420 research outputs found

    Anonymous hedonic game for task allocation in a large-scale multiple agent system

    Get PDF
    This paper proposes a novel game-theoretical autonomous decision-making framework to address a task allocation problem for a swarm of multiple agents. We consider cooperation of self-interested agents, and show that our proposed decentralized algorithm guarantees convergence of agents with social inhibition to a Nash stable partition (i.e., social agreement) within polynomial time. The algorithm is simple and executable based on local interactions with neighbor agents under a strongly connected communication network and even in asynchronous environments. We analytically present a mathematical formulation for computing the lower bound of suboptimality of the outcome, and additionally show that at least 50% of suboptimality can be guaranteed if social utilities are nondecreasing functions with respect to the number of coworking agents. The results of numerical experiments confirm that the proposed framework is scalable, fast adaptable against dynamical environments, and robust even in a realistic situation

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    BNAIC 2008:Proceedings of BNAIC 2008, the twentieth Belgian-Dutch Artificial Intelligence Conference

    Get PDF

    Evolution of cooperation in artificial ants

    Get PDF
    The evolution of cooperation is a fundamental and enduring puzzle in biology and the social sciences. Hundreds of theoretical models have been proposed, but empirical research has been hindered by the generation time of social organisms and by the difficulties of quantifying costs and benefits of cooperation. The significant increase in computational power in the last decade has made artificial evolution of simple social robots a promising alternative. This thesis is concerned with the artificial evolution of groups of cooperating robots. It argues that artificial evolution of robotic agents is a powerful tool to address open questions in evolutionary biology, and shows how insights gained from the study of artificial and biological multi-agent systems can be mutually beneficial for both biology and robotics. The work presented in this thesis contributes to biology by showing how artificial evolution can be used to quantify key factors in the evolution of cooperation in biological systems and by providing an empirical test of a central part of biological theory. In addition, it reveals the importance of the genetic architecture for the evolution of efficient cooperation in groups of organisms. The work also contributes to robotics by identifying three different classes of multi-robot tasks depending on the amount of cooperation required between team members and by suggesting guidelines for the evolution of efficient robot teams. Furthermore it shows how simulations can be used to successfully evolve controllers for physical robot teams

    Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs) are rapidly becoming a critical military asset. In the future, advances in miniaturization are going to drive the development of insect size UAVs. New approaches to controlling these swarms are required. The goal of this research is to develop a controller to direct a swarm of UAVs in accomplishing a given mission. While previous efforts have largely been limited to a two-dimensional model, a three-dimensional model has been developed for this project. Models of UAV capabilities including sensors, actuators and communications are presented. Genetic programming uses the principles of Darwinian evolution to generate computer programs to solve problems. A genetic programming approach is used to evolve control programs for UAV swarms. Evolved controllers are compared with a hand-crafted solution using quantitative and qualitative methods. Visualization and statistical methods are used to analyze solutions. Results indicate that genetic programming is capable of producing effective solutions to multi-objective control problems

    Effective task allocation frameworks for large-scale multiple agent systems.

    Get PDF
    This research aims to develop innovative and transformative decision-making frameworks that enable a large-scale multi-robot system, called robotic swarm, to autonomously address multi-robot task allocation problem: given a set of complicated tasks, requiring cooperation, how to partition themselves into subgroups (or called coalitions) and assign the subgroups to each task while maximising the system performance. The frameworks should be executable based on local information in a decentralised manner, operable for a wide range of the system size (i.e., scalable), predictable in terms of collective behaviours, adaptable to dynamic environments, operable asynchronously, and preferably able to accommodate heterogeneous agents. Firstly, for homogeneous robots, this thesis proposes two frameworks based on biological inspiration and game theories, respectively. The former, called LICA-MC (Markov-Chan-based approach under Local Information Consistency Assumption), is inspired by fish in nature: despite insufficient awareness of the entire group, they are well-coordinated by sensing social distances from neighbours. Analogously, each agent in the framework relies only on local information and requires its local consistency over neighbouring agents to adaptively generate the stochastic policy. This feature offers various advantages such as less inter-agent communication, a shorter timescale for using new information, and the potential to accommodate asynchronous behaviours of agents. We prove that the agents can converge to a desired collective status without resorting to any global information, while maintaining scalability, flexibility, and long-term system efficiency. Numerical experiments show that the framework is robust in a realistic environment where information sharing over agents is partially and temporarily disconnected. Furthermore, we explicitly present the design requirements to have all these advantages, and implementation examples concerning travelling costs minimisation, over-congestion avoidance, and quorum models, respectively. The game-theoretical framework, called GRAPE (GRoup Agent Partitioning and placing Event), regards each robot as a self-interested player attempting to join the most preferred coalition according to its individual preferences regarding the size of each coalition. We prove that selfish agents who have social inhibition can always converge to a Nash stable partition (i.e., a social agreement) within polynomial time under the proposed framework. The framework is executable based on local interactions with neighbour agents under a strongly-connected communication network and even in asynchronous environments. This study analyses an outcome’s minimum-guaranteed suboptimality, and additionally shows that at least 50% is guaranteed if social utilities are non-decreasing functions with respect to the number of co-working agents. Numerical experiments confirm that the framework is scalable, fast adaptable against dynamical environments, and robust even in a realistic situation where some of the agents temporarily halt operation during a mission. The two proposed frameworks are compared in the domain of division of labour. Empirical results show that LICA-MC provides excellent scalability with respect to the number of agents, whereas GRAPE has polynomial complexity but is more efficient in terms of convergence time (especially when accommodating a moderate number of robots) and total travelling costs. It also turns out that GRAPE is sensitive to traffic congestion, meanwhile LICA-MC suffers from slower robot speed. We discuss other implicit advantages of the frameworks such as mission suitability and additionally-builtin decision-making functions. Importantly, it is found that GRAPE has the potential to accommodate heterogeneous agents to some extent, which is not the case for LICA-MC. Accordingly, this study attempts to extend GRAPE to incorporate the heterogeneity of agents. Particularly, we consider the case where each task has its minimum workload requirement to be fulfilled by multiple agents and the agents have different work capacities and costs depending on the tasks. The objective is to find an assignment that minimises the total cost of assigned agents while satisfying the requirements. GRAPE cannot be directly used because of the heterogeneity, so we adopt tabu-learning heuristics where an agent penalises its previously chosen coalition whenever it changes decision: this variant is called T-GRAPE. We prove that, by doing so, a Nash stable partition is always guaranteed to be determined in a decentralised manner. Experi-mental results present the properties of the proposed approach regarding suboptimality and algorithmic complexity. Finally, the thesis addresses a more complex decision-making problem involving team formation, team-to-task assignment, agent-to-working-position selection, fair resource allocation concerning tasks’ minimum requirements for completion, and trajectory optimisation with collision avoidance. We propose an integrated framework that decouples the original problem into three subproblems (i.e., coalition formation, position allocation, and path planning) and deals with them sequentially by three respective modules. The coalition formation module based on T-GRAPE deals with a max-min problem, balancing the work resources of agents in proportion to the task’s requirements. We show that, given reasonable assumptions, the position allocation subproblem can be solved efficiently in terms of computational complexity. For the path planning, we utilise an MPC-SCP (Model Predictive Control and Sequential Convex Programming) approach that enables the agents to produce collision-free trajectories. As a proof of concept, we implement the framework into a cooperative stand-in jamming mission scenario using multiple UAVs. Numerical experiments suggest that the framework could be computationally feasible, fault-tolerant, and near-optimal. Comparison of the proposed frameworks for multi-robot task allocation is discussed in the last chapter regarding the desired features described at first (i.e., decentralisation, scalability, predictability, flexibility, asynchronisation, heterogeneity), along with future work and possible applications in other domains.PhD in Aerospac

    Computational Theory of Mind for Human-Agent Coordination

    Get PDF
    In everyday life, people often depend on their theory of mind, i.e., their ability to reason about unobservable mental content of others to understand, explain, and predict their behaviour. Many agent-based models have been designed to develop computational theory of mind and analyze its effectiveness in various tasks and settings. However, most existing models are not generic (e.g., only applied in a given setting), not feasible (e.g., require too much information to be processed), or not human-inspired (e.g., do not capture the behavioral heuristics of humans). This hinders their applicability in many settings. Accordingly, we propose a new computational theory of mind, which captures the human decision heuristics of reasoning by abstracting individual beliefs about others. We specifically study computational affinity and show how it can be used in tandem with theory of mind reasoning when designing agent models for human-agent negotiation. We perform two-agent simulations to analyze the role of affinity in getting to agreements when there is a bound on the time to be spent for negotiating. Our results suggest that modeling affinity can ease the negotiation process by decreasing the number of rounds needed for an agreement as well as yield a higher benefit for agents with theory of mind reasoning.</p

    Reducing non-recurrent urban traffic congestion using vehicle re-routing

    Get PDF
    Recently, with the trend of world-wide urbanization, some of the accompanying problems are getting serious, including road traffic congestion. To deal with this problem, city planners now resort to the application of the latest information and communications technologies. One example is the adaptive traffic signal control system (e.g. SCATS, SCOOT). To increase the throughput of each main intersection, it dynamically adjusts the traffic light phases according to real-time traffic conditions collected by widely deployed induction loops and sensors. Another typical application is the on-board vehicle navigation system. It can provide drivers with a personalized route according to their preferences (e.g. shortest/fastest/easiest), utilizing comprehensive geo-map data and floating car data. Dynamic traffic assignment is also one of the key proposed methodologies, as it not only benefits the individual driver, but can also provide a route assignment solution for all vehicles with guaranteed minimum average travel time. However, the non-recurrent road traffic congestion problem is still not addressed properly. Unlike the recurrent traffic congestion, which is predictable by capturing the daily traffic pattern, unexpected road traffic congestion caused by unexpected en-route events (e.g. road maintenance, an unplanned parade, car crashes, etc.), often propagates to larger areas in very short time. Consequently, the congestion level of areas around the event location will be significantly degraded. Unfortunately, the three aforementioned methods cannot reduce this unexpected congestion in real time. The contribution of this thesis firstly lies in emphasizing the importance of the dynamic time constraint for vehicle rerouting. Secondly, a framework for evaluating the performance of vehicle route planning algorithms is proposed along with a case study on the simulated scenario of Cologne city. Thirdly, based on the multi-agent architecture of SCATS, the next road rerouting (NRR) system is introduced. Each agent in NRR can use the locally available information to provide the most promising next road guidance in the face of the unexpected urban traffic congestion. In the last contribution of this thesis, further performance improvement of NRR is achieved by the provision of high-resolution, high update frequency traffic information using vehicular ad hoc networks. Moreover, NRR includes an adaptation mechanism to dynamically determine the algorithmic (i.e. factors in the heuristic routing cost function) and operational (i.e. group of agents which must be enabled) parameters. The simulation results show that in the realistic urban scenario, compared to the existing solutions, NRR can significantly reduce the average travel time and improve the travel time reliability. The results also indicate that for both rerouted and non-rerouted vehicles, NRR does not bring any obvious unfairness issue where some vehicles overwhelmingly sacrifice their own travel time to obtain global benefits for other vehicles

    A Framework for Coordinated Control of Multi-Agent Systems

    Get PDF
    Multi-agent systems represent a group of agents that cooperate to solve common tasks in a dynamic environment. Multi-agent control systems have been widely studied in the past few years. The control of multi-agent systems relates to synthesizing control schemes for systems which are inherently distributed and composed of multiple interacting entities. Because of the wide applications of multi-agent theories in large and complex control systems, it is necessary to develop a framework to simplify the process of developing control schemes for multi-agent systems. In this study, a framework is proposed for the distributed control and coordination of multi-agent systems. In the proposed framework, the control of multi-agent systems is regarded as achieving decentralized control and coordination of agents. Each agent is modeled as a Coordinated Hybrid Agent (CHA) which is composed of an intelligent coordination layer and a hybrid control layer. The intelligent coordination layer takes the coordination input, plant input and workspace input. After processing the coordination primitives, the intelligent coordination layer outputs the desired action to the hybrid layer. In the proposed framework, we describe the coordination mechanism in a domain-independent way, as simple abstract primitives in a coordination rule base for certain dependency relationships between the activities of different agents. The intelligent coordination layer deals with the planning, coordination, decision-making and computation of the agent. The hybrid control layer of the proposed framework takes the output of the intelligent coordination layer and generates discrete and continuous control signals to control the overall process. In order to verify the feasibility of the proposed framework, experiments for both heterogeneous and homogeneous Multi-Agent Systems (MASs) are implemented. In addition, the stability of systems modeled using the proposed framework is also analyzed. The conditions for asymptotic stability and exponential stability of a CHA system are given. In order to optimize a Multi-Agent System (MAS), a hybrid approach is proposed to address the optimization problem for a MAS modeled using the CHA framework. Both the event-driven dynamics and time-driven dynamics are included for the formulation of the optimization problem. A generic formula is given for the optimization of the framework. A direct identification algorithm is also discussed to solve the optimization problem

    Collaborative decision making in uncertain environments

    Get PDF
    Two major issues in the design of multi-robot systems are those of communication and co-ordination. Communication ithin real world environments cannot always be guaranteed. A multi-robot system must, therefore, be able to continue with its task in the absence of communication between team members. Co-ordination of multiple robots to perform a specific task involves team members being able to make decisions as a single entity and as a member of a team. The co-ordination needs to be robust enough to handle failures within the system and unknown phenomena within the environment. In this thesis, the problems of communication and co-ordination are discussed and a new type of multi-robot system is introduced in an effort to solve the inherent difficulties within communication and co-ordination of multi-robot systems. The co-ordination and communication strategy is based upon the concept of sharing potential field information within dynamic local groups. Each member of the multi-robot system creates their own potential field based upon individual sensor readings. Team members that are dynamically assigned to local groups share their individual potential fields, in order to create a combined potential field which reduces the effect of sensor noise. It is because of this, that team members are able to make better decisions. A number of experiments, both in simulation and in laboratory environments, are presented. These experiments compare the performance of the system against a nonsharing control and a hybrid system made up of a global path planner and a reactive motor controller. It is demonstrated that the new system significantly outperforms these other methods in a search type problem. From this, it is concluded that the novel system proposed in this thesis successfully tackled the search problem, and that it should also be possible for the system to be applied to a number of other common multi-robot problems
    • 

    corecore