8,082 research outputs found

    A group sparsity-driven approach to 3-D action recognition

    Get PDF
    In this paper, a novel 3-D action recognition method based on sparse representation is presented. Silhouette images from multiple cameras are combined to obtain motion history volumes (MHVs). Cylindrical Fourier transform of MHVs is used as action descriptors. We assume that a test sample has a sparse representation in the space of training samples. We cast the action classification problem as an optimization problem and classify actions using group sparsity based on l1 regularization. We show experimental results using the IXMAS multi-view database and demonstratethe superiority of our method, especially when observations are low resolution, occluded, and noisy and when the feature dimension is reduced

    SA-Net: Deep Neural Network for Robot Trajectory Recognition from RGB-D Streams

    Full text link
    Learning from demonstration (LfD) and imitation learning offer new paradigms for transferring task behavior to robots. A class of methods that enable such online learning require the robot to observe the task being performed and decompose the sensed streaming data into sequences of state-action pairs, which are then input to the methods. Thus, recognizing the state-action pairs correctly and quickly in sensed data is a crucial prerequisite for these methods. We present SA-Net a deep neural network architecture that recognizes state-action pairs from RGB-D data streams. SA-Net performed well in two diverse robotic applications of LfD -- one involving mobile ground robots and another involving a robotic manipulator -- which demonstrates that the architecture generalizes well to differing contexts. Comprehensive evaluations including deployment on a physical robot show that \sanet{} significantly improves on the accuracy of the previous method that utilizes traditional image processing and segmentation.Comment: (in press

    A directional occlusion shading model for interactive direct volume rendering

    Get PDF
    Volumetric rendering is widely used to examine 3D scalar fields from CT/MRI scanners and numerical simulation datasets. One key aspect of volumetric rendering is the ability to provide perceptual cues to aid in understanding structure contained in the data. While shading models that reproduce natural lighting conditions have been shown to better convey depth information and spatial relationships, they traditionally require considerable (pre)computation. In this paper, a shading model for interactive direct volume rendering is proposed that provides perceptual cues similar to those of ambient occlusion, for both solid and transparent surface-like features. An image space occlusion factor is derived from the radiative transport equation based on a specialized phase function. The method does not rely on any precomputation and thus allows for interactive explorations of volumetric data sets via on-the-fly editing of the shading model parameters or (multi-dimensional) transfer functions while modifications to the volume via clipping planes are incorporated into the resulting occlusion-based shading

    Single-image Tomography: 3D Volumes from 2D Cranial X-Rays

    Get PDF
    As many different 3D volumes could produce the same 2D x-ray image, inverting this process is challenging. We show that recent deep learning-based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed-resolution volume which is then fused in a second step with the input x-ray into a high-resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer-simulated 2D x-ray images of 3D volumes scanned from 175 mammalian species. Applications of our approach include stereoscopic rendering of legacy x-ray images, re-rendering of x-rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x-rays

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    High quality rendering of protein dynamics in space filling mode

    Get PDF
    Producing high quality depictions of molecular structures has been an area of academic interest for years, with visualisation tools such as UCSF Chimera, Yasara and PyMol providing a huge number of different rendering modes and lighting effects. However, no visualisation program supports per-pixel lighting effects with shadows whilst rendering a molecular trajectory in space filling mode. In this paper, a new approach to rendering high quality visualisations of molecular trajectories is presented. To enhance depth, ambient occlusion is included within the render. Shadows are also included to help the user perceive relative motions of parts of the protein as they move based on their trajectories. Our approach requires a regular grid to be constructed every time the molecular structure deforms allowing per-pixel lighting effects and ambient occlusion to be rendered every frame, at interactive refresh rates. Two different regular grids are investigated, a fixed grid and a memory efficient compact grid. The algorithms used allow trajectories of proteins comprising of up to 300,000 atoms in size to be rendered at ninety frames per second on a desktop computer using the GPU for general purpose computations. Regular grid construction was found to only take up a small proportion of the total time to render a frame. It was found that despite being slower to construct, the memory efficient compact grid outperformed the theoretically faster fixed grid when the protein being rendered is large, owing to its more efficient memory access patterns. The techniques described could be implemented in other molecular rendering software
    • ā€¦
    corecore