1,320 research outputs found

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF

    Satellite-clock modeling in single-frequency PPP-RTK processing

    Get PDF
    The real-time kinematic precise point positioning (PPP-RTK) technique enables integer ambiguity resolution by providing singlereceiver users with information on the satellite phase biases next to the standard PPP corrections. Using undifferenced and uncombined observations, rank deficiencies existing in the design matrix need to be eliminated to formestimable parameters. In this contribution, the estimability of the parameters was studied in single-frequency ionosphere-weighted scenario, given a dynamic satellite-clock model in the network Kalman filter. In case of latency of the network corrections, the estimable satellite clocks, satellite phase biases, and ionospheric delays need to be predicted over short time spans. With and without satellite-clock models incorporated in the network Kalman filter, different approaches were used to predict the network corrections. This contribution shows how the predicted network corrections responded to the presence and absence of satellite-clock models. These differences in the predicted network corrections were also reflected in the user positioning results. Using three different 1-Hz global positioning system (GPS) single-frequency data sets, two user stations in one small-scale network were used to compute the positioning results, applying predicted network corrections. The latency of the network products ranges from 3 to 10 s. It was observed that applying strong satellite-clock constraints in the network Kalman filter (i.e., with the process noise of 1 or 0.5mm per square root of second) reduced the root-mean squares (RMS) of the user positioning results to centimeters in the horizontal directions and decimeters in the vertical direction for latencies larger than 6 s, compared to the cases without a satellite-clock model

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Improving Reliability and Assessing Performance of Global Navigation Satellite System Precise Point Positioning Ambiguity Resolution

    Get PDF
    Conventional Precise Point Positioning (PPP) has always required a relatively long initialization period (few tens of minutes at least) for the carrier-phase ambiguities to converge to constant values and for the solution to reach its optimal precision. The classical PPP convergence period is primarily caused by the estimation of the carrier-phase ambiguity from the relatively noisy pseudoranges and the estimation of atmospheric delay. If the underlying integer nature of the ambiguity is known, it can be resolved, thereby reducing the convergence time of conventional PPP. To recover the underlying integer nature of the carrier-phase ambiguities, different strategies for mitigating the satellite and receiver dependent equipment delays have been developed, and products made publicly available to enable ambiguity resolution without any baseline restrictions. There has been limited research within the scope of interoperability of the products, combining the products to improve reliability and assessment of ambiguity resolution within the scope of being an integrity indicator. This study seeks to develop strategies to enable each of these and examine their feasibility. The advantage of interoperability of the different PPP ambiguity resolution (PPP-AR) products would be to permit the PPP user to transform independently generated PPP-AR products to obtain multiple fixed solutions of comparable precision and accuracy. The ability to provide multiple solutions would increase the reliability of the solution for, e.g., real-time processing: if there were an outage in the generation of the PPP-AR products, the user could instantly switch streams to a different provider. The satellite clock combinations routinely produced within the International GNSS Service (IGS) currently disregard that analysis centers (ACs) provide products which enable ambiguity resolution. Users have been expected to choose either an IGS product which is a combined product from multiple ACs or select an individual AC solution which provides products that enable PPP-AR. The goal of the novel research presented was to develop and test a robust satellite clock combination preserving the integer nature of the carrier-phase ambiguities at the user end. mm-level differences were noted, which was expected as the strength lies mainly in its reliability and stable median performance and the combined product is better than or equivalent to any single ACs product in the combination process. As have been shown in relative positioning and PPP-AR, ambiguity resolution is critical for enabling cm-level positioning. However, what if specifications where at the few dm-level, such as 10 cm and 20 cm horizontal what role does ambiguity resolution play? The role of ambiguity resolution relies primarily on what are the user specifications. If the user specifications are at the few cm-level, ambiguity resolution is an asset as it improves convergence and solution stability. Whereas, if the users specification is at the few dm-level, ambiguity resolution offers limited improvement over the float solution. If the user has the resources to perform ambiguity resolution, even when the specifications are at the few dm-level, it should be utilized

    A New Cooperative PPP-RTK System with Enhanced Reliability in Challenging Environments

    Get PDF
    Compared to the traditional PPP-RTK methods, cooperative PPP-RTK methods provide expandable service coverage and eliminate the need for a conventional expensive data processing center and the establishment and maintenance of a permanently deployed network of dense GNSS reference stations. However, current cooperative PPP-RTK methods suffer from some major limitations. First, they require a long initialization period before the augmentation service can be made available from the reference stations, which decreases their usability in practical applications. Second, the inter-reference station baseline ambiguity resolution (AR) and regional atmospheric model, as presented in current state-of-art PPP-RTK and network RTK (NRTK) methods, are not utilized to improve the accuracy and service coverage of the network augmentation. Third, the positioning performance of current PPP-RTK methods would be significantly degraded in challenging environments due to multipath effects, non-line-of-sight (NLOS) errors, poor satellite visibility and geometry caused by severe signal blockages. Finally, current position domain or ambiguity domain partial ambiguity resolution (PAR) methods suffer from high false alarm and miss detection, particularly in challenging environments with poor satellite geometry and observations contaminated by NLOS effect, gross errors, biases, and high observation noise. This thesis proposed a new cooperative PPP-RTK positioning system, which offers significant improvements to provide fast-initialization, scalable coverage, and decentralized real-time kinematic precise positioning with enhanced reliability in challenging environments. The system is composed of three major components. The first component is a new cooperative PPP-RTK framework in which a scalable chain of cooperative static or moving reference stations, generates single reference station-derived or reference station network-derived state-space-representation (SSR) corrections for fast ambiguity resolution at surrounding user stations with no need for a conventional expensive data processing center. The second component is a new multi-feature support vector machine (SVM) signal classifier based weight scheme for GNSS measurements to improve the kinematic GNSS positioning accuracy in urban environments. The weight scheme is based on the identification of important features in GNSS data in urban environments and intelligent classification of line-of-sight (LOS) and NLOS signals. The third component is a new PAR method based on machine learning, which employs the combination of two support vector machine (SVM) to effectively identify and exclude bias sources from PAR without relying on satellite geometry. The prototype of the new PPP-RTK system is developed and substantially tested using publically available real-time SSR products from International GNSS Service (IGS) Real-Time Service (RTS)

    Reduction of initial convergence period in GPS PPP data processing

    Get PDF
    Precise Point Positioning (PPP) has become a popular technique to process data from GPS receivers by applying precise satellite orbit and clock information, along with other minor corrections to produce cm to dm-level positioning. Although PPP presents definite advantages such as operational flexibility and cost effectiveness for users, it requires 15-25 minutes initialization period as carrier-phase ambiguities converge to constant values and the solution reaches its optimal precision. Pseudorange multipath and noise are the largest remaining unmanaged errors source in PPP. It is proposed that by reducing these effects carrier-phase ambiguities will reach the correct steady state at an earlier time, thus reducing the convergence period of PPP. Given this problem, this study seeks to improve management of these pseudorange errors. The well-known multipath linear combination was used in two distinct ways: 1) to directly correct the raw pseudorange observables, and 2) to stochastically de-weight the pseudorange observables. Corrections to the observables were made in real-time using data from the day before, and post-processed using data from the same day. Post-processing has shown 4 7% improvement in the rate of convergence, as the pseudorange multipath and noise were effectively mitigated. A 36% improvement in the rate of convergence was noted when the pseudorange measurements were stochastically de-weighting using the multipath observable. The strength of this model is that it allows for real-time compensation of the effects of the pseudorange multipath and noise in the stochastic model

    Multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution

    Get PDF
    Multi-frequency and multi-GNSS measurements from modernized satellites are properly integrated for PPP with ambiguity resolution to achieve the state-of-the-art fast and accurate positioning, which provides an important contribution to GNSS precise positioning and applications. The multi-frequency and multi-GNSS PPP phase bias estimation and ambiguity resolution, which is accomplished by a unified model based on the uncombined PPP, are thoroughly evaluated with special focus on Galileo and BDS

    Localization Precise in Urban Area

    Get PDF
    Nowadays, stand-alone Global Navigation Satellite System (GNSS) positioning accuracy is not sufficient for a growing number of land users. Sub-meter or even centimeter accuracy is becoming more and more crucial in many applications. Especially for navigating rovers in the urban environment, final positioning accuracy can be worse as the dramatically lack and contaminations of GNSS measurements. To achieve a more accurate positioning, the GNSS carrier phase measurements appear mandatory. These measurements have a tracking error more precise by a factor of a hundred than the usual code pseudorange measurements. However, they are also less robust and include a so-called integer ambiguity that prevents them to be used directly for positioning. While carrier phase measurements are widely used in applications located in open environments, this thesis focuses on trying to use them in a much more challenging urban environment. To do so, Real Time-Kinematic (RTK) methodology is used, which is taking advantage on the spatially correlated property of most code and carrier phase measurements errors. Besides, the thesis also tries to take advantage of a dual GNSS constellation, GPS and GLONASS, to strengthen the position solution and the reliable use of carrier phase measurements. Finally, to make up the disadvantages of GNSS in urban areas, a low-cost MEMS is also integrated to the final solution. Regarding the use of carrier phase measurements, a modified version of Partial Integer Ambiguity Resolution (Partial-IAR) is proposed to convert as reliably as possible carrier phase measurements into absolute pseudoranges. Moreover, carrier phase Cycle Slip (CS) being quite frequent in urban areas, thus creating discontinuities of the measured carrier phases, a new detection and repair mechanism of CSs is proposed to continuously benefit from the high precision of carrier phases. Finally, tests based on real data collected around Toulouse are used to test the performance of the whole methodology

    Multi-GNSS Precise Point Positioning Software Architecture and Analysis of GLONASS Pseudorange Biases

    Get PDF
    With expanding satellite-based navigation systems, multi-Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) presents an advantage over a single navigation system, which improves position accuracy and enhances availability of satellites and signals. The York GNSS PPP software was developed using C++ in the Microsoft.Net platform to utilize the existing multi-GNSS satellite constellations based on the software processor used by the Natural Resources Canada (NRCan) PPP online service. The software was built as a robust, scalable, modular tool that meets the highest of scientific standards compared to existing online PPP engines.There exists a correlation between receiver stations from heterogeneous networks, such as the IGS, in GNSS PPP processing and the increase in magnitude of the pseudorange and carrier-phase biases in both GPS + GLONASS and GLONASS-only PPP solutions. The correlation is due to mixed receiver and antenna hardware as well as firmware versions. Unlike GPS, GLONASS observations are affected by the Frequency Division Multiple Access (FDMA) satellite signal structure, which introduces inter-frequency channel biases and other system biases. The GLONASS pseudorange inter-channel frequency biases show a strong correlation with different receiver types, firmware versions and antenna types. This research estimated the GLONASS pseudorange inter-frequency channel biases using 350 IGS stations, based on 32 receiver types and 4 antenna types over a period of one week. An improvement of 19% was observed after calibrating for the pseudorange ICBs, in the horizontal components respectively, considering 20 minutes convergence period
    corecore