151 research outputs found

    Passive and Self-Powered Autonomous Sensors for Remote Measurements

    Get PDF
    Autonomous sensors play a very important role in the environmental, structural, and medical fields. The use of this kind of systems can be expanded for several applications, for example in implantable devices inside the human body where it is impossible to use wires. Furthermore, they enable measurements in harsh or hermetic environments, such as under extreme heat, cold, humidity or corrosive conditions. The use of batteries as a power supply for these devices represents one solution, but the size, and sometimes the cost and unwanted maintenance burdens of replacement are important drawbacks. In this paper passive and self-powered autonomous sensors for harsh or hermetical environments without batteries are discussed. Their general architectures are presented. Sensing strategies, communication techniques and power management are analyzed. Then, general building blocks of an autonomous sensor are presented and the design guidelines that such a system must follow are given. Furthermore, this paper reports different proposed applications of autonomous sensors applied in harsh or hermetic environments: two examples of passive autonomous sensors that use telemetric communication are proposed, the first one for humidity measurements and the second for high temperatures. Other examples of self-powered autonomous sensors that use a power harvesting system from electromagnetic fields are proposed for temperature measurements and for airflow speeds

    Autonomous Sensing Nodes for IoT Applications

    Get PDF
    The present doctoral thesis fits into the energy harvesting framework, presenting the development of low-power nodes compliant with the energy autonomy requirement, and sharing common technologies and architectures, but based on different energy sources and sensing mechanisms. The adopted approach is aimed at evaluating multiple aspects of the system in its entirety (i.e., the energy harvesting mechanism, the choice of the harvester, the study of the sensing process, the selection of the electronic devices for processing, acquisition and measurement, the electronic design, the microcontroller unit (MCU) programming techniques), accounting for very challenging constraints as the low amounts of harvested power (i.e., [μW, mW] range), the careful management of the available energy, the coexistence of sensing and radio transmitting features with ultra-low power requirements. Commercial sensors are mainly used to meet the cost-effectiveness and the large-scale reproducibility requirements, however also customized sensors for a specific application (soil moisture measurement), together with appropriate characterization and reading circuits, are also presented. Two different strategies have been pursued which led to the development of two types of sensor nodes, which are referred to as 'sensor tags' and 'self-sufficient sensor nodes'. The first term refers to completely passive sensor nodes without an on-board battery as storage element and which operate only in the presence of the energy source, provisioning energy from it. In this thesis, an RFID (Radio Frequency Identification) sensor tag for soil moisture monitoring powered by the impinging electromagnetic field is presented. The second term identifies sensor nodes equipped with a battery rechargeable through energy scavenging and working as a secondary reserve in case of absence of the primary energy source. In this thesis, quasi-real-time multi-purpose monitoring LoRaWAN nodes harvesting energy from thermoelectricity, diffused solar light, indoor white light, and artificial colored light are presented

    Value chains as a linking-pin framework for exploring governance and innovation in nano-involved sectors: illustrated for nanotechnologies and the food packaging sector

    Get PDF
    Consultable sur Internet : http://ejlt.org//article/view/104/180International audienceNanotechnology is often referred to as an entity in itself, a promising technoscience that may enable a vast array of products that will affect and change society. Looking beneath the umbrella-term of "nanotechnology" what is actually occurring with regards to the emergence of product/applications? And what does this mean for governance of emerging nano-involved product development and societal uptake?. The article argues that one must move beyond the broad umbrella term of nanotechnology to explore governance challenges. It posits that for exploring governance of nano-applications, a much ignored level of analysis - the industrial value chain - is a promising level of analysis in both identifying the current activities and potential impacts of nanotechnology and the modes of governance that are in play, how they evolve and how they could be shaped. Focusing on value chains is important for the near and mid-term in order to evaluate and characterise the smorgasbord of techno-scientific promises stemming from nanotechnology and the effects of broader sectoral changes on potential nano-enabled products that may reach citizen-consumers. As nanotechnology enters various parts of the agrifood sector, the emerging governance arrangements of nanotechnology meet incumbent (and still developing) governance regimes, consumer positions and actor arrangements. The paper further articulates this claim, closing with an outlook on what sort of approaches could be used for foresighting potential developments in nanotechnology, their impacts and potential frameworks for exploring and modulating nanotechnology governance

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Circuit design for low-cost smart sensing applications based on printed flexible electronics

    Get PDF

    Intelligent packaging in meat industry : An overview of existing solutions

    Get PDF
    Traditional packaging systems are refused since these systems do not provide any information about the quality of food products to the consumers and manufacturers at any stage of supply chain. The essence of a new technology to monitor the food spoilage from farm to fork is emerged to reduce hazards such as food borne diseases. Moreover, the food quality monitoring systems clarify the main factors in food wastage during supply chain. Intelligent packaging is employed to provide information about the history of food handling and storage to enhance food products quality and meet consumer satisfactions. Meat is one of the most perishable foods which causes sever illnesses in the case of spoilage. Variety of indicators and sensors have been proposed to warn about meat spoilage in meat industry. In this paper an overview of proposed approaches as well as commercial technologies to monitor the quality of meat during storage and transportation is presented. Furthermore, the existing technologies are compared in the sense of advantages and disadvantages in meat packaging applications

    Security Applications for Converging Technologies - Impact on the Constitutional State and the Legal order

    Get PDF
    In this study we investigate the impact of converging technologies on legal practice and criminology in a forward looking study intended for practitioners and policy makers in the field of legislation, crime prevention, and law enforcement. We look at a 15 years timeframe and discuss the scientific and technical progress in various domains as well as the ethical, legal, and policy dilemmas involved.

    Energy harvesting schemes for radio technologies used in IoT: overview and suitability study

    Get PDF
    The number of devices connected to the Internet increases day by day. Moreover people start using the network in their everyday life to shopping, to control the house by remote, to check news or the weather forecast, to check the traffic, to call their friend or their family and so on. Their phones are interconnected all the time with other devices and sensors to gather all the information the users need. This network of object and the exchange of data are described with the Internet of Things idea. With the Internet of Thing concept all object are connected to the Internet and they are able to transmit data to each other. Thanks to sensors, inanimate object are able to understand the environment around them and to make decision and to interact with it. With this scenario the amount of data exchanged is huge. The main two challenges of the Internet of Things concept are the energy consumption and the portability of a given sensor or node in the network. In this way all the object and people can be connected everywhere and all the time. To reach those aims it is important that the devices implement specific communication standards that require low energy to work and that guaranty, at the same time, quality and security to the transmission of the data. Batteries or cable are not suitable to satisfy the IoT requirements and new energy sources using energy harvesting schemes, are needed to power the devices. Moreover the communication protocols have to be faster and have to use as less power as possible to work. In this thesis an overview on multiple energy harvesting schemes given and different communication standards used in the Wireless Sensor Networks are analyzed. The main focus is on the energy consumption of the Wireless Sensor Networks that implements the communication standard IEEE 802.11ah. The aim was to understand whether it could be possible to power one node network or even a more complex one, only with the energy harvesting schemes described in the thesis. Networks of different sizes are simulated and analyzed. All the networks present only one AP but they differentiate from each other by the number of nodes (STAs). Moreover two different scenarios are simulated to better understand the energy consumption in different traffic case. Both saturated and non-saturated traffic scenario were simulated and analyzed. To enhance the throughput and to decrease the energy needed to power the sensors, different Modulation and Code Schemes where implemented. To assess the performance of simulated scenarios, the throughput and the energy consumption where analyzed. The results have showed that different networks required a small amount of energy to send and receive data. Therefore it is technically possible to power them only with some existing energy harvesting schemes

    Energy Harvesting for Residential Microgrid Distributed Sensor Systems

    Get PDF
    Microgrids are localized, independent power grids that can operate while connected to the larger electrical grid. These systems make intelligent decisions regarding power management and use an array of components to monitor power generation, consumption, and environmental conditions. While this technology can save end users money, the complexity of installation and maintenance has limited the adoption of microgrids in residential spaces. To simplify this technology for end users, the next evolution of microgrid components includes sensors that are wireless and ambiently powered. Even with a microgrid installed, significant energy is wasted in residential spaces. To address this loss, energy harvesting circuits can be incorporated into microgrid sensors, enabling them to recapture otherwise wasted environmental energy. Light, heat, radio frequency (RF) energy, mechanical energy, and 60 Hz noise from power lines are all abundant in most residential spaces and can be harvested to power microgrid components. Equipping microgrid sensors with energy harvesters simplifies the end user experience by eliminating the need for cable routing. Implementing energy harvesting techniques results in a microgrid that is easier to deploy, cleaner, and requires less maintenance. Developing this type of sensor is not only feasible, but sensible and can be constructed using off-the-shelf components. My research led me to conclude that the most effective strategy for designing an energy harvesting sensor is to combine energy harvesting technologies with battery power. By delegating smaller loads away from the harvesting integrated circuit (IC), its full harvesting potential is utilized, maximizing energy collection for the power-hungry transmitter. Simultaneously, a small coin-cell battery can sustain the remaining components, ensuring over a decade of functionality. This thesis explores the feasibility and design of a hybrid battery and energy harvesting sensor. The developed system block diagram allows for the swapping of components within each block, catering to the varying needs of the end user. The system is data and energy-aware, allowing it to make intelligent decisions regarding data transmission and enable communication as reliable as that of a traditional wire-line powered sensor. The hybrid sensor module underwent testing with a small monocrystalline solar cell as its energy source, delivering consistent power throughout the testing period. It accumulated surplus energy in a super capacitor storage unit, ensuring the system’s reliable operation even at night when the energy source was not available. While the tests utilized a photovoltaic (PV) cell, the design accommodates any energy harvesting source that can generate a minimum of 40 µW of power
    corecore