
University of Nebraska at Omaha
DigitalCommons@UNO

Student Work

7-2013

Energy Awareness and Scheduling in Mobile
Devices and High End Computing
Sachin S. Pawaskaw
University of Nebraska at Omaha

Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by
DigitalCommons@UNO. It has been accepted for inclusion in Student
Work by an authorized administrator of DigitalCommons@UNO. For
more information, please contact unodigitalcommons@unomaha.edu.

Recommended Citation
Pawaskaw, Sachin S., "Energy Awareness and Scheduling in Mobile Devices and High End Computing" (2013). Student Work. 2886.
https://digitalcommons.unomaha.edu/studentwork/2886

http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unomaha.edu/studentwork/2886?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.unomaha.edu/?utm_source=digitalcommons.unomaha.edu%2Fstudentwork%2F2886&utm_medium=PDF&utm_campaign=PDFCoverPages

Energy Awareness and Scheduling in Mobile Devices and

High End Computing

By

Sachin S. Pawaskar

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfillment of Requirements

For the Degree of Doctor of Philosophy

Major: Information Technology

Under the Supervision of Dr. Hesham Ali

Omaha, Nebraska

July, 2013

Supervisory Committee:

Dr. Hesham Ali

Dr. Deepak Khazanchi

Dr. Jon Youn

Dr. Dhundy Bastola

Dr. Hamid Sharif

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3591587

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3591587

ABSTRACT

Energy Awareness and Scheduling in Mobile Devices and High End Computing

Sachin S. Pawaskar, Ph.D.

University of Nebraska, 2013

Advisor: Dr. Hesham Ali

In the context of the big picture as energy demands rise due to growing economies and

growing populations, there will be greater emphasis on sustainable supply, conservation,

and efficient usage of this vital resource. Even at a smaller level, the need for minimizing

energy consumption continues to be compelling in embedded, mobile, and server systems

such as handheld devices, robots, spaceships, laptops, cluster servers, sensors, etc. This is

due to the direct impact of constrained energy sources such as battery size and weight, as

well as cooling expenses in cluster-based systems to reduce heat dissipation. Energy

management therefore plays a paramount role in not only hardware design but also in

user-application, middleware and operating system design. At a higher level Datacenters

are sprouting everywhere due to the exponential growth of Big Data in every aspect of

human life, the buzz word these days is Cloud computing. This dissertation, focuses on

techniques, specifically algorithmic ones to scale down energy needs whenever the

system performance can be relaxed. We examine the significance and relevance of this

research and develop a methodology to study this phenomenon.

Specifically, the research will study energy-aware resource reservations

algorithms to satisfy both performance needs and energy constraints. Many energy

management schemes focus on a single resource that is dedicated to real-time or non-

real-time processing. Unfortunately, in many practical systems the combination of hard

and soft real-time periodic tasks, a-periodic real-time tasks, interactive tasks and batch

tasks must be supported. Each task may also require access to multiple resources.

Therefore, this research will tackle the NP-hard problem of providing timely and

simultaneous access to multiple resources by the use of practical abstractions and near-

optimal heuristics aided by cooperative scheduling. We provide an elegant EAS model

which works across the spectrum which uses a run-profile based approach to scheduling.

We apply this model to significant applications such as BLAT and Assembly of gene

sequences in the Bioinformatics domain. We also provide a simulation for extending this

model to cloud computing to answers “what if” scenario questions for consumers and

operators of cloud resources to help answers questions of deadlines, single v/s distributed

cluster use and impact analysis of energy-index and availability against revenue and ROI.

KEYWORDS:

Energy Awareness, Scheduling, High Performance Computing, Bioinformatics,

Heuristics, Parallel Processing, Optimal Algorithms, Run-Profile, Cloud Computing,

Alignment, Sequencing, Energy Aware Scheduling, Mobile Computing, Simulation.

iv

DEDICATION

I dedicate my dissertation work to my family and many friends. A special gratitude to my

loving parents, Sudhakar and Sharmila Pawaskar whose words of encouragement and

teachings have always guided me throughout my life.

A special thank you to my wife Kelly, who has put up with me through this endeavor and

to my daughter Sihley and son Sam who have driven me to see this through.

To all my friends and well-wishers who have supported me throughout the process. I will

always appreciate all they have done.

v

ACKNOWLEDGEMENT

I would like to express the deepest appreciation to my committee chair Dr. Hesham Ali,

who first encouraged me to start on this endeavor, then continually nourished me during

this journey and would not give up on me when the going got tough. Without his

guidance and persistent help this dissertation would not have been possible.

I would like to thank my committee members, Dr. Deepak Khazanchi for his continuous

encouragement whenever he saw me. Dr. Dhundy Bastola was very helpful in his

guidance when working on the application aspects of energy awareness in the bio-

informatics domain and Dr. Jon Youn in application with mobile and sensor devices. Dr.

Hamid Sharif for his engagement and support over the last several years.

In addition, a thank you to all the professors and faculty at the University of Nebraska at

Omaha for all the little things I have learned from them and a thank you to my fellow

students who were there to inspire me when needed.

vi

Table of Contents

ABSTRACT ... 2

KEYWORDS: .. 3

Chapter 1: Introduction ... 1

1.1 Research Problem .. 1

1.1.1 High End Computing ... 1

1.1.2 Mobile Devices .. 3

1.3 Energy Management .. 5

1.4 Research Questions ... 5

1.5 Research Motivation .. 7

1.5.1 Professional Motivation .. 7

1.5.1 A National Priority ... 9

1.5.2 Scholarly Motivation ... 10

1.6 Key Contributions... 11

Chapter 2: Literature Survey, Basic Terminology & Problem Definition 13

2.1 Introduction to Scheduling .. 13

2.1.1 The Scheduling Problem ... 14

2.1.2 Task Scheduling Model ... 15

2.1.3 Energy Aware Scheduling .. 16

2.2 From Static to Dynamic to Dynamic Energy aware scheduling ... 17

2.3 Basic Terminology & Problem Definition ... 19

2.3.1 NP-Completeness of the Scheduling Problem .. 20

2.3.1 Scheduling and the Battery Operated Device Model ... 21

Chapter 3: Our Proposed Model and Research Approach... 25

3.1 The Model .. 25

3.1.1 Step 1: Offline Phase – Build Run Profile .. 26

3.1.2 Step 2: Online Phase – Dynamic Resource Adjustment .. 26

3.2 The Model – Logical View .. 26

3.2 Research Vision for our Model .. 28

3.3 Research Approach .. 28

3.4 Research Methodology .. 30

3.4.1 Stage 1: Relevance and Refinement ... 30

vii

3.4.2 Stage 2: Design the Method.. 32

3.4.3 Stage 3: Build a Program ... 33

3.4.4 Stage 4: Design Experiments ... 34

3.4.5 Stage 5: Analyze the Experimental Results ... 35

3.5 Application Domains for the Energy Aware Scheduling Problem .. 36

Chapter 4: Energy aware scheduling in High End Computing ... 38

4.1 High Performance Computing and Amdahl’s Law ... 39

4.2 Bioinformatics & High End Computing .. 41

4.3 From Simple Speedup to the Realm of Energy Awareness .. 44

4.4 Implementation and Results for BLAT in HPC .. 46

4.5 Scheduling – Energy & Deadline aware ... 55

4.6 Summary of Results ... 57

Chapter 5: Run-Profile Approach towards Energy aware scheduling .. 60

5.1 Enhancing our Two Step approach .. 60

5.1.1 Step 1 Enhancement. .. 63

5.1.2 Step 2 Enhancement ... 65

5.2 Summary of Results ... 70

Chapter 6: An EAS Application for Assembling Short Reads in HPC .. 72

6.1 Assembling of Next Generation Sequencing Data ... 72

6.2 Assembly Algorithm Overview ... 73

6.2.1 Overlap Detection and Alignment .. 73

6.2.2 Graph Construction and Manipulation ... 74

6.2.3 Consensus Sequence Generation ... 75

6.3 Read Overlap Detection ... 75

6.3.1 Read Preprocessing ... 76

6.3.2 Containment Clustering .. 76

6.3.3 Dovetail Overlaps .. 77

6.3.4 Implementation Details .. 77

6.4 Parallel Implementation using the EAS Model .. 78

6.4.1 Containment Execution – Step 1 ... 79

6.4.2 Dovetail Execution – Step 2 .. 81

6.5 Implementation and Results .. 82

viii

6.6 Summary of Results ... 86

Chapter 7: Towards an Energy Aware Cloud (A Simulation) ... 89

7.1 Energy Aware Cloud based on Energy index ... 89

7.2 Cloud Computing – Lifting the Veil .. 89

7.2.1 Cloud Computing Models ... 90

7.2.2 Cloud Service Layers ... 90

7.2.3 Cloud Deployment Models ... 91

7.2.4 Cloud Service – Opportunities and Challenges ... 92

7.3 Why – Simulation Model? .. 92

7.4 The Simulation Program .. 94

7.4.1 Scenario 1 – Meeting Deadlines on specific Cloud Clusters 100

7.4.2 Scenario 2 – User Single v/s Distributed Clusters ... 101

7.4.3 Scenario 3 – Analyze impact of Cluster Availability .. 102

Chapter 8: Energy aware scheduling in Mobile Devices .. 105

8.1 Development: Creation of a Conceptual Model .. 105

8.2 Previous Work on this Model .. 107

8.3 Proposed Solution .. 110

8.4 Results of the proposed solution ... 113

8.5 Expected Contributions and Limitations .. 114

Chapter 9: Overall Conclusions and Future Research .. 116

Bibliography .. 122

Appendix A-1: The NITRD program’s illustrative grand challenge. .. 129

Appendix A-2: IT hard problem areas identified based on grand challenges. 130

Appendix B: Survey of work done with approaches taken .. 131

Appendix C: Abbreviations ... 133

Appendix D: Listing of Figures .. 134

Appendix E: Listing of Tables ... 136

1

Chapter 1: Introduction

1.1 Research Problem

1.1.1 High End Computing

US Data centers consumed 5 MKW of energy in 2005 (Snyder, 2008), which is

equivalent to five 1000 MW power plants. The total energy utility bills in the US alone

amount to $2.7 billion annually and world consumption is estimated to cost $7.2 billion

annually (AMD, 2007) (He, 2008). Major California companies are being forced to

relocate due to high energy costs, e.g. Google has opened a new datacenter in the

Midwest in Council Bluffs (Foley, 2008) and despite economic slump; Yahoo plans a

new datacenter in La Vista, Nebraska (Yahoo, 2008). Clearly “Energy” is becoming a

key business driver.

Figure 1: World IT Spending - Energy Cost Increase

Given these facts it has become imperative for us to consider the efficient usage of

energy is all aspects of data center management. In this section we will also focus on

2

studying energy aware scheduling mechanism in a high end computing environment such

as a grid cluster. We will use applications in the bio-informatics domain which will be

scheduled on the Holland Computing Center (HCC) grid. This study will come up with

an Energy Aware scheduling layer for High End Computing (HEC) such as clusters and

grids and make intelligent scheduling decisions which will balance energy minimization

requirements against performance based upon user needs.

The need for minimizing energy consumption continues to be compelling in

embedded, mobile, and server systems such as handheld devices, robots, spaceships,

laptops, cluster servers, etc. This is due to the direct impact of constrained energy sources

(e.g., battery size and weight), as well as cooling expenses in cluster-based systems to

reduce heat dissipation (Rajkumar, 2005). Battery-operated portable devices are now

ubiquitous and are widely used in mobile computing and wireless communication

applications. Maximizing battery lifetime is the most important design metric for such

systems. This problem is quite challenging due to the non-linear behavior of the battery.

Since the amount of energy delivered by the battery depends on the discharge current

profile (Martin, August 1999) (Battery life challenge, 2004), the battery life can be

extended by controlling the discharge current level and shape. In recent years, there has

been significant amount of work done in studying battery characteristics (Martin, August

1999) (Battery life challenge, 2004) and using these characteristics to shape the discharge

profile (Rakhmatov, Vrudhula, & Chakrabarti, 2002) (Chowdhary & Chakrabarti, 16-18

Oct. 2002). All of the earlier work on battery aware task scheduling has been for static

tasks where complete information about the tasks is known a priori. Task scheduling for

real-time tasks has been investigated in the context of ideal power sources (Chowdhary &

3

Chakrabarti, 16-18 Oct. 2002). Some work has also been done on battery aware

scheduling for real-time tasks (Ahmed & Chakrabarti, 2004). In my opinion not enough

emphasis has been placed on making software applications aware of energy usage to the

extent that this knowledge can drive the running of tasks on these devices based on some

policy (such as mission criticality, time, etc); which leads us in the direction of how do

we best schedule these tasks on battery operated devices such that we maximize the

energy property (such as usage, efficiency) of these devices and the related applications

that run on them.

1.1.2 Mobile Devices

Mobile computing has become a reality. Through the Wireless Verification Program,

Intel® and leading wireless LAN service providers have verified more than 40,000

hotspots around the world, with more cropping up each day (Battery life challenge,

2004). Mobile technology is continually advancing to keep up with the needs of the

mobile user. But as we work to make the ideal mobile experience, we find ourselves up

against an inherent struggle between extending battery life and improving mobile

performance. Power consumption has been a critical design constraint in the design of

digital systems due to widely used portable systems such as cellular phones and PDAs,

which require low power consumption with high speed and complex functionality. The

design of such systems often involves reprogrammable processors such as

microprocessors, microcontrollers, and DSPs in the form of off-the-shelf components or

cores. Furthermore, an increasing amount of system functionality tends to be realized

through software, which is leveraged by the high performance of modern processors. As

4

a consequence, reduction of the power consumption of processors is important for the

power-efficient design of such systems.

Battery operated portable devices are widely used in mobile computing and

wireless communication applications. Maximizing battery lifetime is the most important

design consideration for such systems. Since the amount of energy delivered by the

battery depends on the discharge current profile, the battery life can be extended by

controlling the discharge current level and shape (Ahmed & Chakrabarti, 2004) (Shin &

Choi, 1999). Broadly, there are two kinds of methods to reduce power consumption of

processors. The first is to bring a processor into a power-down mode, where only certain

parts of the processor such as the clock generation and timer circuits are kept running

when the processor is in an idle state. Most power-down modes have a tradeoff between

the amount of power saving and the latency incurred during mode change. Therefore, for

an application where latency cannot be tolerated, such as for a real-time system, the

applicability of power-down may be restricted. Another method is to dynamically change

the processor speed by varying the clock frequency along with the supply voltage when

the required performance on the processor is lower than the maximum performance. A

significant power reduction can be obtained by this method because the dynamic power

of a CMOS circuit is quadratically dependent on the supply voltage (Shin & Choi, 1999).

In recent years there has been a significant amount of work done on studying battery

characteristics and using these characteristics to shape the discharge profile. Most of the

earlier work for battery-aware task scheduling has been for static tasks where complete

information about the tasks is known apriori (Ahmed & Chakrabarti, 2004).

5

1.3 Energy Management

Energy management clearly plays a paramount role in not only hardware design but also

in user-application, middleware and operating system design. This project focuses on

techniques, specifically algorithmic ones to scale down energy needs whenever the

system performance can be relaxed. Specifically, the project will study energy-aware

resource reservations algorithms to satisfy both performance needs and energy

constraints. Many energy management schemes also focus on a single resource that is

dedicated to real-time or non-real-time processing. Unfortunately, in many practical

systems such as Personal Digital Assistants (PDA), cellular phones, robots and personal

computers, the combination of hard and soft real-time periodic tasks, a-periodic real-time

tasks, interactive tasks and batch tasks must be supported. Each task may also require

access to multiple resources (Rajkumar, 2005). Therefore, we will tackle the NP-hard

problem of providing timely and simultaneous access to multiple resources by the use of

practical abstractions and near-optimal heuristics aided by cooperative scheduling.

Approaches where power management is carried out in different islands separately will

also be compared.

1.4 Research Questions

The purpose of this research is to build a model for studying energy aware scheduling in

mobile devices and high end computing where energy resources are constrained and heat

dissipation is a major concern. Thus, the general research questions are as follows:

1) Is there a general model for performing energy aware scheduling of tasks in mobile

devices and HEC?

6

2) What are some of the general algorithms that we can use to schedule tasks in an energy

aware environment?

3) Are there special cases of the energy aware scheduling problem and can we come up

with specific algorithms that have polynomial runtime for them?

4) Are there specific domains where this problem exists and can we apply this some specific

solutions to these domains?

To answer these questions, additional research questions must also be answered:

 Is the consumer energy aware and is society willing to fund research in this area?

o How likely and how much additional cost is the consumer willing to pay for energy

aware devices and/or applications?

o Is it the responsibility of the consumer or the manufacturers who make mobile devices to

be energy aware?

 How can we model the problem using techniques in graph theory?

o What makes graphs such as pervasive data structure for modeling this problem?

o Are there general scheduling techniques that can be directly applied to the energy aware

scheduling problem?

o Given that the general scheduling problem is NP-Hard, What approximation algorithms

and heuristics can we use for polynomial solutions?

 Can we solve these for special cases of the general problem?

7

o What are the special cases of the general problem?

o What is the usefulness of the special cases?

o Are there polynomial algorithms for the special cases?

The energy aware problem will be expressed through a conceptual model, which is a

means of communicating specifications, and defining the problem space using events, or

processes in a graphical format (Wand & Weber, 2002). Algorithmic graph theory will be

used to provide polynomial time solution to the problem.

1.5 Research Motivation

1.5.1 Professional Motivation

Humanity has always shown great resolve in finding solutions to problems and grand

challenges that go far beyond mere intellectual curiosity. The NITRD program defines a

grand challenge as “A Grand Challenge is a long-term science, engineering, or societal

advance, whose realization requires innovative breakthroughs in information technology

research and development (IT R&D) and which will help address our country’s

priorities.” (Strawn, Howe, & King, November 2006). In the latter half of the twentieth

century information technology has amplified our intellectual and physical abilities.

Scientific and Engineering marvels such as the internet, the global positioning system

(GPS), DNA fingerprinting, facial recognition, and the human genome project have

become possible only with advances in information technology. “Today there are eight

billion computers in the world. Most are embedded invisibly in products, making goods

and services safer, more secure, flexible, and energy-efficient, and less expensive than

8

ever before. The tremendous advances in productivity that we have witnessed in the past

decade rest on this foundation.” (Feigenoff & al., 2003).

We are moving beyond stand-alone computers or components to build large,

integrated, distributed information systems which mobile and ubiquitous that are in

service to society. In the future, we can expect our computational infrastructure to offer

an even more impressive range of social and economic benefits as it grows to include

billions of people worldwide. Information technologies have the potential to reduce

energy consumption, provide improved health care at lower cost, enhance security,

reduce pollution, enable further creation of worldwide communities, engender new

business models, and contribute to the education of people anywhere in the world. The

CRA with funding from NSF, convened a group of researchers, who during a 3 day

conference discussed the specific and urgent challenges related to building the systems of

the future. As a result of that discourse, the participants selected five grand research

challenges that will provide a focus for more directed and immediate relevant research.

These are listed below (Feigenoff & al., 2003):

1) Create a Ubiquitous Safety.Net.

2) Build a Team of Your Own.

3) Provide a Teacher for Every Learner.

4) Build Systems You Can Count On.

5) Conquer System Complexity.

9

1.5.1 A National Priority

The NITRD illustrative grand challenges were formulated to stimulate current and future

generations of NITRD and applications researchers. The operative word here is

illustrative because there are easily hundreds if not thousands of grand challenges that

could be identified. By describing these challenges, NITRD intends to explain, justify,

and galvanize the IT R&D community to solve IT hard problems that are important to

society. The NITRD Program’s illustrative grand challenges are shown in Appendix A.

The national priorities and the IT hard problems are the key pillars on which the grand

challenges are structured. By describing the relationship between a grand challenge and

national priorities, the grand challenge’s significance is connected to the highest

aspirations of our country. The IT hard problems, whose solution the grand challenge

requires, tie the grand challenge to core elements of information technology research and

development and the NITRD Program. The NITRD grand challenges were specifically a

call to update the list called for in the High-Performance Computing (HPC) Act of 1991,

which formally established the High Performance Computing and Communications

(HPCC) Program. Through the HPCC Program, the U.S. Government coordinated multi-

agency investments in developing and using high-performance computing systems and

advanced networking technologies to meet the mission needs of the participating

agencies and larger national goals. The Act’s objectives included to:

1) Develop teraops (trillions of operations per second) computing systems.

2) Develop gigabit (billions of bits per second) networks.

3) Develop advanced algorithms and software.

10

4) Demonstrate innovative solutions to “grand challenge” problems using HPCC

technologies.

Relationship of IT Hard Problem Areas and IT Hard Problems: IT hard problems

areas are broad categories of topics of interest to the information technology research and

development community and the NITRD Program. The Task Force identified 14 IT hard

problem areas (Appendix). It was shown in (Strawn, Howe, & King, November 2006)

that Algorithms and Applications had direct relationship with most of the illustrative

Grand Challenges.

1.5.2 Scholarly Motivation

Our research in Energy Aware Scheduling based on Algorithmic Graph Theory can be

used in wireless mobile devices, sensor networks, parallel computing, grid computing,

high end computing, etc. This is due to the direct and indirect ability to manage energy

consumption of battery operated devices and sensors as well as regulating heat in grid

computing and high end computing by scheduling tasks away from over-heated

components. Some of the areas identified by the grand challenges that are directly related

to this research are:

1) Embedded multimodal sensor/actuator nodes.

2) Self-adaptive systems

3) Network reliability and availability will be key features of all large systems, our research

will help address the critical aspect network nodes being able communicate their energy

levels and node temperatures so as to avoid catastrophic failure of these nodes due to

11

draining of battery capacity or over-heating, thus helping improve the overall reliability

and availability of the network and system.

1.6 Key Contributions

In this dissertation we take the challenge of coming up with a model that addresses the

Energy Awareness question across the spectrum from High End Computing to Mobile &

Sensor devices and we propose our EAS model which uses scheduling heuristics to

balance opposing criterions of energy minimization and performance across the

spectrum. We first provide an overarching EAS model and then focus on each segment of

this spectrum and tailor our approach based on the uniqueness of that spectrum and

propose solutions that are then incorporated into the EAS model, thus allowing the model

to scale along the spectrum yet handle the nuances within each segment. At one end of

the spectrum we are challenged with reducing costs and at the other we have to optimize

battery and energy utilization Figure 2.

Figure 2: EAS model working across the spectrum

12

Our other key contributions include the following.

1) We provide a robust EAS Model which works in all High Performance Cluster

environments that allow the use of MPI.

2) We apply this EAS Model to the Bioinformatics domain and apply it to specific

applications and extend the knowledge gained using the concept of run profiles.

3) We provide a new cloud simulation package as part of our work, which allows us to

run simulations across cloud resources to see if task deadlines can be met and

simulate more complex scenarios for cloud operators such as impact of cluster

availability v/s ROI.

4) We provide a Run-Queue Peek scheduling heuristic at the low end of the spectrum to

address devices that run periodic tasks.

5) We also provide an enhanced Expected Execution Task heuristic which builds on the

earlier scheduling heuristic to provide additional energy efficiency gains.

6) The need to carefully develop a parallel model based on the importance of

understanding of the data within the specific application domain.

13

Chapter 2: Literature Survey, Basic Terminology & Problem

Definition

2.1 Introduction to Scheduling

Scheduling is a classical field with several interesting problems and results. A scheduling

problem emerges whenever there is a choice. The choice could be the order in which a

number of tasks can be performed, and/or in the assignment of tasks to servers for

processing. A problem may involve jobs that need to be processed in a manufacturing

plant, bank customers waiting to be served by tellers, aircrafts waiting for landing

clearances, or program tasks to be run on a parallel or a distributed computer. Clearly,

there is a fundamental similarity to scheduling problems regardless of the difference in

the nature of the tasks and the environment.

The scheduling problem has been described in a number of different ways in different

fields. The classical problem of job sequencing in production management has influenced

most of what has been written about this problem. Most manufacturing processes involve

several operations to transform raw material into a finished product. The problem is to

determine some sequences of these operations that are preferred according to certain (e.g.

economic) criteria. The problem of discovering these preferred sequences is referred to as

the sequencing problem. Over the years, several methods have been used to deal with the

sequencing problem such as complete enumeration, heuristic rules, integer programming,

and sampling methods. It is clear that complete enumeration is impractical because the

problem is exponential, which means that it requires too much time, sometimes years of

computation time would be required even for a small number of tasks. Hence optimal

solutions cannot be obtained in real time (Ullman, 1975) (Coffman, et al., 1976).

However, many heuristic methods have been used to deal with most general case of the

14

problem. Such methods include traditional priority-based algorithms (Hesham, Lewis, &

Hesham, 1994), task merging techniques (Aronsson & Fritzson, Jan 8-10, 2003), critical

path heuristics (Hesham, Lewis, & Hesham, 1994) (Khan, McCreary, & Jones, 1994). In

addition, distributed algorithms have been designed to address different versions of the

scheduling problem (Xie, Rus, & Stein, Dec, 2001).

2.1.1 The Scheduling Problem

In general, the scheduling problem assumes a set of resources and a set of consumers

serviced by these resources according to a certain policy. Based on the nature of and the

constraints on the consumers and the resources, the problem is to find an efficient policy

(schedule) for managing the access to and the use of the resources by various consumers

to optimize some desired performance measure such as the total service time (schedule

length). Accordingly, a scheduling system can be considered as consisting of a set of

consumers, a set of resources, and a scheduling policy as shown in Figure 3.

Consumers Scheduler Resources

Policy

Figure 3: The Scheduling System

Examples of consumers are a task in a program, a job in a factory, or a customer in a

bank. Examples of resources are a processing element in a computer system, a machine in

a factory, or a teller in a bank. First-come-first-served is an example of a scheduling

policy. Scheduling policy performance varies with different circumstances. While first-

come-first-served may be appropriate in a bank environment, it may not necessarily be

15

the best policy to be applied to jobs on a factory floor. Performance and efficiency are

two parameters used to evaluate a scheduling system. It’s customary to evaluate a

scheduling system based on the goodness of the produced schedule and the efficiency of

the policy.

In the general scheduling problem, we are concerned with scheduling dependent program

tasks on parallel and distributed systems. The tasks are the consumers and will be

represented using directed graphs called task graphs. Task graphs are used to represent

precedence relationships between tasks. The processing elements are the resources and

their interconnection networks will be represented using undirected graphs. The

“scheduler” (Figure 4) generates a schedule using a timing diagram called the Gantt chart.

The scheduler performs allocation, which means it will tell which tasks go on which

processor, but does not give their order. Whereas “scheduling” will perform allocation as

well as provide an order for the tasks on the individual processors. The Gantt chart

illustrates the allocation of the parallel program tasks onto the target machine processors

and their execution order. A Gantt chart consists of a list of all processors in the target

machine and, for each processor, a list of all tasks allocated to that processor ordered by

their execution time. The term tasks, nodes and jobs will be regarded as equivalent to the

term “consumers”. Also, resources may be referred to as processors or processing

elements.

2.1.2 Task Scheduling Model

The model that we will study in this thesis is deterministic and static in the sense that all

information governing the scheduling decisions are assumed to be known in advance. In

16

particular, the task graph representing the parallel program and the target machine is

assumed to be available.

There are four components in any scheduling system: the target machine, the parallel

tasks, the generated schedule, and the performance criterion. In our task-scheduling

model we will ignore the communication delays and consider all tasks to have the same

unit execution time. Also most of the time, we deal with the same machine, i.e. multiple

processors on the same machine. Nowadays we have such similar environments that it

leads to almost same communication delay times. We will discuss and define the

scheduling problem in more detail later in the thesis.

Scheduler

Task Graph

1 2

3

4 5

Target Machine

P1 P2 Gnatt Chart

P1 P2

ti
m

e 1 2

3

4 5

Figure 4: A Scheduler

2.1.3 Energy Aware Scheduling

Energy Aware Scheduling is a special case of the general scheduling problem in which

our scheduling policy is the optimization of the energy or power of the battery.

Minimizing the battery power utilization becomes the most important consideration in a

17

system that is energy aware, at the same time one must realize that along with this there

are certain parameters that must be met such as tasks meeting their deadlines.

Consumers Scheduler Resources

Energy

Aware Policy

Figure 5: Energy Aware Scheduling System

Simply put an Energy Aware Scheduling System is a scheduling problem which assumes

a set of resources and a set of consumers serviced by these resources according to a

Energy Aware policy. Based on the nature of and the constraints on the consumers and

the resources, the problem is to find an efficient policy (schedule) for managing the

access to and the use of the resources by various consumers to optimize the desired

performance measure which in this case is minimum amount of battery energy.

Accordingly, an Energy Aware scheduling system can be considered as consisting of a

set of consumers, a set of resources, and an Energy Aware scheduling policy as shown in

the Figure 5 above.

2.2 From Static to Dynamic to Dynamic Energy aware scheduling

Our study initially focus on feasibility of the schedule, followed by, honoring the

restrictions and meeting the requirements. Our research aims to move scheduling research

from the classical static scheduling approaches of the 1910 - 1970, to dynamic scheduling

approaches of 1990’s to take advantage of the slack generated due to the difference

between WCET and AET, and finally take the dynamic approach to the next level with a

focus on energy utilization, given the latest advances in DVS technology and the business

18

driven need for reducing energy costs with dynamic energy aware scheduling. The figure

below Figure 6 shows a conceptual model of 2 tasks T1 and T2 as they evolve through the

various models from static to dynamic to dynamic energy aware scheduling.

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

(a)

(d)

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

(b)

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

(c)

If static schedule is

followed T2

 would be executed

as shown

Dynamic schedule taking into

account the slack generated

based on the AET of T1

Dynamic energy aware

schedule taking into account

the slack generated based on

the AET of T1 and the would

be completion time of T2

accomplished by reducing

voltage and hence energy

utilized as shown.

Static schedule before

actual execution

Static schedule after

Actual execution

Dynamic schedule after

actual execution

Dynamic energy aware

schedule after actual

execution

Figure 6: Static to Dynamic to Dynamic Energy Awareness Scheduling

19

2.3 Basic Terminology & Problem Definition

In this section we define a few terms that will be used in the later sections of this paper.

We discuss the NP-completeness of the scheduling problem and present a complexity

comparison of the various scheduling problems.

Task Graph: A task graph G = (T, A) is a directed acyclic graph. For a pair of tasks ti, tj

T, a directed edge (i, j) A between the two tasks specifies that ti must be completed

before tj can begin. Figure 7 shows a task graph.

Density or Sparseness: The density or sparseness of a graph G=(T,A) is computed as a

ratio of the number of edges |A| in the graph as a percentage to the maximum number of

edges that graph can have which is of order (|T| * |T-1|) / 2. So a graph with density of 0.5

will have half the number of maximum edges possible for that graph.

Task Level: Let the level of a node x in a task graph be the maximum number of nodes

(including x) on any path from x to a terminal task. In a tree, there is exactly one such

path. A terminal task is at level 1. Given the graph in Figure 7, we can say that nodes 1, 2

and 3 are at level 1, 4 and 5 are at level 2, nodes 6,7,8,9 and 10 are at level 3, and so on.

Figure 7: A Task Graph

20

Schedule Length or Schedule Time: Given a task graph G = (T, A) and its schedule on

m processors, f, the length of schedule f of G is the maximum finishing time of any task

in G.

2.3.1 NP-Completeness of the Scheduling Problem

In general, the time complexity of an algorithm refers to its execution time as a function

of its input. We specify the complexity of a scheduling algorithm as a function of the

number of tasks and the number of processors. A scheduling algorithm whose time

complexity is bounded by a polynomial is called a polynomial-time algorithm. An

optimal algorithm is considered to be efficient if it runs in polynomial time. Inefficient

algorithms are those, which require a search of the whole enumerated space and have an

exponential time complexity. The problem of scheduling parallel programs tasks on

multiprocessor systems is known to be NP-complete in its general form. There are few

known polynomial-time scheduling algorithms even when severe restrictions are placed

on the task graph representing the program and the parallel processor models. In general

we can say classify the known results as follows:

1) The NP-Completeness of several versions of the scheduling problems (Ullman, 1975).

2) Optimal “efficient” algorithms, for solving restricted versions of the scheduling

problems (Coffman, et al., 1976), (Hesham, Lewis, & Hesham, 1994).

3) Heuristic algorithms for tackling more general cases of the scheduling problems

(Hesham, Lewis, & Hesham, 1994).

4) Table 1 summarizes the complexity of several versions of the scheduling problem

when the target machine is fully connected. Note that n is the number of tasks and e is

the number of arcs in the task graph. Note also that the results in Table 1 are obtained

21

when communication costs are not considered. Forest and interval-order are special

classes of task graphs. For more detailed definition and the formal discussion of NP-

completeness please refer (Ullman, 1975) (Hesham, Lewis, & Hesham, 1994).

Table 1: Complexity comparison of scheduling problem

Task Graph Task Execution

Time

Number of

Processors

Complexity

Tree Identical Arbitrary O(n)

Interval order Identical Arbitrary O(n)

Arbitrary Identical 2 O(e + n(n))

Arbitrary Identical Arbitrary NP-complete

Arbitrary 1 or 2 time units 2 NP-complete

Opposing forest Identical Arbitrary NP-complete

Interval order Arbitrary 2 NP-complete

Arbitrary Arbitrary Arbitrary NP-complete

As mentioned earlier a number of scheduling heuristic have been developed to deal with

many versions of the scheduling problem. Among the developed heuristics, List

scheduling has been used often due to its simplicity and over all good results. List

scheduling is a class of scheduling heuristics in which tasks are assigned priorities and

placed in a list ordered in decreasing magnitude of priority. Whenever tasks contend for

processors, the selection of tasks to be immediately processed is done on the basis of

priority with the higher-priority tasks being assigned processors first. If there is more than

one task of a given priority, ties are broken randomly.

2.3.1 Scheduling and the Battery Operated Device Model

Our research will focus in the software – application area and will specifically try to

address the question of energy aware scheduling of application tasks. There are several

models for which different algorithms have been proposed (see Appendix B). We take

look at one such model, discuss the scheduling algorithm proposed for this model (battery

22

operated devices), its variations and finally present our improvement for scheduling on

this model.

Let us understand the basic characteristics of this Battery Operated Model.

1. The model assumes fixed priority scheduling.

2. The model is for a real time system, in which task deadlines must be met.

The system configuration for the battery-operated processor under consideration is

described in Figure 8. The system consists of one DVS processor driven by a single

battery. The battery is used to power the processor through a DC-DC converter. The DC-

DC converter has an efficiency η = Iproc*Vproc/Ibatt*Vbatt, where Vbatt and Ibatt are the

battery voltage and current and Vproc and Iproc are the processor voltage and current.

Battery
DC-DC

Converter

DVS

Processor

Vbatt Vproc

Ibatt Iproc

Figure 8: System Level Configuration

Non-linear properties of the battery:

There are several important properties of the battery with respect to voltage scaling that

have been derived from the analytical model. We present two of the properties used for

developing the real-time scheduling heuristics (Ahmed & Chakrabarti, 2004)

(Chowdhary & Chakrabarti, 16-18 Oct. 2002):

23

Property 1: For a fixed voltage assignment (only task start times can be changed),

sequencing tasks in the non-increasing order of their currents is optimal when the task

loads are constant during the execution of the task.

Property 2: Given a pair of two identical tasks in the profile and a delay slack to be

utilized by voltage down-scaling, it is always better to use the slack on the later task than

on an earlier task.

c
u

rr
e

n
t

time

AET

 AETk

WCET

Inherent

Slack

Generated Slack

(AET < WCET)

Ik

ak tk dk

 WCETk

ak = Arrival time of Task Tk

dk = Deadline of Task Tk

tk = Start time of Task Tk

Ik = Current utilized for executing Task Tk

AETk = Actual execution time of Task Tk

WCETk = Worst case execution time of Task Tk

Figure 9: Task Description

Task description: A given task k is associated with the following parameters: the current

Ik , the worst case execution time WECTk, the arrival time ak, the start time tk, the actual

execution time AETk, the deadline dk and the period Pk. The slack associated with a task

is due to two factors: (1) the inherent slack due to the difference between the deadline and

the WCET and (2) the slack generated due to the actual execution time being less than the

worst case execution time.

24

Power-Down Modes:

In most embedded systems, a processor often waits for some events from its environment,

wasting its power. To reduce the waste, modern processors are often equipped with

various levels of power modes. In the case of the PowerPC 603 processor (Gary, et al.,

1994), there are four power modes, which can be selected by setting the appropriate

control bits in a register. Each mode is associated with a level of power saving and delay

overhead. For example, in sleep mode, where only the PLL and clock are kept running,

power consumption drops to 5% of full power mode with about 10 clock cycles delay to

return to full power mode.

For the rest of the dissertation, we assume that the problem is deterministic in the sense

that all information governing the scheduling decisions are assumed to be known in

advance. In particular, the task graph representing the parallel program and the target

machine is assumed to be available before the program starts execution. As in the

standard scheduling system, our system has four components: the target machine, the

parallel tasks (represented as a task graph), the generated schedule and the performance

criterion. The minimization of the schedule length is the performance criterion considered

in our scheduling model.

25

Chapter 3: Our Proposed Model and Research Approach

3.1 The Model

The current state of research is dominated by parallelization of code and how to achieve

high degree of speedup. The discussion about tradeoff between performance and energy

is limited based mainly on mathematical model with no concrete working model. Even on

the applied side there is a feeling that hardware is cheap, so let’s take advantage of it.

Hence, we felt the need for a robust model that incorporates key information from the

application domain is essential to study the tradeoff. We call our model the Energy

Aware Scheduling (EAS) Model (Figure 10).

Figure 10: Our EAS Model

Our main motivation is to move this from a simple speedup to the realm of energy

awareness. Now when we speak of energy awareness, a new constraint is placed on the

scheduling system. It now has to adopt a scheduling policy which is both traditional

performance focused and energy aware. The goal is to find the right harmony between

26

these two, slightly divergent goals. One is focused simply on getting the results as

quickly as we can whereas the other is focused on minimizing the energy used in getting

the results, which inherently means slowing down if necessary. The crucial question

which follows is how one achieves the right balance between these two differing

optimization criteria. We follow a simple 2-step approach.

3.1.1 Step 1: Offline Phase – Build Run Profile

We perform some runs to understand the degree of parallelization (also called run profile)

of a program. Based on this we seed our energy aware scheduling (EAS) algorithm in the

EAS Engine with the run profile (meaning understanding of the number of nodes

required, and time it takes to run the task). Using this we can then first allocate a set of

nodes for a given deadline.

3.1.2 Step 2: Online Phase – Dynamic Resource Adjustment

Here we dynamically adjust the number of nodes either up or down based upon actual

execution time (AET). This then becomes a continuous feedback loop to the EAS Engine,

which looks at the tasks expected execution time (EET), its actual execution time and

then takes measures to adjust the schedule by adjusting the overall nodes assigned or in

future the Dynamic Voltage Scaling (DVS) of each node to meet the overall deadline.

This allows us to meet two the two divergent goals of minimizing energy utilization and

performance.

3.2 The Model – Logical View

In general the program consists of a Master and Several worker processes. The Master

process builds the work queue and handles all scheduling of work tasks to the respective

worker processes. It goes through the work queue and makes scheduling decisions based

27

on performance and energy criteria. Once all the work has been distributed, it then waits

and gathers information back from the worker processes. After each worker process

replies back the master process it calls the Energy Aware Scheduling (EAS) Engine and

sends a terminate message to each worker process/node. The Worker processes simply

wait for work from the master process, execute the work given and wait for more work or

notification from master to terminate. The EAS Engine takes information about the EET

and AET of the task, makes decisions if any node level adjustments need to be made

(and/or DVS adjustments) and sends an appropriate feedback message back to the Master

process. The feedback mechanism is used as a learning mechanism to refine future

decisions made by the EAS Model (Figure 11).

Figure 11: EAS Model - Logical View

28

3.2 Research Vision for our Model

Our EAS – Model is designed to address the issue of energy aware in using computing

resources based on scheduling of tasks/jobs in such a manner that we no longer just focus

on performance meaning returning results as fast as we can but also try and minimize

energy utilized in the process while still meeting the desired deadline. Our EAS Model is

designed to handle this issue across the broad spectrum from larger “Cloud” computing –

HPC to small Node – Mobile devices (Figure 12).

Figure 12: Research Vision for our EAS Model

At the highest level we apply our model at the High Performance Computing – Cluster

level by adjusting the number of nodes used to complete a set of tasks and by simulation

show that this can be extended to the “Cloud” by introducing the concept of energy-index

for Cloud datacenters. Finally we extend the model to the node level and show how we

can minimize energy and still meet deadlines by using DVS techniques.

3.3 Research Approach

Conducting research in Algorithmic Graph Theory and related areas is no different from

say research conducted in the area of Artificial Intelligence, Computer Sciences or Social

29

Sciences at least in terms of the research methodology that the researcher has to follow.

In this article, I will discuss the research methodology or shall I say approach that I

intend to take in conducting my research in “Energy Aware Scheduling”.

For the purpose of this research study, I intend to adapt Cohen and Howe’s cyclic

multistage process for conducting research (Cohen & Howe, How evaluation guides AI

research, 1988) (Cohen & Howe, Toward AI research methodology, 1989). First I need to

step back and try and answer the question why do I need to define a methodology for my

research? By defining my research methodology, I intend to accomplish two things, first I

will be able to objectively answer the questions surrounding evaluation of the research

being conducted and secondly it will provide me a framework that will guide me and

keep me focused throughout the research. That being said; let us briefly discuss Cohen’s

cyclic multistage process for conducting research; which can be viewed as a five-stage

cycle (Figure 13).

Refining the topic to a task and view

Design the Method

Design and build the program

Need a program?

Design experiments

Analyze experimental results

Evaluation

Evaluation

Evaluation

Evaluation

Evaluation

Yes

No

Stage 1

Stage 2

Stage 3

Stage 5

Stage 4

30

Figure 13: Cycle of Research (Cohen & Howe, How evaluation guides AI research, 1988)

Cohen defines evaluation as a mechanism of progress both within and across research

projects. Evaluation can tell us how and why our methods and programs work and so, tell

us how our research should proceed. For the community, evaluation expedites the

understanding of available methods and so, their integration into further research.

3.4 Research Methodology

3.4.1 Stage 1: Relevance and Refinement

When researchers find particular topics fascinating the first stage of the research cycle

involves simultaneously refining the research topic to a task and identifying a view. A

task is something we want a computer to do, and a view is a pre-design, a rough idea of

how to do it. An important point to note is that this in itself is an iterative process (Cohen

& Howe, How evaluation guides AI research, 1988). Cohen provides a list of criteria for

evaluating research problems which is presented in Figure 14.

The Big Picture: Energy is fundamental to the quality of our lives. Nowadays, we are

totally dependent on an abundant and uninterrupted supply of energy for living and

working. It is a key ingredient in all sectors of modern economies. We know that energy

demand will increase significantly in the future. How then will we satisfy this huge

energy requirement in an environmentally friendly way? (The importance of energy,

2005)

Future directions: Energy supply must be sustainable and diverse, and energy needs to

be used more efficiently. A sustainable energy supply, both in the short- and the long-

term, is needed for promoting both economic development and people's quality of life, as

well as protecting the environment. We also need a greater diversification of energy

31

resources - if we are largely dependent on one fuel source, we risk price rises and supply

disruptions. Energy is a precious resource which must be conserved. Improved energy

efficiency, therefore, in our homes, factories, transport and in our day to day activities

needs to be strongly encouraged.

1. Is the task significant? Why?

(a) If previously defined, how is your reformulation an improvement?

2. Is your research likely to meaningfully contribute to the problem? Is the task tractable?

3. As the research task becomes specifically defined, is it still a representative class of tasks?

4. Have any interesting aspects been abstracted away or simplified?

5. What are the sub-goals of the research? What key research tasks will be or have been

addressed and solved as part of the project?

6. How do you know when you have successfully demonstrated a solution to the task? Is the

task one in which a solution can be demonstrated?

Figure 14: Criteria for Evaluating Research Problems

A sub-goal of this research will be to understand level of energy awareness amongst

consumers and consumer attitudes to energy and related issues. I intend to accomplish by

preparing a questionnaire dealing with energy awareness and attitudes and then

performing statistical analysis on the data collected based on various demographics to

identify with variables have significance. In the dissertation, I hypothesize that people are

becoming more and more energy aware and want to incorporate energy awareness in

various aspects of their lives and since mobile devices are becoming ubiquitous and more

prevalent in our lives and their energy constraint, the problem of research in this

dissertation namely “Energy aware scheduling” is significant for a social standpoint.

32

There is a lot of research being done in Europe on intelligent energy usage (Intelligent

Energy Europe, 2007). There have also been various survey studies done on Energy

conservation and awareness in households sector (Jaber, Mamlook, & Awad, Dec 2003),

saving money through energy efficiency (Saving money through Energy Efficiency, Feb

2004), energy home improvements (Ulrich & Flagg, 2003), etc. The Canadian Electricity

Association studied the attitudes to Canadians towards energy efficiency (Canadian

Electricity Association, 2006). Here in the United States, the U.S Department of Energy

(DOE) is spearheading research in several directions related to energy awareness and

energy efficiency. Research has been done with regards to home appliance buying trends

(U.S. Department of Energy, 1999).

3.4.2 Stage 2: Design the Method

At this stage one’s view is refined to a method for solving the task. The method could be

a single algorithm such as List Scheduling, Coffman and Graham’s 2-P Scheduling

algorithm, etc. We maintain this design the method step to remind us that we don’t jump

immediately into building programs and writing code but first decide how we want to

solve the tasks. Cohen presents a list of criteria for evaluating methods; which are listed

below in Figure 15 (Cohen & Howe, How evaluation guides AI research, 1988) (Cohen &

Howe, Toward AI research methodology, 1989).

33

1. How is the method an improvement over existing methodology?

(a) Does it account for more situations (inputs)?

(b) Does it produce a wider variety of desired behaviors (outputs)?

(c) Is the method expected to be more efficient (space, solution time, and so on)?

(d) Does it hold more promise for further development (new paradigm)?

2. Does a recognized metric exist for evaluating the performance of your method?

3. Does it rely on other methods?

4. What are the underlying assumptions?

5. What is the scope of the method?

(a) How extendible is it? Will it easily scale up to a larger knowledge base?

(b) Does it exactly address the task? Portions of the task? A class of tasks?

(c) Could it or parts of it be applied to other problems?

(d) Does it transfer to complicated problems?

6. When it cannot provide a good solution, does it do nothing or does it provide bad solutions

or does it provide the best solution given the available resources?

7. How well is the method understood?

(a) Why does it work?

(b) Under what circumstances, won’t it work?

(c) Are the limitations of the method inherent or simply not yet addressed?

(d) Have the design decisions been justified?

8. What is the relationship between the problem and the method? Why does it work for this

task?

Figure 15: Criteria for evaluating methods

3.4.3 Stage 3: Build a Program

After the second stage of “Design the method” we will move on to the next stage which

is “Build a Program”. Cohen’s criteria for evaluating method implementation are

presented in Figure 16 below. In this stage we will actually implement our scheduling

algorithms and other comparative algorithms. We will be able to set up different energy

policy functions and then run these different policies and compare them in terms of how

effective were they in effectively utilization of the available energy in a battery and HPC

environment using MPI and build a simulation for extending the model to “Cloud”

computing.

34

1. How demonstrative is the program?

(a) Can we evaluate its external behavior?

(b) How transparent is it? Can we evaluate its internal behavior?

(c) Can the task capabilities be demonstrated by a well-defined set of test cases?

(d) How many test cases does it demonstrate?

2. Is it specially tuned for a particular example?

3. How well does the program implement the method?

(a) Can you determine the program’s limitations?

(b) Have parts been left out or kludged? Why and to what effect?

(c) Has implementation forced detailed definition or reevaluation of the method?

(d) If reevaluation was required, How was this accomplished?

4. Is the program’s performance predictable?

Figure 16: Criteria for Evaluating Method Implementation

3.4.4 Stage 4: Design Experiments

After the third stage of “Build a Program” we will move on to the next stage which is

“Design Experiments”. Cohen’s criteria for evaluating the experiments design are

presented in Figure 17 below.

1. How many examples can be demonstrated?

(a) Are they qualitatively different?

(b) Do the examples illustrate all the claimed capabilities?

(c) Do the examples illustrate the limitations?

(d) Is the number of examples sufficient to justify the inductive generalizations?

2. Should the program’s performance be compared to a standard such as another program, or

experts or novices, or its own tuned performance?

3. What are the criteria for good performance? Who defines the criteria?

4. Does the program purport to be general (domain independent)?

(a) Can it be tested on several domains?

(b) Are the domains qualitatively different?

(c) Do they represent a class of domains?

(d) Should there be inter-domain performance comparisons?

(e) Is the set of domains sufficient to justify inductive generalization?

5. Is a series of related programs being evaluated?

(a) Can differences in programs and their behavioral manifestations be determined?

(b) Do the implementation differences of programs affect the generalizations?

(c) Were difficulties encountered in implementing the method in other programs?

Figure 17: Criteria for Evaluating the Experiment Design

35

Various experiments will be run on the proposed energy management algorithm, other

static scheduling algorithms, and the list scheduling heuristic using different graphs. The

two most important properties of the graphs that the algorithms will be tested against are:

a) Number of nodes in the graph, and

b) The Density/Sparseness of the graph

3.4.5 Stage 5: Analyze the Experimental Results

After the fourth stage of “Design Experiments” we will move on to the next stage which

is “Analyze the Experimental Results”. Cohen’s criteria for evaluating what the

experiments told us are presented in Figure 18 below.

1. How did program performance compare to its selected standard (other programs)?

2. Is the program’s performance different from predictions of how the method should perform?

3. How efficient is the program in terms of space and knowledge requirements?

4. Did the program demonstrate good performance?

5. Did you learn what you wanted from the program and experiments?

6. Is is easy for the intended users to understand?

7. Can you define the program’s performance limitations?

8. Do you understand why the program work or doesn’t work?

(a) What is the impact of changing the program even slightly?

(b) Does it perform as expected on examples not used for debugging?

(c) Can the effect of different control strategies be determined?

(d) How does the program respond if input is rearranged, noisy, or missing?

(e) What is the relationship of characteristics of the test problems and performance?

(f) How generalized is the understanding of the method and its characteristics?

Figure 18: Criteria for Evaluating What the Experiments Told Us

In this stage we will compare the performance results of our proposed energy

management policy algorithm with that of the other static scheduling algorithms as well

the heuristic list scheduling algorithm. We will also provide the Big-O for our proposed

36

algorithm and compare it with that of the other algorithms; this will also be accompanied

with the space analysis for each program. This will be followed by an understanding of

the limitation of the proposed algorithm such as communication costs/delays and how

these may or may not affect the generalizations of the findings.

3.5 Application Domains for the Energy Aware Scheduling Problem

Any academic research has to be eventually related to specific application domains in

which that research can be applied. Our energy aware scheduling problem is prevalent in

several application domains such as mobile technology applications, wireless sensor

networks, grid computing, animal field studies, oceanography, space technology, etc.

Basically anywhere battery technology is being used or minimizing energy utilization is a

key objective function. In this research we will focus on two application domains; one is

the mobile devices and the second is the grid/parallel computing domain. In the

grid/parallel computing domain we plan on teaming with the bioinformatics group to run

several long running programs on a grid computing cluster and simultaneously minimize

various objective functions key amongst which will be the minimization of energy.

The rest of the dissertation is organized as follows.

1) In chapter 4 we apply our EAS model to a HPC environment and more specifically to

a commonly used application called BLAT (which is similar to BLAST) in the

Bioinformatics domain.

2) In chapter 5 we extend our EAS model to incorporate a feedback mechanism. Our

EAS Engine uses the concept of “Run-Profiles” to make intelligent scheduling

decisions based on previous AET knowledge to adjust the schedule so as to minimize

energy utilization while still meeting task/job deadlines.

37

3) In chapter 6 we extend and apply our EAS model to a more complex application

within the Bioinformatics domain namely “Assembling of Short Reads”. Assembling

of sequences is a very important and frequently used application by bioinformatics

researchers.

4) In chapter 7 we take the next big step and extend our EAS model to the new paradigm

of “Cloud” computing. We use simulation techniques which applies our EAS Model

to answer important “What if” scenarios for both customers/users and operators of

“Cloud” systems/clusters.

5) In chapter 8 we stretch our EAS Model to touch the other end of the spectrum,

namely small Node level and Mobile devices and introduce additional algorithms

such as Run-Queue peek and use DVS techniques to address the “Energy Awareness”

aspects for scheduling purposes.

6) Finally in chapter 9 we present our overall conclusions and future research directions.

38

Chapter 4: Energy aware scheduling in High End Computing

US Data centers consumed 5 MKW of energy in 2005 (Snyder, 2008), which is

equivalent to five 1000 MW power plants. The total energy utility bills in the US alone

amount to $2.7 billion annually and world consumption is estimated to cost $7.2 billion

annually (AMD, 2007) (He, 2008). Major California companies are being forced to

relocate due to high energy costs, e.g. Google has opened a new datacenter in the

Midwest in Council Bluffs (Foley, 2008) and despite economic slump; Yahoo plans a

new datacenter in La Vista, Nebraska (Yahoo, 2008). Clearly “Energy” is becoming a

key business driver. Given these facts it has become imperative for us to consider the

efficient usage of energy is all aspects of data center management. In this section we will

also focus on studying energy aware scheduling mechanism in a high end computing

environment such as a grid cluster. We will use applications in the bio-informatics

domain which will be scheduled on the Holland Computing Center (HCC) grid. This

study will come up with an Energy Aware scheduling layer (Figure 19) for HEC such as

clusters and grids and make intelligent scheduling decisions which will balance energy

minimization requirements against performance based upon user needs.

Grid Monitoring & Management

Energy Aware HEC Layer

Applications

Figure 19: Energy aware scheduling layer for HEC

39

We will take the following approach to test our solution and proposed energy aware

scheduling algorithms.

1) We will begin studying our proposed algorithm using simulation techniques where

we will tailor the environment using various parameters and test our proposed

scheduling algorithms.

2) Next we will run some simple bio-informatics applications which are inherently

parallel, such as running a program to find if a particular gene sequence is present in a

particular chromosome. In this problem we can run the program with the given gene

sequence and a chromosome from 1 – 23 on 1 – 23 nodes on a cluster, this is because

there is no dependency in running the gene sequence against the different

chromosomes.

3) Next we will increase the complexity of the problem by introducing dependency

within the problem space such that output of one run is input to the following run.

This will require the scheduling algorithm to be smart enough to dynamically adjust

to the runtime slack and schedule the follow-up task appropriately. Here we may have

to deal with communication costs and handle task deadlines.

4) We will also study solutions from the standpoint of feasibility versus performance in

the backdrop of energy utilization, the main objective being to understand how these

impacts and influence energy utilization.

4.1 High Performance Computing and Amdahl’s Law

In a High Performance Computing (HPC) environment, the objective is to parallelize as

much of the program as we can, because of the restrictions placed by Amdahl’s Law

(Amdhal, 1967). Amdahl's law is defined by the formula:

40

1

(1 − P) +
P
N

As N → ∞, the maximum speedup tends to 1 (1 − P)⁄ . In practice, performance/price

falls rapidly as N is increased once there is even a small component of (1 − P) (Amdhal,

1967) (Cho & Melhem, 2008) (Amdahl’s Law, n.d.) (Hill & Marty, 2008). A great part of

the craft of parallel programming consists of attempting to reduce (1 – P) to the smallest

possible value. The Figure 20 below shows the speedup curves for various values of P.

Figure 20: Amdahl's Law

For our experiments we will be using the HPC environments available at UNO

(University of Nebraska at Omaha). We initially start out with the Blackforest cluster (16

nodes) (Blackforest Computing Cluster, n.d.), and then move to the Firefly cluster, a true

commercial strength HPC at Holland Computing Center. The Firefly is a 1,151-node

super-computer cluster of Dell SC1435 servers. Each node contains two sockets, and

0

10

20

30

40

50

60

70

80

90

100

Sp
ee

d
u

p

Number of Nodes

Amdahl's Law

99%
98%
97%
96%
95%
90%
75%
50%

http://en.wikipedia.org/wiki/Parallel_programming

41

each socket holds a quad-core (four 64-bit AMD Opteron 2.2 GHz processors) (Holland

Computing Center, n.d.).

4.2 Bioinformatics & High End Computing

Bioinformatics can be broadly defined as the creation and development of advanced

information and computational techniques for problems in biology/genetics domain. It is

the set of computing techniques used to manage and extract useful information from the

DNA/RNA/protein sequence data which is continually being generated (at very high

volumes) by automated techniques (e.g., DNA sequencers, DNA microarrays) and stored

in large public databases (e.g., GenBank, Protein DataBank). Most methods used for

analyzing genetic/protein data have been found to be extremely computationally

intensive, providing motivation for the use of powerful computers or systems with high

throughput characteristics.

Comparing biological sequences is one of the most important Bioinformatics problems

because it is critical for recognition and classification of organisms. The software

package BLAST (Basic Local Alignment Search Tool) has been the method of choice for

many biomedical researchers to measure the degree of similarity among biological

sequences. Recently, a modified version, called BLAT (the BLAST-Like Alignment

Tool) is quickly becoming a very popular tool for similarity measures using the concept

of sequence alignment. BLAT, developed by Jim Kent at UCSC to identify similarities

between DNA and protein sequences, is an alignment tool like BLAST, but it is

structured differently. On DNA, BLAT works by keeping an index of an entire genome in

memory. Thus, the target database of BLAT is not a set of GenBank sequences, but

instead an index derived from the assembly of the entire genome. The index which uses

http://en.wikipedia.org/wiki/BLAST
http://en.wikipedia.org/wiki/Jim_Kent
http://en.wikipedia.org/wiki/University_of_California_Santa_Cruz

42

less than a gigabyte of RAM consists of all non-overlapping 11-mers except for those

heavily involved in repeats (Sequence and Annotations downloads, n.d.) (Genome

Bioinformatics, n.d.).

In this section we propose an energy aware scheduling (EAS) technique for programs in a

cluster environment and apply the EAS technique to the bioinformatics domain and more

specifically to the BLAT software package. It is important to note that we can parallelize

the BLAT program without losing any biologically significant information relevant to the

output of the program. This means that parallelizing the program does not impact the

conclusions that bioinformatics researchers may draw from the output of BLAT.

Bioinformatics includes methodologies for processing information characterized by large

volume, in order to speedup researches in molecular biology. Sequence analysis, genome

sequence comparison, protein structure prediction, pathway research, sequence

alignment, phylogeny tree construction, etc. are some of the common operations

performed on such biological data (Dayde, 2006). However, bioinformatics applications

typically are distributed in different individual projects and they require high

performance computational environments.

Most of the previous work done focuses on performance curves that are inherent when

one moves a parallelizable application from a single desktop to a HPC cluster

environment. Earlier work in parallel sequence search mostly adopts the query

segmentation method (Braun, Pedretti, Casavant, Scheetz, & Roberts, 2001) (Chi, Shoop,

Carlis, Retzel, & Riedl, 1997), which partitions the sequence query set. This is relatively

easy to implement and allows the BLAST search to proceed independently on different

43

processors. However, as databases are growing larger rapidly, this approach will incur

higher I/O costs and have limited scalability. Other work follows the more recent trend of

pursuing database segmentation (Bjornson, Sherman, Weston, Willard, & Wing, 2002),

where databases are partitioned across processors. This approach better utilizes the

aggregate memory space and can easily keep up with the growing database sizes. Our

approach and experiments uses both these approaches and tries to find which approach is

suitable under what circumstances. We use database segmentation approach in the

experiment with All query sequences per chromosome, a query merge approach with the

experiment of merged query sequences per chromosome (Note here that the query

segmentation approach would not have been because BLAT is optimized for running

large number of query sequences which are loaded in memory), and finally a combination

of the query & database segmentation approach with the experiment of all query files

against all chromosome files.

Unlike BLAST, which has been around for a while, the BLAT program which is an

alignment tool like BLAST, but it is structured differently is fairly new and there are not

a lot of studies on the performance of BLAT in a High Performance Computing

environment. We feel this is warranted because BLAT is starting to be more widely used

(Sequence and Annotations downloads, n.d.) (Genome Bioinformatics, n.d.). Along with

this we would like to consider energy utilized as an optimizing criterion and understand

its relationship with performance and come up with an energy aware scheduling

algorithm that balances the both energy utilized and performance for tasks run in a HPC

environment.

44

4.3 From Simple Speedup to the Realm of Energy Awareness

Our main motivation is to move this from a simple speedup to the realm of energy

awareness. Now when we speak of energy awareness, a new constraint is placed on the

scheduling system. It now has to adopt a scheduling policy which is both traditional

performance focused and energy aware. The goal is to find the right harmony between

these two, slightly divergent goals. One is focused simply on getting the results as

quickly as we can whereas the other is focused on minimizing the energy used in getting

the results, which inherently means slowing down if necessary. The crucial question

which follows is how one achieves the right balance between these two differing

optimization criteria.

This research also highlights the need to carefully develop a parallel model with energy

awareness in mind, based on our understanding of the application and then appropriately

designing a parallel model that works well for the specific application and potentially

similar applications within that domain. The Figure 21 describes the general program flow

for our implementation of the Energy Aware Scheduler on the HPC cluster (Blackforest

and Firefly). The easblat program is written in C++ and uses MPI (Message Passing

Interface) to handle communication between multiple nodes in the cluster (A Portable

Implementation of MPI, n.d.) (Gropp, Lusk, & Skjellum, Using MPI: Portable Parallel

Programming with the Message Passing Interface, Oct 1994) (Gropp, Lusk, & Thakur,

Using MPI-2: Advanced Features of the Message Passing Interface, Nov 1999). In

general the program consists of a Master and Several worker processes. The program first

initializes the MPI environment and then the process with rank=0 is designated as the

master process and the rest are designated as worker processes

45

Submit Bio-

informatics Job

to EAS

SendWork to

Worker node

SendWork

Completion to

Master

EAS Master

process (Builds

EAS for Tasks)

Head Node(s)

S1 S2 S3 S4

S5 S6 S7 Sn

Compute Nodes

EAS Worker

process (Runs

Tasks)

UNO’s Black forest cluster

has 3 login/head nodes and

16 compute nodes

Holland Computing Center’s

Firefly Cluster over 1000

compute nodes

Figure 21: Process Flow Diagram for EAS Program

The Master process builds the work queue and handles all scheduling of work tasks to the

respective worker processes. It goes through the work queue and makes scheduling

decisions based on performance and energy criteria. Once all the work has been

distributed, it then waits and gathers information back from the worker processes. After

each worker process replies back the master process sends a terminate message to each

worker process/node. The Worker processes simply wait for work from the master

process, execute the work given and wait for more work or notification from master to

terminate.

46

4.4 Implementation and Results for BLAT in HPC

A key contribution of this dissertation is the importance of data design. We hypothesize

that this data design will improve the degree of parallelism, by modifying the why data is

structured to maximize the usage of parallelism. In order to support this we design the

following experiments.

1) All query sequences per chromosome

2) Merged query sequences per chromosomes, and

3) All query files against all chromosome files.

Our goal is to make energy awareness and scheduling decisions so as to run the BLAT

program against given query sequences for a given genome/chromosome file. In most

cases researchers today are running this on local desktops and each sequence search is

run sequentially and the entire result set may take several hours to days depending on the

number of search sequences. Our intention is to first bring some amount of parallelism to

this process and then a degree of energy awareness to the scheduling aspects to such tasks

from various researchers. With that in mind we had to parallelize the process. Hence we

decided to run the following experiments which afforded varying degrees of parallelism

and compare them.

The human chromosome files used for these experiments were downloaded from the

UCSC Genome bio-informatics website (Sequence and Annotations downloads, n.d.).

We used build 36.1 finished human genome assembly (hg18, Mar. 2006). The

chromosomal sequences were assembled by the International Human Genome Project

sequencing centers. We used the ChromFa.zip file which is the latest dataset as of Dec

47

2008 (Sequence and Annotations downloads, n.d.) (Genome Bioinformatics, n.d.). We

used MPI (GNU) to parallelize the runs on multiple nodes, which was a configurable

parameter. Our experiments used sequences gathered from researchers at UNMC

(University of Nebraska Medical Center) and parallelize the runs to study the

performance characteristics under three different conditions. For our tests we used 24

query sequences from a researcher at UNMC. The table below (Table 2) shows some

characteristics of these sequences.

Table 2: Query Sequences used for Analysis

QUERY

FILES

.fa size

(kb)

.2bit size

(kb)

of

lines

of

seqs

MCL_chr1.txt 3311705 1089176 14186 7093

MCL_chr2.txt 2378142 785204 10254 5127

MCL_chr3.txt 1772666 584699 7640 3820

MCL_chr4.txt 1432124 466415 5970 2985

MCL_chr5.txt 1722396 546919 36481 3541

MCL_chr6.txt 1771709 582893 7520 3760

MCL_chr7.txt 1863885 614151 8108 4054

MCL_chr8.txt 1492613 493893 6458 3229

MCL_chr9.txt 1700540 564950 7404 3702

MCL_chr10.txt 1486654 492908 6438 3219

MCL_chr11.txt 2299625 759437 9970 4985

MCL_chr12.txt 1849123 609289 7854 3927

MCL_chr13.txt 703781 231659 2962 1481

MCL_chr14.txt 1302834 430629 5598 2799

48

Each query file was a FASTA format text file of sequences with varying number of

sequences in each file. Note that the number of nodes 25 comes from the fact that in the

human genome we have Chromosome 1 to Chromosome 22 and we have Chromosome

X, Chromosome Y and Mitochondrial DNA material. We run the merged query

experiment to study the benefits of merging the query files because BLAT is optimized to

run large number of sequences in memory.

Firefly Cluster: The firefly cluster is a large commercial strength cluster at the Holland

Computing Center which comprises of 1,151-node supercomputer cluster of Dell SC1435

servers. Each node contains two sockets, and each socket holds a quad-core (four 64-bit

AMD Opteron 2.2 GHz processors). The computational network utilizes an 800 MB/sec

MCL_chr15.txt 1024197 338618 4448 2224

MCL_chr16.txt 2320925 763311 10058 5029

MCL_chr17.txt 2863504 943539 12372 6186

MCL_chr18.txt 530863 176476 2376 1188

MCL_chr19.txt 3584718 1193013 15994 7997

MCL_chr20.txt 1297151 430415 5752 2876

MCL_chr21.txt 736972 243709 3202 1601

MCL_chr22.txt 1236062 410443 5464 2732

MCL_chrX.txt 1293959 423823 5438 2719

MCL_chrY.txt 53658 17006 200 100

Total 40029806 13192575 202147 86374

49

Infiniband interconnect. Each node has its own 8 GB of memory, and 73 GB of disk

space (Holland Computing Center, n.d.).

The experiments below were conducted on the Holland Computing Center’s firefly

cluster.

Experiment 1: The chart below (Figure 22) shows the execution time of all query files

per chromosome by nodes. When node = 1 it would be the same as running it

sequentially on a local desktop. In this case when node is 1 we get a total execution time

of 6:16 (hh:mm). When number of nodes = 25 we get a total execution time of 0:28,

which is a speedup of 13. Note however that when we vary nodes from 20 – 25, we do

not see any additional gains, this is because we have already used the inherent slack in

the schedule and there are no additional gains to be made by increasing the number of

processors.

Figure 22: QbyChr execution on Firefly Cluster

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Ti
m

e
in

 h
o

u
rs

Number of Nodes

QbyChr execution on Firefly Cluster

Q by Chr

50

Experiment 2: The chart below (Figure 23) shows the execution time of a single merged

query file per chromosome by nodes. The merged file contains all the query sequences

from the submitted files. When node = 1 it would be the same as running it sequentially

on a local desktop. In this case when node is 1 we get a total execution time of 4:45

(hh:mm). When nodes = 25 we get a total execution time of 0:22, which is a speedup of

12. Note however that when we vary nodes from 20 – 25, we do not see any additional

gains; this is because we have already used the inherent slack in the scheduling and there

can be no gains made by increasing the number of processors.

Figure 23: QBigbyChr execution on Firefly Cluster

We also see a certain amount of speedup when we merge query files. This is because

BLAT is optimized to handle large number of sequences and we do not have the

additional overhead of opening, reading and closing multiple files as all the sequences are

loaded upfront into memory since they are in a single file. The average speed up achieved

0:00

1:12

2:24

3:36

4:48

6:00

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Ti
m

e
in

 h
o

u
rs

Number of Nodes

QBigbyChr execution on Firefly Cluster

Qbig by Chr

51

by merging is 1.31 and varies between 1.24 and 1.39 depending on number of processors

used.

Experiment 3: The chart below (Figure 24) shows the execution time of all query files v/s

all chromosome files by nodes. When node = 1 it would be the same as running it

sequentially on a local desktop. In this case when node is 1 we get a total execution time

of 6:20 (hh:mm). When nodes = 25 we get a total execution time of 0:16, which shows a

speedup of 22 compared to the query execution by chromosome method. With nodes =

150 we see an execution time of 0:04 which is a speedup of 86. If we had 1176

processors (24 query files times 49 chromosome files) we would have seen this go down

to the max execution for one combination of query file and chromosome file out of the

1176 combinations this is the best we can hope to achieve. Now this can vary depending

on the capability of the hardware used.

Figure 24: AllAll execution on Firefly Cluster

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

7
5

1
5

0

2
5

0

Ti
m

e
in

 h
o

u
rs

Number of Nodes

AllAll execution on Firefly Cluster

AllQ by AllC

1 node: 6:18 and 200 nodes: 0:03 (hh:mm)

52

Comparisons:

The chart below (Figure 25) shows a comparison of all the 3 experiments by nodes. When

node = 1 it would be the same as running it sequentially on a local desktop. In this case

when node is 1 we see that the merged query approach is better than the other two

approaches.

Figure 25: AllAll, QBig & QbyChr on Firefly Cluster

We also note that this true when nodes 1 – 5. After five nodes we see that the “All Query

All Chromosome” approach gives us better results. With nodes equal to 25 – 30, we will

get twice the speedup with the “All Query All chromosome” approach. One can also note

that the Merged Query approach always performs better that the Query by Chromosome

approach.

A closer look at the above charts with a focus on nodes from 1 – 10 (Figure 26) and 11 –

25 (Figure 27) is presented below.

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 2 3 4 5 6 7 8 9 10 1112 1314 1516 1718 1920 2122 232425

Ti
m

e
in

 h
o

u
rs

Number of Nodes

AllAll, QBig and QbyChr on Firefly Cluster

Q by Chr

Qbig by Chr

AllQ by AllC

53

Figure 26: Details on Nodes 1 - 10

The charts suggest that the Merged Query approach and the All Query All Chromosome

approach consistently perform better than the Query by Chromosome approach. For

nodes 1 – 5, we see that the Merged query approach is better, for nodes 6 – 10 the

Merged Query and All Query All Chromosome approach have similar performance and

for nodes 11 and beyond the All Query All Chromosome approach out performs the other

two approaches.

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 h
o

u
rs

Number of Nodes

AllAll, QBig and QbyChr on Firefly Cluster

Q by Chr

Qbig by Chr

AllQ by AllC

54

Figure 27: Details on Nodes 11 - 25

Let us try and answer the question how parallelizable is the program? In-order to answer

this question we try and plot the speedup for each node and place these by the curves in

Figure 28. From the curves below we can conclude that the QBigbyChr and QbyChr have

a speedup of around 25 times (97% parallelizable) and the AllAll approach has close to

100 times the speedup (99% parallelizable).

Figure 28: Number of Nodes v/s Speedup

0:00

0:07

0:14

0:21

0:28

0:36

0:43

0:50

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
 in

 h
o

u
rs

Number of Nodes

AllAll, QBig and QbyChr on Firefly Cluster

Q by Chr Qbig by Chr AllQ by AllC

1.00

6.00

11.00

16.00

21.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Sp
ee

d
u

p

Number of Nodes

Number of Nodes vs Speedup

AllAll
QBigbyChr
QbyChr
99%
98%
97%
96%

55

4.5 Scheduling – Energy & Deadline aware

In this section we bring together our understanding of scheduling, High Performance

Computing and our specific knowledge about BLAT in HPC. Using our understanding of

the speedup profile for the BLAT application, we develop a simple machine learning

energy aware scheduling algorithm that takes into account the run profile, the number of

sequences that were processed, the number of nodes that were used for processing and

the time it took to execute. Now when new BLAT queries are submitted along with their

desired deadline, the algorithm uses information on the number of sequences that need to

be processed, to allocate the least number of nodes needed to meet that deadline, thus

managing performance as well as energy to finish the tasks. We used 4 groups of query

files each group had 5 files with varying number of sequences as shown in the table

below (Table 3).

Table 3: Query Groups used for Analysis

Groups Query Files Total # of Sequences

G1 5 22566

G2 10 40530

G3 15 55946

G4 20 79222

Each group of query sequence files was run against 5 different deadlines (15, 30, 45, 60,

and 75 minutes). In each instance we found (Figure 29 below) that the actual execution

time (AET) met the given deadline based on the minimum number of nodes assigned for

each task group, thus optimizing both performance and energy considerations.

56

Figure 29: Scheduling – Energy & Deadline aware

The (Table 4) below shows the actual execution time (AET) being met in each instance

given deadlines (15, 30, 45, 60, and 75 minutes). It also shows the number of nodes

scheduled to perform the task. One can see that as the deadline increases, we have more

time to perform the task enabling us to schedule the least number of nodes (hence

managing energy) while still meeting the deadline.

Table 4: Least nodes scheduled to meet deadline

Groups AET (min) Deadline (min) Nodes Used

G1

14 15 10

27 30 6

42 45 5

57 60 4

70 75 3

G2

13 15 15

28 30 9

43 45 7

0

15

30

45

60

75

90

Ti
m

e
in

 m
in

u
te

s

Sequence Grouping

Execution times vs Deadline based on Energy Aware
Scheduling

Execution Time Deadline

G1 G2 G3 G4

57

58 60 5

68 75 4

G3

13 15 22

28 30 12

41 45 8

56 60 6

71 75 5

G4

13 15 30

26 30 15

43 45 9

55 60 7

64 75 6

4.6 Summary of Results

This section provides a research methodology for conducting research in Algorithmic

Graph Theory with the focus on Energy Aware Scheduling in the computer science

discipline. It addresses the most important question for conducting research, which is its

“significance”. The why questions are dealt with and supporting arguments are made for

the importance of improving energy efficiency in general and in the specific for mobile

battery operated devices. It is argued that energy management plays a vital role not only

in hardware design but also in user-application, middleware and operating system design.

The main research goal is the focus on techniques, specifically algorithmic ones to scale

down energy needs whenever the system performance can be relaxed. The dissertation

identifies the research strategy that will be followed with clearly defined stages for the

58

research life cycle. Each stage in the research life-cycle is considered carefully and

appropriate evaluation criteria are imposed at every stage before we move to the next

stage. This ensures that we build the appropriate internal and external validity factors for

conducting this research at every stage of the research life cycle.

In this section we have also proposed an enhanced dynamic task scheduling

algorithm using task run-queue peek technique for battery operated DVS systems that

further maximize the residual charge and the battery voltage. This algorithm is expected

to have a better battery performance compared to the other algorithms. Our future

research will focus on using the information regarding expected execution time (EET)

instead of WCET because WCET is a very conservation approach used in the Off-line

Phase to schedule tasks. We intend to explore both the suggested approaches of

computing EET namely conservative and risky and study their performance relative to

each other.

In this section we proposed a HPC based approach to BLAT, implemented the approach

and ran multiple experiments for different datasets. We found that the BLAT program is

highly parallelizable and has a speedup of 99%. The experiments suggests that the

merged query approach and the hybrid approach of all query segmentation and database

segmentation consistently performs better that just the database segmentation approach.

We also find that we one has only about 5 nodes it is better to use the merged query

approach, for number of nodes 6 – 10, we would be better off using the merged query

approach, and then beyond 10 nodes we do see a whole lot of performance gains, but this

is also the space in which we can do more research to find the right balance between

59

performance and energy utilized by scheduling the BLAT jobs such that they run in a

reasonable time yet utilize minimum energy and resources.

This research highlights the need to carefully develop a parallel model with energy

awareness in mind, based on our understanding of the data and application. This will help

us in designing a parallel model that works well for the specific application and

potentially similar applications within that domain. Many of the bioinformatics

application follow a similar structure/pattern, where we have a set of input query

sequences, which go against an existing set of database genome sequences (such as

DNA/RNA/Protein) and output results in a specified output file(s) or directory. These

programs also take optional parameters which are used as tuning options for the program

itself such as MinScore.

Our future research will focus on moving away from a simple heuristic and explore the

use of additional AI techniques such as machine learning algorithms to enhance the

modeling, which would allow for a more automated way of dealing with energy

utilization and performance of the HPC environment.

60

Chapter 5: Run-Profile Approach towards Energy aware scheduling

Our main motivation is to move this from a simple speedup to the realm of energy

awareness. Now when we speak of energy awareness, a new constraint is placed on the

scheduling system. It now has to adopt a scheduling policy which is both traditional

performance focused and energy aware. The goal is to find the right harmony between

these two, slightly divergent goals. One is focused simply on getting the results as

quickly as we can whereas the other is focused on minimizing the energy used in getting

the results, which inherently means slowing down if necessary. The crucial question

which follows is how one achieves the right balance between these two differing

optimization criteria.

5.1 Enhancing our Two Step approach

We follow a simple 2-step approach as proposed in (Pawaskar & Ali, 2010). However in

Phase 1 we use the different run profiles created based on the experiments conducted

above. The run profiles are based on the 3 experimental approaches namely (1) Database

segmentation, (2) Query merge and (3) Hybrid. Our goal is to study and examine the

behavior of the EAS Model proposed in () when the first phase is seeded with differing

run profiles. Obviously each of these run profiles will result in varying schedules during

the initial runs, but can the EAS Model adjust appropriately over time and how long

(number of runs) does it take for the EAS Model to return comparable results.

Step 1: Offline Phase – Build Run Profile

We perform some runs to understand the degree of parallelization (also called run profile)

of a program. Based on this we seed our energy aware scheduling (EAS) algorithm in the

61

EAS Engine with the run profile (meaning understanding of the number of nodes

required, sequence size and time it takes for the program (BLAT) to run. Using this we

can then first allocate a set of nodes for any input sequences based on the number of

sequences and given deadline.

Step 2: Online Phase – Dynamic Resource Adjustment

Here we dynamically adjust the number of nodes either up or down based upon actual

execution time (AET). This then becomes a continuous feedback loop to the EAS Engine,

which looks at the tasks expected execution time (EET), its actual execution time and

then takes measures to adjust the schedule by adjusting the overall nodes assigned or in

future the Dynamic Voltage Scaling (DVS) of each node to meet the overall deadline.

This allows us to meet two the two divergent goals of minimizing energy utilization and

performance.

62

Submit Bio-

informatics Job to

EAS

SendWork to

Worker node

SendWork

Completion to

Master

Head Node(s)

S1 S2 S3 S4

S5 S6 S7 Sn

Compute Nodes

EAS Worker

process (Runs

Tasks)

EAS Master

process (Builds

EAS for Tasks)

Energy Aware

Scheduling Engine

Feedback of Actual

Completion Time
of Node or DVS

Adjustments

Run Profile - QBigByChr

Run Profile - QByChr

Run Profile - AllAll

Figure 30: Process Flow Diagram for MPI Program with EAS Engine & Run Profiles

This research also highlights the need to carefully develop a parallel model with energy

awareness in mind, based on our understanding of the application and then appropriately

designing a parallel model that works well for the specific application and potentially

similar applications within that domain. Figure 30 describes the general program flow for

our implementation of the Energy Aware Scheduling (EAS) Engine on the HPC clusters

(blackforest and firefly). The easblat program is written in C++ and uses MPI (Message

Passing Interface) to handle communication between multiple nodes in the cluster

(Gropp, Lusk, & Skjellum, Using MPI: Portable Parallel Programming with the Message

Passing Interface, Oct 1994), (Gropp, Lusk, & Thakur, Using MPI-2: Advanced Features

of the Message Passing Interface, Nov 1999). In general the program consists of a Master

and Several worker processes. The program first initializes the MPI environment and

63

then the process with rank=0 is designated as the master process and the rest are

designated as worker processes. The Master process builds the work queue and handles

all scheduling of work tasks to the respective worker processes. It goes through the work

queue and makes scheduling decisions based on performance and energy criteria. Once

all the work has been distributed, it then waits and gathers information back from the

worker processes. After each worker process replies back the master process it calls the

Energy Aware Scheduling (EAS) Engine and sends a terminate message to each worker

process/node. The Worker processes simply wait for work from the master process,

execute the work given and wait for more work or notification from master to terminate.

The EAS Engine takes information about the EET and AET of the task, makes decisions

if any node level adjustments need to be made (and/or DVS adjustments) and sends an

appropriate feedback message back to the Master process.

5.1.1 Step 1 Enhancement.

Our goal is to make energy awareness and scheduling decisions so as to run the BLAT

program against given query sequences for a given genome/chromosome file. In most

cases researchers today are running this on local desktops and each sequence search is

run sequentially and the entire result set may take several hours to days depending on the

number of search sequences. Our intention is to first bring some amount of parallelism to

this process and then a degree of energy awareness to the scheduling aspects to such

tasks. With that in mind we parallelized the process using the 3 different approaches

discussed above namely (1) All query sequences per chromosome, (2) Merged query

sequences per chromosomes, and (3) All query files against all chromosome files. We

used the run profile generated to seed the initial scheduling decision by the EAS Engine

64

and then compared the results of final node adjustments. If no run profile is used the

initial schedule defaults to WCET (worst case execution time) schedule This will allow

us to see if using different run profiles has an impact on the performance of the EAS

Engine.

The chart below (Figure 31) shows a comparison of all the 3 experiments by nodes. When

node = 1 it would be the same as running it sequentially on a local desktop. In this case

when node is 1 we see that the merged query approach is better than the other two

approaches.

Figure 31: AllAll, QBig & QbyChr on Firefly Cluster

We also note that this true when nodes 1 – 5. After five nodes we see that the “All Query

All Chromosome” approach gives us better results. With nodes equal to 25 – 30, we will

get twice the speedup with the “All Query All chromosome” approach. One can also note

that the Merged Query approach always performs better that the Query by Chromosome

approach.

0:00

1:12

2:24

3:36

4:48

6:00

7:12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
 in

 h
o

u
rs

Number of Nodes

AllAll, QBig and QbyChr on Firefly Cluster

Q by Chr Qbig by Chr

AllQ by AllC

65

5.1.2 Step 2 Enhancement

In Step 2 of the process, which is the Online Phase of the algorithm we dynamical adjust

resource levels. The EAS Engine adjusts the number of nodes either up or down based

upon the difference between EET and AET to meet the overall deadline. We maintain a

continuous feedback loop between the EAS Engine and the Master process. The energy

aware scheduling algorithm within the EAS Engine uses our understanding of the run

profile from Step 1 and then adjusts to realities during the actual execution of tasks using

information such as the number of sequences that were processed, the number of nodes

that were used for processing, the EET and the AET for that task. The information

gathered from these new runs is then transformed into knowledge to update the existing

run profile allowing the EAS Engine to build a knowledge map that is used for future

allocation of HPC resources. Now when new BLAT queries are submitted along with

their desired deadline, the algorithm uses this information to allocate the least number of

nodes needed to meet that deadline, thus managing performance as well as energy to

finish the tasks. We used the same 4 groups of query files as in (Pawaskar & Ali, 2010),

each group had 5 files with varying number of sequences as shown in the table below

(Table 5).

Table 5: Query Groups used for Analysis

Groups
Query

Files

Total # of

Sequences

G1 5 22566

G2 10 40530

G3 15 55946

G4 20 79222

66

Each group of query sequence files was run against 5 different deadlines (15, 30, 45, 60,

and 75 minutes). Each of these jobs was assigned a starting number of nodes based on the

run profile according to Step 1.

As the tasks were completed, in accordance to Step 2, variances between EET and AET

resulted in the EAS engine adjusting the number of nodes up (+N) or down (–N), if there

were equal number of (+N) and (–N) adjustments it resulted in a net (0) adjustment and

finally the scenario of no adjustments being made (–).

Figure 32: EAS Engine – AllAll Profile Adjustments

We ran the experiments using the three different run profiles in step 1 of the algorithm.

When the AllAll run profile was used (Figure 32) in all instances we found that the actual

execution time (AET) met the given deadline based on the minimum number of nodes

assigned for each task group, thus optimizing both performance and energy

considerations.

0

15

30

45

60

75

90

Ti
m

e
in

 m
in

u
te

s

Sequence Groups

EAS adjustments - AllAll Run Profile (AET vs Deadline)

Execution Time Deadline

G1 G2 G3 G4

+2

+1

(0)

-1

--

+2

-1

(0)

--

(0)

+3

(0)

-1

(0)

--

+3

+1

+1

-1

--

67

Figure 33: EAS Engine – QByChr Profile Adjustments

The Figure 33 above for the “QbyChr” run profile suggests that for lower deadlines more

node adjustments had to be made to meet deadline than what was allocated step 1.

Figure 34: EAS Engine – QBig Profile Adjustments

The Figure 34 above for the “QBigbyChr” run profile also suggests that for lower

deadlines more node adjustments had to be made to meet deadline than what was

allocated in step 1.

0

15

30

45

60

75

90

Ti
m

e
in

 m
in

u
te

s

Sequence Grouping

EAS adjustments - QbyChr Run Profile (AET vs Deadline)

Execution Time Deadline

G1 G2 G3 G4

+2

+1

(0)

-1

--

+1

-1

_
--

_

+4

+2

+1

_

--

+7 +4

+2

+1

--

0

15

30

45

60

75

90

Ti
m

e
in

 m
in

u
te

s

Sequence Grouping

EAS adjustments - QBig Run Profile (AET vs Deadline)

Execution Time Deadline

G1 G2 G3 G4

+2

+1

(0)

_
--

+1

-1

(0)

--

_

+3

_

-1

(0)

--

+5

+1

+1

_

--

68

When no run profile is seeded to step 1 the EAS engine defaults to using the WCET

schedule. This graph is presented in (Figure 35) below. The graph shows that using WCET

schedule we have significantly more node adjustments compared to using a run profile.

Figure 35: EAS Engine – No Profile Adjustments

The Table 6 below shows the node adjustments made by the EAS Engine to meet the

deadline depending upon which run profile was chosen in step 1, meaning the run profile

used in the initial scheduling of the tasks. It suggests that for large number of sequences

and lower deadline thresholds it is better to use the AllAll run profile as the other two run

profiles were both unable to meet the lower deadlines (15 min.). For higher deadline and

smaller number of sequences, the AllAll and QBigbyChr run profile approaches are

mostly comparable.. The experiments also show that “QbyChr” run profile approach

results in the most node adjustments.

0

15

30

45

60

75

90

Ti
m

e
 in

 m
in

u
te

s

Sequence Grouping

EAS Engine adjustments using WCET (no profile)

Execution Time Deadline

G1 G2 G3 G4

-8

-7

-6

-5

-5

-11

-9

-10

-8

-6

-10

-10

-8

-8

-7

-9
-10

-8

-7

--6

69

Table 6: Nodes used to meet deadline based on Profile

Groups
AllAll

Adjustments

QBigbyChr

Adjustments

QbyCht

Adjustments

WCET

(no profile)

G1

(+2) (+2) (+2) (-8)

(+1) (+1) (+1) (-7)

(0) (0) (0) (-6)

(-1) - (-1) (-5)

- - - (-5)

G2

(+2) (+1) (+1) (-11)

(-1) (-1) (-1) (-9)

(0) (0) - (-10)

- - - (-8)

(0) - - (-6)

G3

(+3) (+3) (+4) (-10)

(0) - (+2) (-10)

(-1) (-1) (+1) (-8)

(0) (0) - (-8)

- - - (-7)

G4

(+3) (+5) (+7) (-9)

(+1) (+1) (+4) (-10)

(+1) (+1) (+2) (-8)

(-1) - (+1) (-7)

- - - (-6)

70

5.2 Summary of Results

In this section we proposed an energy aware scheduling model in a HPC environment

based on a 2-step approach. The Off-line Phase uses the knowledge of the run-profile of

the program based on previous runs and the On-line Phase used a dynamic feedback loop

to adjust the resources (# of nodes) to minimize energy utilized while still meeting the

deadline. The run-profile and experiments were done for the BLAT program in the bio-

informatics domain. We found that the BLAT program is highly parallelizable and has a

speedup of 99%. We also found that the EAS Engine was able to dynamically take react

to the difference between EET and AET and adjust the number of nodes up or down to

balance the minimization of energy and performance criteria for all our experimental

datasets. Our experiments suggest that the choice of run profile in step 1 of the algorithm

has an impact on the overall performance of the algorithm because it impacts the number

of adjustment the algorithm has to make to meet deadlines. Each adjustment has an

associated overhead which impacts the energy optimization. Clearly there are various

strategies one could use in the conservative to risk spectrum, but this is also the space in

which we can do more research to find the right balance.

Our future research will focus on further automation of the EAS Engine to accommodate

other programs in the same domain or similar domains. We would also like to explore the

nuances between conservative and risky approaches to the Off-line scheduling of node

resources. We believe that eventually OS capabilities will evolve, allowing existing

hardware DVS capabilities to be controlled at a program level, thus enabling software

programs to have more control and flexibility in handling energy considerations. This

will allow programs written with intimate knowledge about a specific domain and an

71

understanding of deadline needs of the user for result sets to scale the application in such

a way that resources can be added on-demand, and processor speed controlled (hence

controlling energy) to either speedup or slowdown the application to manage the

divergent goals of performance and energy. Another key focus of our future research will

be to incorporate the ability to incorporate Dynamic Voltage Scaling (DVS) at the node

level. This will allow us to add another level of granularity to the EAS algorithm’s ability

to adjust energy at the node level.

72

Chapter 6: An EAS Application for Assembling Short Reads in HPC

6.1 Assembling of Next Generation Sequencing Data

Since its inception in the mid 2000's, next generation sequencing has produced massive

amounts of genetic information, making a large impact on numerous research fields. As

next generation sequencing systems and centers become more readily available,

massively parallel sequencing has become the cornerstone of many diverse research

endeavors, including those such as cancer transciptome and gene expression analysis

studies (Meyerson, 2010) and microbiomics (Qin, 2010). Next generation sequencing

technologies are capable of producing millions to even billions of short reads per run.

Individually each read represents only a fraction of the original genome and provides no

information in itself. However, sequencing reads are produced at a high coverage of the

original genome such that many of these reads overlap with one another. Relationships

between overlapping sequence reads assist the identification of fragments that are

consecutive within the genome, allowing the recursive merging of these overlapping

sequences until long stretches of contiguous genetic data, known as contigs, are

recovered.

The assembly of next generation sequencing data still remains a challenging task due to

the massive size of read datasets, short read lengths, and underlying target sequence

composition such as repeat content. The assembly of short reads produced by these

devices is a critical and computationally intensive process. Fortunately, many steps of

this process are good candidates for parallel computing. The parallel implementation of

the read overlap detection phase of assembly is relatively straightforward. High

73

performance computing has been successfully applied to help reduce the computational

burden of detecting read overlaps in large datasets (Huang, 2003). However,

straightforward parallel applications developed for overlap detection could achieve an

unnecessary high degree of parallelism at the expense of significant energy consumption.

6.2 Assembly Algorithm Overview

Merge and Traverse assembler follows the traditional overlap-layout-consensus paradigm

that has been successfully employed by various assemblers (Huang, 2003) (Sommer,

2007) (Myers, A whole-genome assembly of Drosophila, 2000). Our algorithm assembles

reads into contigs in three stages: 1) overlap detection and alignment, 2) graph

construction and manipulation, and 3) consensus sequence generation by multiple

alignment (Miller, 2010).

6.2.1 Overlap Detection and Alignment

The Merge and Traverse algorithm uses short k-mer words to seed overlaps between

reads. These short seed matches are extended into full alignments using dynamic

programing. The overlap relationships found during the overlapping phase are placed into

two categories by the assembly algorithm. The first type of overlap that the assembly

algorithm considers is the dovetail overlap. The dovetail overlap occurs when the reads

align such that they form a suffix-prefix relationship as shown in Figure 36.

The second type of overlap that the assembly algorithm considers is the containment

overlap. The containment overlap occurs when the sequence of one read is fully

contained in another read. For the purpose of simplifying the overlap graph in subsequent

assembly phases, our algorithm disregards containment overlap relationships. Each read

74

that is contained in one or more other reads is mapped to a suitable representative read

using a clustering approach detailed in section four.

Figure 36: Read Overlaps

6.2.2 Graph Construction and Manipulation

The second phase of the assembly process builds an overlap graph using high quality

dovetail overlaps between the remaining representative reads. In this graph theoretic

model, each node represents a sequencing read. An edge joins two nodes if their

corresponding reads overlap. As shown in example below reads map to nodes and

overlaps map to edges; each edge is assigned a weight representing the length of the

overlap shared between the reads.

Figure 37: The overlap graph.

75

After graph construction is complete, the algorithm preforms transitive reduction of the

graph (Myers, The Fragment Assembly String Graph, 2005) revealing non-branching

paths that likely correspond to unique regions of the target sequence being assembled.

The algorithm identifies and merges these non-branching paths into super-nodes in the

overlap graph (Figure 37). Remaining graph structural features such as dead-end paths and

bubbles, where two paths start and end at a common node, are in many cases caused by

sequencing error present in the read data set. The algorithm identifies this noise using a

Dijkstra shortest path method. Each dead-end path that is shorter than a user-provided

threshold is removed from the overlap graph. For each bubble whose component paths

are shorter than the user-provided threshold, the least covered path in the bubble is

removed. After graph trimming is complete, the algorithm extracts all maximal non-

branching paths from the graph for use in the consensus phase of the assembly process to

construct contigs.

6.2.3 Consensus Sequence Generation

In the final consensus phase, progressive multiple alignment guided by the read path

layout is used to determine contig consensus sequence.

6.3 Read Overlap Detection

In this section, we provide a description of our three-step approach for read overlap

detection. The first step orders a read dataset S in descending read length and partitions it

into subsets. The second step maps each read that forms a containment overlap with one

or more other reads to a suitable representative read following a hierarchical clustering

scheme introduced by CD-Hit (Myers, The Fragment Assembly String Graph, 2005).

76

After clustering is complete, the final step identifies dovetail overlap relationships among

the remaining representative reads.

6.3.1 Read Preprocessing

The containment clustering step of the overlap detection phase requires that the reads are

sorted by descending length. First the reverse complements of an input read dataset R are

generated to form the read set S = (R, R). It then sorts S into descending order of length

by a merge sort algorithm, and partitions S into n subsets = {S0, S1, … Sn-1} of size m,

where n is specified by the user. Each read subset Sk is sorted in descending read length

and the subsets are ordered such that readLengths(S0) ≥ readLengths(S1) ≥ … ≥

readLengths(Sn-1).

6.3.2 Containment Clustering

The initial read clustering step follows the greedy hierarchical clustering scheme

introduced by the CD-hit algorithm (Li & Godzik, 2006). The longest read becomes the

first representative. It is used to search for containment overlaps among the remaining

reads using the exact matching and alignment methods described in the section three. If a

read forms a containment overlap with the current representative and its alignment meets

minimum length and alignment identity requirements, it is mapped to that representative

read. The algorithm considers each read in the order of descending length. If a read is not

already mapped to an existing representative, it becomes a new representative read and is

used to query the remaining reads in the dataset for containment overlaps (Figure 38). In

the example below we have reads r2 and r4 cluster to r1 and read r5 cluster to r3.

77

Figure 38: Containment clustering – reads r2 & r4 r1 and read r5 r3.

A read that has been mapped to a previous representative read but forms a containment

overlap with the current representative is remapped to the current representative if its

alignment identity with the current representative is greater than its alignment identity

with the previous representative. After this process has completed, all read to

representative mappings are recorded for use in the consensus phase of the assembly

process.

6.3.3 Dovetail Overlaps

After containment clustering is complete, the remaining representative reads are used to

query the read dataset for dovetail overlaps with other representative reads. The exact

matching and alignment methods of section three are used to locate dovetail overlap

relationships. If a dovetail overlap meets minimum alignment length and alignment

identity requirements, it is recorded for use in the graph construction phase of the

assembly algorithm.

6.3.4 Implementation Details

The containment clustering and dovetail overlapping steps accept two read subsets Si and

Sj as input. The subset Si is the query dataset and the subset Sj is the reference dataset,

where i ≤ j.

78

To facilitate the identification of exact matches between reads, a suffix array constructed

by Larsson and Sadakane’s algorithm (Larsson & Sadakane, 1999) is used to index the

reference dataset. In succession, each read in the query dataset is broken into all of its

possible subwords of size k (denoted as k-mers). These k-mers are used to query the

suffix array for exact matches. If one or more exact matches are found between the query

read and a reference read indexed by the suffix array, then both reads are passed to an

alignment algorithm for evaluation. The k-mers shared by the reads are chained

(Ohlebusch & Abouelhoda, 2006) and the Needle-Wunsh algorithm (Needleman &

Wunsch, 1970) is used to align the regions between k-mers and to align the beginning

and end regions of the reads.

After the alignment of the two reads is complete, the computed overlap is evaluated by its

alignment length and alignment percent identity. If the overlap does not meet the user-

provided minimums for these measurements, it is not included in subsequent steps of the

assembly process.

Since the containment clustering step is dependent on the read ordering, each subset Sj

must be ran against each Si as a reference dataset, where i < j, before it can be used as a

query dataset against any other read subset. The dovetail-overlapping step is not

dependent on read ordering and can accept read subsets in any order.

6.4 Parallel Implementation using the EAS Model

The input read dataset S is partitioned into n subsets = {S0, S1, … Sn-1} of size m during

the initial read sorting and preprocessing step. A master thread sends each unique subset

combination of size two as input to worker processors running serial versions of the

79

containment clustering and dovetail overlapping algorithms. The master thread manages

the execution order constraints of the containment clustering step.

The EAS engine runs the pre-processor (Figure 39) on the input fasta file, the output of

which is the n-split read subsets. Let us assume that the large file has m sequences, and

then each of the smaller files will contain (m/n) sequences in sorted order. The files

created in the pre-processing step become inputs to the EAS engine. The EAS engine

runs the alignment program in a 2-step process. The first step finds the containment

overlaps and the second step determines the dovetails overlaps among the remaining

representative reads. The containment part of the execution is not naively parallel; the

execution of certain pairs of subsets (tasks) has to be done in order, only then can

dependent subsets be processed. The main process flow is shown in Figure 40 below.

6.4.1 Containment Execution – Step 1

The execution dependencies are shown in Figure 41 for the following set of containment

tasks T = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2,

4), (3, 3), (3, 4), (4, 4)}, where each integer represents a read subset. The tasks along the

diagonal (0, 0), (1, 1) (2, 2), (3, 3) and (4, 4) are considered to be higher priority tasks

because they have a greater number of child/dependent tasks.

Figure 39: Pre-processing step

Pre-processing
Large input

fasta file

n_seq.dat

1_seq.dat

0_seq.dat

Split smaller

.dat files

80

All other tasks have a normal priority in terms of execution. After a task gets released,

meaning that all of its predecessors have been executed, it is sent to the EAS execution

queue. When the task has completed executing, the EAS engine checks to see if any

dependent tasks can be released for execution.

Figure 40: Process Flow Diagram

Now let us take a look at the example where we have five read subsets. When the task (0,

0) is complete, it releases all the tasks in that row which are tasks (0, 1), (0, 2), (0, 3) and

(0, 4). It cannot release (1, 1) because task (1, 1) still has another dependency on (0, 1).

When (0, 1) is completed, it will release task (1, 1). Completion of task (1, 1) will flag (1,

2), (1, 3), and (1, 4) but they will only be released when both (1, 1) and the tasks above

them namely (0, 2), (0, 3), and (0, 4) have completed execution. This will continue until

all tasks are executed. The last task to be executed will be task (4, 4) in our example.

Note that the total number of tasks executed would be fifteen. This can be calculated

Pre-processing

EAS Engine

Containment

Execution

Dovetail

Execution

OUTPUT

INPUT

OUTPUT

INPUT

INPUT

Assembly

Execution

OUTPUT

INPUT

OUTPUT

81

easily using equation one. We would like to point out that the containment phase is

bounded by the number of files (in this case five). We cannot use more than five nodes at

any given time due to task dependencies even though we have a total of fifteen

containment tasks.

Figure 41: Execution dependencies of containment tasks

6.4.2 Dovetail Execution – Step 2

The execution dependencies of the dovetail tasks are much more straightforward than

those for the containment tasks. The dovetail tasks do not have any dependencies on each

other and hence can be run in a naively parallel way, allowing us to use as many

processors as possible. Continuing with our previous example with fifteen tasks, we

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

82

could execute (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3),

(2, 4), (3, 3), (3, 4), (4, 4) all at the same time during the dovetail phase.

The total number of tasks that need to be executed in each of the above steps

(containment and dovetail steps) is given by the equation below, where n is the number of

read subsets and T is the total number of tasks.

𝑇 =
n(n + 1)

2
 (1)

6.5 Implementation and Results

We downloaded Escherichia coli W reads produced by the 454 Titanium technology from

the NCBI (NCBI Database, 2010) sequence read archive (accession no. SRR060736 and

SRR060737, made public by JCVI). The sequences were trimmed to remove adaptors.

The final result was 337,294 trimmed reads. For our experiment in the pre-processing

step we decided to split these into 16,866 sequence reads per file, i.e. read subset (except

for the last file which contained 16,814 reads). This resulted in 40 files and a total of

674,588 reads. (The preprocessing step generates the reverse complement of each read.)

We then used the EAS engine to run the assembly algorithm using 1 to 31 nodes. For our

experiments we used the HPC environments available at UNO (University of Nebraska at

Omaha). We initially start out with the Blackforest cluster (16 nodes) (Blackforest

Computing Cluster, n.d.), and then move to a true commercial strength HPC named

Firefly cluster (1100 nodes) at the Holland Computing Center (Holland Computing

Center, n.d.).

83

Figure 42 shows the execution time of the algorithm in seconds versus the number of

nodes used for each run. It shows that after 11 to 12 nodes we do not see any significant

performance gain. Along with the total execution time, we captured the average

execution time per worker node and the overhead. We find that as we increase the

number of nodes the overhead curve follows the execution time curve.

Figure 42: EAS - Execution time v/s Nodes

It is important to note that in a HPC a significant portion of the master process’s work is

distributing the tasks and managing the task dependency among the worker processes

along with handling of the communication between master and worker processes. This is

clearly depicted in Figure 43.

It is important to note that given the nature of the task dependencies in the containment

phase not all nodes are working all the time, and hence we see a smaller overall curve for

the average worker time per node. This leads us to ask the question, “How parallelizable

is the program?” For the purpose of answering this question we plotted the program

speedup against the number of nodes and integrated this curve with a plot of Amdahl’s

law in Figure 44. Amdahl's law is defined by the formula:

84

1

(1 − P) +
P
N

As N → ∞, the maximum speedup tends to 1 (1 − P)⁄ . In practice, performance/price

falls rapidly as N is increased once there is even a small component of (1 − P). A great

part of the craft of parallel programming consists of attempting to reduce (1 – P) to the

smallest possible value. We can conclude that the overlap detection algorithm of the

Merge and Traverse assembler has a speedup between 20 - 25 times (which is between

90% - 95% parallelizable).

Figure 43: EAS - Execution time/Overhead v/s Nodes

http://en.wikipedia.org/wiki/Parallel_programming

85

Figure 44: EAS - Merge & Traverse Assembly - Nodes v/s Speedup

Next we set up experiments to see if the EAS engine would be able to dynamically adjust

the number of nodes to meet a given deadline. We used four groups of read datasets

generated from SRR060736 and SRR060737. Each group was partitioned into a different

number of files as shown in Table 7.

Table 7: Read Subset Group used for Analysis

Group Number

of Files

Number of

Sequences

G1 5 84330

G2 10 168660

G3 15 337320

G4 20 674588

Each group of files was ran against five different deadlines (30, 60, 90, 120, and 150

minutes). Each of these jobs was assigned a starting number of nodes by the EAS engine

based on the run profile/speedup curve. As the tasks were completed, variances between

EET (Expected Execution Time) and AET (Actual Execution Time) resulted in the EAS

engine adjusting the number of nodes up (+N) or down (–N), if there were equal number

86

of (+N) and (–N) adjustments it resulted in a net (0) adjustment and finally the scenario

of no adjustments being made (–). The experimental results (Figure 45) showed that the

EAS engine was able to dynamically adjust nodes to minimize energy utilized while

meeting the deadlines.

Figure 45: EAS Engine - dynamic node adjustments

6.6 Summary of Results

Based on the results we can clearly observe that given a deadline we can choose the

appropriate number of nodes to run the overlap detection phase of the assembler on based

on our new understanding of the run-profile we just produced. This will allow us to

apportion just enough nodes to meet the deadline thus maximizing the objective of

performance with minimum energy utilization. We also observed that with a smaller

number of nodes we have larger gains in performance and above a certain number of

nodes the performance gain is only modest at best. In fact as we add additional nodes our

communication costs and related overhead is higher.

87

Clearly different bioinformatics applications and algorithms will have different run

profiles and understanding each one of them will allow us to best assign the appropriate

number of nodes to meet a given deadline. It was also important to see how the number

of read subsets impacted the performance/energy criterion. Our experiments suggest a

bowl shaped curve when we varied the number of files for the same number of nodes.

Clearly there must be some optimum value for the number of files for each set.

This section highlights the importance of understanding the degree of parallelism for the

program, which is done by establishing the run profile/speedup curve. The EAS engine

uses the knowledge from the run profile to make intelligent and dynamic decisions about

number of nodes to use to minimize energy utilization and still provide necessary

performance. Clearly it is no longer sufficient to simply run a program in a HPC

environment. It is important and essential to understand the data, its characteristics, and

the application domain to build a parallel program that is energy aware.

In designing these experiments, we have several parameters we could study and the

relationship between them. These parameters are (1) Number of files; (2) Number of

sequences per file; (3) Number of nodes used and (4) Average sequence length. In this

section we have only looked at number of nodes used as a parameter for our experimental

design. In the future we plan to investigate how adjusting the different tuning parameters

such as number of files, number of sequences per file, number of nodes impacts the

performance and energy efficiency. We also plan on including the pre-processing step

and final assembly as part of the EAS processing. Our main motivation is to move this

from a simple speedup to the realm of energy awareness. Our EAS model for the

purposes of the experiments conducted calculated energy as a function of resources used

88

in this case number of nodes. The energy function could be made more complex; we

leave that for a future study.

89

Chapter 7: Towards an Energy Aware Cloud (A Simulation)

7.1 Energy Aware Cloud based on Energy index

The obvious next step in the evolution of the EAS Model is to apply this to the cloud. But

what is the cloud? It is nothing more than a bunch of Datacenters, Each of these

datacenters can be looked upon as a High Performance Computing environment,

essentially as a computing resource. We can then apply our profile based approach for a

known application such as BLAT and using a known datacenter in our case the Holland

Computing Center as a baseline (energy index of 1) we can then run the same application

against another datacenter and if the results are returned faster we assign a relative high

number depending on how fast we got the result set or a lower number depending on how

slow the result set was delivered. Finally by knowing the energy index for a datacenter

we can choose to schedule our tasks across datacenters depending on the necessary

deadline. We will examine this model by performing simulation experiments on the same

dataset we used before.

7.2 Cloud Computing – Lifting the Veil

Cloud Computing is an exciting new trend which many of us in the IT field are, simply

put, a “little cloudy about”. It is a general term used to describe a new class of network

based computing that takes place over the Internet, It is Commoditised - basically a step

on from Utility Computing and can be considered to be a collection/group of integrated

and networked hardware, software and Internet infrastructure (called a platform), which

uses the Internet for communication and transport provides hardware, software and

networking services to clients. The cloud allows for abstraction – They hide the

complexity and details of the underlying infrastructure from users and applications by

90

providing very simple graphical interface or API. The cloud is ubiquitous - on demand

services that are always on, anywhere, anytime, any-place and finally the cloud is elastic

- Pay for use and as needed, which allows for scale up and down in capacity and

functionalities as needed (Amazon Elastic Compute Cloud (Amazon EC2), 2013).

7.2.1 Cloud Computing Models

There are 3 main types of cloud computing models, the Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software as a Service (SaaS) models which are

described in the Figure 46 (Amazon Elastic Compute Cloud (Amazon EC2), 2013) and

(Microsoft on Cloud Computing, 2013).

Figure 46: Cloud Computing Models

7.2.2 Cloud Service Layers

Another classification for these clouds is based on the type of services layer they provide

such as hosting, storage, platform, development, application and services layer (Figure

47).

91

Figure 47: Cloud Computing Service Layers

7.2.3 Cloud Deployment Models

Cloud can also be characterized based on how they are deployed and used. The most

well-known deployment models are the public cloud and private cloud. The Figure 48

shows the different cloud deployment models in use (Google Cloud Platform, 2013).

Figure 48: Cloud Deployment Models

92

7.2.4 Cloud Service – Opportunities and Challenges

Cloud Computing provides us with opportunities and challenges.

Opportunities:

• It enables services to be used without any understanding of their infrastructure.

• Cloud computing works using economies of scale:

• Cost would be by on-demand pricing.

• Data and services are stored remotely but accessible from “anywhere”.

Challenges:

• Use of cloud computing means dependence on others and that could possibly limit

flexibility and innovation.

• Security could prove to be a big issue. It is still unclear how safe out-sourced data is

and when using these services ownership of data is not always clear.

• There are also issues relating to policy and access. If your data is stored abroad whose

policy do you adhere to? What happens if the remote server goes down? There have

been cases of users being locked out of accounts and losing access to data.

7.3 Why – Simulation Model?

So why did we build this simulation app. The objective was to help answer some

questions regarding expensive resources such as Clusters by running simulations which

return results quickly to facilitate better decision making on where to send jobs and what

93

deadline, how many number of nodes to use, what energy level to run at, what costs are

associated with a job, etc.

1) In the real world it is difficult to actually run “what if” scenarios on real clusters

which are in production because of scarcity of resources and the potential costs and

time constraints associated with such activities.

2) Customers can run basic scenarios to see if the deadlines they are providing can be

met based on past run profiles.

3) Most customers what to get their results fast, but when these deadlines have costs

associated with them, they can make better informed decisions about their deadline

settings and relax these if necessary. Our simulation will help provide these type of

analytics for better decision making.

4) Customers can check to see if they can run their application within a given deadline

on a specific cluster for the given data set.

5) Customers can run their applications on different clusters to see what resource costs

they may incur on each specific cluster given the resource and energy usage.

6) Customers can adjust the availability of cluster and make decisions where they want

to send their job load based on job completion.

7) The above information can also be used by Cluster operators to run simulations per

customer to see how the availability of their cluster impacts their customer’s decision

making and also measure potential revenue loss or gain.

8) Customers can also run scenarios to see whether they should use a single cluster or

distribute the work load across multiple clusters to meet specific deadline

requirements.

94

9) Customers can also check the above scenarios to see which of the above single cluster

or distributed cluster option is most cost effective.

10) Customers can also check the above scenarios to see which of the above single cluster

or distributed cluster option is most efficient.

11) Cluster operators can also run “what if” scenarios to see if increasing the energy

index of their Custer may have a potential impact on revenue based on number of

additional jobs they might get at a certain energy index and whether the costs of

increasing the energy index are justified based on opportunity costs.

12) Cluster operators can also run “what if” scenarios to see if increasing the availability

of their Custer may have a potential impact on revenue based on number of additional

jobs they might get at a certain availability level and whether the costs of increasing

the availability are justified based on opportunity costs.

13) Customers can run scenarios to see if data split or merge for their application offers

any cost and/or efficiency benefits.

7.4 The Simulation Program

Currently there is no mechanism to run tasks across multiple clusters in the cloud. We

understand that this is a significant challenge. We also realized that there was no cloud

simulation package available that would meet our needs. Hence we decided to write our

own cloud simulation package that would allow us to use the EAS Model and also allow

us to tailor the simulator to help answers questions such as can deadlines be met on

certain clusters, cluster availability, energy-index and ROI. The simulation program is

written in Java using the Eclipse IDE. The program itself consists of a random run

generator and the main simulation run. The random run generator was used to generate

95

our test run data for our experiments, which are discussed in detail later in this chapter. In

order to run the main simulation you need 2 input files, one is an init.xml which is used to

initialize your cloud and the second is the run.xml file in which you define the program

you want to run. The program can be run will command line arguments. Running the

program with the “help” command will display the program usage as shown below.

Figure 49: Simulation Program Usage

An example command line to run the random run generator would be something like

“generate=1 numRuns=100 runType=Single randomNumStart=10

randomNumEnd=5000”. An example command line to run the main simulation would

be something like “simulationRun=1 runType=Single initFile=init.xml

runFile=run.xml outputFile=runResults.csv”.

96

The class diagram for the simulation objects is shown in the Figure 50 below.

Figure 50: Class diagram for Simulation Main & Run

The class diagram for the Cloud is shown below Figure 51.

Figure 51: Class diagram for the Cloud & Run profile

97

The cloud is initialized using an init.xml file which is an XML with an associated XML

Schema definition. A sample XML file and the Schema are shown below (Figure 52 and

Figure 53).

Figure 52: Sample Cloud initialization XML file

98

Figure 53: Cloud initialization XML Schema definition

The cloud consists of Datacenters and each Datacenter consists of Clusters each cluster is

properties such as availability of the cluster, energy index, etc. One can assign an energy

index to a cluster if it is known. The base cluster is always assigned an energy index of 1

and all other cluster energy index are calculated based their relative performance and

energy usage using the various application Run Profiles of these clusters.

The main simulation run is performed using an input simulation file such as the one

shown in the Figure 54 below. The simulation run file is also a XML file with an

associated Schema definition file (Figure 55).

99

Figure 54: Sample Simulation Run XML file

Figure 55: Sample Simulation Run XML Schema definition

We chose to pick 3 of the “What if” scenarios discussed above and conducted the

experiments below using the simulation program. The datasets were broken into 3 sets

based on their deadlines. We have the following 3 deadline based datasets. There were

100 runs in each dataset which were randomly generated.

100

1) Between 10 sec and 10 minutes – 10 minutes dataset

2) Between 10 minutes and 1 hour – 1 hour dataset

3) Between 1 hour and 1 day – 1 day dataset

7.4.1 Scenario 1 – Meeting Deadlines on specific Cloud Clusters

Customers can run basic scenarios to see if the deadlines they are providing can be met

based on past run profiles.

We generated multiple datasets (10 minutes, 1 hour, 1 day) with deadlines as mentioned

above and ran our simulation application. The charts below (Figure 56 and Figure 57) show

that when deadline and AET of these job runs. For the dataset with deadlines below 10

minutes 70% of the times deadlines were met given the specified cluster. With deadlines

on 1 hour and 1 day deadlines were met in all cases. This simple basic scenario can be

used by customers to test if their job deadlines will be met on a given cluster and then

make the actual run on that cluster instead of a shot in the dark. This would help in

wastage of resources due to unmet deadlines and result in higher productive.

Figure 56: Scenario1 - Meeting deadline (10 minutes)

101

Figure 57: Scenario 1 - Meeting deadlines (10 minutes, 1 hour, 1 day)

7.4.2 Scenario 2 – User Single v/s Distributed Clusters

Customers can also run scenarios to see whether they should use a single cluster or

distribute the work load across multiple clusters to meet specific deadline requirements.

Figure 58: Scenario 2 - Single v/s Distributed Cluster runs

We generated different cloud initializations and run sets based on distributed cluster runs

and single cluster and ran our simulation application to see the impact of how deadlines

were met. The Figure 58 clearly shows that when a job fails to meet a deadline on a single

0

1000

2000

3000

4000

5000

6000

7000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

Ti
m

e

Runs

AET vs Cumulative AET (Distributed) AET

Cum-AET

102

cluster the customers can choose to run them against distributed clusters and meet

deadlines. The chart also shows we get better cumulative AET from using distributed

clusters compared to using single clusters.

7.4.3 Scenario 3 – Analyze impact of Cluster Availability

Cluster operators can also run “what if” scenarios to see if increasing the availability of

their Custer may have a potential impact on revenue based on number of additional jobs

they might get at a certain availability level and whether the costs of increasing the

availability are justified based on opportunity costs.

We generated cloud clusters with varying availability from 10% - 100% with 10%

increments and ran our simulation application to see how it impacted deadline met and

node adjustments needed to complete execution within the given deadline. The resulting

chart Figure 59 shows that close to 29% of jobs failed to meet deadline as availability fell

and 71% succeeded in meeting the given deadline.

Figure 59: Scenario 3 - Availability v/s Node Adjustments

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70 80 90 100

A
d

ju
st

m
en

ts

Availability

Cluster Availability - Adjustments & Deadline

Adjustments Deadline Met

103

Figure 60: Scenario 3 – Impact of Availability on # of Jobs/Customers

We also found that as we adjusted availability and availability increased availability of a

given cluster more jobs were bound to be sent to that cluster than not and more customers

would be likely to send jobs to that cluster, meaning that availability has a direct impact

on revenue generated from that cluster (Figure 60).

Figure 61: Scenario 3 – Impact of Energy Index on # of Jobs/Customers

0

50

100

150

200

10% 25% 50% 75% 90% 100%

P
o

te
n

ti
al

 R
ev

en
u

e

Availability

Availability v/s #Jobs and #Customers
Jobs #Customers

-100

-50

0

50

100

150

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00

P
o

te
n

ti
al

 R
ev

en
u

e

Energy Index

Energy Index v/s #Jobs and #Customers

Jobs #Customers

104

We also find that as we increase the energy index for a given cluster more jobs were

likely to be sent to that cluster by more customers and for a cluster with lower energy

index less jobs would be sent by fewer customers again impacting revenue (Figure 61).

These experiments could be used by Cluster operators to determine if investing in

upgrading their infrastructure would result in enough increased revenues to justify the

ROI.

105

Chapter 8: Energy aware scheduling in Mobile Devices

8.1 Development: Creation of a Conceptual Model

The hardware and software industries have realized that in-order to truly address the

energy-efficiency question; it has to be tackled at various levels across multiple

industries. The first step in this direction is the identification of the variables within the

various design, manufacturing, and use of computing and communications devices,

operating systems and applications that influence the energy equation. The main goal is

to maximize energy efficiency while simultaneously maintaining or increasing

performance. This can be achieved by a combination of improvements in micro-

architecture, silicon process technology, software at the operating systems level and

application level, and platform technologies. The Figure 62 below illustrates this

approach.

Hardware

Software

Silicon Process Technology

Chip Technology

Power Management

Operating System

Applications

Figure 62: Different stages in accomplishing energy-efficiency objectives

Obviously, processor power is an important consideration in the energy equation, but

processors are hardly the only component drawing power. Total energy consumption, for

example, is also dependent on memory DIMMs, chipsets, fans, hard disk drives,

peripherals, power supply efficiency, and other components. Working with each one of

these components can significantly reduce overall energy consumption. For instance,

Intel's use of DDR2 memory improves performance up to 11 percent with a 30 percent

reduction in memory power consumption. Combining Intel processors with Intel chipsets

106

featuring integrated graphics saves the need for a separate, power-consuming graphics

card (Intel, 2006).

Table 8: Variables influencing the energy-efficiency equation

Hardware Software

Silicon Process

Technology
Chip Technology

Power

Management

 Second generation

strained silicon

 Improved

interconnects

 Dynamic sleep

transistor

 Demand based

switching

 On-die voltage

regulation

 Multi-core and

clustered micro-

architecture

 Power Gating,

Macro Fusion.

 Voltage Regulation

Technology

 Improved display

power specs

 Thermal design for

advanced heat-

sync technology

Operating System

 Developing power

conscious device

drivers.

 Tuning OS for less

interference with a

processor’s low-

power states.

 Energy Aware

Scheduling of

Applications based

on benchmarks.

Applications

 Application code

multi-threaded and

multi-core ready.

 Power monitoring

and analysis tools.

 Optimizing code

for reducing CPU

clock cycles.

 Energy Aware

Scheduling of

Applications tasks.

Within the hardware and software industries there is further breakup depending on where

the question of energy efficiency is addressed. Furthermore at each level there are

multiple complimentary approaches and areas of research which together become part of

the solution in reducing energy utilization. The Table 8 illustrates the various

complimentary areas of research being pursued to address the overall energy efficiency

question.

In the conventional approach employed in most portable computers, a processor enters

power-down mode after it stays in an idle state for a predefined time interval. Since the

processor still wastes its energy while in the idle state, this approach fails to obtain a

large reduction in energy when the idle interval occurs intermittently and its length is

short. In (Srivastava, Chandrakasan, & Brodersen, 1996) (Hwang & Wu, 1997), the

length of the next idle period is predicted based on a history of processor usage. The

predicted value becomes the metric to determine whether it is beneficial to enter power-

107

down modes or not. This method focuses on event driven applications such as user-

interfaces because latency, which arises when the predicted value does not match the

actual value, can be tolerated. However, we need an exact value instead of a predicted

value for the next idle period when we are to apply the power-down modes in a hard real-

time system, which is possible in the LPFPS.

8.2 Previous Work on this Model

(Ahmed & Chakrabarti, 2004), enhanced the algorithm proposed by (Shin & Choi, 1999),

by extending the algorithm to account for the slack generated at runtime due to the

difference between WECT and AET (Actual Execution Time). They proposed an

algorithm which had 2 Phases. The basic idea of the algorithms in this model is to exploit

the slacks generated to reduce the voltage levels of the tasks, so that the battery charge

consumed or the drop in voltage is minimized. The algorithm operates in two phases.

1. Phase I: Off-line task scheduling algorithm using WCET.

2. Phase II: On-line algorithm using AET.

In Phase I the tasks are assumed to be executed at their WCETs. A schedule is

determined for one hyper-period (defined as the least common multiple of the periods of

all the tasks in the task set). In Phase II (on-line), the slack generated due to the AET

being less than the WCET, is used to further scale the voltage levels of the tasks.

Phase I: The off-line scheduling algorithm is based on a paper presented by the same co-

authors (Chowdhary & Chakrabarti, 16-18 Oct. 2002); it determines the task ordering and

the voltage level of each instance of a task in a hyper-period. Applying WCETs in this

phase guarantees that the tasks meet their deadline. This is done in two steps.

108

Step 1: Obtain a feasible schedule by using the earliest deadline first algorithm.

Step 2: Utilize the available slack by voltage down scaling as much as possible starting

from the end of the profile.

Phase II: During operation of the system, the AET of a task could be a lot smaller than

its WCET. It is suggested that it is best to use the slack as late as possible; which is

achieved by a process called as slack forwarding. Slack forwarding is based on the

observation that slack generated by early completion of a task can be made available to a

later task if the later task is released prior to the time at which the slack originated.

T1 T2

time
t1 t2 t3 t4 t5 t6 t7

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

T1

time
t1 t2 t3 t4 t5 t6 t7

T2

Arrival of T2

Arrival of T2 Arrival of T2

(a) (b)

(c) (d)

Figure 63: (a) WCET Schedule. (b) WCET Schedule with full slack forwarding. (c) WCET Schedule with partial slack
forwarding. (d) WCET Schedule with no partial slack forwarding.

Consider two tasks T1 and T2 and let us assume WCET for the tasks. Task T1 starts at t1

and finishes at t4 and T2 starts at t4 and finishes at t7, as shown in Figure 63(a). Suppose T1

actually finishes earlier at time t2, generating a slack of (t4-t2). All of this slack is

available to T2 if its arrival time is at t2 or before, as depicted in Figure 63(b). If the task T2

was released at t3, only a part of the generated slack is available to T2, as shown in Figure

63(c). If the task T2 was released at t4 none of the generated slack is available to T2 as

109

shown in the Figure 63(d). Thus the decision of slack forwarding can be made by

inspecting the arrival time of the subsequent task to be executed.

Figure 64 provides the pseudo-code for the on-line algorithm. The input to the online-

algorithm consists of ordering of tasks as well as their voltage levels based WCET. The

purpose of this algorithm is to readjust the voltage level of the task based on additional

slack. The basic steps are as follows. After the completion of a task, the scheduler gets

the next task from the run queue. The finish time of the task is estimated based on the

voltage level determined in Phase I. If the finish time is before the release time of the

next task in the queue, the voltage level of the task is readjusted.

Input: Phase I schedule based on EDF algorithm

Repeat for Every Task

Get the scaling level of the next task Ti

If the task is not available (Current time < Task start time)

{

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

Figure 64: Pseudo-Code for On-line Phase II

Example:

Consider the three tasks given in Table 9 which is reproduced below. Rate monotonic

priority assignment is a natural choice because periods (Pi) are equal to deadlines (Di).

Priorities are assigned in row order as shown in the fifth column of the Table 9. Note that

this is the same example from the original algorithm 1 by (Shin & Choi, 1999); which is

110

being adapted to show the incremental improvement done by (Ahmed & Chakrabarti,

2004).

Table 9: Example Task Set

 Pi Di Ci Priority

T1 50 50 10 1

T2 80 80 20 2

T3 100 100 40 3

Let us consider the task set in (Shin & Choi, 1999) represented by the Table above. There

are three tasks with periods 50, 80 and 100 minutes. The hyper-period is 400 minutes

(L.C.M of 50, 80 and 100).The set of operating voltages considered during voltage

scaling is Sv = {3.3, 3.0, 2.7, 2.5, 2.0} volts. Figure 65(c) shows the final task profile with

the improved algorithm after each phase as well as that generated with the low power

fixed priority algorithm in (Shin & Choi, 1999).

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150

(a)

(b)

(c)

Figure 65: Task scheduling using LPFPS algorithm versus enhancements

8.3 Proposed Solution

We realized that some online slack could be potentially wasted in the algorithm proposed

by (Ahmed & Chakrabarti, 2004) due to the fact that even though some tasks become

available based on the actual periodicity of a task they are not executed because the run is

111

determined by the schedule generated in Phase I; which uses the EDF algorithm based on

the WCET of the tasks and we already know that this is a very safe yet conservative

approach.

Motivation: Our solution exploits the fact that even though some tasks become available

based on the actual periodicity of a task they are not executed because the run queue is

determined by the schedule generated in the offline phase I of the algorithm using the

conservative EDF (Earliest Deadline First) algorithm. We peek at the task run-queue to

find such tasks and schedule them for execution if possible based on the knowledge of

the available slack and the arrival on the next task. This helps in minimizing the wastage

of the generated slack.

Considering the same set of tasks as described in (Ahmed & Chakrabarti, 2004)

(Shin & Choi, 1999) and shown here in Table 9, this waste of slack can be observed at

time t=80 even though T2 becomes available as per the periodicity of the task it is not

executed because the run queue determined by the Offline phase has T1 as the next task.

We also notice that T2 can be easily completed before T1 whose next earliest start time is

t=100; because T2 has WCET execution time of 20 and since it starts at time t=80 we

have a timeframe of (100 – 80) = 20 available for execution.

A similar yet slightly different situation occurs at time t=240, where even though T2

becomes available as per the periodicity of the task it is not executed in (Ahmed &

Chakrabarti, 2004) because the run queue determined by the Offline phase has T1 as the

next task at t=250. We also notice that T2 cannot be easily completed before T1 whose

next earliest start time is t=250; because T2 has WCET execution time of 20 and since it

starts at time t=240 we have a timeframe of (250 – 240) = 10 available for execution. But

112

a simple task look –ahead shows that to execute both T1 and T2 we have a total time of

(240-300) = 60 and the WCET for each is 10 and 20 respectively; a total duration WCET

of 30; which tells us that scheduling T2 now will not cause us to miss the deadline for T1

and that both tasks can be executed within the available time of 60.

To avoid this waste, we enhance the algorithm such that the original start time for each

periodic task is fed to the algorithm as input. Figure 66 shows the final task profile with

our algorithm as well as those generated by (Ahmed & Chakrabarti, 2004) and with the

low power fixed priority algorithm (Shin & Choi, 1999). Since we further scale down the

voltage and make more use of online slack we expect our algorithm to perform better

compared to (Ahmed & Chakrabarti, 2004) (Shin & Choi, 1999). (This will be proven

later by simulation experiments).

100 30020050 250 350 400

100 30020050 250 350 400

150

150

100 30020050 250 350 400150

(a)

(b)

(c)

100 30020050 250 350 400150

(d)

Figure 66: Task scheduling using proposed algorithm, LPFPS and 2-Phase algorithm

The pseudo-code for the proposed algorithm is shown in Figure 67. It is important to keep

the time complexity of the online phase of the algorithm to a minimum for obvious

reasons. It should be noted here that we do not add any additional time complexity to the

113

online phase in the proposed algorithm as we only check to see if tasks are available

based on their original periodicity and if these can be scheduled in the slack time before

the next task becomes available based on the Phase I EDF schedule. This can easily be

accomplished in constant time which is O(1) and hence there is no increase in the time

complexity of the algorithm. Another important point to note if we do schedule a task

earlier based on the reasoning above, we have to remove this task from the Phase I

schedule or mark it as complete to make sure that we do not re-execute the task again.

Input: Phase I schedule and original task periodicity

Repeat for Every Task

Get the scaling level of the next task Ti based on Phase I schedule

If the task is not available (Current time < Task Ti start time)

{

if ((original task periodicity shows a task To is available earlier) and

 (start time of Ti – To >= WCET of To) or (Ti+2 - To >= WCET Ti + WCET To))

Schedule task To and remove it from Phase I schedule

else

Wait

}

Else

{

If (finish time of task Ti < release time of task Ti+1)

Update the scaling level to absorb the slack

}

Execute the task

Figure 67: Pseudo-Code for proposed algorithm

8.4 Results of the proposed solution

We calculated the average energy utilized for all the test cycles and the plot below (Figure

68) clearly suggests that the enhanced algorithm performs better than the algorithms in

(Ahmed & Chakrabarti, 2004). We get an average reduction of approximately 9.29% as

114

compared with the algorithm in (Ahmed & Chakrabarti, 2004). Note that we use a similar

technique as in (Ahmed & Chakrabarti, 2004), (Shin & Choi, 1999)to generate our tasks,

to have a high degree of confidence in our conclusions.

Figure 68: Enhanced Algorithm - Average Energy Utilized

8.5 Expected Contributions and Limitations

Most of the Energy Aware Scheduling Algorithms designed so far use WCET to compute

the workloads in the offline phase. In general most tasks complete between BCET and

WCET. In fact; it is a well-known that most tasks complete well before WCET. We

propose to exploit this knowledge to our advantage and propose that instead of

computing workload at WCET, we use information regarding expected execution time

(EET).

 Expected Execution Time (EET) may be computed in several ways; one way to

compute this would be based on Actual Execution Time (AET) in the previous hyper-

period, another approach could be average of all previous AET for that task, so on and so

forth. An important aspect of this approach is that at runtime depending on AET we may

have some tasks completing in time greater than EET and some less than EET. This could

potentially lead to deadline violations; which we need to resolve.

34.52

31.584

Algorithms

Average Energy Utilized

Algo 1 Echanced Algo

115

Approaches to compute Expected Execution Time

1. Conservative Approach: Expected Execution Time is computed conservatively so

that it is closer to WCET. This approach has a lower propensity for deadline

violations; which need to be resolved.

2. Risky Approach: Expected Execution Time is computed quite generously so that it

is closer to BCET. This approach has a higher propensity for deadline violations;

which need to be resolved.

High Low
BCET WCET

Optimal solution to feasible solution Feasible solution to optimal solution

Risk

Figure 69: Understanding Risk w.r.t Optimal v/s Feasible solutions

Our research aims to contribute a model for energy aware scheduling and come up

with a few algorithms for that model. It will also attempt to explore the approaches stated

above to compute Expected Execution Time which will help in better scheduling tasks

based on their energy profile. When running our experiments we have several overheads

that are inherent to the systems itself such as energy utilized by the network card, or the

energy utilized by the graphics card, etc. For the purpose of our study we are focused on

the energy utilized to actually execute the tasks and not these other overheads. Also at

times the scheduling algorithm itself has an execution overhead which is considered only

where it is significant.

116

Chapter 9: Overall Conclusions and Future Research

In chapter 4 we used our proposed EAS model in an HPC environment in the

Bioinformatics domain to the BLAT application, implemented the approach and ran

multiple experiments for different datasets. We found that the BLAT program is highly

parallelizable and has a speedup of 99%. The experiments suggests that the merged query

approach and the hybrid approach of all query segmentation and database segmentation

consistently performs better that just the database segmentation approach. We also find

that we one has only about 5 nodes it is better to use the merged query approach, for

number of nodes 6 – 10, we would be better off using the merged query approach, and

then beyond 10 nodes we do see a whole lot of performance gains, but this is also the

space in which we can do more research to find the right balance between performance

and energy utilized by scheduling the BLAT jobs such that they run in a reasonable time

yet utilize minimum energy and resources. This research highlights the need to carefully

develop a parallel model with energy awareness in mind, based on our understanding of

the data and application. This will help us in designing a parallel model that works well

for the specific application and potentially similar applications within that domain. Many

of the bioinformatics application follow a similar structure/pattern, where we have a set

of input query sequences, which go against an existing set of database genome sequences

(such as DNA/RNA/Protein) and output results in a specified output file(s) or directory.

These programs also take optional parameters which are used as tuning options for the

program itself such as MinScore. Our future research will focus on moving away from a

simple heuristic and explore the use of additional AI techniques such as machine learning

117

algorithms to enhance the modeling, which would allow for a more automated way of

dealing with energy utilization and performance of the HPC environment.

In chapter 5 we proposed an energy aware scheduling model in a HPC environment based

on a 2-step approach. The Off-line Phase uses the knowledge of the run-profile of the

program based on previous runs and the On-line Phase used a dynamic feedback loop to

adjust the resources (# of nodes) to minimize energy utilized while still meeting the

deadline. The run-profile and experiments were done for the BLAT program in the bio-

informatics domain. The EAS Engine was able to dynamically take react to the difference

between EET and AET and adjust the number of nodes up or down to balance the

minimization of energy and performance criteria for all our experimental datasets. Our

experiments suggest that the choice of run profile in step 1 of the algorithm has an impact

on the overall performance of the algorithm because it impacts the number of adjustment

the algorithm has to make to meet deadlines. Each adjustment has an associated overhead

which impacts the energy optimization. Clearly there are various strategies one could use

in the conservative to risk spectrum, but this is also the space in which we can do more

research to find the right balance. Our future research will focus on further automation of

the EAS Engine to accommodate other programs in the same domain or similar domains.

We would also like to explore the nuances between conservative and risky approaches to

the Off-line scheduling of node resources. We believe that eventually OS capabilities will

evolve, allowing existing hardware DVS capabilities to be controlled at a program level,

thus enabling software programs to have more control and flexibility in handling energy

considerations. This will allow programs written with intimate knowledge about a

specific domain and an understanding of deadline needs of the user for result sets to scale

118

the application in such a way that resources can be added on-demand, and processor

speed controlled (hence controlling energy) to either speedup or slowdown the

application to manage the divergent goals of performance and energy. Another key focus

of our future research will be to incorporate the ability to incorporate Dynamic Voltage

Scaling (DVS) at the node level. This will allow us to add another level of granularity to

the EAS algorithm’s ability to adjust energy at the node level.

In chapter 6, we applied our run-profile based approach on another bioinformatics

application for assembling short reads. Based on the results we can clearly observe that

given a deadline we can choose the appropriate number of nodes to run the overlap

detection phase of the assembler on based on our new understanding of the run-profile we

just produced. This will allow us to apportion just enough nodes to meet the deadline thus

maximizing the objective of performance with minimum energy utilization. We also

observed that with a smaller number of nodes we have larger gains in performance and

above a certain number of nodes the performance gain is only modest at best. In fact as

we add additional nodes our communication costs and related overhead is higher. Clearly

different bioinformatics applications and algorithms will have different run profiles and

understanding each one of them will allow us to best assign the appropriate number of

nodes to meet a given deadline. It was also important to see how the number of read

subsets impacted the performance/energy criterion. Our experiments suggest a bowl

shaped curve when we varied the number of files for the same number of nodes. Clearly

there must be some optimum value for the number of files for each set. This highlights

the importance of understanding the degree of parallelism for the program, which is done

by establishing the run profile/speedup curve. The EAS engine uses the knowledge from

119

the run profile to make intelligent and dynamic decisions about number of nodes to use to

minimize energy utilization and still provide necessary performance. Clearly it is no

longer sufficient to simply run a program in a HPC environment. It is important and

essential to understand the data, its characteristics, and the application domain to build a

parallel program that is energy aware. We have several parameters we could study and

the relationship between them. These parameters are (1) Number of files; (2) Number of

sequences per file; (3) Number of nodes used and (4) Average sequence length. In this

section we have only looked at number of nodes used as a parameter for our experimental

design. In the future we plan to investigate how adjusting the different tuning parameters

such as number of files, number of sequences per file, number of nodes impacts the

performance and energy efficiency. We also plan on including the pre-processing step

and final assembly as part of the EAS processing. Our main motivation is to move this

from a simple speedup to the realm of energy awareness. Our EAS model for the

purposes of the experiments conducted calculated energy as a function of resources used

in this case number of nodes. The energy function could be made more complex; we

leave that for a future study.

In chapter 7, we took the next logical step to applying the run-profile based approach to

the “Cloud”, as cloud computing in gaining more and more importance. We took the

approach to write a Cloud Simulation based on our EAS run-profile model so that we can

as customers and operators of Cluster resources ask the “what if” questions, run them on

the cloud simulator, to help make better informed decisions. We provided several “What

if” scenarios and chose to design experiments for 3 of these scenarios demonstrating the

120

value of such a cloud simulation program to help answers questions such as the following

before actually utilizing cloud resources.

1) Can the given deadlines be met based on the past run profile.

2) Should we use a single cluster or distribute the work load across multiple clusters to

meet specific deadline requirements.

3) Analyze impact of cluster availability/energy index on revenue and ROI.

In this dissertation we proposed several algorithmic approaches to address energy

awareness across the spectrum from small mobile devices to large high performance

clusters to Cloud computing. We also pose questions for further research & study in the

very important area of “Energy Awareness & Scheduling”.

Finally in chapter 8 we presented an energy aware algorithm for mobile devices for

scheduling purposes where the average energy utilized for all the various job cycles

provided an average reduction of approximately 9.29% as compared with previous

algorithms. Most of the Energy Aware Scheduling Algorithms designed so far use WCET

to compute the workloads in the offline phase. In general most tasks complete between

BCET and WCET. In fact; it is a well-known that most tasks complete well before

WCET. We exploited this knowledge to our advantage and proposed the Run-queue peek

algorithm which provided additional energy savings.

We also proposed an enhanced dynamic task scheduling algorithm using task run-queue

peek technique for battery operated (mobile devices) DVS systems that further maximize

the residual charge and the battery voltage. Our future research focused on using the

information regarding expected execution time (EET) instead of WCET because WCET

121

is a very conservation approach used in the Off-line Phase to schedule tasks. We explored

both the suggested approaches of computing EET namely conservative and risky and

study their performance relative to each other.

In the future we plan on applying our EAS model to a much complex problem in the

bioinformatics domain of clustering and networks. We also plan on taking the

Department of Energy’s “Better Building Challenge”– “to reduce the energy used

across their building portfolios by 20 percent or more by 2020”. Our goal is to use our

EAS model along with scheduling heuristics and apply them to HVAC and other building

sensor data to perform real-time analytics and address the issue of “finding what

matters in a timely matter” to save energy costs.

122

Bibliography

A Portable Implementation of MPI. (n.d.). Retrieved Nov 2009, from MPICH: http://www-

unix.mcs.anl.gov/mpi

Ahmed, J., & Chakrabarti, C. (2004). A Dynamic Task Scheduling Algorithm for Battery Powered

DVS Systems. ISCAS - International Symposium on Circuits and Systems, II, pp. 813-816.

Amazon Elastic Compute Cloud (Amazon EC2). (2013). Retrieved from Amazon:

http://aws.amazon.com/ec2/

AMD. (2007, Feb). AMD Report Pegs Global Data Center Energy Costs at $7.2 Billion. Retrieved

Sep 2008, from http://www.environmentalleader.com/2007/02/16/amd-report-pegs-

global-data-ceneter-energy-costs-at-72-billion/

Amdahl’s Law. (n.d.). Retrieved Jan 2009, from Wikipedia:

http://en.wikipedia.org/wiki/Amdahl's_law

Amdhal, G. M. (1967). Validity of the single processor approach to achieving large scale

computing capabilities. Proc. Am. Federation of Information Processing Societies Conf.,

483 – 485.

Aronsson, P., & Fritzson, P. (Jan 8-10, 2003). Task Merging and Replication using Graph

Rewriting. Tenth International Workshop on Compilers for Parallel Computers.

Amsterdam, the Netherlands.

Benini, L., Bogliolo, A., Paleologo, G. A., & De Micheli, G. (1999, June). Policy optimization for

dynamic power management. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 18(6), 813 - 833.

Bjornson, R., Sherman, A., Weston, S., Willard, N., & Wing, J. (2002). TurboBLAST(r): A parallel

implementationof BLAST built on the TurboHub. International Parallel and Distributed

Processing Symposium.

Blackforest Computing Cluster. (n.d.). Retrieved Oct 2008, from UNO:

http://blackforest.gds.unomaha.edu/about.php

Braun, R., Pedretti, K., Casavant, T., Scheetz, T., & Roberts, C. (2001). Parallelization of local

BLAST service on workstation clusters. Future Generation Computer Systems, 17(6).

Canadian Electricity Association. (2006). Canadian Attitudes Towards Energy Efficiency.

Retrieved Feb 15, 2007, from Canadian Electricity Association:

http://www.canelect.ca/en/Pdfs/2973_Fact_Sheet_EN_noDate.pdf

Chi, E., Shoop, E., Carlis, J., Retzel, E., & Riedl, J. (1997). Efficiency of shared-memory

multiprocessors for a genetic sequence similarity search algorithm.

123

Cho, S., & Melhem, R. M. (2008, Jan). Corollaries to Amdahl’s Law of Energy. IEEE Computer

Architecture Letters (CAL), 7(1), 25 – 28.

Chowdhary, P., & Chakrabarti, C. (16-18 Oct. 2002). Battery aware task scheduling for a system-

on-a-chip using voltage/clock scaling. IEEE Workshop on Signal Processing Systems, (SIPS

2002)., (pp. 201-206).

Coffman, E. G., Graham, R. L., Bruno, J. L., Kohler, W. H., Sethi, R., Steiglitz, K., & Ullman, J. D.

(1976). Computer and Job-Shop Scheduling Theory. John Wiley & Sons, A Wiley-Inter-

Science publication.

Cohen, P. R., & Howe, A. E. (1988, Dec). How evaluation guides AI research. AI Magazine, 9(4),

pp. 35-43.

Cohen, P. R., & Howe, A. E. (1989, May/June). Toward AI research methodology: three case

studies in evaluation. IEEE Transactions on Systems, Man and Cybernetics, 19(3), 634-

646.

Dayde, M. (2006). High Performance Computing for Computational Science. VECPAR. Berlin

Heidelberg, Germany: Springer-Verlag.

Eui-Young, C., Benini, L., & De Micheli, G. (1999). Dynamic power management using adaptive

learning tree. IEEE/ACM International Conference on Computer-Aided Design, 274 - 279.

Feigenoff, C., & al., e. (2003). Grand Research Challenges in Information Systems (NSF Grant No.

0137943). Computing Research Association. Washington, DC 20036-4632: Computing

Research Association. Retrieved March 21, 2006, from Computing Research Association:

http://www.cra.org/reports/gc.systems.pdf

Foley, J. (2008, Mar). Google's Iowa Data Center Emerges. Retrieved Nov 2008, from Information

week:

http://www.informationweek.com/blog/main/archives/2008/03/googles_iowa_da.html

Gary, S., Ippolito, P., Gerosa, G., Dietz, C., Eno, J., & Sanchez, H. (1994, Oct). PowerPC: A

microprocessor for portable computers. IEEE Design & Test of Computers, 11(4), 14-23.

Genome Bioinformatics. (n.d.). Retrieved Oct 2008, from UCSC:

http://genome.ucsc.edu/index.html

Google Cloud Platform. (2013). Retrieved from https://cloud.google.com/products/compute-

engine

Greenawalt, P. M. (1994, Jan 31). Modeling power management for hard disks. Proceedings of

the Second International Workshop on Modeling, Analysis, and Simulation of Computer

and Telecommunication Systems, MASCOTS '94., 62-66.

124

Gropp, W., Lusk, E., & Skjellum, A. (Oct 1994). Using MPI: Portable Parallel Programming with

the Message Passing Interface. 55 Hayward St. Cambridge, MA 02142: MIT Press.

Gropp, W., Lusk, E., & Thakur, R. (Nov 1999). Using MPI-2: Advanced Features of the Message

Passing Interface. 55 Hayward St. Cambridge, MA 02142: MIT Press.

He, J. (2008, Feb). Datacenter Power Management: Power Consumption Trend. Retrieved Sep

04, 2008, from Intel: http://communities.intel.com/openport/blogs/server/2008/02

Hesham, E.-R., Lewis, T. G., & Hesham, A. H. (1994). Task Scheduling in Parallel and Distributed

Systems. Englewood Cliffs, New Jersey 07632: PTR Prentice Hall, Inc.

Hill, M. D., & Marty, M. R. (2008, July). Amdahl’s Law in the Multi-core Era. IEEE Computer, 41,

33 – 38.

Holland Computing Center. (n.d.). Retrieved Nov 2008, from UNO:

http://www.hollandhpc.com/index.shtml

Hu, J., & Marculescu, R. (2004). Energy-Aware Communication and Task Scheduling for Network-

on-Chip Architectures under Real-Time Constraints. Proceedings of the conference on

Design, automation and test in Europe. 1, pp. 234 - 239. IEEE Computer Society,

Washington, DC, USA.

Huang, X. (2003, Sept). PCAP: A Whole-Genome Assembly Program. Genome Res., 13(9), 2164 -

2170.

Hwang, C.-H., & Wu, A. (1997, Nov). A predictive system shutdown method for energy saving of

event-driven computation. Proceedings of the 1997 IEEE/ACM international conference

on Computer-aided design, 28-32.

Intel. (2006, Oct). Intel is Leading the Way in Designing Energy-Efficient Platforms.

Technology@Intel Magazine.

Intelligent Energy Europe - Publications and Documents. (2007, Jan 15). Retrieved Jan 15, 2007,

from Intelligent Energy - Europe:

http://ec.europa.eu/energy/intelligent/library/publications_en.htm

Jaber, J. O., Mamlook, R., & Awad, W. (Dec 2003). Assessment of Energy Conservation and

Awareness program in Household sector in Jordan. Rio de Janerio, Brazil: World Climate

and Energy.

Jejurikar, R., & Gupta, R. (2002). Energy Aware Task Scheduling with Task Synchronization for

Embedded Real Time Systems. Proceedings of the 2002 international conference on

Compilers, architecture, and synthesis for embedded systems (pp. 164 - 169). Grenoble,

France: ACM Press New York, NY, USA.

125

Jha, N. K. (2001). Low Power System Scheduling and Synthesis. Proceedings of the 2001

IEEE/ACM international conference on Computer-aided design (pp. 259 - 263). San Jose,

California: IEEE Press Piscataway, NJ, USA.

Khan, A. A., McCreary, C. L., & Jones, M. S. (1994). A Comparison of Multiprocessor Scheduling

Heuristics. International Conference on Parallel Processing, 2, pp. 243-250.

Kim, W., Kim, J., & Min, S. L. (2002). Dynamic voltage scaling algorithm for dynamic-priority hard

real-time systems using slack time analysis. Proceedings of the conference on Design,

automation and test in Europe (pp. 788 - 794). IEEE Computer Society Washington, DC,

USA.

Larsson, N. J., & Sadakane, K. (1999). Faster suffix sorting. Lund University. Sweden: Lund.

Li, W., & Godzik, A. (2006, July). Cd-hit: A Fast Program for Clustering and Comparing Large Sets

of Protein or Nucleotide Sequences. Bioinformatics, 22(13), 1658-659.

Lu, Y.-H., Benini, L., & De Micheli, G. (2000). Low-power task scheduling for multiple devices.

Proceedings of the Eighth International Workshop on Hardware/Software Codesign,

CODES 2000., (pp. 39 - 43).

Martin, T. (August 1999). Balancing batteries, power, and performance: System issues in CPU

speed-setting for mobile computing. Ph.D Dissertation.

Meyerson, M. (2010, Oct). Advances in Understanding Cancer Genomes through Second-

generation Sequencing. Nat. Rev. Genet., 11(10), pp. 685 - 696.

Microsoft on Cloud Computing. (2013). Retrieved from http://www.microsoft.com/en-

us/news/presskits/cloud/

Miller, J. (2010, June). Assembly Algorithms for next-generation sequencing data. Genomics,

95(6), 315 - 327.

Mishra, R., Rastogi, N., Zhu, D., Mossé, D., & Melhem, R. (2003). Energy Aware Scheduling for

Distributed Real-Time Systems. Proceedings of the 17th International Symposium on

Parallel and Distributed Processing. IPDPS (p. 21.2). IEEE Computer Society, Washington,

DC, USA.

Myers, E. (2000, Mar). A whole-genome assembly of Drosophila. Science 2000, 287(5461), 196–

204.

Myers, E. (2005, Sept). The Fragment Assembly String Graph. Bioinformatics, 21(2), 79 - 85.

NCBI Database. (2010, Nov). Retrieved from NCBI: http://www.ncbi.nlm.nih.gov/sra

126

Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for

similarities in the amino acid sequences of two proteins. Molecular Biolology, 48(3), 443

– 453.

Ohlebusch, E., & Abouelhoda, M. I. (2006). Chaining Algorithms and Applications in Comparative

Genomics (Vol. 15). Boca Raton, FL: Chapman and Hall/CRC Computer and Information

Science Series.

Pawaskar, S. S., & Ali, H. H. (2010). On the Tradeoff between Speedup and Energy Consumption

in High Performance Computing – A Bioinformatics Case Study. Parallel and Distributed

Computing and Networks. Innsbruck, Austria.

Pawaskar, S., & Ali, H. (2010). A Dynamic Energy-Aware Model for Scheduling Computationally

Intensive Bioinformatics Applications. Proc. Int’l Conf. on High Performance Computing

and Simulation.

Qin, J. (2010, Mar). A Human Gut Microbial Gene Catalogue Established by Metagenomic

Sequencing. Nature, 464(7285), 59 - 65.

Raghunathan, V., Pereira, C. L., Srivastava, M. B., & Gupta, R. K. (2005, Feb). Energy-aware

wireless systems with adaptive power-fidelity tradeoffs. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 13(2), 211- 225.

Rajkumar, R. (2005, Nov 01). NSF Award Abstract - #0509305 CSR-EHS: Power-Aware Real-Time

Systems. Retrieved Nov 29, 2005, from National Science Foundation (NSF):

http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0509305

Rakhmatov, D., Vrudhula, S., & Chakrabarti, C. (2002). Battery-conscious task sequencing for

portable devices including voltage/clock scaling. Design Automation Conference, 2002.

Proceedings. 39th, (pp. 189-194).

Rao, V., Singhal, G., Kumar, A., Visweswaran, G., & Navet, N. (2004). Battery Aware Scheduling

for Embedded Systems. 17th International Conference on VLSI Design, 2004, (pp. 105 -

110).

Rusu, C., Melhem, R., & Mossé, D. (2005, April). Multi version scheduling in Rechargeable Energy

aware Real time Systems. Journal of Embedded Computing, 1(2), 271 - 283.

(Feb 2004, Feb). Saving money through Energy Efficiency: A Guide to implementing an energy

efficiency awareness program. Natural Resources Canada, Office of Energy Efficiency.

Ottawa ON Canada: Energy Innovators Initiative Office of Energy Efficiency Natural

Resources Canada.

Sequence and Annotations downloads. (n.d.). Retrieved Dec 2008, from UCSC Genome

Bioinformatics: http://hgdownload.cse.ucsc.edu/downloads.html

127

Shin, D., Kim, J., & Lee, S. (2001, March). Intra Task Voltage Scheduling for Low Energy Hard Real

Time Applications. IEEE Design & Test, 18(2), 20 - 30.

Shin, Y., & Choi, K. (1999). Power Conscious Fixed Priority Scheduling for Hard Real-Time

Systems. Annual ACM IEEE Design Automation Conference (pp. 134-139). New Orleans,

Louisiana, United States: ACM Press New York, NY, USA.

Simunic, T., Benini, L., & De Micheli, G. (1999). Event-driven power management of portable

systems. Proceedings. 12th International Symposium on System Synthesis., (pp. 18-23).

San Jose, CA, USA.

Snyder, L. (2008, Jan). Slash Data Center Energy Cost. Retrieved Sep 2008, from

http://www.facilitiesnet.com/bom/article.asp?id=8068

Sommer, D. (2007, Feb). A Fast, Lightweight Genome Assembler. BMC Bioinformatics, 8(1).

Srivastava, M. B., Chandrakasan, A. P., & Brodersen, R. W. (1996, Mar). Predictive system

shutdown and other architectural techniques for energy efficient programmable

computation. IEEE Trans. on VLSI Systems, 4(1), 42-55.

Strawn, G. O., Howe, S. E., & King, F. D. (November 2006). Grand Challenges: Science,

Engineering, and Societal Advances requiring Networking and IT Research and

Development. National Coordination Office for Information Technology Research and

Development (NITRD). Arlington, Virginia: NITRD.

Swaminathan, V., & Chakrabarty, K. (2001). Investigating the effect of voltage-switching on low-

energy task scheduling in hard real-time systems. Proceedings of the ASP-DAC 2001. Asia

and South Pacific Design Automation Conference (pp. 251 - 254). Yokohama, Japan: ACM

Press, New York, NY, USA.

Swaminathan, V., & Chakrabarty, K. (2001, Sept). Real time task scheduling for energy aware

embedded systems. Journal of The Franklin Institute, 338(6), 729-750.

Swaminathan, V., & Chakrabarty, K. (2002). Pruning-based energy-optimal device scheduling for

hard real-time systems. Proceedings of the tenth international symposium on

Hardware/software Codesign (pp. 175 - 180). Estes Park, Colorado: ACM Press New

York, NY, USA.

Swaminathan, V., Chakrabarty, K., & Iyengar, S. S. (2001). Dynamic I/O power management for

hard real-time systems. Proceedings of the Ninth International Symposium on

Hardware/Software Codesign, CODES 2001., (pp. 237 - 242).

The battery life challenge – balancing performance and power. (2004, Jan 1). (Intel) Retrieved

Apr 8, 2007, from Intel:

http://onlinetoolkit.intel.com/docs/busi/ExtendingBatteryLifeWP.pdf

128

The importance of energy. (2005). Retrieved Dec 3, 2005, from Europa Energy Research:

http://europa.eu.int/comm/research/energy/gp/gp_imp/article_1081_en.htm

U.S. Department of Energy. (1999). Home Appliance Buying Trends Survey. DOE. D&R

International, Ltd.

Ullman, J. (1975). NP-complete scheduling problems. Journal of Computer and System Sciences,

10, 384-393.

Ulrich, N. C., & Flagg, J. (2003, March). Consumer Energy Awareness and Attitude Study.

Retrieved Jan 15, 2007, from Energy Home Improvements:

www.myenergystar.com/documents/PressReleases/2004/2004Facts_Energy2.ppt

Wand, Y., & Weber, R. (2002, Dec). Information Systems and Conceptual Modeling - A Research

Agenda. Information Systems Research, 13(4), 363-376.

Wang, M.-f. (1992). A dynamic task scheduling method for multiprocessor system. Proceedings

of the 1992 ACM/SIGAPP symposium on Applied computing: technological challenges of

the 1990's (pp. 840 - 845). Kansas City, Missouri, United States: ACM Press New York,

NY, USA.

Xie, R., Rus, D., & Stein, C. (Dec, 2001). Scheduling Multi-Task Agents. Proceedings of the 5th

International Conference on Mobile Agents (pp. 260-276). Atlanta, Georgia: Springer-

Verlag London, UK.

Yahoo. (2008, Oct). Despite slump, Yahoo plans new operations in Neb. Retrieved Nov 2008,

from http://www.usatoday.com/tech/products/2008-10-24-733224501_x.htm

Yang, P., Wong, C., Marchal, P., Catthoor, F., Desmet, D., Verkest, D., & Lauwereins, R. (2001,

Sept). Energy Aware Runtime Scheduling for Embedded Multiprocessor SOCs. IEEE

Design & Test, 18(5), 46 - 58.

Zhuo, J., & Chakrabarti, C. (2005). An efficient dynamic task scheduling algorithm for battery

powered DVS systems. Proceedings of the 2005 conference on Asia South Pacific design

automation (pp. 846 - 849). Shanghai, China: ACM Press New York, NY, USA.

Zhuo, J., & Chakrabarti, C. (2005). System-level energy-efficient dynamic task scheduling.

Proceedings of the 42nd annual conference on Design automation (pp. 628 - 631). San

Diego, California, USA: ACM Press New York, NY, USA.

129

Appendix A-1: The NITRD program’s illustrative grand challenge.
No. Grand Challenges

1 Knowledge Environments for Science and Engineering

2 Clean Energy Production through Improved Combustion

3 High Confidence Infrastructure Control Systems

4 Improved Patient Safety and Health Quality

5 Informed Strategic Planning for Long-Term Regional Climate Change

6 Nanoscale Science and Technology: Explore and Exploit the Behavior of

Ensembles of Atoms and Molecules

7 Predicting Pathways and Health Effects of Pollutants

8 Real-Time Detection, Assessment, and Response to Natural or Man-Made

Threats

9 Safer, More Secure, More Efficient, Higher-Capacity, Multi-Modal

Transportation System

10 Anticipate Consequences of Universal Participation in a Digital Society

11 Collaborative Intelligence: Integrating Humans with Intelligent Technologies

12 Generating Insights from Information at Your Fingertips

13 Managing Knowledge-Intensive Dynamic Systems

14 Rapidly Acquiring Proficiency in Natural Languages

130

Appendix A-2: IT hard problem areas identified based on grand

challenges.
No. IT hard problem areas

1 Algorithms and Applications

2 Complex Heterogeneous Systems

3 Hardware Technologies

4 High Confidence IT

5 High-End Computing Systems

6 Human Augmentation IT

7 Information Management

8 Intelligent Systems

9 IT System Design

10 IT Usability

11 IT Workforce

12 Management of IT

13 Networks

14 Software Technologies

131

Appendix B: Survey of work done with approaches taken
Researchers Year Approach Method Description

(Greenawalt, 1994) 1994 Statistical Equation modeling for hard disk power management

(Hwang & Wu, 1997) 1997 Probabilistic Exponential average method in conjunction with prediction miss correction and pre-wakeup

mechanism

(Benini, Bogliolo,

Paleologo, & De Micheli,

1999)

1999 Finite machines Finite-state, model based on Markov decision process

(Simunic, Benini, & De

Micheli, 1999)

1999 Finite machines Modifications to Benini et al’s method

(Eui-Young, Benini, & De

Micheli, 1999)

1999 Probabilistic and Statistical Adaptive Learning Tree Data structure

(Lu, Benini, & De Micheli,

2000)

2000 Exact solution

[non probabilistic and non

statistical]

Rearrange tasks executions to prolong device idle periods

(Swaminathan,

Chakrabarty, & Iyengar,

2001)

2001 Exact solution LEDES algorithm – Rearranges task executions (online)

(Swaminathan &

Chakrabarty, Pruning-

based energy-optimal

device scheduling, 2002)

2002 Exact solution EDS algorithm (online) – rearranges task execution (offline)

(Wang, 1992) 1992 Exact solution A dynamic task scheduling method which extends the Round-Robin policy task scheduling.

(Ahmed & Chakrabarti,

2004)

2004 Exact solution The authors propose a two phase algorithm with the objective of maximizing the residual

charge and the battery voltage after the execution of the tasks. In phase 1 (offline) a battery

aware algorithm schedules the tasks assuming WCET. In Phase 2 (online) the algorithm

reassigns the voltage levels based on the additional slack generated because AET < WCET.

(Chowdhary &

Chakrabarti, 16-18 Oct.

2002)

2002 Heuristic solution The proposed algorithm maximizes battery life by shaping the current load profile. The

shaping algorithm makes extensive use of voltage/clock scaling and is guided by heuristics that

are derived from the properties of the battery model. This is for a-periodic task scheduling.

(Zhuo & Chakrabarti,

Dynamic Task Scheduling

Algorithm, 2005)

2005 Exact solution A new battery aware dynamic task scheduling algorithm, darEDF, based on an efficient slack

utilization scheme that employs dynamic speed setting of tasks in run queue. Comparison with

lpfpsEDF, lppsEDF, lpSEH energy efficient algorithms is performed.

(Kim, Kim, & Min, 2002) 2002 Exact solution (*) Energy efficiency of a DVS algorithm largely depends on the performance of the slack

estimation method used. The proposed algorithm takes full advantage of the periodic

characteristics of the task under priority-driven scheduling such as EDF.

132

(Zhuo & Chakrabarti,

System-level energy-

efficient dynamic task

scheduling, 2005)

2005 Exact solution (*) In a DVS system with multiple devices, slowing down the processor increases the device

energy consumption. A dynamic task scheduling algorithms for periodic tasks that minimize

system level energy (CPU + Device standby). The algorithm uses (1) optimal speed setting,

which is the speed that minimizes the system energy for a specific task, and (2) limited

preemption which reduces the number of possible preemptions.

(Jejurikar & Gupta, 2002) 2002 Heuristic solution DVS based on slowdown factors can lead to considerable energy savings. An algorithm is

proposed to compute static slow down factors for a periodic task set. It takes into consideration

effects of blocking that arise due to task synchronization.

(Rao, Singhal, Kumar,

Visweswaran, & Navet,

2004)

2004 Heuristic solution Addresses the issues of making real-time DVS algorithms battery aware by using heuristics

instead of computation-intensive battery models for making runtime scheduling decisions.

(Swaminathan &

Chakrabarty, Real time

task scheduling, 2001)

2001 Mixed Integer Linear

Programming (MILP)

The proposed approach (for periodic tasks in real-time systems) minimizes energy consumed

by the task set meets deadlines. The approach used is MILP.

(Rusu, Melhem, & Mossé,

2005)

2005 Heuristic solution To achieve a variety of QoS-aware trade-offs the authors propose (a) a static solution that

maximizes the system value assuming WCET and (b) a dynamic scheme that takes advantage

of the extra energy in the system when worst-case scenarios do not happen. Three dynamic

policies are shown. Algorithm is call MV-Pack

(Yang, et al., 2001) 2001 Combination – Genetic

algorithm and MILP.

This task-scheduling method combines the low runtime complexity of a design-time

scheduling phase with the flexibility of a runtime scheduling phase. The design time phase

uses a genetic algorithm for scheduling where as the runtime phase uses a MILP algorithm

(Swaminathan &

Chakrabarty, Effects of

voltage-switching, 2001)

2001 Mixed Integer Linear

Programming (MILP)

For workloads containing periodic tasks, the authors propose a mixed-integer linear

programming model for the complete scheduling problem. For larger tasks sets, a extended-

low-energy earliest-deadline-first (E-LEDF) scheduling algorithm is given.

(Shin, Kim, & Lee, 2001) 2001 Exact solution An intra-task voltage scheduling algorithm is proposed which controls the supply voltage

within an individual task boundary. It exploits the slack time to achieve a high-energy

reduction. First it automatically selects appropriate program location for performing voltage

scaling. Second, it inserts voltage-scaling code to the selected locations.

(Raghunathan, Pereira,

Srivastava, & Gupta, 2005)

2005 Exact solution Authors show how operating system directed DVS and DPM can provide tradeoff. A real-time

scheduling algorithm is proposed that uses runtime feedback about application behavior to

provide adaptive power-fidelity tradeoffs. Demonstration in the context of a static priority

based preemptive task scheduler.

(Mishra, Rastogi, Zhu,

Mossé, & Melhem, 2003)

2003 Exact solution A new static and dynamic power management scheme. The new static scheme uses the static

slack (if any) based on the degree of parallelism in the schedule. An online DPM technique is

proposed to consider run-time behavior of tasks which exploits the idle periods of processors.

(Hu & Marculescu, 2004) 2004 Heuristic solution Algorithm considers communication delays in parallel. Main contribution is formulation of the

problem for concurrent communication and task scheduling and a heuristic to solve it.

133

Appendix C: Abbreviations
Abbreviations Description

LPFPS Low Power Fixed Priority Scheduling

WCET Worst Case Execution Time

BCET Best Case Execution Time

AET Actual Execution Time

EET Expected Execution Time

DVS Dynamic Voltage Scaling

DPM Dynamic Power Management

LCM Least Common Multiple

AVR Average Rate

WCEP Worst Case Execution Path

ACEP Average Case Execution Path

MILP Multiple Integer Linear Programming

PDA Personal Digital Assistant

IPC Instructions per Second

EPI Energy per Instruction

HPC High Performance Computing

HPCC High Performance Computing and Communications

HEC High End Computing

PDA Personal Digital Assistant

LAN Local Area Network

GPS Global Positioning System

NSF National Science Foundation

BLAST Basic Local Alignment Search Tool

BLAT BLAST-Like Alignment Tool

EAS Energy Aware Scheduling

MPI Message Passing Interface

UNO University of Nebraska at Omaha

UNMC University of Nebraska Medical Center

IaaS Infrastructure as a Service

PaaS Platform as a Service

SaaS Software as a Service

XML eXtensible Markup Language

MILP Mixed Integer Linear Programming

134

Appendix D: Listing of Figures
Figure 1: World IT Spending - Energy Cost Increase .. 1

Figure 2: EAS model working across the spectrum .. 11

Figure 3: The Scheduling System ... 14

Figure 4: A Scheduler ... 16

Figure 5: Energy Aware Scheduling System ... 17

Figure 6: Static to Dynamic to Dynamic Energy Awareness Scheduling .. 18

Figure 7: A Task Graph ... 19

Figure 8: System Level Configuration .. 22

Figure 9: Task Description .. 23

Figure 10: Our EAS Model .. 25

Figure 11: EAS Model - Logical View .. 27

Figure 12: Research Vision for our EAS Model .. 28

Figure 13: Cycle of Research (Cohen & Howe, How evaluation guides AI research, 1988)........... 30

Figure 14: Criteria for Evaluating Research Problems ... 31

Figure 15: Criteria for evaluating methods .. 33

Figure 16: Criteria for Evaluating Method Implementation .. 34

Figure 17: Criteria for Evaluating the Experiment Design ... 34

Figure 18: Criteria for Evaluating What the Experiments Told Us ... 35

Figure 19: Energy aware scheduling layer for HEC .. 38

Figure 20: Amdahl's Law .. 40

Figure 21: Process Flow Diagram for EAS Program ... 45

Figure 22: QbyChr execution on Firefly Cluster ... 49

Figure 23: QBigbyChr execution on Firefly Cluster .. 50

Figure 24: AllAll execution on Firefly Cluster ... 51

Figure 25: AllAll, QBig & QbyChr on Firefly Cluster.. 52

Figure 26: Details on Nodes 1 - 10 ... 53

Figure 27: Details on Nodes 11 - 25 ... 54

Figure 28: Number of Nodes v/s Speedup ... 54

Figure 29: Scheduling – Energy & Deadline aware .. 56

Figure 30: Process Flow Diagram for MPI Program with EAS Engine & Run Profiles 62

Figure 31: AllAll, QBig & QbyChr on Firefly Cluster.. 64

Figure 32: EAS Engine – AllAll Profile Adjustments .. 66

Figure 33: EAS Engine – QByChr Profile Adjustments .. 67

Figure 34: EAS Engine – QBig Profile Adjustments .. 67

Figure 35: EAS Engine – No Profile Adjustments ... 68

Figure 36: Read Overlaps ... 74

Figure 37: The overlap graph. .. 74

Figure 38: Containment clustering – reads r2 & r4 r1 and read r5 r3. 77

Figure 39: Pre-processing step ... 79

Figure 40: Process Flow Diagram ... 80

135

Figure 41: Execution dependencies of containment tasks .. 81

Figure 42: EAS - Execution time v/s Nodes .. 83

Figure 43: EAS - Execution time/Overhead v/s Nodes ... 84

Figure 44: EAS - Merge & Traverse Assembly - Nodes v/s Speedup .. 85

Figure 45: EAS Engine - dynamic node adjustments .. 86

Figure 46: Cloud Computing Models ... 90

Figure 47: Cloud Computing Service Layers ... 91

Figure 48: Cloud Deployment Models ... 91

Figure 49: Simulation Program Usage.. 95

Figure 50: Class diagram for Simulation Main & Run .. 96

Figure 51: Class diagram for the Cloud & Run profile .. 96

Figure 52: Sample Cloud initialization XML file.. 97

Figure 53: Cloud initialization XML Schema definition .. 98

Figure 54: Sample Simulation Run XML file ... 99

Figure 55: Sample Simulation Run XML Schema definition ... 99

Figure 56: Scenario1 - Meeting deadline (10 minutes) .. 100

Figure 57: Scenario 1 - Meeting deadlines (10 minutes, 1 hour, 1 day) 101

Figure 58: Scenario 2 - Single v/s Distributed Cluster runs .. 101

Figure 59: Scenario 3 - Availability v/s Node Adjustments .. 102

Figure 60: Scenario 3 – Impact of Availability on # of Jobs/Customers 103

Figure 61: Scenario 3 – Impact of Energy Index on # of Jobs/Customers.................................... 103

Figure 62: Different stages in accomplishing energy-efficiency objectives 105

Figure 63: (a) WCET Schedule. (b) WCET Schedule with full slack forwarding. (c) WCET Schedule

with partial slack forwarding. (d) WCET Schedule with no partial slack forwarding. 108

Figure 64: Pseudo-Code for On-line Phase II ... 109

Figure 65: Task scheduling using LPFPS algorithm versus enhancements 110

Figure 66: Task scheduling using proposed algorithm, LPFPS and 2-Phase algorithm 112

Figure 67: Pseudo-Code for proposed algorithm .. 113

Figure 68: Enhanced Algorithm - Average Energy Utilized .. 114

Figure 69: Understanding Risk w.r.t Optimal v/s Feasible solutions ... 115

136

Appendix E: Listing of Tables

Table 1: Complexity comparison of scheduling problem .. 21

Table 2: Query Sequences used for Analysis ... 47

Table 3: Query Groups used for Analysis ... 55

Table 4: Least nodes scheduled to meet deadline .. 56

Table 5: Query Groups used for Analysis ... 65

Table 6: Nodes used to meet deadline based on Profile ... 69

Table 7: Read Subset Group used for Analysis .. 85

Table 8: Variables influencing the energy-efficiency equation ... 106

Table 9: Example Task Set .. 110

	University of Nebraska at Omaha
	DigitalCommons@UNO
	7-2013

	Energy Awareness and Scheduling in Mobile Devices and High End Computing
	Sachin S. Pawaskaw
	Recommended Citation

	Energy Awareness and Scheduling in Mobile Devices and High End Computing

