contain (m/n) sequences in sorted order. The files 

created in the pre-processing step become inputs to the EAS engine. The EAS engine 

runs the alignment program in a 2-step process. The first step finds the containment 

overlaps and the second step determines the dovetails overlaps among the remaining 

representative reads. The containment part of the execution is not naively parallel; the 

execution of certain pairs of subsets (tasks) has to be done in order, only then can 

dependent subsets be processed. The main process flow is shown in Figure 40 below. 

6.4.1 Containment Execution – Step 1 

The execution dependencies are shown in Figure 41 for the following set of containment 

tasks T = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 

4), (3, 3), (3, 4), (4, 4)}, where each integer represents a read subset. The tasks along the 

diagonal (0, 0), (1, 1) (2, 2), (3, 3) and (4, 4) are considered to be higher priority tasks 

because they have a greater number of child/dependent tasks. 

 

Figure 39: Pre-processing step 
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All other tasks have a normal priority in terms of execution. After a task gets released, 

meaning that all of its predecessors have been executed, it is sent to the EAS execution 

queue. When the task has completed executing, the EAS engine checks to see if any 

dependent tasks can be released for execution.  

 

Figure 40: Process Flow Diagram 

Now let us take a look at the example where we have five read subsets. When the task (0, 

0) is complete, it releases all the tasks in that row which are tasks (0, 1), (0, 2), (0, 3) and 

(0, 4). It cannot release (1, 1) because task (1, 1) still has another dependency on (0, 1). 

When (0, 1) is completed, it will release task (1, 1). Completion of task (1, 1) will flag (1, 

2), (1, 3), and (1, 4) but they will only be released when both (1, 1) and the tasks above 

them namely (0, 2), (0, 3), and (0, 4) have completed execution. This will continue until 

all tasks are executed. The last task to be executed will be task (4, 4) in our example. 
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easily using equation one. We would like to point out that the containment phase is 

bounded by the number of files (in this case five). We cannot use more than five nodes at 

any given time due to task dependencies even though we have a total of fifteen 

containment tasks. 

 

Figure 41: Execution dependencies of containment tasks 

 

6.4.2 Dovetail Execution – Step 2 

The execution dependencies of the dovetail tasks are much more straightforward than 

those for the containment tasks. The dovetail tasks do not have any dependencies on each 

other and hence can be run in a naively parallel way, allowing us to use as many 

processors as possible. Continuing with our previous example with fifteen tasks, we 

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)
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could execute (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), 

(2, 4), (3, 3), (3, 4), (4, 4) all at the same time during the dovetail phase. 

The total number of tasks that need to be executed in each of the above steps 

(containment and dovetail steps) is given by the equation below, where n is the number of 

read subsets and T is the total number of tasks. 

𝑇 =
n(n +  1)

2
                               (1) 

6.5 Implementation and Results 

We downloaded Escherichia coli W reads produced by the 454 Titanium technology from 

the NCBI (NCBI Database, 2010) sequence read archive (accession no. SRR060736 and 

SRR060737, made public by JCVI). The sequences were trimmed to remove adaptors. 

The final result was 337,294 trimmed reads.  For our experiment in the pre-processing 

step we decided to split these into 16,866 sequence reads per file, i.e. read subset (except 

for the last file which contained 16,814 reads). This resulted in 40 files and a total of 

674,588 reads. (The preprocessing step generates the reverse complement of each read.) 

We then used the EAS engine to run the assembly algorithm using 1 to 31 nodes. For our 

experiments we used the HPC environments available at UNO (University of Nebraska at 

Omaha). We initially start out with the Blackforest cluster (16 nodes) (Blackforest 

Computing Cluster, n.d.), and then move to a true commercial strength HPC named 

Firefly cluster (1100 nodes) at the Holland Computing Center (Holland Computing 

Center, n.d.). 
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Figure 42 shows the execution time of the algorithm in seconds versus the number of 

nodes used for each run. It shows that after 11 to 12 nodes we do not see any significant 

performance gain. Along with the total execution time, we captured the average 

execution time per worker node and the overhead. We find that as we increase the 

number of nodes the overhead curve follows the execution time curve.  

 

Figure 42: EAS - Execution time v/s Nodes 

It is important to note that in a HPC a significant portion of the master process’s work is 

distributing the tasks and managing the task dependency among the worker processes 

along with handling of the communication between master and worker processes. This is 

clearly depicted in Figure 43. 

It is important to note that given the nature of the task dependencies in the containment 

phase not all nodes are working all the time, and hence we see a smaller overall curve for 

the average worker time per node. This leads us to ask the question, “How parallelizable 

is the program?” For the purpose of answering this question we plotted the program 

speedup against the number of nodes and integrated this curve with a plot of Amdahl’s 

law in Figure 44. Amdahl's law is defined by the formula:  
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1

(1 − P) +  
P
N

 

As N → ∞, the maximum speedup tends to 1 (1 − P)⁄ . In practice, performance/price 

falls rapidly as N is increased once there is even a small component of (1 − P). A great 

part of the craft of parallel programming consists of attempting to reduce (1 – P) to the 

smallest possible value. We can conclude that the overlap detection algorithm of the 

Merge and Traverse assembler has a speedup between 20 - 25 times (which is between 

90% - 95% parallelizable). 

 

Figure 43: EAS - Execution time/Overhead v/s Nodes 

http://en.wikipedia.org/wiki/Parallel_programming
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Figure 44: EAS - Merge & Traverse Assembly - Nodes v/s Speedup 

Next we set up experiments to see if the EAS engine would be able to dynamically adjust 

the number of nodes to meet a given deadline. We used four groups of read datasets 

generated from SRR060736 and SRR060737. Each group was partitioned into a different 

number of files as shown in Table 7. 

Table 7: Read Subset Group used for Analysis 

Group Number 

of Files 

Number of 

Sequences 

G1 5 84330 

G2 10 168660 

G3 15 337320 

G4 20 674588 

 

Each group of files was ran against five different deadlines (30, 60, 90, 120, and 150 

minutes). Each of these jobs was assigned a starting number of nodes by the EAS engine 

based on the run profile/speedup curve. As the tasks were completed, variances between 

EET (Expected Execution Time) and AET (Actual Execution Time) resulted in the EAS 

engine adjusting the number of nodes up (+N) or down (–N), if there were equal number 
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of (+N) and (–N) adjustments it resulted in a net (0) adjustment and finally the scenario 

of no adjustments being made (–). The experimental results (Figure 45) showed that the 

EAS engine was able to dynamically adjust nodes to minimize energy utilized while 

meeting the deadlines. 

 

Figure 45: EAS Engine - dynamic node adjustments 

 

6.6 Summary of Results 

Based on the results we can clearly observe that given a deadline we can choose the 

appropriate number of nodes to run the overlap detection phase of the assembler on based 

on our new understanding of the run-profile we just produced. This will allow us to 

apportion just enough nodes to meet the deadline thus maximizing the objective of 

performance with minimum energy utilization. We also observed that with a smaller 

number of nodes we have larger gains in performance and above a certain number of 

nodes the performance gain is only modest at best. In fact as we add additional nodes our 

communication costs and related overhead is higher.  
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Clearly different bioinformatics applications and algorithms will have different run 

profiles and understanding each one of them will allow us to best assign the appropriate 

number of nodes to meet a given deadline. It was also important to see how the number 

of read subsets impacted the performance/energy criterion. Our experiments suggest a 

bowl shaped curve when we varied the number of files for the same number of nodes. 

Clearly there must be some optimum value for the number of files for each set.  

This section highlights the importance of understanding the degree of parallelism for the 

program, which is done by establishing the run profile/speedup curve. The EAS engine 

uses the knowledge from the run profile to make intelligent and dynamic decisions about 

number of nodes to use to minimize energy utilization and still provide necessary 

performance. Clearly it is no longer sufficient to simply run a program in a HPC 

environment. It is important and essential to understand the data, its characteristics, and 

the application domain to build a parallel program that is energy aware. 

In designing these experiments, we have several parameters we could study and the 

relationship between them. These parameters are (1) Number of files; (2) Number of 

sequences per file; (3) Number of nodes used and (4) Average sequence length. In this 

section we have only looked at number of nodes used as a parameter for our experimental 

design. In the future we plan to investigate how adjusting the different tuning parameters 

such as number of files, number of sequences per file, number of nodes impacts the 

performance and energy efficiency. We also plan on including the pre-processing step 

and final assembly as part of the EAS processing. Our main motivation is to move this 

from a simple speedup to the realm of energy awareness. Our EAS model for the 

purposes of the experiments conducted calculated energy as a function of resources used 
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in this case number of nodes. The energy function could be made more complex; we 

leave that for a future study. 
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Chapter 7: Towards an Energy Aware Cloud (A Simulation) 

7.1 Energy Aware Cloud based on Energy index 

The obvious next step in the evolution of the EAS Model is to apply this to the cloud. But 

what is the cloud? It is nothing more than a bunch of Datacenters, Each of these 

datacenters can be looked upon as a High Performance Computing environment, 

essentially as a computing resource. We can then apply our profile based approach for a 

known application such as BLAT and using a known datacenter in our case the Holland 

Computing Center as a baseline (energy index of 1) we can then run the same application 

against another datacenter and if the results are returned faster we assign a relative high 

number depending on how fast we got the result set or a lower number depending on how 

slow the result set was delivered. Finally by knowing the energy index for a datacenter 

we can choose to schedule our tasks across datacenters depending on the necessary 

deadline. We will examine this model by performing simulation experiments on the same 

dataset we used before. 

7.2 Cloud Computing – Lifting the Veil 

Cloud Computing is an exciting new trend which many of us in the IT field are, simply 

put, a “little cloudy about”. It is a general term used to describe a new class of network 

based computing that takes place over the Internet, It is Commoditised - basically a step 

on from Utility Computing and can be considered to be a collection/group of integrated 

and networked hardware, software and Internet infrastructure (called a platform), which 

uses the Internet for communication and transport provides hardware, software and 

networking services to clients. The cloud allows for abstraction – They hide the 

complexity and details of the underlying infrastructure from users and applications by 
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providing very simple graphical interface or API. The cloud is ubiquitous - on demand 

services that are always on, anywhere, anytime, any-place and finally the cloud is elastic 

- Pay for use and as needed, which allows for scale up and down in capacity and 

functionalities as needed (Amazon Elastic Compute Cloud (Amazon EC2), 2013). 

7.2.1 Cloud Computing Models 

There are 3 main types of cloud computing models, the Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS) and Software as a Service (SaaS) models which are 

described in the Figure 46 (Amazon Elastic Compute Cloud (Amazon EC2), 2013) and 

(Microsoft on Cloud Computing, 2013).  

 

Figure 46: Cloud Computing Models 

7.2.2 Cloud Service Layers 

Another classification for these clouds is based on the type of services layer they provide 

such as hosting, storage, platform, development, application and services layer (Figure 

47). 
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Figure 47: Cloud Computing Service Layers 

7.2.3 Cloud Deployment Models 

Cloud can also be characterized based on how they are deployed and used. The most 

well-known deployment models are the public cloud and private cloud. The Figure 48 

shows the different cloud deployment models in use (Google Cloud Platform, 2013). 

 

Figure 48: Cloud Deployment Models 

 

 



92 
 

 
 

7.2.4 Cloud Service – Opportunities and Challenges 

Cloud Computing provides us with opportunities and challenges.  

Opportunities:  

• It enables services to be used without any understanding of their infrastructure. 

• Cloud computing works using economies of scale: 

• Cost would be by on-demand pricing.  

• Data and services are stored remotely but accessible from “anywhere”.  

Challenges:  

• Use of cloud computing means dependence on others and that could possibly limit 

flexibility and innovation. 

• Security could prove to be a big issue. It is still unclear how safe out-sourced data is 

and when using these services ownership of data is not always clear. 

• There are also issues relating to policy and access. If your data is stored abroad whose 

policy do you adhere to? What happens if the remote server goes down? There have 

been cases of users being locked out of accounts and losing access to data. 

7.3 Why – Simulation Model?  

So why did we build this simulation app. The objective was to help answer some 

questions regarding expensive resources such as Clusters by running simulations which 

return results quickly to facilitate better decision making on where to send jobs and what 
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deadline, how many number of nodes to use, what energy level to run at, what costs are 

associated with a job, etc.  

1) In the real world it is difficult to actually run “what if” scenarios on real clusters 

which are in production because of scarcity of resources and the potential costs and 

time constraints associated with such activities.  

2) Customers can run basic scenarios to see if the deadlines they are providing can be 

met based on past run profiles. 

3) Most customers what to get their results fast, but when these deadlines have costs 

associated with them, they can make better informed decisions about their deadline 

settings and relax these if necessary. Our simulation will help provide these type of 

analytics for better decision making.  

4) Customers can check to see if they can run their application within a given deadline 

on a specific cluster for the given data set. 

5) Customers can run their applications on different clusters to see what resource costs 

they may incur on each specific cluster given the resource and energy usage. 

6) Customers can adjust the availability of cluster and make decisions where they want 

to send their job load based on job completion. 

7) The above information can also be used by Cluster operators to run simulations per 

customer to see how the availability of their cluster impacts their customer’s decision 

making and also measure potential revenue loss or gain. 

8) Customers can also run scenarios to see whether they should use a single cluster or 

distribute the work load across multiple clusters to meet specific deadline 

requirements. 
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9) Customers can also check the above scenarios to see which of the above single cluster 

or distributed cluster option is most cost effective. 

10) Customers can also check the above scenarios to see which of the above single cluster 

or distributed cluster option is most efficient. 

11) Cluster operators can also run “what if” scenarios to see if increasing the energy 

index of their Custer may have a potential impact on revenue based on number of 

additional jobs they might get at a certain energy index and whether the costs of 

increasing the energy index are justified based on opportunity costs. 

12) Cluster operators can also run “what if” scenarios to see if increasing the availability 

of their Custer may have a potential impact on revenue based on number of additional 

jobs they might get at a certain availability level and whether the costs of increasing 

the availability are justified based on opportunity costs. 

13) Customers can run scenarios to see if data split or merge for their application offers 

any cost and/or efficiency benefits. 

7.4 The Simulation Program 

Currently there is no mechanism to run tasks across multiple clusters in the cloud. We 

understand that this is a significant challenge. We also realized that there was no cloud 

simulation package available that would meet our needs. Hence we decided to write our 

own cloud simulation package that would allow us to use the EAS Model and also allow 

us to tailor the simulator to help answers questions such as can deadlines be met on 

certain clusters, cluster availability, energy-index and ROI. The simulation program is 

written in Java using the Eclipse IDE. The program itself consists of a random run 

generator and the main simulation run. The random run generator was used to generate 
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our test run data for our experiments, which are discussed in detail later in this chapter. In 

order to run the main simulation you need 2 input files, one is an init.xml which is used to 

initialize your cloud and the second is the run.xml file in which you define the program 

you want to run. The program can be run will command line arguments. Running the 

program with the “help” command will display the program usage as shown below. 

 

Figure 49: Simulation Program Usage 

An example command line to run the random run generator would be something like 

“generate=1 numRuns=100 runType=Single randomNumStart=10 

randomNumEnd=5000”. An example command line to run the main simulation would 

be something like “simulationRun=1 runType=Single initFile=init.xml 

runFile=run.xml outputFile=runResults.csv”. 
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The class diagram for the simulation objects is shown in the Figure 50 below. 

 

Figure 50: Class diagram for Simulation Main & Run 

The class diagram for the Cloud is shown below Figure 51. 

 

Figure 51: Class diagram for the Cloud & Run profile 
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The cloud is initialized using an init.xml file which is an XML with an associated XML 

Schema definition. A sample XML file and the Schema are shown below (Figure 52 and 

Figure 53). 

 

Figure 52: Sample Cloud initialization XML file 
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Figure 53: Cloud initialization XML Schema definition 

The cloud consists of Datacenters and each Datacenter consists of Clusters each cluster is 

properties such as availability of the cluster, energy index, etc. One can assign an energy 

index to a cluster if it is known. The base cluster is always assigned an energy index of 1 

and all other cluster energy index are calculated based their relative performance and 

energy usage using the various application Run Profiles of these clusters.  

The main simulation run is performed using an input simulation file such as the one 

shown in the Figure 54 below. The simulation run file is also a XML file with an 

associated Schema definition file (Figure 55). 
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Figure 54: Sample Simulation Run XML file 

 

Figure 55: Sample Simulation Run XML Schema definition 

We chose to pick 3 of the “What if” scenarios discussed above and conducted the 

experiments below using the simulation program. The datasets were broken into 3 sets 

based on their deadlines. We have the following 3 deadline based datasets. There were 

100 runs in each dataset which were randomly generated. 
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1) Between 10 sec and 10 minutes – 10 minutes dataset 

2) Between 10 minutes and 1 hour – 1 hour dataset 

3) Between 1 hour and 1 day – 1 day dataset 

7.4.1 Scenario 1 – Meeting Deadlines on specific Cloud Clusters 

Customers can run basic scenarios to see if the deadlines they are providing can be met 

based on past run profiles. 

We generated multiple datasets (10 minutes, 1 hour, 1 day) with deadlines as mentioned 

above and ran our simulation application. The charts below (Figure 56 and Figure 57) show 

that when deadline and AET of these job runs. For the dataset with deadlines below 10 

minutes 70% of the times deadlines were met given the specified cluster. With deadlines 

on 1 hour and 1 day deadlines were met in all cases. This simple basic scenario can be 

used by customers to test if their job deadlines will be met on a given cluster and then 

make the actual run on that cluster instead of a shot in the dark. This would help in 

wastage of resources due to unmet deadlines and result in higher productive. 

 

Figure 56: Scenario1 - Meeting deadline (10 minutes) 
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Figure 57: Scenario 1 - Meeting deadlines (10 minutes, 1 hour, 1 day) 

 

7.4.2 Scenario 2 – User Single v/s Distributed Clusters 

Customers can also run scenarios to see whether they should use a single cluster or 

distribute the work load across multiple clusters to meet specific deadline requirements. 

 

Figure 58: Scenario 2 - Single v/s Distributed Cluster runs 

We generated different cloud initializations and run sets based on distributed cluster runs 

and single cluster and ran our simulation application to see the impact of how deadlines 

were met. The Figure 58 clearly shows that when a job fails to meet a deadline on a single 
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cluster the customers can choose to run them against distributed clusters and meet 

deadlines. The chart also shows we get better cumulative AET from using distributed 

clusters compared to using single clusters. 

7.4.3 Scenario 3 – Analyze impact of Cluster Availability 

Cluster operators can also run “what if” scenarios to see if increasing the availability of 

their Custer may have a potential impact on revenue based on number of additional jobs 

they might get at a certain availability level and whether the costs of increasing the 

availability are justified based on opportunity costs. 

We generated cloud clusters with varying availability from 10% - 100% with 10% 

increments and ran our simulation application to see how it impacted deadline met and 

node adjustments needed to complete execution within the given deadline. The resulting 

chart Figure 59 shows that close to 29% of jobs failed to meet deadline as availability fell 

and 71% succeeded in meeting the given deadline. 

 

Figure 59: Scenario 3 - Availability v/s Node Adjustments 
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Figure 60: Scenario 3 – Impact of Availability on # of Jobs/Customers 

We also found that as we adjusted availability and availability increased availability of a 

given cluster more jobs were bound to be sent to that cluster than not and more customers 

would be likely to send jobs to that cluster, meaning that availability has a direct impact 

on revenue generated from that cluster (Figure 60).

 

Figure 61: Scenario 3 – Impact of Energy Index on # of Jobs/Customers 
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We also find that as we increase the energy index for a given cluster more jobs were 

likely to be sent to that cluster by more customers and for a cluster with lower energy 

index less jobs would be sent by fewer customers again impacting revenue (Figure 61). 

These experiments could be used by Cluster operators to determine if investing in 

upgrading their infrastructure would result in enough increased revenues to justify the 

ROI. 
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Chapter 8: Energy aware scheduling in Mobile Devices 

8.1 Development: Creation of a Conceptual Model 

The hardware and software industries have realized that in-order to truly address the 

energy-efficiency question; it has to be tackled at various levels across multiple 

industries. The first step in this direction is the identification of the variables within the 

various design, manufacturing, and use of computing and communications devices, 

operating systems and applications that influence the energy equation. The main goal is 

to maximize energy efficiency while simultaneously maintaining or increasing 

performance. This can be achieved by a combination of improvements in micro-

architecture, silicon process technology, software at the operating systems level and 

application level, and platform technologies. The Figure 62 below illustrates this 

approach. 

Hardware

Software

Silicon Process Technology

Chip Technology

Power Management

Operating System

Applications
 

Figure 62: Different stages in accomplishing energy-efficiency objectives 

Obviously, processor power is an important consideration in the energy equation, but 

processors are hardly the only component drawing power. Total energy consumption, for 

example, is also dependent on memory DIMMs, chipsets, fans, hard disk drives, 

peripherals, power supply efficiency, and other components. Working with each one of 

these components can significantly reduce overall energy consumption. For instance, 

Intel's use of DDR2 memory improves performance up to 11 percent with a 30 percent 

reduction in memory power consumption. Combining Intel processors with Intel chipsets 
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featuring integrated graphics saves the need for a separate, power-consuming graphics 

card (Intel, 2006). 

Table 8: Variables influencing the energy-efficiency equation 

Hardware Software

Silicon Process 

Technology
Chip Technology

Power 

Management

 Second generation 

strained silicon

 Improved 

interconnects

 Dynamic sleep 

transistor

 Demand based 

switching

 On-die voltage 

regulation

 Multi-core and 

clustered micro-

architecture

 Power Gating, 

Macro Fusion.

 Voltage Regulation 

Technology

 Improved display 

power specs

 Thermal design for 

advanced heat-

sync technology

Operating System

 Developing power 

conscious device 

drivers.

 Tuning OS for less 

interference with a 

processor’s low-

power states.

 Energy Aware 

Scheduling of 

Applications based 

on benchmarks.

Applications

 Application code 

multi-threaded and 

multi-core ready.

 Power monitoring 

and analysis tools.

 Optimizing code 

for reducing CPU  

clock cycles.

 Energy Aware 

Scheduling of 

Applications tasks.

 

Within the hardware and software industries there is further breakup depending on where 

the question of energy efficiency is addressed. Furthermore at each level there are 

multiple complimentary approaches and areas of research which together become part of 

the solution in reducing energy utilization. The Table 8 illustrates the various 

complimentary areas of research being pursued to address the overall energy efficiency 

question. 

In the conventional approach employed in most portable computers, a processor enters 

power-down mode after it stays in an idle state for a predefined time interval. Since the 

processor still wastes its energy while in the idle state, this approach fails to obtain a 

large reduction in energy when the idle interval occurs intermittently and its length is 

short. In (Srivastava, Chandrakasan, & Brodersen, 1996) (Hwang & Wu, 1997), the 

length of the next idle period is predicted based on a history of processor usage. The 

predicted value becomes the metric to determine whether it is beneficial to enter power-
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down modes or not. This method focuses on event driven applications such as user-

interfaces because latency, which arises when the predicted value does not match the 

actual value, can be tolerated. However, we need an exact value instead of a predicted 

value for the next idle period when we are to apply the power-down modes in a hard real-

time system, which is possible in the LPFPS. 

8.2 Previous Work on this Model 

(Ahmed & Chakrabarti, 2004), enhanced the algorithm proposed by (Shin & Choi, 1999), 

by extending the algorithm to account for the slack generated at runtime due to the 

difference between WECT and AET (Actual Execution Time). They proposed an 

algorithm which had 2 Phases. The basic idea of the algorithms in this model is to exploit 

the slacks generated to reduce the voltage levels of the tasks, so that the battery charge 

consumed or the drop in voltage is minimized. The algorithm operates in two phases. 

1. Phase I: Off-line task scheduling algorithm using WCET. 

2. Phase II: On-line algorithm using AET. 

In Phase I the tasks are assumed to be executed at their WCETs. A schedule is 

determined for one hyper-period (defined as the least common multiple of the periods of 

all the tasks in the task set).  In Phase II (on-line), the slack generated due to the AET 

being less than the WCET, is used to further scale the voltage levels of the tasks. 

Phase I: The off-line scheduling algorithm is based on a paper presented by the same co-

authors (Chowdhary & Chakrabarti, 16-18 Oct. 2002); it determines the task ordering and 

the voltage level of each instance of a task in a hyper-period. Applying WCETs in this 

phase guarantees that the tasks meet their deadline. This is done in two steps. 
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Step 1: Obtain a feasible schedule by using the earliest deadline first algorithm. 

Step 2: Utilize the available slack by voltage down scaling as much as possible starting 

from the end of the profile. 

Phase II: During operation of the system, the AET of a task could be a lot smaller than 

its WCET. It is suggested that it is best to use the slack as late as possible; which is 

achieved by a process called as slack forwarding. Slack forwarding is based on the 

observation that slack generated by early completion of a task can be made available to a 

later task if the later task is released prior to the time at which the slack originated. 

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

Arrival of T2

Arrival of T2 Arrival of T2

(a) (b)

(c) (d)

 

Figure 63: (a) WCET Schedule. (b) WCET Schedule with full slack forwarding. (c) WCET Schedule with partial slack 
forwarding. (d) WCET Schedule with no partial slack forwarding. 

Consider two tasks T1 and T2 and let us assume WCET for the tasks. Task T1 starts at t1 

and finishes at t4 and T2 starts at t4 and finishes at t7, as shown in Figure 63(a). Suppose T1 

actually finishes earlier at time t2, generating a slack of (t4-t2). All of this slack is 

available to T2 if its arrival time is at t2 or before, as depicted in Figure 63(b). If the task T2 

was released at t3, only a part of the generated slack is available to T2, as shown in Figure 

63(c). If the task T2 was released at t4 none of the generated slack is available to T2 as 
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shown in the Figure 63(d). Thus the decision of slack forwarding can be made by 

inspecting the arrival time of the subsequent task to be executed. 

Figure 64 provides the pseudo-code for the on-line algorithm. The input to the online-

algorithm consists of ordering of tasks as well as their voltage levels based WCET. The 

purpose of this algorithm is to readjust the voltage level of the task based on additional 

slack. The basic steps are as follows. After the completion of a task, the scheduler gets 

the next task from the run queue. The finish time of the task is estimated based on the 

voltage level determined in Phase I. If the finish time is before the release time of the 

next task in the queue, the voltage level of the task is readjusted.  

Input: Phase I schedule based on EDF algorithm

Repeat for Every Task

Get the scaling level of the next task Ti

If the task is not available (Current time < Task start time)

{

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

 

Figure 64: Pseudo-Code for On-line Phase II 

Example:  

Consider the three tasks given in Table 9 which is reproduced below. Rate monotonic 

priority assignment is a natural choice because periods (Pi) are equal to deadlines (Di). 

Priorities are assigned in row order as shown in the fifth column of the Table 9. Note that 

this is the same example from the original algorithm 1 by (Shin & Choi, 1999); which is 
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being adapted to show the incremental improvement done by (Ahmed & Chakrabarti, 

2004). 

Table 9: Example Task Set 

 Pi Di Ci Priority 

T1 50 50 10 1 

T2 80 80 20 2 

T3 100 100 40 3 

 

Let us consider the task set in (Shin & Choi, 1999) represented by the Table above. There 

are three tasks with periods 50, 80 and 100 minutes. The hyper-period is 400 minutes 

(L.C.M of 50, 80 and 100).The set of operating voltages considered during voltage 

scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0} volts. Figure 65(c) shows the final task profile with 

the improved algorithm after each phase as well as that generated with the low power 

fixed priority algorithm in (Shin & Choi, 1999).  

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150
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(b)

(c)

 

Figure 65: Task scheduling using LPFPS algorithm versus enhancements 

8.3 Proposed Solution 

We realized that some online slack could be potentially wasted in the algorithm proposed 

by (Ahmed & Chakrabarti, 2004) due to the fact that even though some tasks become 

available based on the actual periodicity of a task they are not executed because the run is 
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determined by the schedule generated in Phase I; which uses the EDF algorithm based on 

the WCET of the tasks and we already know that this is a very safe yet conservative 

approach. 

Motivation: Our solution exploits the fact that even though some tasks become available 

based on the actual periodicity of a task they are not executed because the run queue is 

determined by the schedule generated in the offline phase I of the algorithm using the 

conservative EDF (Earliest Deadline First) algorithm. We peek at the task run-queue to 

find such tasks and schedule them for execution if possible based on the knowledge of 

the available slack and the arrival on the next task. This helps in minimizing the wastage 

of the generated slack. 

Considering the same set of tasks as described in (Ahmed & Chakrabarti, 2004) 

(Shin & Choi, 1999) and shown here in Table 9, this waste of slack can be observed at 

time t=80 even though T2 becomes available as per the periodicity of the task it is not 

executed because the run queue determined by the Offline phase has T1 as the next task. 

We also notice that T2 can be easily completed before T1 whose next earliest start time is 

t=100; because T2 has WCET execution time of 20 and since it starts at time t=80 we 

have a timeframe of (100 – 80) = 20 available for execution. 

A similar yet slightly different situation occurs at time t=240, where even though T2 

becomes available as per the periodicity of the task it is not executed in (Ahmed & 

Chakrabarti, 2004) because the run queue determined by the Offline phase has T1 as the 

next task at t=250. We also notice that T2 cannot be easily completed before T1 whose 

next earliest start time is t=250; because T2 has WCET execution time of 20 and since it 

starts at time t=240 we have a timeframe of (250 – 240) = 10 available for execution. But 
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a simple task look –ahead shows that to execute both T1 and T2 we have a total time of 

(240-300) = 60 and the WCET for each is 10 and 20 respectively; a total duration WCET 

of 30; which tells us that scheduling T2 now will not cause us to miss the deadline for T1 

and that both tasks can be executed within the available time of 60. 

To avoid this waste, we enhance the algorithm such that the original start time for each 

periodic task is fed to the algorithm as input. Figure 66 shows the final task profile with 

our algorithm as well as those generated by (Ahmed & Chakrabarti, 2004) and with the 

low power fixed priority algorithm (Shin & Choi, 1999). Since we further scale down the 

voltage and make more use of online slack we expect our algorithm to perform better 

compared to (Ahmed & Chakrabarti, 2004) (Shin & Choi, 1999). (This will be proven 

later by simulation experiments). 

100 30020050 250 350 400
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Figure 66: Task scheduling using proposed algorithm, LPFPS and 2-Phase algorithm 

The pseudo-code for the proposed algorithm is shown in Figure 67. It is important to keep 

the time complexity of the online phase of the algorithm to a minimum for obvious 

reasons. It should be noted here that we do not add any additional time complexity to the 
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online phase in the proposed algorithm as we only check to see if tasks are available 

based on their original periodicity and if these can be scheduled in the slack time before 

the next task becomes available based on the Phase I EDF schedule. This can easily be 

accomplished in constant time which is O(1) and hence there is no increase in the time 

complexity of the algorithm. Another important point to note if we do schedule a task 

earlier based on the reasoning above, we have to remove this task from the Phase I 

schedule or mark it as complete to make sure that we do not re-execute the task again. 

Input: Phase I schedule and original task periodicity

Repeat for Every Task

Get the scaling level of the next task Ti based on Phase I schedule

If the task is not available (Current time < Task Ti start time)

{

if ( (original task periodicity shows a task To is available earlier) and 

     (start time of Ti  – To  >= WCET of To ) or (Ti+2 - To >= WCET Ti + WCET To) )

Schedule task To and remove it from Phase I schedule

else

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

 

Figure 67: Pseudo-Code for proposed algorithm 

8.4 Results of the proposed solution 

We calculated the average energy utilized for all the test cycles and the plot below (Figure 

68) clearly suggests that the enhanced algorithm performs better than the algorithms in 

(Ahmed & Chakrabarti, 2004). We get an average reduction of approximately 9.29% as 
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compared with the algorithm in (Ahmed & Chakrabarti, 2004). Note that we use a similar 

technique as in (Ahmed & Chakrabarti, 2004), (Shin & Choi, 1999)to generate our tasks, 

to have a high degree of confidence in our conclusions. 

 

Figure 68: Enhanced Algorithm - Average Energy Utilized 

8.5 Expected Contributions and Limitations 

Most of the Energy Aware Scheduling Algorithms designed so far use WCET to compute 

the workloads in the offline phase. In general most tasks complete between BCET and 

WCET. In fact; it is a well-known that most tasks complete well before WCET. We 

propose to exploit this knowledge to our advantage and propose that instead of 

computing workload at WCET, we use information regarding expected execution time 

(EET). 

 Expected Execution Time (EET) may be computed in several ways; one way to 

compute this would be based on Actual Execution Time (AET) in the previous hyper-

period, another approach could be average of all previous AET for that task, so on and so 

forth. An important aspect of this approach is that at runtime depending on AET we may 

have some tasks completing in time greater than EET and some less than EET. This could 

potentially lead to deadline violations; which we need to resolve. 

34.52

31.584

Algorithms

Average Energy Utilized

Algo 1 Echanced Algo
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Approaches to compute Expected Execution Time 

1. Conservative Approach: Expected Execution Time is computed conservatively so 

that it is closer to WCET. This approach has a lower propensity for deadline 

violations; which need to be resolved. 

2. Risky Approach: Expected Execution Time is computed quite generously so that it 

is closer to BCET. This approach has a higher propensity for deadline violations; 

which need to be resolved. 

High Low
BCET WCET

Optimal solution to feasible solution Feasible solution to optimal solution

Risk

 
Figure 69: Understanding Risk w.r.t Optimal v/s Feasible solutions 

Our research aims to contribute a model for energy aware scheduling and come up 

with a few algorithms for that model. It will also attempt to explore the approaches stated 

above to compute Expected Execution Time which will help in better scheduling tasks 

based on their energy profile. When running our experiments we have several overheads 

that are inherent to the systems itself such as energy utilized by the network card, or the 

energy utilized by the graphics card, etc. For the purpose of our study we are focused on 

the energy utilized to actually execute the tasks and not these other overheads. Also at 

times the scheduling algorithm itself has an execution overhead which is considered only 

where it is significant. 
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Chapter 9: Overall Conclusions and Future Research 
 

In chapter 4 we used our proposed EAS model in an HPC environment in the 

Bioinformatics domain to the BLAT application, implemented the approach and ran 

multiple experiments for different datasets. We found that the BLAT program is highly 

parallelizable and has a speedup of 99%. The experiments suggests that the merged query 

approach and the hybrid approach of all query segmentation and database segmentation 

consistently performs better that just the database segmentation approach. We also find 

that we one has only about 5 nodes it is better to use the merged query approach, for 

number of nodes 6 – 10, we would be better off using the merged query approach, and 

then beyond 10 nodes we do see a whole lot of performance gains, but this is also the 

space in which we can do more research to find the right balance between performance 

and energy utilized by scheduling the BLAT jobs such that they run in a reasonable time 

yet utilize minimum energy and resources. This research highlights the need to carefully 

develop a parallel model with energy awareness in mind, based on our understanding of 

the data and application. This will help us in designing a parallel model that works well 

for the specific application and potentially similar applications within that domain. Many 

of the bioinformatics application follow a similar structure/pattern, where we have a set 

of input query sequences, which go against an existing set of database genome sequences 

(such as DNA/RNA/Protein) and output results in a specified output file(s) or directory. 

These programs also take optional parameters which are used as tuning options for the 

program itself such as MinScore. Our future research will focus on moving away from a 

simple heuristic and explore the use of additional AI techniques such as machine learning 
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algorithms to enhance the modeling, which would allow for a more automated way of 

dealing with energy utilization and performance of the HPC environment. 

In chapter 5 we proposed an energy aware scheduling model in a HPC environment based 

on a 2-step approach. The Off-line Phase uses the knowledge of the run-profile of the 

program based on previous runs and the On-line Phase used a dynamic feedback loop to 

adjust the resources (# of nodes) to minimize energy utilized while still meeting the 

deadline. The run-profile and experiments were done for the BLAT program in the bio-

informatics domain. The EAS Engine was able to dynamically take react to the difference 

between EET and AET and adjust the number of nodes up or down to balance the 

minimization of energy and performance criteria for all our experimental datasets. Our 

experiments suggest that the choice of run profile in step 1 of the algorithm has an impact 

on the overall performance of the algorithm because it impacts the number of adjustment 

the algorithm has to make to meet deadlines. Each adjustment has an associated overhead 

which impacts the energy optimization. Clearly there are various strategies one could use 

in the conservative to risk spectrum, but this is also the space in which we can do more 

research to find the right balance. Our future research will focus on further automation of 

the EAS Engine to accommodate other programs in the same domain or similar domains. 

We would also like to explore the nuances between conservative and risky approaches to 

the Off-line scheduling of node resources. We believe that eventually OS capabilities will 

evolve, allowing existing hardware DVS capabilities to be controlled at a program level, 

thus enabling software programs to have more control and flexibility in handling energy 

considerations. This will allow programs written with intimate knowledge about a 

specific domain and an understanding of deadline needs of the user for result sets to scale 
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the application in such a way that resources can be added on-demand, and processor 

speed controlled (hence controlling energy) to either speedup or slowdown the 

application to manage the divergent goals of performance and energy. Another key focus 

of our future research will be to incorporate the ability to incorporate Dynamic Voltage 

Scaling (DVS) at the node level. This will allow us to add another level of granularity to 

the EAS algorithm’s ability to adjust energy at the node level. 

In chapter 6, we applied our run-profile based approach on another bioinformatics 

application for assembling short reads. Based on the results we can clearly observe that 

given a deadline we can choose the appropriate number of nodes to run the overlap 

detection phase of the assembler on based on our new understanding of the run-profile we 

just produced. This will allow us to apportion just enough nodes to meet the deadline thus 

maximizing the objective of performance with minimum energy utilization. We also 

observed that with a smaller number of nodes we have larger gains in performance and 

above a certain number of nodes the performance gain is only modest at best. In fact as 

we add additional nodes our communication costs and related overhead is higher. Clearly 

different bioinformatics applications and algorithms will have different run profiles and 

understanding each one of them will allow us to best assign the appropriate number of 

nodes to meet a given deadline. It was also important to see how the number of read 

subsets impacted the performance/energy criterion. Our experiments suggest a bowl 

shaped curve when we varied the number of files for the same number of nodes. Clearly 

there must be some optimum value for the number of files for each set. This highlights 

the importance of understanding the degree of parallelism for the program, which is done 

by establishing the run profile/speedup curve. The EAS engine uses the knowledge from 
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the run profile to make intelligent and dynamic decisions about number of nodes to use to 

minimize energy utilization and still provide necessary performance. Clearly it is no 

longer sufficient to simply run a program in a HPC environment. It is important and 

essential to understand the data, its characteristics, and the application domain to build a 

parallel program that is energy aware. We have several parameters we could study and 

the relationship between them. These parameters are (1) Number of files; (2) Number of 

sequences per file; (3) Number of nodes used and (4) Average sequence length. In this 

section we have only looked at number of nodes used as a parameter for our experimental 

design. In the future we plan to investigate how adjusting the different tuning parameters 

such as number of files, number of sequences per file, number of nodes impacts the 

performance and energy efficiency. We also plan on including the pre-processing step 

and final assembly as part of the EAS processing. Our main motivation is to move this 

from a simple speedup to the realm of energy awareness. Our EAS model for the 

purposes of the experiments conducted calculated energy as a function of resources used 

in this case number of nodes. The energy function could be made more complex; we 

leave that for a future study.  

In chapter 7, we took the next logical step to applying the run-profile based approach to 

the “Cloud”, as cloud computing in gaining more and more importance. We took the 

approach to write a Cloud Simulation based on our EAS run-profile model so that we can 

as customers and operators of Cluster resources ask the “what if” questions, run them on 

the cloud simulator, to help make better informed decisions. We provided several “What 

if” scenarios and chose to design experiments for 3 of these scenarios demonstrating the 
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value of such a cloud simulation program to help answers questions such as the following 

before actually utilizing cloud resources. 

1) Can the given deadlines be met based on the past run profile. 

2) Should we use a single cluster or distribute the work load across multiple clusters to 

meet specific deadline requirements. 

3) Analyze impact of cluster availability/energy index on revenue and ROI. 

In this dissertation we proposed several algorithmic approaches to address energy 

awareness across the spectrum from small mobile devices to large high performance 

clusters to Cloud computing. We also pose questions for further research & study in the 

very important area of “Energy Awareness & Scheduling”. 

Finally in chapter 8 we presented an energy aware algorithm for mobile devices for 

scheduling purposes where the average energy utilized for all the various job cycles 

provided an average reduction of approximately 9.29% as compared with previous 

algorithms. Most of the Energy Aware Scheduling Algorithms designed so far use WCET 

to compute the workloads in the offline phase. In general most tasks complete between 

BCET and WCET. In fact; it is a well-known that most tasks complete well before 

WCET. We exploited this knowledge to our advantage and proposed the Run-queue peek 

algorithm which provided additional energy savings.  

We also proposed an enhanced dynamic task scheduling algorithm using task run-queue 

peek technique for battery operated (mobile devices) DVS systems that further maximize 

the residual charge and the battery voltage. Our future research focused on using the 

information regarding expected execution time (EET) instead of WCET because WCET 
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is a very conservation approach used in the Off-line Phase to schedule tasks. We explored 

both the suggested approaches of computing EET namely conservative and risky and 

study their performance relative to each other.  

In the future we plan on applying our EAS model to a much complex problem in the 

bioinformatics domain of clustering and networks. We also plan on taking the 

Department of Energy’s “Better Building Challenge”– “to reduce the energy used 

across their building portfolios by 20 percent or more by 2020”. Our goal is to use our 

EAS model along with scheduling heuristics and apply them to HVAC and other building 

sensor data to perform real-time analytics and address the issue of “finding what 

matters in a timely matter” to save energy costs.  
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Appendix A-1: The NITRD program’s illustrative grand challenge. 
No. Grand Challenges 

1 Knowledge Environments for Science and Engineering 

2 Clean Energy Production through Improved Combustion 

3 High Confidence Infrastructure Control Systems 

4 Improved Patient Safety and Health Quality 

5 Informed Strategic Planning for Long-Term Regional Climate Change 

6 Nanoscale Science and Technology: Explore and Exploit the Behavior of 

Ensembles of Atoms and Molecules 

7 Predicting Pathways and Health Effects of Pollutants 

8 Real-Time Detection, Assessment, and Response to Natural or Man-Made 

Threats 

9 Safer, More Secure, More Efficient, Higher-Capacity, Multi-Modal 

Transportation System 

10 Anticipate Consequences of Universal Participation in a Digital Society 

11 Collaborative Intelligence: Integrating Humans with Intelligent Technologies 

12 Generating Insights from Information at Your Fingertips 

13 Managing Knowledge-Intensive Dynamic Systems 

14 Rapidly Acquiring Proficiency in Natural Languages 
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Appendix A-2: IT hard problem areas identified based on grand 

challenges. 
No. IT hard problem areas 

1 Algorithms and Applications 

2 Complex Heterogeneous Systems 

3 Hardware Technologies 

4 High Confidence IT 

5 High-End Computing Systems 

6 Human Augmentation IT 

7 Information Management 

8 Intelligent Systems 

9 IT System Design 

10 IT Usability 

11 IT Workforce 

12 Management of IT 

13 Networks 

14 Software Technologies 
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Appendix B: Survey of work done with approaches taken 
Researchers Year Approach Method Description 

(Greenawalt, 1994) 1994 Statistical Equation modeling for hard disk power management 

(Hwang & Wu, 1997) 1997 Probabilistic Exponential average method in conjunction with prediction miss correction and pre-wakeup 

mechanism 

(Benini, Bogliolo, 

Paleologo, & De Micheli, 

1999) 

1999 Finite machines Finite-state, model based on Markov decision process 

(Simunic, Benini, & De 

Micheli, 1999) 

1999 Finite machines Modifications to Benini et al’s method 

(Eui-Young, Benini, & De 

Micheli, 1999) 

1999 Probabilistic and Statistical Adaptive Learning Tree Data structure 

(Lu, Benini, & De Micheli, 

2000) 

2000 Exact solution  

[non probabilistic and non 

statistical] 

Rearrange tasks executions to prolong device idle periods 

(Swaminathan, 

Chakrabarty, & Iyengar, 

2001) 

2001 Exact solution LEDES algorithm – Rearranges task executions (online) 

(Swaminathan & 

Chakrabarty, Pruning-

based energy-optimal 

device scheduling, 2002) 

2002 Exact solution EDS algorithm (online) – rearranges task execution (offline) 

(Wang, 1992) 1992 Exact solution A dynamic task scheduling method which extends the Round-Robin policy task scheduling. 

(Ahmed & Chakrabarti, 

2004) 

2004 Exact solution The authors propose a two phase algorithm with the objective of maximizing the residual 

charge and the battery voltage after the execution of the tasks. In phase 1 (offline) a battery 

aware algorithm schedules the tasks assuming WCET. In Phase 2 (online) the algorithm 

reassigns the voltage levels based on the additional slack generated because AET < WCET. 

(Chowdhary & 

Chakrabarti, 16-18 Oct. 

2002) 

2002 Heuristic solution The proposed algorithm maximizes battery life by shaping the current load profile. The 

shaping algorithm makes extensive use of voltage/clock scaling and is guided by heuristics that 

are derived from the properties of the battery model. This is for a-periodic task scheduling. 

(Zhuo & Chakrabarti, 

Dynamic Task Scheduling 

Algorithm, 2005) 

2005 Exact solution A new battery aware dynamic task scheduling algorithm, darEDF, based on an efficient slack 

utilization scheme that employs dynamic speed setting of tasks in run queue. Comparison with 

lpfpsEDF, lppsEDF, lpSEH energy efficient algorithms is performed. 

(Kim, Kim, & Min, 2002) 2002 Exact solution (*) Energy efficiency of a DVS algorithm largely depends on the performance of the slack 

estimation method used. The proposed algorithm takes full advantage of the periodic 

characteristics of the task under priority-driven scheduling such as EDF. 
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(Zhuo & Chakrabarti, 

System-level energy-

efficient dynamic task 

scheduling, 2005) 

2005 Exact solution (*) In a DVS system with multiple devices, slowing down the processor increases the device 

energy consumption. A dynamic task scheduling algorithms for periodic tasks that minimize 

system level energy (CPU + Device standby). The algorithm uses (1) optimal speed setting, 

which is the speed that minimizes the system energy for a specific task, and (2) limited 

preemption which reduces the number of possible preemptions. 

(Jejurikar & Gupta, 2002) 2002 Heuristic solution DVS based on slowdown factors can lead to considerable energy savings. An algorithm is 

proposed to compute static slow down factors for a periodic task set. It takes into consideration 

effects of blocking that arise due to task synchronization. 

(Rao, Singhal, Kumar, 

Visweswaran, & Navet, 

2004) 

2004 Heuristic solution Addresses the issues of making real-time DVS algorithms battery aware by using heuristics 

instead of computation-intensive battery models for making runtime scheduling decisions. 

(Swaminathan & 

Chakrabarty, Real time 

task scheduling, 2001) 

2001 Mixed Integer Linear 

Programming (MILP) 

The proposed approach (for periodic tasks in real-time systems) minimizes energy consumed 

by the task set meets deadlines. The approach used is MILP. 

(Rusu, Melhem, & Mossé, 

2005) 

2005 Heuristic solution To achieve a variety of QoS-aware trade-offs the authors propose (a) a static solution that 

maximizes the system value assuming WCET and (b) a dynamic scheme that takes advantage 

of the extra energy in the system when worst-case scenarios do not happen. Three dynamic 

policies are shown. Algorithm is call MV-Pack 

(Yang, et al., 2001) 2001 Combination – Genetic 

algorithm and MILP. 

This task-scheduling method combines the low runtime complexity of a design-time 

scheduling phase with the flexibility of a runtime scheduling phase. The design time phase 

uses a genetic algorithm for scheduling where as the runtime phase uses a MILP algorithm 

(Swaminathan & 

Chakrabarty, Effects of 

voltage-switching, 2001) 

2001 Mixed Integer Linear 

Programming (MILP) 

For workloads containing periodic tasks, the authors propose a mixed-integer linear 

programming model for the complete scheduling problem. For larger tasks sets, a extended-

low-energy earliest-deadline-first (E-LEDF) scheduling algorithm is given. 

(Shin, Kim, & Lee, 2001) 2001 Exact solution An intra-task voltage scheduling algorithm is proposed which controls the supply voltage 

within an individual task boundary. It exploits the slack time to achieve a high-energy 

reduction. First it automatically selects appropriate program location for performing voltage 

scaling. Second, it inserts voltage-scaling code to the selected locations. 

(Raghunathan, Pereira, 

Srivastava, & Gupta, 2005) 

2005 Exact solution Authors show how operating system directed DVS and DPM can provide tradeoff. A real-time 

scheduling algorithm is proposed that uses runtime feedback about application behavior to 

provide adaptive power-fidelity tradeoffs. Demonstration in the context of a static priority 

based preemptive task scheduler. 

(Mishra, Rastogi, Zhu, 

Mossé, & Melhem, 2003) 

2003 Exact solution A new static and dynamic power management scheme. The new static scheme uses the static 

slack (if any) based on the degree of parallelism in the schedule. An online DPM technique is 

proposed to consider run-time behavior of tasks which exploits the idle periods of processors. 

(Hu & Marculescu, 2004) 2004 Heuristic solution Algorithm considers communication delays in parallel. Main contribution is formulation of the 

problem for concurrent communication and task scheduling and a heuristic to solve it. 
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Appendix C: Abbreviations 
Abbreviations Description 

LPFPS Low Power Fixed Priority Scheduling 

WCET Worst Case Execution Time 

BCET Best Case Execution Time 

AET Actual Execution Time 

EET Expected Execution Time 

DVS Dynamic Voltage Scaling 

DPM Dynamic Power Management 

LCM Least Common Multiple 

AVR Average Rate 

WCEP Worst Case Execution Path 

ACEP Average Case Execution Path 

MILP Multiple Integer Linear Programming 

PDA Personal Digital Assistant 

IPC Instructions per Second 

EPI Energy per Instruction 

HPC High Performance Computing 

HPCC High Performance Computing and Communications 

HEC High End Computing 

PDA Personal Digital Assistant 

LAN Local Area Network 

GPS Global Positioning System 

NSF National Science Foundation 

BLAST Basic Local Alignment Search Tool 

BLAT BLAST-Like Alignment Tool 

EAS Energy Aware Scheduling 

MPI Message Passing Interface 

UNO University of Nebraska at Omaha 

UNMC University of Nebraska Medical Center 

IaaS Infrastructure as a Service 

PaaS Platform as a Service 

SaaS Software as a Service 

XML eXtensible Markup Language 

MILP Mixed Integer Linear Programming 
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