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Abstract

This research aims to develop innovative and transformative decision-making frame-
works that enable a large-scale multi-robot system, called robotic swarm, to autono-
mously address multi-robot task allocation problem: given a set of complicated tasks
requiring cooperation, how to partition themselves into subgroups (or called coalitions)
and assign the subgroups to each task while maximising the system performance. The
frameworks should be executable based on local information in a decentralised manner,
operable for a wide range of the system size (i.e., scalable), predictable in terms of col-
lective behaviours, adaptable to dynamic environments, operable asynchronously, and
preferably able to accommodate heterogeneous agents.

Firstly, for homogeneous robots, this thesis proposes two frameworks based on bi-
ological inspiration and game theories, respectively. The former, called LICA-MC
(Markov-Chan-based approach under Local Information Consistency Assumption), is
inspired by fish in nature: despite insufficient awareness of the entire group, they are
well-coordinated by sensing social distances from neighbours. Analogously, each agent
in the framework relies only on local information and requires its local consistency over
neighbouring agents to adaptively generate the stochastic policy. This feature offers
various advantages such as less inter-agent communication, a shorter timescale for us-
ing new information, and the potential to accommodate asynchronous behaviours of
agents. We prove that the agents can converge to a desired collective status with-
out resorting to any global information, while maintaining scalability, flexibility, and
long-term system efficiency. Numerical experiments show that the framework is ro-
bust in a realistic environment where information sharing over agents is partially and
temporarily disconnected. Furthermore, we explicitly present the design requirements
to have all these advantages, and implementation examples concerning travelling costs
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minimisation, over-congestion avoidance, and quorum models, respectively.

The game-theoretical framework, called GRAPE (GRoup Agent Partitioning and
placing Event), regards each robot as a self-interested player attempting to join the
most preferred coalition according to its individual preferences regarding the size of
each coalition. We prove that selfish agents who have social inhibition can always
converge to a Nash stable partition (i.e., a social agreement) within polynomial time
under the proposed framework. The framework is executable based on local interactions
with neighbour agents under a strongly-connected communication network and even in
asynchronous environments. This study analyses an outcome’s minimum-guaranteed
suboptimality, and additionally shows that at least 50% is guaranteed if social util-
ities are non-decreasing functions with respect to the number of co-working agents.
Numerical experiments confirm that the framework is scalable, fast adaptable against
dynamical environments, and robust even in a realistic situation where some of the
agents temporarily halt operation during a mission.

The two proposed frameworks are compared in the domain of division of labour.
Empirical results show that LICA-MC provides excellent scalability with respect to the
number of agents, whereas GRAPE has polynomial complexity but is more efficient
in terms of convergence time (especially when accommodating a moderate number of
robots) and total travelling costs. It also turns out that GRAPE is sensitive to traffic
congestion, meanwhile LICA-MC suffers from slower robot speed. We discuss other
implicit advantages of the frameworks such as mission suitability and additionally-built-
in decision-making functions. Importantly, it is found that GRAPE has the potential to
accommodate heterogeneous agents to some extent, which is not the case for LICA-MC.

Accordingly, this study attempts to extend GRAPE to incorporate the heterogene-
ity of agents. Particularly, we consider the case where each task has its minimum
workload requirement to be fulfilled by multiple agents and the agents have different
work capacities and costs depending on the tasks. The objective is to find an assign-
ment that minimises the total cost of assigned agents while satisfying the requirements.
GRAPE cannot be directly used because of the heterogeneity, so we adopt tabu-learning
heuristics where an agent penalises its previously chosen coalition whenever it changes
decision: this variant is called T-GRAPE. We prove that, by doing so, a Nash stable
partition is always guaranteed to be determined in a decentralised manner. Experi-
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mental results present the properties of the proposed approach regarding suboptimality
and algorithmic complexity.

Finally, the thesis addresses a more complex decision-making problem involving
team formation, team-to-task assignment, agent-to-working-position selection, fair re-
source allocation concerning tasks’ minimum requirements for completion, and tra-
jectory optimisation with collision avoidance. We propose an integrated framework
that decouples the original problem into three subproblems (i.e., coalition formation,
position allocation, and path planning) and deals with them sequentially by three re-
spective modules. The coalition formation module based on T-GRAPE deals with a
max-min problem, balancing the work resources of agents in proportion to the task’s
requirements. We show that, given reasonable assumptions, the position allocation sub-
problem can be solved efficiently in terms of computational complexity. For the path
planning, we utilise an MPC-SCP (Model Predictive Control and Sequential Convex
Programming) approach that enables the agents to produce collision-free trajectories.
As a proof of concept, we implement the framework into a cooperative stand-in jam-
ming mission scenario using multiple UAVs. Numerical experiments suggest that the
framework could be computationally feasible, fault-tolerant, and near-optimal.

Comparison of the proposed frameworks for multi-robot task allocation is discussed
in the last chapter regarding the desired features described at first (i.e., decentralisation,
scalability, predictability, flexibility, asynchronisation, heterogeneity), along with future
work and possible applications in other domains.
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Chapter 1

Introduction

1.1 Background and Motivation

Cooperation of a large number of (possibly small-sized) robots, called robotic swarm,
will play a major role in complex missions that existing operational concepts using a
few of large robots could not deal with [1]. The individual robots (or called agents)
are expected to be manufactured through mass production in lower cost with cheaper
components, so each of them is likely to have limited capability to complete a single
task alone [2]. Nevertheless, their cooperation will lead to successful outcomes because
the system as a whole has promising advantages such as versatility, fault tolerance,
flexibility, and improved performance through parallelism and redundancy [3–7]. Re-
cently, Intel Corporation showed off an aerial light show of more than 200 quadcopters
for CES 2018 in Las Vegas, USA [8], which has attracted considerable public attention.
Other possible applications include environmental monitoring [9], ad-hoc network re-
lay [10, 11], disaster management [12], object transportation [13], cooperative military
missions [14], to name a few.

Due to the large cardinality of such a multi-agent system, however, it is infeasible for
human operators to supervise each of them directly, but needed to entrust the swarm
with certain levels of autonomous decision-making (e.g., task allocation, path planning,
and individual control). Thereby, what only remains is to provide a high-level mission
description, which is manageable by a few or even a single human operator. However,
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(a)

(b) (c)

Figure 1.1: Examples of the use of a swarm of aerial robots1: (a) Entertainment show [8]
(b) Ad-hoc communication network [10]; (c) Agriculture applications [15]

there still exist various challenges in the autonomous decision-making of robotic swarms.

According to [3, 5, 7, 16, 17], a decision-making framework for large-scale multiple
agent systems (or called swarm intelligence framework) should be

1Images downloaded in February 2018 from (a) http://www.bbc.co.uk/news/av/embed/

p05th5q4/42643790, (b) https://flic.kr/p/BFuhxR, and (c) http://echord.eu/saga/, respec-
tively.
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• Decentralised : A desired collective behaviour can be achieved not by any central
control unit but by individual autonomous agents who make decisions based on
local information or local interactions with neighbour agents.

• Scalable : The framework is operable for a wide range of the system size (e.g, the
number of agents).

• Predictable : Human operators can estimate the quality of a collective outcome
given by the framework, for example, its suboptimality in terms of certain per-
formance indices and convergence time towards a desired global behaviour.

• Flexible (or adaptable) : The framework can quickly adapt to any dynamic
changes in the environment (e.g., unexpected elimination or addition of some
agents or tasks).

• Operable in asynchronous environments: Due to the large cardinality of the sys-
tem and its decentralisation, it is challenging for all the given agents to execute
decision-making procedures synchronously. For synchronisation in practice, “ar-
tificial delays and extra communication must be built into the framework” [17],
which may cause considerable inefficiency on the system. Hence, the framework
should be operable even in asynchronous environments.

• (Optionally) Able to accommodate different interests of agents: Although a robotic
swarm typically consists of homogeneous agents [18], in some cases, individual
agents may have different levels of interest. For example, some of them “may
place a higher utility on successful completion of tasks, while others are obligated
to participate, but wish to conserve resource” [19]. This situation probably hap-
pens when the agents are “designed, owned, or operated by several individuals or
organisations that may have different goals” [20, 21] or even when the agents are
physically identical but have different energy resources. In a sense, such agents
can be regarded as heterogeneous, and accommodating their different interests
would be desirable to yield higher system performance.

The lack of such decision-making frameworks is one of the major factors hindering
robotic swarm implementation [22,23].
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Figure 1.2: Two types of multi-robot task allocation problems

1.2 Research Aim and Objectives

Research Aim

This research attempts to develop innovative and transformative decision-making frame-
works that have all the desired features mentioned above (i.e., decentralised, scalable,
predictable, adaptable, asynchronous, and possibly able to accommodate agents’ dif-
ferent interests) to operate a large-scale multi-agent system effectively. Amongst au-
tonomous decision-making problems, this study primarily addresses multi-robot task al-
location problems (MRTA). Depending on the characteristics of given agents and tasks,
MRTA can be categorised into various types [24, 25], and Figure 1.2 briefly illustrates
main two types amongst them. The left-side case, which has been addressed relatively
more over the last decade, is characterised by the following research question: given a
few of individually highly capable robots and a relatively larger number of tasks, how
to make a bundle of tasks for a each robot. On the contrary, when it comes to a robotic
swarm, a question arises differently as shown in the right subfigure: how to partition a
set of agents into subgroups and assign the subgroups to each task, while maximising
the system performance. To address this particular type of MRTA (or referred to as
coalition formation problem [26]) while obtaining all the desirable features as much as
possible is the main aim of this thesis.
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Objectives

As promising methodologies, game-theoretical and bio-inspired approaches are to be
investigated because these methods innately consider autonomous agents as well as
have a great potential in terms of adaptability and scalability. Specific objectives of
this study are presented as follows:

1. Development of a bio-inspired framework: As the first task of this re-
search, existing literature on task allocation problems for robotic swarms is to
be reviewed to identify a research gap that should have been considered for re-
alistic environments. This gap is to be addressed by a novel framework inspired
from the biological swarms such as the flocks of birds, the colonies of bees, or
the school of fish. It is well known that these living creatures have insufficient
awareness of the entire group but show well-harmonised collective behaviours in
nature. Analogously, in our proposed framework, each agent should behave based
on local information and local interactions with its neighbours with very simple
decision-rules, while a desired collective behaviour emerges.

2. Development of a game-theoretical framework: A novel framework is to
be designed through the introduction of game theories that can model conflicts
of multiple robots in a task allocation problem. Standing on the shoulder of the
giant (i.e., game theories), which is “the study of mathematical models of conflict
and cooperation between intelligent rational decision-makers” [27], this study will
analyse collective behavioural characteristics of a robotic swarm operated under
the proposed framework. For example, suboptimality of an outcome given by the
framework is to be investigated as analogous to that of a Nash equilibrium (i.e.,
a stable social outcome in game theories), called the price of anarchy .

3. Comparison between the proposed methodologies: The two proposed
frameworks are to be compared with each other, after a fair mission scenario
is formalised, regarding scalability, versatility, and other inherent pros and cons.

4. Extension to accommodate heterogeneous agents: One of the proposed
frameworks is to be extended so that it can incorporate the heterogeneity of
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agents. Even if a swarm of robots were identically manufactured through mass
production, each agent might possess a different level of energy resource in practice
during a mission, which gives rise to heterogeneity. Furthermore, we will also
consider heterogeneous tasks and their minimum requirements for completion.

5. Extension to address additional decision-making issues: When imple-
menting the proposed frameworks into a cooperative mission, we must encounter
further practical issues in decision-making on top of the task allocation problem
shown in Figure 1.2. Amongst them, this research particularly will address posi-
tion allocation (i.e., exactly which position to go for executing the assigned task)
and path planning (i.e., how to reach the assigned positions without collisions)
problems (please refer to Figure 1.5), and propose an integrated decision-making
framework for addressing all these problems.

6. Implementation of the proposed methodologies into practical scenarios:
The proposed frameworks are to be implemented to realistic mission scenarios that
require autonomous decision-making of a large-scale multi-agent system.

In this thesis, for each proposed framework, the desired features introduced in Sec-
tion 1.1 are to be mostly formally analysed with support from numerical experiments.
The inter-agent communication network assumed here is strongly-connected (i.e., there
exists a directed communication path between any two arbitrary agents), but it may
not be the case in reality. Thus, we will numerically validate the performances of the
proposed frameworks in the case where some of the given agents can not operate or not
communicate with others temporarily.

1.3 Contribution to Knowledge

Contributions of the thesis, found by addressing the prescribed objectives, are as follows.
Each contribution is illustrated as a block in Figure 1.3, which also shows how all the
blocks are related to each other in the thesis. Please note that every block was submitted
to or published in a journal or peer-reviewed conference proceedings, and their detailed
list will be shown in Section 1.5.
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Figure 1.3: The outline of the thesis

1.3.1 A Bio-inspired Framework

For a swarm of homogeneous robots, the multi-robot task allocation problem con-
sidered can be reduced to a problem of how to distribute robotic labours over given
tasks according to the desired labour distribution. This problem is called swarm dis-
tribution guidance problem, which can be briefly illustrated in Figure 1.4. This study
proposes a Markov-chain-based framework in which population fractions of a swarm
are modelled as the system state, and each agent behaves stochastically according to
a time-inhomogeneous Markov matrix depending on the difference from the current
swarm status to the desired status. Unlike most of the existing frameworks handling
this problem, the proposed framework suggests utilising local information available from
neighbours to adjust the stochastic policies, inspired by a swarm of fish. Accordingly, as
each agent requires only local consistency on information with neighbouring agents, not
the global consistency, the proposed framework offers various advantages, e.g., less inter-
agent communication, a shorter timescale for using new information, and the potential
to incorporate an asynchronous decision-making process. We prove that, even using
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Ini$al'status' Desired'status'

Figure 1.4: Swarm Distribution Guidance Problem: How to distribute homogeneous agents
into tasks (or bins), satisfying a desired population fraction for each task

such insufficient information, the framework guarantees convergence towards the desired
labour distribution while maintaining advantages of existing global-information-based
approaches. The design requirements to hold the convergence and those advantages
are explicitly found. This study also presents implementation examples concerning
travelling cost minimisation, over-congestion avoidance, and quorum models, respec-
tively. Numerical experiments confirm the effectiveness of the proposed framework and
particularly show its improved robustness in a partially communication-disconnected
situation, compared with a recent existing work based on global information [16]. The
detail is included in Chapter 2.

1.3.2 A Game-theoretical Framework

This study allows agents to be self-interested so that they have tendency to make
coalitions according to individual preferences regarding the size of each coalition. This
situation undoubtedly induces conflicts between them, but we desire cooperation of
such selfish agents. To this end, this study proposes a novel game-theoretical decen-
tralised coordination framework based on anonymous hedonic games [28]. Interestingly,
we prove that selfish agents who have social inhibition can always converge to a Nash
stable partition (i.e., social agreement) within polynomial time O(n2

adG), where na is the
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number of agents and dG is the graph diameter of the agents’ communication network.
The proposed framework is straightforward and executable based on local interactions
with neighbour agents under a strongly-connected communication network and even
in asynchronous environments. This study analytically presents a mathematical for-
mulation for computing the lower bound of a converged outcome’s suboptimality, and
additionally shows that 50% of suboptimality can be at least guaranteed if social util-
ities are non-decreasing functions with respect to the number of co-working agents.
Through numerical experiments, it is confirmed that the proposed framework is scal-
able, fast adaptable against dynamical environments, and robust even in a situation
where some random agents temporarily somehow do not operate during a mission. The
detail is presented in Chapter 3.

1.3.3 A Comparative Study of the Two Proposed Frameworks

This study compares the two swarm intelligence frameworks previously introduced: the
Markov-Chain-based approach under Local Information Consistency Assumption, called
LICA-MC, and the game-theoretical approach, called GRAPE. For this comparison, we
implement both frameworks into swarm distribution guidance problem, shown in Fig-
ure 1.4, and then perform numerical experiments with various environmental settings.
The statistical results show that LICA-MC provides excellent scalability regardless of
the number of robots, whereas GRAPE is more efficient regarding convergence time
(especially when accommodating a relatively fewer number of swarm robots) and total
travelling costs. Furthermore, this study investigates other implicit advantages of the
frameworks such as mission suitability, additionally-built-in decision-making functions,
and sensitivity to traffic congestion or robots’ mobility. Importantly, it is found that
GRAPE has the potential to accommodate heterogeneous agents to some extent, which
is not the case for LICA-MC. The detail is included in Chapter 4.

9
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1.3.4 Consideration of Heterogeneous Agents

This study attempts to extend GRAPE to accommodate heterogeneous agents because
of its potential found in Chapter 4. Particularly, we consider the case where each task
has a different type of minimum workload requirement to be fulfilled by multiple agents,
and the agents have different work capacities and costs depending on the tasks. The
objective is to find an assignment that minimises the total cost of assigned agents while
satisfying the requirements of the tasks: this optimisation problem would be attrac-
tive in a business application because it is desirable to reduce unnecessary costs but
comply with customers’ requirements. We formulate this problem as the minimisation
version of the generalised assignment problem with minimum requirements (MinGAP-
MR). However, due to the heterogeneity, it is not possible to directly use GRAPE for the
problem considered. Thus, we suggest adopting tabu-learning heuristics where an agent
penalises its previously chosen coalition whenever it changes a decision (this variant is
called T-GRAPE ), and show that this approach guarantees convergence of heteroge-
neous agents towards a Nash stable partition. Numerical experiment results present
the performances of the proposed approach in terms of suboptimality and algorithmic
complexity. The detail is shown in Chapter 5.

1.3.5 An Integrated Framework and Its Application to Coop-

erative Jamming of UAVs

For a cooperative mission consisting of multiple spatially-distributed tasks, a robotic
swarm’s practical decision-making problem includes team formation, team-to-task as-
signment, agent-to-work-position assignment, and trajectory optimisation with collision
avoidance. The problem becomes even more complicated when involving heterogeneous
agents, tasks’ minimum requirements, and fair allocation. This study proposes an inte-
grated approach that approximates the complex original problem into three subprob-
lems (i.e., coalition formation, position allocation, and path planning) and addresses
them sequentially by three different proposed modules. The coalition formation mod-
ule based on T-GRAPE deals with a max-min problem, the objective of which is to
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To which task with whom?  
Specifically, to which working position? 

How to go there without collision? 

:"Task"with"its"minimum""requirement"" :"Working"posi5on""

:"Obstacle":"Agent"with"its"resource"

?"
?"

?"

?"

Figure 1.5: A brief illustration of the decision-making issues considered in Chapter 6

partition the agents into disjoint task-specific teams in a way that balances the agents’
work resources in proportion to the task’s minimum workload requirements. For agents
assigned to the same task, given reasonable assumptions, the position allocation sub-
problem can be efficiently addressed in terms of computational complexity. For the
trajectory optimisation, an MPC-SCP (Model Predictive Control and Sequential Con-
vex Programming) algorithm is utilised, which reduces the size of the problem so that
the agents can generate collision-free trajectories on a real-time basis. As a proof of
concept, we implement the framework into a cooperative stand-in jamming mission sce-
nario and show its feasibility, fault tolerance, and near-optimality based on numerical
experiment. The detail is included in Chapter 6.
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1.4 Organisation of the Thesis

This thesis is organised as follows (also as shown in Figure 1.3). Chapter 2 and Chapter
3 propose the bio-inspired framework based on Markov process and the game-theoretical
framework based on anonymous hedonic games, respectively. Chapter 4 compares the
two methodologies in terms of labour division of a robotic swarm and discuss their
pros and cons. Chapter 5 extends the game-theoretical framework to accommodate
heterogeneous agents. Based on this work, Chapter 6 presents the integrated frame-
work that also addresses position allocation and path planning issues, and shows its
implementability in a cooperative jamming mission using multiple UAVs. Lastly, the
thesis ends with conclusions and provides suggestions for future work in Chapter 7.
Please note that the thesis is paper-format, consisting of individual papers submitted
as its chapters.

1.5 The List of Published/Submitted Works

The following papers were submitted or published in relation to this PhD research.
Note that although conference paper C4 is not first-authored by myself, I contributed
to it in algorithm development and problem formulation.

Journal Papers

J1. I. Jang, H.S. Shin, A. Tsourdos, “Local Information-Based Control for Prob-
abilistic Swarm Distribution Guidance,” Swarm Intelligence (resubmitted after
minor revision)

J2. I. Jang, H.S. Shin, A. Tsourdos, “Anonymous Hedonic Game for Task Allocation
in a Large-Scale Multiple Agent System,” IEEE Transactions on Robotics (in
press)

J3. I. Jang, H.S. Shin, A. Tsourdos, J.Jeong, S. Kim, J.Suk, “An Integrated Decision-
making Framework of a Heterogeneous Aerial Robotic Swarm for Cooperative
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Tasks with Minimum Requirements,” Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace Engineering (in press)

Peer-reviewed Conference Papers

C1. I. Jang, H.S. Shin, A. Tsourdos, “A Comparative Study of Game-theoretical
and Markov-chain-based Approaches to Division of Labour in a Robotic Swarm,”
IFAC Aerospace Controls TC Workshop Networked & Autonomous Air & Space
Systems, Santa Fe, NM, USA, 13–15 Jun 2018

C2. I. Jang, H.S. Shin, A. Tsourdos, “A Game-theoretical Approach to Heterogeneous
Multi-Robot Task Assignment Problem with Minimum Workload Requirements,”
The 4th Workshop on Research, Education and Development of Unmanned Aerial
Systems, Linköping, Sweden, 3–5 October 2017

C3. I. Jang, J. Jeong, H.S. Shin, S. Kim, A. Tsourdos, J. Suk, “Cooperative Control
for a Flight Array of UAVs and an Application in Radar Jamming,” The 20th
World Congress of the International Federation of Automatic Control, Toulouse,
France, 9–14 July 2017

C4. H.S. Shin, I. Jang, A. Tsourdos, “Frequency Channel Assignment for Networked
UAVs using a Hedonic Game,” The 4th Workshop on Research, Education and
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Chapter 2

Bio-Inspired Local Information-Based
Control for Probabilistic Swarm
Distribution Guidance

2.1 Introduction

This chapter addresses a task allocation problem for a large-scale multiple-robot system,
called robotic swarm. In the problem considered, individual agents are assumed to be
homogeneous since a swarm is usually realised through mass production [1]. In this
context, the task allocation problem becomes a swarm distribution guidance problem
[2–4], which can be illustrated as in Figure 2.1. As shown in the figure, the swarm
distribution problem is about how to distribute a swarm of agents into given tasks, also
called bins, to achieve the desired population fraction (or swarm density) for each task.

For swarm distribution guidance problems, there have been two main approaches
widely studied: probabilistic approaches based on Markov chains [2–10] or differential
equations [7–13] have been widely studied. These approaches generally focus not on
individual agents, but on their ensemble dynamics. It is the reason why they are often
called Eulerian [9, 14] or macroscopic frameworks [15, 16]. In these approaches, swarm
densities over given bins are represented as system states. A state-transition matrix for
the states describes stochastic (decision) policies, i.e., the probabilities that agents in a
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Ini$al'status' Desired'status'

Figure 2.1: Swarm Distribution Guidance Problem: How to distribute homogeneous agents
into tasks (or bins), satisfying a desired population fraction for each task

bin switch to another within a time unit. Accordingly, individual agents make decisions
according to the policies in a random, independent and memoryless manner.

These approaches can be classified into two framework groups: open-loop-type frame-
works [2–5,16–18] and closed-loop-type frameworks [7–13]. Agents under open-loop-type
frameworks are controlled by time-invariant stochastic policies. The policies, which
make a swarm converge to a desired distribution, are pre-determined by a central
controller and broadcasted to each agent before the mission begins. Communication
between agents is hardly required during the mission, and thus the communication
complexity is minimised. However, the agents only have to follow the predetermined
policies without incorporating any feedback, and thus there still remain some agents
who unnecessarily and continuously move around bins even after the swarm reaches the
desired status. Therefore, the trade-off between convergence rate and long-term system
efficiency becomes critical in these frameworks [18].

Closed-loop-type frameworks allow agents to adaptively construct their own stochas-
tic policies at the expense of communicating with other agents to perceive the con-
current swarm status. Based on such information, the agents can synthesise a time-
inhomogeneous transition matrix to achieve certain objectives and requirements: for
example, maximising convergence rates [8], minimising travelling costs [10], and tem-
porarily adjusting the policies when bins are overpopulated or underpopulated than
certain levels [11, 12]. In particular, Bandyopadhyay et al. [10] recently proposed a

18



PhD Thesis: Inmo Jang

closed-loop-type algorithm that exhibits faster convergence as well as less undesirable
transition behaviours, compared with an open-loop-type algorithm. This algorithm can
mitigate the issue with trade-off that is critical in open-loop-type frameworks.

Under these backgrounds, this chapter aims to develop a closed-loop-type framework
for the swarm distribution guidance. To the best of our knowledge, most of the existing
closed-loop-type algorithms are based on Global Information Consistency Assumption
(GICA) [19]. GICA implies that the information necessary to generate time-varying
stochastic policies is about the global swarm status (i.e., global information), and it
also needs to be consistently known by all agents. Achieving GICA requires each agent
to somehow interact with all the others through a multi-hop fashion and it “happens
on a global communication timescale” [19].

The main focus of this work is to relax GICA: we propose a close-loop-type frame-
work that relied on Local Information Consistency Assumption (LICA), i.e., local in-
formation only needs to be consistently known by the local agent groups . Note that
the proposed LICA-based framework utilises local information as its feedback gains.
In fact, the existing closed-loop-type methods in [10, 13] do not necessarily require ev-
ery agent to perceive global knowledge exactly, while providing a graceful performance
degradation even if local estimates of the global information are used. However, the
key difference from the previous works is that the proposed LICA-based framework
utilises local information as its feedback gains. In this chapter, we will use the term
“local information” to refer to the knowledge available to all agents in the same bin
and those obtainable via communication with other agents in all neighbour bins (de-
fined in Definition 7). This is inspired by decision-making mechanisms of a fish swarm,
where each fish adjusts its individual behaviour based on those of its neighbours [20–23].
Analogously, each agent in the proposed framework uses its local status to generate its
stochastic policies.

The proposed framework based on LICA facilitates various advantages that could
not be achievable in a GICA-based framework, while retaining the aforementioned
advantages in the GICA-based framework. The first obvious benefit of the LICA-
based framework is reduction in inter-agent communication required for decentralised
decision-making, as can be seen from the experimental results in Figure 2.6(d). The
proposed approach consequently “provides a much shorter timescale for using new infor-
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mation because agents are not required to ensure that this information has propagated
to the entire team before using it” [19]. Moreover, exploiting LICA in the close-loop-
type framework enables asynchronous implementation of the framework (as shown in
Section 2.5) and exhibits the robustness against dynamical changes in bins and also
in agents (Section 2.6.3). Furthermore, agents in the proposed method do not need to
know global mission knowledge such as a desired distribution a priori (i.e., before a
mission starts), which is the case in the recent works [10,13], as long as they can sense
all the neighbour bins’ desired swarm densities in an impromptu manner.

The stability and performance of the proposed framework are investigated via the-
oretical analysis and empirical tests. In the theoretical analysis, we prove that agents
in the framework developed asymptotically converge towards the desired swarm dis-
tribution, even using local-information-based feedback. Also, the theoretical analysis
provides the design requirements for the time-inhomogeneous Markov chain to achieve
all the benefits discussed. Empirical tests demonstrate the performance of the pro-
posed framework in three implementation examples: 1) travelling cost minimisation;
2) convergence rate maximisation under flux upper limits; and 3) quorum-based poli-
cies generation (similar to [11, 12]). Moreover, we present an asynchronous version of
the proposed framework, which provides more robustness against temporary network
disconnection of partial agents, compared with the recent work [10].

The rest of the chapter is organised as follows. Section 2.2 introduces essential
definitions and notations of a Markov-chain-based approach. Section 2.3 describes the
desired features for swarm distribution guidance, proposes a closed-loop-type framework
with its design requirements, and performs theoretical analysis. We provide examples
of how to exploit the framework for specific problems in Section 2.4 and asynchronous
implementation in Section 2.5. Numerical experimental results are provided in Section
2.6, followed by concluding remarks in Section 2.7.

Notations

∅, 0, I and 1 denote the empty set, the zero matrix of appropriate sizes, the identity
matrix of appropriate sizes, and a row vector with all elements are equal to one, re-
spectively. v ∈ Pn is a 1× n row-stochastic vector such that v ≥ 0 and v · 1> = 1. v[i]
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Table 2.1: Nomenclature

Symbol Description

Bj The j-th bin amongst a set of nb bins (Definition 1)

A A set of na agents (Definition 1)

xk The current (global) swarm distribution (Definition 4)

Mk Stochastic policy of the agents (Definition 5)

Θ The desired swarm distribution (Definition 6)

Ak Physical motion constraint matrix (Definition 2)

Nk(j) A set of neighbour bins of the j-th bin (Definition 7)

ANk(j) A set of agents in Nk(j)

nk[j] The number of agents in Bj at time instant k (Eqn. (2.3))

x̄k[j] The current local swarm density at the j-th bin (Eqn. (2.3))

Θ̄[j] The locally-desired swarm density at the j-th bin (Eqn. (2.4))

Pk Primary guidance matrix (Eqn. (2.9))

Sk Secondary guidance matrix (Eqn. (2.9))

ξ̄k[j] Primary local-feedback gain (e.g., Eqn. (2.5))

Gk[j] Secondary local-feedback gain (Eqn. (2.8))
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indicates the i-th element of vector v. Prob(E) denotes the probability that event E
will happen. � denotes the Hadamard product.

2.2 Preliminaries

This section provides the basic concept of a Markov-chain-based approach and presents
definitions and assumptions necessary for our proposed framework, which will be shown
in Section 2.3. Note that most of them are embraced from the existing literature [8,10].

Definition 1 (Agents and Bins). A set of na homogeneous agents A = {a1, a2, ..., ana}
are to be distributed over a prescribed region in a state space B. The entire space is
partitioned into nb disjoint bins such that B = ∪nb

j=1Bj and Bj ∩Bl = ∅, ∀l 6= j. We also
regard B = {B1, ...,Bnb

} as the set of all the bins. Each bin Bj represents a predefined
range of an agent’s state, e.g., position, task assigned, behaviour, etc. Note that binning
of the state space should be done problem-specifically in a way that accommodates all
the following assumptions and definitions in this section. For example, the bin sizes are
not necessarily required to be uniform, but can vary depending on physical constraints
of the space or communication radii of given agents.

Definition 2 (Agent motion constraint). The agent motion constraints over the given
bins B are represented by Ak ∈ {0, 1}nb×nb , where Ak[j, l] is one if any agent in Bj at
time instant k is able to transition to Bl by the next time instant, and zero otherwise.
Ak is symmetric and irreducible (defined in Appendix); Ak[j, j] = 1, ∀j. Equivalently,
it can be also said that the topology of the bins is modelled as a bidirectional and
strongly-connected graph, Gk = (Ak,B), where Ak is edges (i.e., adjacent matrix) and
B is nodes (i.e., bins).

Definition 3 (Agent’s state). Let sik ∈ {0, 1}nb be the state indicator vector of agent
ai ∈ A at time instant k. If the agent’s state belongs to bin Bj, then sik[j] = 1, otherwise
0. Note that the definition of the time instant will be described later in Definition 8.

Definition 4 (Current swarm distribution). The current (global) swarm distribution
xk ∈ Pnb is a row-stochastic vector such that each element xk[j] is the population
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fraction (or swarm density) of A in bin Bj at time instant k:

xk :=
1

|A|
∑
∀ai∈A

sik. (2.1)

Definition 5 (Stochastic policy). The probability that agent ai in bin Bj at time instant
k will transition to bin Bl before the next time instant is called its stochastic policy,
denoted as:

M i
k[j, l] := Prob(sik+1[l] = 1|sik[j] = 1).

Note that M i
k ∈ Pnb×nb is a row-stochastic matrix such that M i

k ≥ 0 and M i
k · 1> = 1>,

and will be referred as Markov matrix.

Assuming that all agents in bin Bj at time instant k are independently governed
by an identical row-stochastic vector (denoted by Mk[j, l], ∀l), it can be said that the
ensemble of the swarm is evolved as

xk+1 = xkMk, (2.2)

as na increases towards infinity. The underlying assumption is reasonably supported
by Assumption 2, which will be shown later. Despite that, we will examine in Section
2.6.4 the performance degradation caused by possible differences between individual
M i

k on the proposed framework. Please keep in mind that, for each agent in Bj, it is
not necessary to know the other bins’ stochastic policies (i.e., Mk[j

′, l],∀j′ 6= j,∀l), and
that this chapter only introduces such a matrix form, e.g., Equation (2.2), for the sake
of theoretical analysis of the ensemble.

Every agent in each bin Bj executes the following algorithm at every time instant.
The detail regarding how to generate its stochastic policies (i.e., Line 2) will be presented
in Section 2.3.

Definition 6 (Desired swarm distribution). The desired swarm distribution Θ ∈ Pnb is
a row-stochastic vector such that each entry Θ[j] indicates the desired swarm density
for bin Bj.

Assumption 1. For ease of description for this chapter, we assume that Θ[j] > 0,
∀j ∈ {1, ..., nb}. In practice, there may exist some bins whose desired swarm densities
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Algorithm 1 Probabilistic Swarm Distribution Guidance
// For each agent at time instant k:

1: Identify the current bin Bj
2: Compute Mk[j, l], ∀l;
3: Draw a random number z from the uniform distribution on an interval [0, 1]

4: Choose bin Bq such that∑q−1
l=1 Mk[j, l] ≤ z <

∑q
l=1Mk[j, l]

5: Move to the selected bin

are zero. These bins can be accommodated by adopting any subroutine ensuring that
all agents eventually move to and remain in any of the positive-desired-density bins (for
example, please refer to Section 2.6.6). In this case, it should be assumed that the agent
motion constraints over every bin Bj such that Θ[j] > 0 are at least (bidirectionally)
strongly-connected (i.e., (Θ>Θ)�Ak is irreducible).

Assumption 2 (Communicational connectivity over bins). The physical motion con-
straint of a robotic agent is, in general, more stringent than its communicational con-
straint. From this, it can be assumed that if transition of agents between bin Bj and
Bl is allowed within a unit time interval (i.e., Ak[j, l] = 1), then one bin is within the
communication range of agents in the other bin, and vice versa.

Definition 7 (Neighbour bins, neighbour agents, and local information). For each bin
Bj, we define the set of its neighbour bins as Nk(j) = {∀Bl ∈ B | Ak[j, l] = 1}. From
Assumption 2, each agent in Bj can directly communicate with other agents in Nk(j).
The set of these agents is called neighbour agents , denoted by ANk(j) = {∀ai ∈ A |
sik[l] = 1, ∀l : Bl ∈ Nk(j)}. This chapter refers to the local knowledge available from
ANk(j) as the local information of the agents in bin Bj.

Assumption 3 (Known Information). Each agent has reasonable sensing capabilities
such that agents in bin Bj can perceive neighbour bins’ information such as Θ[l] and
Ak[j, l] in real time under Assumption 2. Note that the global information regarding
Θ and Ak are not required to be known by the agents a priori, as will be described
in Remark 3 later. Other pre-determined values such as variables regarding objective
functions and design parameters (which will be introduced later) are known to all the
agents.
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Assumption 4 (Agent’s capability). Each agent can determine the bin to which it
belongs, and know the locations of neighbour bins so that it can navigate towards any
of the bins. Note that the dynamics of every agent is considered to be holonomic. The
agent is capable of avoiding collision with other agents.

Assumption 5 (The number of agents). The number of agents na is large enough such
that the time evolution of the swarm distribution is governed by the Markov process
in Equation (2.2). Although the finite cardinality of the agents may cause a residual
convergence error (i.e., a sense of the difference between Θ and x∞), a lower bound
on na that probabilistically guarantees a certain level of convergence error is analysed
in [10, Theorem 6]. Note that this theorem is generally appliable and thus is also valid
for our work.

Definition 8 (Time instant). We define time instant k to be the time when all the
agents complete not only transitioning towards the bins selected at time instant k − 1,
but also obtain the local information necessary to construct Mk. Hence, a temporal in-
terval (in the real-time scale) between any two sequential time instants may not always
be consistent in practice. This might be because of the required inter-agent communi-
cation and/or physical congestion, which are varied at every time instant. In the worst
case, due to some bins whose agents are somehow not ready in terms of transition-
ing or obtaining local knowledge, the temporal interval may be arbitrarily elongated.
However, the proposed method can accommodate those bins by incorporating the asyn-
chronous implementation in Section 2.5. It is worth mentioning that since our proposed
approach demands relatively less communication burden on the agents, the temporal
intervals would be diminished than those in GICA-based approaches.

2.3 The Proposed Closed-loop-type Framework under

LICA

The objective of the swarm distribution guidance problem considered in this chapter
is to distribute a set of agents A over a set of bins B by the Markov matrix Mk in a
manner that holds the following desired features:
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Desired Feature 1. The swarm distribution xk asymptotically converges to the desired
swarm distribution Θ as time instant k goes to infinity.

Desired Feature 2. Transition of the agents between the bins is controlled in a way
that Mk becomes close to I as xk converges to Θ. This implies that the agents are
settling down as being close to Θ, and thus unnecessary transitions, which would have
occurred in an open-loop-type framework, can be reduced. Moreover, the agents identify
and compensate any partial loss or failure of the swarm distribution.

Desired Feature 3. For each agent in bin Bj, the information required for generating
time-varying stochastic policies is not global information about the entire agents A but
only local information available from local agent group ANk(j). Thereby, the resultant
time-inhomogeneous Markov process is based on LICA, and has benefits such as reduced
inter-agent communication, a shorter timescale for obtaining new information (than
GICA), and the ability to be implemented asynchronously.

This section proposes a LICA-based framework for the swarm distribution guid-
ance problem. The framework is different from the recent closed-loop-type algorithms
in [8,10] in the sense that they utilise global information (e.g., the current swarm distri-
bution in Equation (2.1)) to construct a time-inhomogeneous Markov matrix, whereas
ours uses the local information in Equation (2.6), which will be shown later. We present
that, in spite of using such relatively insufficient information, the desired features afore-
mentioned can be achieved in the proposed framework. Before that, we first introduce
the biological finding, which is about decision-making mechanisms of a fish swarm, that
inspires this framework to particularly attain Desired Feature 3.

2.3.1 The Biological Inspiration

For a swarm of fish, it has commonly been assumed that their crowdedness limits their
perception ranges over other members, and their cardinality restricts the capacity for
individual recognition [21]. How fish end up with collective behaviours is different
from the ways of other social species such as bees and ants, which are known to use
recruitment signals for the guidance of the entire swarm [24, 25]. Thus, in the biology
domain, a question naturally has arisen about the decision-making mechanism of fish
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in an environment where local information is only available and information transfer
between members does not explicitly happen [20–23,26,27].

It has been experimentally shown that fish’s swimming activities vary depending on
their perceivable neighbours. According to [26], fish have the tendency to maintain their
statuses (e.g., position, speed, and heading angle) relative to those of other nearby fish,
which results in their organised formation structures. In addition, it is presented in [27]
that spatial density of fish has influences on both the minimum distances between them
and the primary orientation of the fish school. Based on this knowledge, the works in
[20–23] suggest individual-based models to further understand the collective behavioural
mechanisms of fish: for example, their repelling, attracting, and orientating behaviours
[20,22]; how the density of informed fish affects the elongation of the formation structure
[21]; and group-size choices [23]. The common and fundamental characteristic of these
models is that every agent maintains or adjusts its personal status with consideration
of those of other individuals within its limited perception range.

As inspired by the understanding of fish, we believe that there must be an enhanced
swarm distribution guidance approach in which each agent only needs to keep its relative
status by relying on local information available from its nearby neighbours. In this
approach, a global information is not necessary to be known by agents, and thereby the
corresponding requirement of extensive information sharing over all the agents can be
alleviated.

2.3.2 The Local Information required in the Proposed Approach

Overall, what we will show from now on is that global information is actually not
required to generate feedback gains to operate closed-loop-type frameworks for robotic
swarms. Instead, the main underlying idea is to use the deviation of current and desired
swarm density at each local bin as its local feedback gain. Specifically, in most of GICA-
based frameworks, the feedback gains are generated from the difference between xk and
Θ, which needs global information. Whereas, in the proposed LICA-based framework,
agents in bin Bj use the difference between the current local swarm density x̄k[j] and
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the locally-desired swarm density Θ̄[j], which are respectively defined as follows:

x̄k[j] :=
nk[j]∑

∀Bl∈Nk(j) nk[l]
, (2.3)

where nk[j] is the cardinality of agents in Bj at time instant k; and

Θ̄[j] :=
Θ[j]∑

∀Bl∈Nk(j) Θ[l]
. (2.4)

It turns out that the two values are both locally-available information within ANk(j).
The difference between x̄k[j] and Θ̄[j] is utilised for a local-information-based feedback
gain, denoted by ξ̄k[j], which should be a scalar in (0, 1] that monotonically decreases
as x̄k[j] converges to Θ̄[j]. For instance, this chapter uses

ξ̄k[j] :=

(∣∣Θ̄[j]− x̄k[j]
∣∣

Θ̄[j]

)α

, (2.5)

being saturated to [εξ, 1] if the value lies outside this range, where α > 0 and εξ >

0 are design parameters. This gain is called primary local-feedback gain, controling
the primary guidance matrix Pk (shown in the next subsection). Here, α > 0 is the
sensitivity parameter affecting ξ̄k[j] with regard to the difference between x̄k[j] and Θ̄[j]

(as shown in Figure 2.5(a)); εξ > 0 is a reasonably small positive value ensuring that
always ξ̄k[j] > 0 in order to mathematically guarantee (R4), which will be described in
the next subsection. How to use ξ̄k[j] explicitly may be different depending on different
applications, and hence it will be given along with some implementation examples in
Section 2.4.

Remark 1. Equation (2.3) is equivalent to the j-th element of the following vector:

x̄jk :=
1

|ANk(j)|
∑

∀ai∈ANk(j)

sik. (2.6)

Here, we intentionally introduce Equation (2.6) for ease of comparison with the infor-
mation required in the existing literature (i.e., Equation (2.1)). Equation (2.6) implies
that, in order for each agent in bin Bj to estimate x̄jk[j] (i.e., the current local swarm
density x̄k[j]), the set of other agents whose information is necessary is just ANk(j).
That is, each agent needs to have neither a large perception radius nor an extensive
information consensus process over the entire agents.
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Figure 2.2: An example showing how to calculate x̄k[j]: for bin B23, x̄k[23] = nk[23]/

(nk[13]+nk[22]+nk[23]+nk[24]+nk[33]). In the proposed framework, agents in the bin only
need to obtain the local information from other agents in its neighbour bins (shaded). Note
that each square indicates each bin, and the red arrow between two bins Bj and Bl means that
Ak[j, l] = 1.

Remark 2. In the rest of this chapter, it is assumed that the current local swarm
density x̄k[j] in Equation (2.3) is accurately accessible by each agent in bin Bj, for the
ease of description. This can actually happen via a simple multi-hop communication
over all the agents in ANk(j). In order to reduce the required communication burden,
we could utilise distributed density estimation methods in [8, 28] at the expense of a
certain level of estimation error. Hence, we will numerically examine the effect of the
uncertainty on the proposed framework, as will be shown in Section 2.6.4.

Remark 3. It is worth repeating that, in the proposed approach, each agent in bin Bj
only relies on its local information about its neighbour bins Nk(j). This also applies
to mission information such as the desired distribution Θ. That is, the agent does not
necessarily need to know the entire desired distribution a priori (which is the case in
most of the existing works), but can obtain Θ̄[j] in a real-time manner during a mission
as long as Assumption 2 holds. This is also the case for the motion constraint Ak as
long as motion constraints regarding neighbour bins are perceivable under Assumption
2 along with reasonably capable sensors
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2.3.3 The LICA-based Markov matrix

This subsection presents our methodology to generate a time-inhomogeneous Markov
matrix Mk that achieves Desired Features 1–3 by using the local information feedback.
The basic form of the stochastic policy for every agent in bin Bj is such that

Mk[j, l] := (1− ωk[j])Pk[j, l] + ωk[j]Sk[j, l], ∀Bl ∈ B. (2.7)

Here, ωk[j] ∈ [0, 1) is the weighting factor to have different weights on the primary
policy Pk[j, l] ∈ P and the secondary policy Sk[j, l] ∈ P. It is defined as

ωk[j] := exp(−λk) ·Gk[j] (2.8)

where λ is a design parameter that controls decay of ωk[j]; and Gk[j] ∈ [0, 1] is secondary
local-feedback gain, which activates Sk[j, l] depending on the difference between x̄k[j]

and Θ̄[j]. Note that ωk[j] is mainly affected by Gk[j], while diminishing as time instant
k goes to infinity.

We introduced two policies Pk and Sk in order to help prospective users to have more
design flexibility when implementing the framework into their own specific problems.
As you will see, the asymptotic stability of agents towards Θ is in fact guaranteed by
Pk under the condition that the following Requirements 1–4 are satisfied. Since ωk[j] is
diminishing as time instant k goes to infinity, users may adopt any temporary policies
as Sk in addition to Pk, if necessary. For instance, when it is desired to disperse agents
in Bj into its neighbour bins more quickly if the bin is too overpopulated, it can happen
by setting Sk[j, l] = 1/|Nk(j)|, ∀Bl ∈ Nk(j) and that Gk[j] is designed to be close to one
when x̄k[j]� Θ̄[j], zero otherwise. Note that Section 2.4 will give explicit descriptions
of Pk, Sk, and Gk, which are varied depending on specific implementations.

Equation (2.7) can be represented in matrix form as

Mk = (I −Wk)Pk +WkSk, (2.9)

where Pk ∈ Pnb×nb and Sk ∈ Pnb×nb are row-stochastic matrices, called primary guidance
matrix and secondary guidance matrix, respectively. Wk ∈ Rnb×nb is a diagonal matrix
such that Wk = diag(ωk[1], ..., ωk[nb]).

We claim that, in order for the Markov system to achieve all the desired Features,
Pk must satisfy the following requirements.
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Requirement 1. Pk is a matrix with row sums equal to one, i.e.,
nb∑
l=1

Pk[j, l] = 1, ∀j. (R1)

In fact, Pk needs to be row-stochastic, for which it should further hold that Pk[j, l] ≥ 0,
∀j, l. Note that this constraint is implied by (R4), which will be introduced later.

Requirement 2. All diagonal elements are positive, i.e.,

Pk[j, j] > 0, ∀j. (R2)

Requirement 3. The stationary distribution (i.e., equilibrium) of Pk is the desired
swarm distribution Θ, i.e., Θ>Pk = Θ> (or

∑nb

j=1 Θ[j]Pk[j, l] = Θ[l],∀l). Along with
(R1), this can be fulfilled by setting

Θ[j]Pk[j, l] = Θ[l]Pk[l, j], ∀j,∀l. (R3)

A Markov process satisfying this property is said to be reversible.

Requirement 4. Pk is irreducible such that

Pk[j, l] > 0 if Ak[j, l] = 1.

Pk[j, l] = 0 otherwise.
(R4)

Note that Ak is also irreducible from in Definition 2.

Requirement 5. Pk becomes close to I as x̄k converges to Θ̄, i.e.,

Pk[j, j]→ 1 as x̄k[j]→ Θ̄[j] (or ξ̄k[j]→ 0), ∀j. (R5)

Every agent in each bin Bj executes the following subroutine to generate its stochas-
tic policies at every time instant. Depending on missions, ξ̄k[j], Pk, Sk, and Gk[j] can
be designed differently under given specific constraints (the detail regarding Lines 4-6
will be presented in Section 2.4, which shows examples of how to implement this frame-
work). As long as Pk holds (R1)-(R5) for every time instant k, the aforementioned
desired features are achieved. Note that (R1)-(R4) are associated with Desired Fea-
ture 1, whereas (R5) is with Desired Features 2 and 3. The detailed analysis will be
described in the next subsection.

In a nutshell, our design guidelines are as follows:
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Algorithm 2 Generation of Mk[j, l],∀l (Line 2 in Algorithm 1)
// Obtain the local information

1: Compute Θ̄[j] using (2.4);
2: Obtain x̄k[j];

// Generate stochastic policies
3: Compute ξ̄k[j] (using (2.5));
4: Compute Pk[j, l], ∀l;
5: Compute Sk[j, l], ∀l;
6: Compute Gk[j];
7: Compute ωk[j] using (2.8);
8: Compute Mk[j, l] using (2.7), ∀l;

i. Design ξ̄k[j] as a scalar function in (0, 1] that monotonically decreases as x̄k[j]

converges to Θ̄[j], e.g., Equation (2.5). Note that the shape of ξ̄k[j] is important
so that it may cause high residual convergence error, as will be shown in Section
2.6.1.

ii. Design Pk[j, l] that satisfies (R1)–(R5) along with additional criteria from a given
specific application.

iii. Design Sk[j, l] with consideration of the robotic swarm’s desired temporary be-
haviours that help the ultimate problem objective (if necessary).

iv. Design Gk[j] as a scalar function in [0, 1] in terms of x̄k[j] and Θ̄[j] (e.g., Equations
(2.17) or (2.27)), with consideration of when Sk is desired to be activated (if Sk
is implemented).

v. Use Mk[j, l] and ωk[j] as shown in Equations (2.7) and (2.8), respectively.

We will apply the same guidelines when implementing the proposed framework into
the specific examples in Section 2.4.
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2.3.4 Analysis

We first show that the Markov process using Equation (2.9) holds Desired Feature
1 under the assumption that Pk satisfies the requirements (R1)-(R4) for every time
instant. The swarm distribution at time instant k ≥ k0, governed by the Markov
process from an arbitrary initial state xk0 , can be written as:

xk = xk0Uk0,k := xk0Mk0Mk0+1 · · ·Mk−1. (2.10)

Theorem 1. Provided that the requirements (R1)-(R4) are satisfied for all time instants
k ≥ k0, it holds that limk→∞ xk = Θ pointwise for all agents, irrespective of the initial
condition.

Proof. Please refer to Appendix A.

Theorem 1 implies that the ensemble of the agents eventually converges to the
desired swarm distribution, regardless of Sk, Gk[j], and (R5). However, the system may
induce unnecessary transitions of agents even after being close enough to Θ, meaning
that Desired Feature 2 does not hold yet.

From now on, we will present that Desired Features 2 and 3 can also be obtained
if the requirement (R5) is additionally satisfied. Suppose that, for every bin Bj, x̄k[j]
converges to and eventually reaches Θ̄[j] at some time instant k. From Equations
(2.3)-(2.4) and the supposition of x̄k[j] = Θ̄[j], ∀j, it follows that 1/Θ̄[j] · nk[j] =∑
∀Bl∈Nk(j) nk[l], ∀j. This can be represented in matrix form as:

nk ·B := nk · (Ak −X) = 0 (2.11)

where X ∈ Rnb×nb is a diagonal matrix such that X = diag(1/Θ̄[1], ..., 1/Θ̄[nb]).

Lemma 1. Let the term tree-type (bidirectional) topology refer to as a graph such
that any two vertices are connected by exactly one bidirectional path with no cycles
(e.g., Figure 2.3(a)). Given nb bins connected as a tree-type topology, the rank of its
corresponding matrix B in Equation (2.11) is nb − 1.

Proof. The matrix B ∈ Rnb×nb can be linearly decomposed into ne of the same-
sized matrices B(i,j), where ne is the number of edges in the underlying graph of Ak.
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1 2 

3 4 

(a) Tree-type

1 2 

3 4 

(b) Arbitrarily connected

Figure 2.3: Examples of simple bin topologies to help Lemma 1 & 2: (a) tree-type; (b)
arbitrarily connected. The red line in (b) indicates a newly-added route between bin B1 and
B4 based on the topology in (a).

Here, B(i,j) ∈ Rnb×nb is a matrix such that B(i,j)[i, i] = −Θ[j]/Θ[i] and B(i,j)[j, j] =

−Θ[i]/Θ[j]; B(i,j)[i, j] = B(i,j)[j, i] = 1; and all the other entries are zero. For example,
consider that four bins are given and connected as shown in Figure 2.3(a). Clearly,
B = B(1,2) +B(2,3) +B(2,4), where

B =


−Θ[2]

Θ[1]
1 0 0

1 −Θ[1]+Θ[3]+Θ[4]
Θ[2]

1 1

0 1 −Θ[2]
Θ[3]

0

0 1 0 −Θ[2]
Θ[4]

 ,

B(1,2) =


−Θ[2]

Θ[1]
1 0 0

1 −Θ[1]
Θ[2]

0 0

0 0 0 0

0 0 0 0

 ,

B(2,3) =


0 0 0 0

0 −Θ[3]
Θ[2]

1 0

0 1 −Θ[2]
Θ[3]

0

0 0 0 0

 ,
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B(2,4) =


0 0 0 0

0 −Θ[4]
Θ[2]

0 1

0 0 0 0

0 1 0 −Θ[2]
Θ[4]

 .

It turns out that the rank of every B(i,j) is one, and the matrix has only one linearly
independent column vector, denoted by v(i,j). Without loss of generality, we consider
v(i,j) ∈ Rnb as a column vector such that the i-th entry is − 1

Θ[i]
, the j-th entry is 1

Θ[j]
,

and the others are zero: for an instance, v(1,2) = [− 1
Θ[1]

, 1
Θ[2]

, 0, 0]>.

It follows that v(i,j) and v(k,l) are linearly independent when the bin pairs {i, j}
and {k, l} are different. This implies that the number of linearly independent column
vectors of B is the same as that of edges in the topology. Hence, for a tree-type topology
of nb bins, since there exist nb − 1 edges, the rank of the corresponding matrix B is
nb − 1.

Lemma 2. Given a bidirectional and strongly-connected topology of bins, the rank of its
corresponding matrix B is not affected by adding a new bidirectional edge that directly
connects any two existing bins.

Proof. We will show that this claim is valid even when a tree-type topology is given, as it
is a sufficient condition for being bidirectional and strongly-connected. Given the tree-
type topology in Figure 2.3(a), suppose that bin B1 and B4 are newly connected. Then,
the new topology becomes as shown in Figure 2.3(b), and it has a new corresponding
matrix Bnew, where Bnew = B + B(1,4). As explained in the proof of Lemma 1, the
rank of B(1,4) is one and it has only a linearly independent vector v(1,4). However,
this vector can be produced as a linear combination of the existing v vectors of B
(i.e., v(1,4) = v(1,2) + v(2,4)). Thus, the rank of Bnew retains that of B. Without loss
of generality, this implies that the rank of B of a given bidirectional and strongly-
connected topology is not affected by adding a new edge that directly connects any two
existing bins.

Thanks to Lemma 1 and 2, we end up with the following corollary and lemma:
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Corollary 1. Given nb bins that are at least bidirectional and strongly-connected, the
rank of its corresponding B is nb − 1.

Lemma 3. Given nb bins that are at least bidirectional and strongly-connected, conver-
gence of x̄∞ to Θ̄ is equivalent to convergence of x∞ to Θ.

Proof. Assuming that limk→∞ x̄k = Θ̄, it can be said that limk→∞ nk ·B = 0, as similar
to the derivation of Equation (2.11). From Equation (2.4), it turns out that

Θ ·B = 0. (2.12)

Since the nullity ofB is one due to Corollary 1, there exists only one linearly-independent
row-vector a ∈ Rnb such that a ·B = 0. Hence, it follows that limk→∞ nk = εΘ, where
ε is an arbitrary scalar value. This also implies that limk→∞ xk = limk→∞ nk/na = Θ.

On the other hand, supposing that limk→∞ xk = Θ, it can be rewritten as limk→∞ nk =

naΘ. By right multiplying B for both side (i.e., limk→∞ nk · B = na(Θ · B)), it fol-
lows from Equation (2.12) that limk→∞ nk · B = 0. By the definition of B, it can be
rearranged as limk→∞ x̄k = Θ̄.

Therefore, convergence of x̄∞ to Θ̄ is equivalent to convergence of x∞ to Θ.

From this lemma and (R5), Desired Feature 2 finally holds as follows.

Theorem 2. If Pk satisfies (R1)–(R5) for all time instants k ≥ k0, the Markov process
using Mk in Equation (2.9) satisfies Desired Feature 2 as well as Desired Feature 1.

Proof. It was shown from Theorem 1 that the requirements (R1)–(R4) guarantee the
convergence of x∞ to Θ (i.e., Desired Feature 1). From this and Lemma 3, x̄∞ also
converges to Θ̄. If Pk additionally complies with (R5), then Pk becomes close to I

as k → ∞. This is also the case for the Markov process Mk, which satisfies Desired
Feature 2.

Corollary 2. In order for every agent in bin Bj to generate Mk[j, l],∀l in Equation
(2.7), the agent only needs local information within ANk(j). Therefore, Desired Feature
3 is also achieved.
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Remark 4 (Robustness against dynamic changes of agents or bins). The proposed
framework is robust against dynamic changes in the number of agents or bins. As each
agent behaves based on its current bin location and local information in a memory-
less manner, Desired Features 1–3 in the proposed framework will not be affected by
inclusion or exclusion of agents in a swarm.

Besides, as long as changes on bins are perceived by nearby agents in the corre-
sponding neighbour bins, robustness against those changes also holds in the proposed
framework. This is because agents in bin Bj utilise only local information such as Θ̄[j]

and x̄k[j], and are not required to know information from other far-away bins. Moreover,
the proposed framework does not need to recalculate Θ (which has to be normalised in
a GICA-based framework such that

∑
∀j Θ[j] = 1 after reflecting such changes) because

computing Θ̄[j] in Equation (2.4) already includes a sense of normalisation based on
local information.

2.4 Implementation Examples

2.4.1 Example I: Minimising Travelling Expenses

This section provides implementation examples of the proposed framework. In partic-
ular, this subsection addresses a problem of minimising travelling expenses of agents
during convergence to a desired swarm distribution, as shown in [10]. The problem can
be defined as follows:

Problem 1. Given a cost matrix Ek ∈ Rnb×nb in which each element Ek[j, l] represents
the travelling expense of an agent from bin Bj to Bl, find Pk such that

min

nb∑
j=1

nb∑
l=1

Ek[j, l]Pk[j, l], (P1)

subject to (R1)-(R5) and

εMΘ[l]fξ(ξ̄k[j], ξ̄k[l])fE(Ek[j, l]) ≤ Pk[j, l] if Ak[j, l] = 1, ∀j 6= l, (2.13)

where Θ[l] enables agents in bin Bj to be distributed over its neighbour bins in propor-
tion to the desired swarm distribution; fξ(ξ̄k[j], ξ̄k[l]) ∈ (0, 1] and fE(Ek[j, l]) ∈ (0, 1]
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basically control the lower bound of Pk[j, l] in Equation (2.13), depending on the pri-
mary local-feedback gains and travelling expenses, respectively. Specifically, it is set
that

fξ(ξ̄k[j], ξ̄k[l]) = max(ξ̄k[j], ξ̄k[l]) (2.14)

so that the value monotonically increases with regard to increase of either ξ̄k[j] or ξ̄k[l]
and diminishes as ξ̄k[j] and ξ̄k[l] simultaneously reduce, meaning that it allows a larger
number of transitioning agents between the two bins Bj and Bl when any one of them
needs to be regulated. fE(Ek[j, l]) ∈ (0, 1] monotonically decreases as Ek[j, l] increases
(see Equation (2.29) for an exemplar of its explicit definition), preventing agents in
bin Bj from spending higher transition expenses. We assume that Ek is symmetric;
Ek[j, l] > 0 if Ak[j, l] = 1; and its diagonal entries are zero.

Corollary 3. The optimal matrix Pk of the problem (P1) is given by: ∀j, l ∈ {1, ..., nb}
and l 6= j,

Pk[j, l] =

εMΘ[l]fξ(ξ̄k[j], ξ̄k[l])fE(Ek[j, l]) if Ak[j, l] = 1

0 otherwise
(2.15)

and ∀j,
Pk[j, j] = 1−

∑
∀l 6=j

Pk[j, l]. (2.16)

Proof. Please refer to Appendix B in this chapter.

To reduce unnecessary transitions of agents during this process, it is desirable that
agents in bin Bj such that x̄k[j] ≤ Θ̄[j] (i.e., underpopulated) do not deviate. To this
end, we set Sk = I and Gk[j] as follows:

Gk[j] :=
exp(β(Θ̄[j]− x̄k[j]))

exp(β|Θ̄[j]− x̄k[j]|)
. (2.17)

The gain value is depicted in Figure 2.4(a) with regard to the sensitivity parameter
β, which controls the steepness of Gk[j] at around when x̄k[j] − Θ̄[j] is close to zero
but positive. For example, at a lower β, a relatively higher number of agents tend to
follow the secondary guidance matrix Sk (i.e., not to deviate) rather than Pk even when
x̄k[j]− Θ̄[j] > 0 is not much close to zero.
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Remark 5 (Increase of Convergence Rate). Due to the fact that
∑
∀l 6=j Pk[j, l] ≤∑

∀Bl∈Nk(j)\{Bj}Θ[l] from Equation (2.15), the total outflux of agents from bin Bj be-
comes smaller as the bin has fewer connections with other bins. This eventually makes
the convergence rate of the Markov process slower.

Adding an additional variable into Pk[j, l] in (2.15) does not affect the obtainment
of Desired Features 1-3 as long as Pk satisfies (R1)-(R5). Thus, in order to enhance the
convergence rate under the requirements, one can add

εΘ := min

{
1∑

∀s:Bs∈Nk(j)\{Bj}Θ[s]
,

1∑
∀s:Bs∈Nk(l)\{Bl}Θ[s]

}
(2.18)

into Pk[j, l], as follows:

Pk[j, l] =

εΘεMΘ[l]fξ(ξ̄k[j], ξ̄k[l])fE(Ek[j, l]) if Ak[j, l] = 1

0 otherwise
(2.19)

which can be substituted for Equation (2.15).

Algorithm 3 Minimising Travelling Expenses (Lines 4–6 of Algorithm 2 for P1)
1: Compute Pk[j, l] ∀l using (2.15) (or (2.19)) and (2.16)
2: Set Sk[j, j] = 1; Sk[j, l] = 0,∀l 6= j

3: Compute Gk[j] using (2.17)

2.4.2 Example II: Maximising Convergence Rate within Flux

Upper Limits

This subsection presents an example in which the specific objective is to maximise
the convergence rate under upper bounds regarding transition of agents between bins,
referred to as flux upper limits. The bounds can be interpreted as safety constraints
in terms of collision avoidance and congestion: higher congestions may induce higher
collisions amongst agents, which may bring unfavourable effects on system performance.
A similar problem is addressed by an open-loop-type algorithm in [18], where transitions
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of agents are limited only after a desired swarm distribution is achieved. This restriction
is not for considering the aforementioned safety constraints, but rather for mitigating
the trade-off between convergence rate and long-term system efficiency.

For the sake of imposing flux upper limits during the entire process, we consider the
following one-way flux constraint: for every time instant k,

nk[j]Pk[j, l] ≤ c(j,l), ∀j,∀l 6= j. (2.20)

This means that the number of agents moving from bin Bj to Bl is upper-bounded
by c(j,l). The bound value is assumed to be very small with consideration of mission
environments such as the number of agents, the number of bins, and their topology.
Otherwise, all the agents can be distributed over the bins very soon so that the flux
upper limits become meaningless and the corresponding problem can be trivial. Please
note that the flux limits in this example should be considered as expected constraints.
In the case where hard constraints are to be accommodated in practice, it is necessary
to set a tighter value with consideration of a margin from the actual value. The level
of the margin would be affected by the number of agents involved in the framework, as
will be shown in Figure 9(c) later.

Regarding the convergence rate of a Markov chain, there are respective analyt-
ical methods depending on whether it is time-homogeneous or time-inhomogeneous.
For a time-homogeneous Markov chain, if the matrix is irreducible, the second largest
eigenvalue of the matrix is used as an index indicating its asymptotic convergence
rate [29, p.389]. In contrast, for a time-inhomogeneous Markov chain, coefficients of
ergodicity can be utilised as a substitute for the second largest eigenvalue, which is
not useful for this case [30]. Particularly, we use the following proper coefficient of
ergodicity, amongst others:

Definition 9. (Coefficient of Ergodicity [31, pp. 136–137]). Given a stochastic matrix
M∈ Pn×n, a (proper) coefficient of ergodicity 0 ≤ τ(M) ≤ 1 can be defined as:

τ(M) := max
∀s

max
∀j,∀l
|M[j, s]−M[l, s]| . (2.21)

A coefficient of ergodicity is said to be proper if τ(M) = 0 is necessary and sufficient
forM = 1> · v, where v ∈ Pn is a row-stochastic vector.
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The convergence rate of a time-inhomogeneous Markov chainMk ∈ Pn×n, ∀k ≥ 1

can be maximised by minimising τ(Mk) at each time instant k, thanks to [31, Theorem
4.8, p.137]: τ(M1M2 · · ·Mr) ≤

∏r
k=1 τ(Mk). Hence, the objective of the specific

problem considered in this subsection can be defined as: find Pk such that

min τ(Pk) (2.22)

subject to (R1)-(R5) and (2.20).

Remark 6 (Advantages of the coefficient of ergodicity in (2.21)). Other proper coeffi-
cients in [31, p. 137] such as

τ1(M) = 1−min
∀j,∀l

∑
∀s

min{M[j, s],M[l, s]}

or
τ2(M) = 1−

∑
∀s

min
∀j
{M[j, s]}

may have the trivial case such that τ1(Pk) = 1 (or τ2(Pk) = 1) for some time instant k,
when they are applied to this problem. For example, given a topology of bins Ak, there
may exist a pair of bins Bj and Bl such that Pk[j, s] = 0 or Pk[l, s] = 0, ∀s. To avoid
this trivial case, the work in [10] instead utilises τ1((Pk)

dAk ) as the proper coefficient of
ergodicity, where dAk

denotes the diameter of the underlying graph ofAk. However, this
implies that agents in bin Bj are required to additionally access the information from
other bins beside Nk(j), causing additional communicational costs. The coefficient of
ergodicity in (2.21) does not suffer from this issue. Note that τ(M) ≤ τ1(M) ≤ τ2(M)

[31, p. 137].

Finding the optimal solution for the problem (2.22) is another challenging issue,
called fastest mixing Markov chain problem. Since the purpose of this section is to show
an example of how to implement our proposed framework, we heuristically address this
problem at this moment.

Suppose that a matrix Pk satisfying (R1)-(R5) is given and that the topology of
bins is at least connected without any bin being connected to all the others. Since the
matrix is non-negative and there exists at least one zero-value entry in each column,
the coefficient of ergodicity can be said as τ(Pk) = max∀s,∀j(Pk[j, s]). Assuming that
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max∀l 6=j Pk[j, l] ≤ 1/|Nk(j)|, which is generally true due to the small values of c(j,l), it
turns out that each diagonal element of Pk is the largest value in each row. Thus, we can
say that τ(Pk) = max∀j Pk[j, j]. Eventually, the objective function in Equation (2.22)
can be rewritten as maxmin∀j

∑
∀l 6=j Pk[j, l] because minimising the maximum diagonal

element of a stochastic matrix is equivalent to maximising the minimum row-sum of its
off-diagonal elements.

We turn now to the constraints (R1)-(R5) and (2.20). In order to comply with
(R3), we initially set Pk[j, l] = Θ[l]Qk[j, l], where Qk is a symmetric matrix that we
will design now. The constraint (2.20), (R4), and the symmetricity of Qk are necessary
conditions for the following constraint: ∀j, ∀l 6= j,

min

(
c(j,l)

nk[j]Θ[l]
,

c(l,j)

nk[l]Θ[j]

)
≥ Qk[j, l] > 0 if Ak[j, l] = 1

Qk[j, l] = 0 otherwise.

(2.23)

For (R2) and (R5), we set the diagonal entries of Pk as

Pk[j, j] ≥ 1− ξ̄k[j], ∀j. (2.24)

Note that the non-strict inequality is not troublesome to (R2) because ξ̄k[j] = 1 only
when x̄k[j] = 0, in which there exists no agent in bin Bj, and thus effectively Pk[j, j] = 1.
Equation (2.24) can be rewritten, with consideration of (R1) (i.e.,

∑nb

l=1 Θ[l]Qk[j, l] =

1, ∀j), as ∑
∀l 6=j

Θ[l]Qk[j, l] ≤ ξ̄k[j], ∀j. (2.25)

In summary, Equation (2.23) is a sufficient condition for (R3), (R4), and (2.20); and
Equation (2.25) is for (R1), (R2), and (R5). Hence, the reduced problem can be defined
as:

Problem 2. Find Qk such that

maxmin∀j
∑
∀l 6=j

Θ[l]Qk[j, l] (P2)

subject to (2.23) and (2.25).
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The algorithm for the problem (P2) is shown in Algorithm 4. If we neglect (2.25),
an optimal solution can be obtained by making Qk[j, l] equal to its upper bound in
(2.23) (Line 2). However, this solution may not hold (2.25). Thus, we lower the entries
of Qk to satisfy (2.25), while keeping them symmetric and as high as possible (Lines
3–8). In detail, Line 3 (or Line 6) ensures the constraint (2.25) for each bin Bj in a way
that, if this is not the case, obtains the necessary lowering factor ε̄′Q[j] (or ε̄Q[j]). In
order to keep Qk as high as possible, we temporarily take ε′Q[j, l] as the maximum value
of {ε̄′Q[j], ε̄′Q[l]} (Line 4). After curtailing Qk[j, l] by applying ε′Q[j, l], we obtain the
corresponding lowering factor again (Lines 5–6). For now, the minimum value is taken
to maintain Qk’s symmetricity and satisfy (2.25) simultaneously (Line 7). Then, the
corresponding stochastic policy is generated based on the resultant Qk (Lines 8–10).

Note that we set Gk[j] = 0 for all time instants and all bins, so Mk = Pk.

Algorithm 4 Max Convergence with Flux Limits (Line 4 of Algorithm 2 for P2)
// Initialise Pk

1: Pk[j, l] = 0, ∀l ∈ {1, 2, ..., nb};
// Compute Qk satisfying the constraint (2.23) only

2: Qk[j, l] = min
(

c(j,l)
nk[j]Θ[l]

,
c(l,j)

nk[l]Θ[j]

)
, ∀Bl ∈ Nk(j) \ {Bj};

// Lower Qk to satisfy the constraint (2.25) additionally
3: ε̄′Q[j] = min

(
ξ̄k[j]∑

∀l6=j Θ[l]Qk[j,l]
, 1
)
;

4: ε′Q[j, l] = max
(
ε̄′Q[j], ε̄′Q[l]

)
, ∀Bl ∈ Nk(j) \ {Bj};

5: Qk[j, l] := ε′Q[j, l]Qk[j, l], ∀Bl ∈ Nk(j) \ {Bj};
6: ε̄Q[j] = min

(
ξ̄k[j]∑

∀l6=j Θ[l]Qk[j,l]
, 1
)
;

7: εQ[j, l] = min (ε̄Q[j], ε̄Q[l]), ∀Bl ∈ Nk(j) \ {Bj};
8: Qk[j, l] := εQ[j, l]Qk[j, l], ∀Bl ∈ Nk(j) \ {Bj};

// Compute Pk
9: Pk[j, l] = Θ[l]Qk[j, l], ∀Bl ∈ Nk(j) \ {Bj};
10: Pk[j, j] = 1−

∑
∀l 6=j Pk[j, l];
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2.4.3 Example III: Local-information-based Quorum Model

This subsection shows that the proposed framework is able to incorporate a quorum
model, which is introduced in [11, 12]. In this model, if a bin is overpopulated above
a certain level of predefined threshold called quorum, the probabilities that agents in
the bin move to its neighbour bins are temporarily increased, rather than consistently
following given Pk. This feature eventually brings an advantage to the convergence
performance of the swarm.

To this end, we set the secondary guidance matrix Sk as follows: ∀j, l ∈ {1, ..., nb},

Sk[j, l] :=

1/|Nk(j)| if Ak[j, l] = 1

0 otherwise.
(2.26)

This matrix makes agents in a bin equally disseminated over its neighbour bins. In
addition, the secondary feedback gain Gk[j] is defined as

Gk[j] :=

(
1 + exp

(
γ(qj −

x̄k[j]

Θ̄[j]
)
))−1

, (2.27)

where γ > 0 is a design parameter, and qj > 1 is the quorum for bin Bj. Figure 2.4(b)
shows the gain value varying depending on γ and qj. As x̄k[j]/Θ̄[j] becomes higher than
the quorum, Gk[j] gets close to 1 (i.e., Sk[j, l] becomes more dominant than Pk[j, l]).
The steepness of Gk[j] around the quorum value is regulated by γ.

The existing quorum models in [11, 12] require each agent to know xk[j], which
implies that the total number of agents na should be tracked in real time. It could
be possible that some agents in a swarm unexpectedly become faulted by internal or
external effects during a mission, which hinders for other alive agents from keeping
track of na in a timely manner. On the contrary, this requirement is not the case for
the proposed quorum model, and it works by only using local information available
from ANk(j).

2.5 Asynchronous Implementation

A synchronous process induces extra time delays and inter-agent communication to
make the entire agents, who may have different timescales for obtaining new informa-
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Figure 2.4: The secondary feedback gains Gk[j] depending on the associated design param-
eters: (a) for P1 (i.e., Eqn. (2.17)); (b) for the quorum model (i.e., Eqn. (2.27))

Algorithm 5 The Quorum Model (Lines 5-6 of Algorithm 2)
1: Compute Sk[j, l] using (2.26), ∀l;
2: Compute Gk[j] using (2.27);

tion, remain in sync. Such unnecessary waiting time and communication may cause
unfavourable effects on mission performance or even may not be realisable in prac-
tice [32].

In the previous sections, it was assumed that a swarm of agents act synchronously
at every time instant. Here we show that the proposed framework can accommodate
asynchronous behaviours of the agents, assuming that the union of underlying graphs
of the corresponding Markov matrices across some time intervals is frequently and
infinitely strongly-connected.

Suppose that an algorithm to compute Pk that satisfies (R1)–(R5) in a synchronous
environment is given (e.g., Algorithm 3 or 4). We propose an asynchronous implementa-
tion as shown in Algorithm 6, which substitutes Line 4 in Algorithm 2. We refer to a set
of bins where agents are ready to use their respective local information (e.g., nk[j]) as
R+
k , and a set of the other bins as R−k . For each bin Bj, we denote N+

k (j) := Nk(j)∩R+
k
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and N−k (j) := Nk(j) ∩ R−k . It is assumed that each agent in bin Bj ∈ R+
k knows the

local information of its neighbour bin Bl ∈ N+
k (j).

In the asynchronous algorithm, each agent in bin Bj ∈ R+
k follows the existing

procedure of generating Pk[j, l] for each neighbour bin Bl whose local information is also
available (Line 2). Then, the probabilities to transition to all the other bins (except Bj)
are set to be zero (Line 3). In the meantime, each agent for whom local information is
not ready does not deviate but remains at the bin it belongs to. Equivalently, it can
be said that Pk[j, j] = 1 and Pk[j, l] = 0, ∀l 6= j (Line 6).

Hereafter, for the sake of differentiation from the original Pk generated in a syn-
chronous environment, let us refer to the matrix resultant from Algorithm 6 as asyn-
chronous primary guidance matrix, denoted by P̃k. Accordingly, the asynchronous
Markov matrix can be defined as:

M̃k := (I −Wk)P̃k +WkSk.

We show that this asynchronous Markov process also converges to the desired swarm
distribution.

Lemma 4. The matrix P̃k, for every time instant k, satisfies the following properties:
(1) row-stochastic; (2) all diagonal elements are positive and all other elements are
non-negative; and (3)

∑nb

l=1 Θ[l]P̃k[l, j] = Θ[j],∀j.

Proof. The matrix P̃k is row-stochastic because of Line 4 and 6 in Algorithm 6. Fur-
thermore, given that Pk satisfies (R2), the property (2) is also valid for P̃k because

Algorithm 6 Asynchronous Construction of Pk[j, l] (Substitute for Line 4 of Algorithm
2)

1: if Bj ∈ R+
k & isnonempty(N+

k (j) \ {Bj}) then
2: Compute Pk[j, l] as usual, ∀Bl ∈ N+

k (j) \ {Bj}
3: Pk[j, l] = 0, ∀Bl ∈ B \ N+

k (j)

4: Pk[j, j] = 1−
∑
∀l 6=j Pk[j, l]

5: else
6: Pk[j, j] = 1; Pk[j, l] = 0, ∀l 6= j

7: end if
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P̃k[j, j] ≥ Pk[j, j] for ∀j.

Let us now turn to the property (3), and firstly consider the case where ∀Bj ∈ R+
k .

For any two bins Bj1 and Bj2 (j1 6= j2), Algorithm 2 yields that P̃k[j1, j2] = Pk[j1, j2]

and P̃k[j2, j1] = Pk[j2, j1] if Bj1 ,Bj2 ∈ R+
k and Ak[j1, j2] = 1 simultaneously, otherwise

P̃k[j1, j2] = P̃k[j2, j1] = 0. For ∀Bj ∈ R+
k , this fact implies the followings: (i) P̃k[l, j] =

Pk[l, j] for ∀Bl ∈ N+
k (j) \ {Bj}; (ii) P̃k[j, l] = P̃k[l, j] = 0 for ∀Bl ∈ B \ N+

k (j); and
(iii) P̃k[j, j] = Pk[j, j] +

∑
∀Bl∈N−k (j) Pk[j, l]. We apply the findings into the following

equation:

nb∑
l=1

Θ[l]P̃k[l, j] =
∑

∀Bl∈B\N+
k (j)

Θ[l]P̃k[l, j]

+
∑

∀Bl∈N+
k (j)\{Bj}

Θ[l]P̃k[l, j] + Θ[j]P̃k[j, j].

(2.28)

The first term of the right hand side becomes zero because of (ii). Due to (i) and the
fact that Θ[l]Pk[l, j] = Θ[j]Pk[j, l] ∀l (from Requirement 3), the second term becomes
Θ[j]

∑
∀Bl∈N+

k (j)\{Bj} Pk[j, l]. The last term becomes Θ[j]Pk[j, j]+Θ[j]
∑
∀Bl∈N−k (j) Pk[j, l]

because of (iii). By putting all of them together and adding
∑
∀Bl∈B\Nk(j) Pk[j, l] = 0,

the right hand side of Equation (2.28) is equivalent to

Θ[j]

 ∑
∀Bl∈N+

k (j)\{Bj}

Pk[j, l] + Pk[j, j] +
∑

∀Bl∈N−k (j)

Pk[j, l] +
∑

∀Bl∈B\Nk(j)

Pk[j, l]


= Θ[j]

nb∑
l=1

Pk[j, l] = Θ[j].

On the other hand, for the case where ∀Bj ∈ R−k , it follows from Algorithm 6 that
P̃k[l, j] = 0,∀l 6= j and P̃k[j, j] = 1. Thus,

∑nb

l=1 Θ[l]P̃k[l, j] = Θ[j].

Lemma 5. If the union of a set of underlying graphs of {P̃k1 , P̃k1+1, ..., P̃k2−1} is
strongly-connected, then the matrix product P̃k1,k2 := P̃k1P̃k1+1 · · · P̃k2−1 is irreducible.

Proof. Since the union of a set of underlying graphs of {P̃k1 , P̃k1+1, ..., P̃k2−1} is strongly-
connected, the underlying graph of

∑k2−1
k=k1

P̃k is also strongly-connected. Noting that
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every P̃k, ∀k ∈ {k1, k1 + 1, ..., k2 − 1} is a nonnegative nb × nb matrix and its diago-
nal elements are positive (by Lemma 4), it follows from [33, Lemma 2] that P̃k1,k2 ≥
γ
∑k2−1

k=k1
P̃k, where γ > 0. This implies that the underlying graph of P̃k1,k2 is strongly-

connected, and thus the matrix P̃k1,k2 is irreducible.

Theorem 3. Suppose that there exists an infinite sequence of non-overlapping time in-
tervals [ki, ki+1), i = 0, 1, 2, ..., such that the union of underlying graphs of {P̃ki , P̃ki+1, ...,

P̃ki+1−1} in each interval is strongly-connected. Let the swarm distribution at time in-
stant k ≥ k0, governed by the corresponding Markov process from an arbitrary state
xk0, be xk = xk0Ūk0,k := xk0M̃k0M̃k0+1 · · · M̃k−1. Then, it holds that limk→∞ xk = Θ

pointwise for all agents, irrespective of the initial condition.

Proof. Thanks to Lemma 4 and 5, the matrix product P̃ki,ki+1
for each time interval

[ki, ki+1) satisfies (R1)-(R4). Therefore, one can prove this theorem by similarly follow-
ing the proof of Theorem 1.

2.6 Numerical Experiments

2.6.1 Effects of Primary Local-feedback Gain ξ̄k[j]

This section first investigates the sensitivity of the primary feedback gain ξ̄k[j] using
Algorithm 3 (with Equation (2.19)). We show that, depending on the shape of the gain,
the performance of the proposed framework changes with respect to convergence rate,
fraction of transitioning agents, and residual convergence error.

We consider the scenario having a set of 2, 000 agents and an arena consisting of
10×10 bins, as depicted in Figure 2.2. There are vertical and horizontal paths between
adjacent bins. The agents are allowed to move at most 3 paths away within a unit
time instant. All the agents start from a bin, which reflects the fact that they are
generally deployed from a base station at the beginning of a mission. The desired
swarm distribution Θ is uniform-randomly generated at each scenario. The agents are
assumed to estimate necessary local information correctly.

The performance of the proposed algorithm will be compared with that of the GICA-
based algorithm [10]. To this end, fE(Ek[j, l]) is set to be the same as the corresponding
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coefficient in the existing work:

fE(Ek[j, l]) := 1− Ek[j, l]

Ek,max + εE
, (2.29)

where Ek,max is the maximum element of the travelling expense matrix Ek, and εE is a
design parameter. Ek[j, l] is defined as a linear function based on the distance between
bin Bj and Bl:

Ek[j, l] := εE1 ·∆s(j,l) + εE0 , (2.30)

where ∆s(j,l) is the minimum required number of paths from Bj to Bl; εE1 and εE0 are
design parameters. The agents are assumed to follow any shortest route when they
transition between two bins. The design parameters are set as follows: εE1 = 1 and
εE0 = 0.5 in (2.30); εE = 0.1 in (2.29); εξ = 10−9 in (2.5); εM = 1 in (2.19); β = 1.8×105

in (2.17); and λ = 10−6 in (2.8).

As a performance index for the closeness between xk and Θ, we use Hellinger Dis-
tance, i.e.,

DH(Θ,xk) :=
1√
2

√√√√ nb∑
j=1

(√
Θ[j]−

√
xk[j]

)2

,

which is known as a “concept of measuring similarity between two distributions” [34]
and is utilised as a feedback gain in the existing work.

More importantly, to examine the effects of ξ̄k[j], we set α in (2.5) as 0.2, 0.4, 0.6,

0.8, 1 and 1.2.

Figure 2.5 reveals that the convergence rate can be traded off against the fraction
of transitioning agents and the residual convergence error. As ξ̄k[j] becomes more
concave (i.e., the value of α decreases), the summation of off-diagonal entries of Pk
becomes higher, leading to more transitioning agents but faster convergence rate. At
the same time, such unnecessarily higher off-diagonal entries of Pk even at a low value
of |Θ̄[j] − x̄k[j]| prevent the agents from properly converging to the desired swarm
distribution, resulting in higher residual convergence error.
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Figure 2.5: Sensitivity analysis depending on the primary local-feedback gain ξ̄k[j] in Eqn.
(2.5) with different setting of α: (a) the value of ξ̄k[j]; (b) the fraction of transitioning agents;
(b) the convergence performance; (d) the convergence performance (zoomed-in for time instant
between 3500 and 4000)

2.6.2 Comparison with the GICA-based Method

Let us now compare the LICA-based method for (P1) with the GICA-based method.
The scenario considered is the same as the one in the previous subsection except for
α = 0.6. Note that εΘ in Remark 5 improves convergence rate, but is not discussed
in the existing work. For the fair comparison, εΘ is applied to both methods. We
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Figure 2.6: Performance comparison between the proposed method (LICA) with the existing
method (GICA) [10]: (a) the convergence error from the current swarm status to the desired
status; (b) the fraction of agents transitioning between any two bins; (c) the cumulative
travel expenses of all the agents from the beginning; (d) the number of other agents whose
information are necessary for each agent.

conduct 100 runs of Monte Carlo experiments. Figure 2.6 presents the results of one
representative scenario, and Figure 2.7 shows the statistical results of the Monte Carlo
experiments.

According to Figure 2.6(a), the convergence rate of the proposed method is compa-
rable to that of the GICA-based method. Specifically, the former is slower at the initial
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Figure 2.7: Performance comparison (Monte-Carlo experiments) between the proposed
method (LICA) and the existing method (GICA) [10]: (a) the required time instants to con-
verge to DH(Θ,xk) ∈ {0.30, 0.28, ..., 0.12, 0.10} (i.e., convergence rate); (2) the ratio of the
cumulative travel expenses by LICA to those by GICA until converging to DH(Θ,xk) = 0.1.

phase, but becomes similar to that of the GICA-based method as reaching DH(Θ,xk) =

0.10. This is confirmed by the statistical results in Figure 2.7(a), which presents the ra-
tio of the required time instants for converging toDH(Θ,xk) ∈ {0.30, 0.28, ..., 0.12, 0.10}
in the LICA-based method to those of the GICA-based method.

Figure 2.6(c) shows that the cumulative travel expenses are smaller in the proposed
method than in the existing method. Until achieving DH(Θ,xk) = 0.1, the expenses by
the proposed method and those by the compared method are 1.72×104 and 1.96×104,
respectively, and their ratio is 0.878. This is also confirmed by the statistical result in
Figure 2.7(b). A possible explanation is that when some of the bins do not meet their
desired swarm densities, the entire agents in the GICA-based method would obtain
higher feedback gains, leading to unnecessary transitions. On the contrary, this is not
the case in the LICA-based method since agents are only affected by their neighbour
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bins.

From the figure, one might argue that as time goes afterDH(Θ,xk) = 0.1 is achieved,
the cumulative expenses in the proposed method probably exceed those by the GICA-
based method. This is mainly because of the current setting of α for the LICA-based
method, which induces relatively more transitioning agents at the last phase (as shown
in Figure 2.6(b)) as well as a lower level of residual convergence error (as in Figure
2.6(a)) than the GICA-based method. In other words, we might have prevented this
possibility by selecting α more carefully. Alternatively, we could also utilise global
information once in a while and make the agents forcefully settle down when a certain
level of the desired global status is achieved, as proposed in [10].

More importantly, Figure 2.6(d) indicates that agents in the proposed framework
require much less information from other agents. This figure shows the number of other
agents whose information are necessary for each agent in order to generate its stochas-
tic policies. For the LICA-based framework, the red-dashed line and the red-dotted
line represent the maximum case (i.e., the agent who needs the largest amount of in-
formation) and the minimum case (i.e., the agent who needs the smallest amount of
information) amongst all the agents, respectively. This results show that just 20 % of
information are averagely required in the proposed method after the system converges
such that DH(Θ,xk) < 0.1, compared with the GICA-based method. This also implies
that the LICA-based framework has a shorter timescale for each time instant interval
and that its convergence performance in practice would be better. Note that the con-
vergence comparison result in Figure 2.6(a) is presented in respect to time instants of
each Markov process.

2.6.3 Robustness in Asynchronous Environments

This subsection investigates the effects of asynchronous environments in the proposed
LICA-based method for (P1) and compares them with those in the GICA-based method.
We consider a realistic scenario where an asynchronous process is required: agents in
some bins cannot communicate or cannot operate temporarily for some reasons (such
bins are called blocked) and thus other agents in normal bins have to perform their own
process without waiting for them. The proportion of blocked bins to the entire bins is
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Figure 2.8: Performance comparison in communication-disconnected situations: (a) the
convergence error from the current swarm status to the desired status; (b) the fraction of
agents transitioning between any two bins; (c) the cumulative travel expenses of all the agents
from the beginning; (d) the average number of other agents whose information are necessary
for each agent.

set to be 0%, 10%, 20% and 30%. At each time instant, the corresponding proportion
of bins become randomly blocked. Despite no information from the blocked bins, we
set that agents in normal bins anyway compute x̄k[j] in the proposed method (or xk in
the GICA-based method). For the proposed method, the asynchronous implementation
in Section 2.5 is built with Algorithm 3. The rest of scenario setting are the same as
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those in Section 2.6.2.

Figure 2.8 illustrates the performance of each method: convergence rate, fraction
of transitioning agents, cumulative travel expenses, and the amount of information to
communicate. As the proportion of the blocked bins increases, the GICA-based method
tends to have faster convergence speed, whereas it loses Desired Feature 2 and thus
increases cumulative travelling expenses (as shown in Figure 2.8(a), 2.8(b), and 2.8(c),
respectively). On the contrary, the LICA-based method shows a graceful degradation in
terms of Desired Feature 2 (as shown in Figure 2.8(b)). A possible explanation for these
results could be that higher feedback gains due to the communication disconnection
induce faster convergence performance in each method than the normal situation. This
effect is dominant for the GICA-based method because it affects the entire agents, who
use global information. However, in the LICA-based framework, the communication
disconnection only locally influences so that its effectiveness is relatively modest. Figure
2.8(d) shows that the proposed framework still only relies on much less information
(i.e., averagely 20% after the system reasonably converges), compared with the existing
method.

2.6.4 Effect of Local Information Estimation Error

Let us now examine the performance degradation of the proposed method when there
exist estimation errors on local information. In this experiment, agent ai in bin Bj is
set to locally perceive nk[j] as nik[j], ∀Bj ∈ Nj(k), which is generated from a uniform
random distribution

[
(1−η) ·nk[j], (1+η) ·nk[j]

]
, where η is the pre-defined error level.

Then, nik[j] is used to compute x̄k[j] as in Equation (2.3). Apart from that, we use the
same scenario setting in Section 2.6.2, while varying η ∈ {0%, 10%, 20%, 30%, 40%}.

Figure 2.9 shows that despite the estimation errors, the proposed LICA-based
method still achieve Desired Features 1 and 2 with graceful performance degradation.
The uncertainty induces faster convergence but keeps a higher number of transitioning
agents even at the last phase. A possible reason behind this would be similar to that
for the results in Section 2.6.3. In practice, such faster convergence behaviour caused
by uncertainties provide obvious benefits. The increased transitioning agents at the
last phase could be addressed by allowing them to utilise more time to estimate the
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Figure 2.9: Performance degradation of the proposed framework in the existence of esti-
mation error (from 10 % to 40 %) on local information nk[l] about neighbour bins: (a) the
convergence behaviour; (b) the fraction of transitioning agents.

local information more accurately as the system converges (e.g., by setting variable time
instants), considering the fact that the costs of physical transition between bins are in
general much more expensive than those for communication.

2.6.5 Demonstration of Example II and III

This subsection demonstrates the LICA-based method for (P2) (i.e., Algorithm 4) and
the quorum model (i.e., Algorithm 5). For the former, we consider a scenario where
10, 000 agents and an arena consisting of 10×10 bins are given. The arena is as depicted
in Figure 2.2, where the agents are allowed to move only one path away within a unit
time instant. For each one-way path, the flux upper limit per time instant is set as 20

agents (i.e., c(j,l) = 20, ∀l 6= j). All the agents start from a bin, and the desired swarm
distribution is uniform-randomly generated.

For the latter, we build the quorum model upon the LICA-based method for (P2).
Combining the two may be a good strategy for a user who wants to achieve not only
faster convergence rate but also lower unnecessary transitions after equilibrium, which
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Figure 2.10: Comparison results between the method for (P2) and the quorum-based model:
(a) the convergence error from the current swarm status to the desired status; (b) the fraction
of agents transitioning between any two bins; (c) The maximum number of transitioning agents
via each path in the method for (P2) (Case 1: |A| = 10, 000 and c(j,l) = 20, ∀j,∀l 6= j; Case
2: |A| = 100, 000 and c(j,l) = 200, ∀j,∀l 6= j)

are regulated by the flux upper limits. In the same scenario described above, we will
demonstrate the combined algorithm that computes Sk and Gk by Algorithm 5 and Pk
by Algorithm 4. We set qj = 1.3 and γ = 30 for (2.27); α = 1 and εξ = 10−9 for (2.5);
and λ = 10−6 for (2.8).

Figure 2.10(a) presents that both approaches make the swarm converge to the de-
sired swarm distribution. It is observed from Figure 2.10(b) that the number of tran-
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sitioning agents in the method for (P2) is restricted because of the upper flux bound
during the entire process. Meanwhile, the quorum-based method very quickly dissemi-
nates the agents, who are initially at one bin, over the other bins, and thus the fraction
of transitioning agents is very high at the initial phase. After that, the population
fraction drops and remains as low as that by the method for (P2).

Figure 2.10(c) presents the maximum value amongst the number of transition-
ing agents via each (one-way) path. The red line indicates the actual result by the
method for (P2), while the green line indicates the corresponding probabilistic value
(i.e., max∀j max∀l 6=j nk[j]Pk[j, l]). It is shown that the stochastic policies reflect the
given upper bound, meanwhile this bound is often violated in practice due to the finite-
number agents’ randomness. However, the result in the same scenario with setting
|A| = 100, 000 and c(j,l) = 200, ∀j, l 6= j (denoted by Case 2), depicted by the blue and
magenta lines in Figure 2.10(c), suggests that such violation can be mitigated as the
number of given agents increases.

2.6.6 Visualised Adaptiveness Test

This section considers a scenario where a swarm of agents are to visually configure
certain images as their emergent behaviours. Every pixel of a performance area is
regarded as a bin. We have na = 2000 agents and nb = 10 × 10 bins, and all the bins
are connected as shown in Figure 2.2. The scenario considered is as follows. Initially
(i.e., at k = 0), all the agents are randomly distributed over the performance area,
and they know the desired distribution vector, which is a smile icon. At k = 41, the
inverted-colour icon is given to them as a new desired distribution vector. Then (i.e.,
at k = 137), it happens that some agents for the right eye of the smiling face are
somehow unexpectedly eliminated. This lost of the agents is only informed to their
neighbour alive agents, but not to the other far away agents. We use the proposed
algorithm for (P1) (i.e., Algorithm 3) and additionally adopt a subroutine whereby
agents in zero-desired-density bins randomly move to one of its closest neighbour bins.
Due to this subroutine and the constraint Θ[j]Pk[j, l] = Θ[l]Pk[l, j] in Requirement 3
(i.e., not allowed to move to a zero-desired-density bin from a positive-desired-density
one), all the agents eventually remain in the positive-desired-density bins. The rest of
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(a) k = 0 (b) k = 1 (c) k = 40

(d) k = 41 (e) k = 45 (f) k = 136

(g) k = 137 (h) k = 140 (i) k = 400

Figure 2.11: Visualisation results: 2000 agents are deployed into 100 pixels (bins) to configure
images.
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scenario setting are the same as those in Section 2.6.2. The visualised results are shown
in Figure 2.11.

2.7 Conclusion

This chapter proposed a LICA(Local Information Consistency Assumption)-based closed-
loop-type Markov-chain framework for probabilistic swarm distribution guidance. For
feedback generation, it only requires local information to be known locally. Conse-
quently, agents in the proposed framework exhibit reduced communication transactions,
have shorter timescales for using new information, can incorporate an asynchronous
decision-making process, and can be deployed into a mission without a priori global
knowledge. Even using such insufficient information, it was shown that the agents con-
verge to a desired density distribution, while the framework maintaining scalability, ro-
bustness, and long-term system efficiency. The numerical experiments have showed that
the proposed framework is more robust in a realistic environment where communication
between agents is partially and temporarily disconnected. This chapter has explicitly
presented the design requirements for the Markov matrix to hold all these advantages,
and has provided specific problem examples of how to implement this framework. As
long as the design requirements are satisfied, prospective users can utilise the proposed
framework with customising Pk, Sk, ξ̄k, and Gk, depending on their own purposes.

Future work will investigate optimisation of ξ̄k[j], which can mitigate the trade-off
between convergence rate and residual error. In addition, it is expected that the com-
munication cost required for the proposed framework can be reduced by incorporating
a vision-based local density estimation [35].

Appendix

A. Proof for Theorem 1

Definition 10 (Irreducible). A matrix is reducible if and only if its associated digraph
is not strongly connected. A matrix that is not reducible is irreducible.
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Definition 11 (Primitive). A primitive matrix is a square nonnegative matrixM such
that for every i, j there exists k > 0 such thatMk[i, j] > 0.

Definition 12 (Regular). A regular matrix is a stochastic matrix such that all the
entries of some power of the matrix are positive.

Definition 13. [31, pp.92, 149] [10] (Asymptotic Homogeneity) “A sequence of stochas-
tic matricesMk ∈Mn×n, k ≥ k0, is said to be asymptotically homogeneous (with respect
to d) if there exists a row-stochastic vector d ∈ Pn such that limk→∞ dMk = d.”

Definition 14. [31, pp.92, 149] [10] (Strong Ergodicity) “The forward matrix product
Uk0,k := Mk0Mk0+1 · · ·Mk−1, formed from a sequence of stochastic matrices Mr ∈
Pn×n, r ≥ k0, is said to be strongly ergodic if for each j, l, r we get limr→∞ Uk0,r[j, l] =

v[l]”, where v ∈ Pn is a row-stochastic vector. Here, v is called its unique limit vector
(i.e., limr→∞ Uk0,r = 1>v).

Lemma 6. Given the requirements (R1)-(R4) are satisfied, Mk in Equation (2.9) has
the following properties:

1. row-stochastic;

2. irreducible;

3. all diagonal elements are positive, and all other elements are non-negative;

4. there is a positive lower bound κ such that 0 < κ ≤ min+
j,lMk[j, l] (Note that min+

denotes the minimum of the positive elements);

5. asymptotically homogeneous with respect to Θ.

In addition, Uk0,k in Equation (2.10) has the following properties:

6. irreducible;

7. primitive.

Proof. This lemma can be proved by similarly following the mathematical development
for [10, Theorem 4]. Mk is row-stochastic because Mk · 1> = (I − Wk)Pk · 1> +
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WkSk · 1> = (I − Wk) · 1> + Wk · 1> = 1>. Pk is irreducible and ωk[j] is always
less than 1, thus Mk is also irreducible (i.e., Mk[j, l] > 0 if Pk[j, l] > 0). The property
3 is true because diag(I − Wk) > 0, Wk ≥ 0, and Pk is also a non-negative matrix
such that its diagonal elements are positive. The property 4 is implied by either the
property 2 or 3. From the definition of Wk (i.e., Equation (4.19)), it follows that
limk→∞Wk = 0 because of exp(−λk), and thereby limk→∞Mk = limk→∞ Pk. Hence,
limk→∞ΘMk = limk→∞ΘPk = Θ, and the property 5 is valid.

Let us now turn to Uk0,k. If Mr[j, l] > 0 for some r ∈ {k0, ..., k − 1} and j, l ∈
{1, ..., nb}, then the corresponding element Uk0,k[j, l] > 0 [10, Theorem 4]. Thus, due to
the property 2, Uk0,k is irreducible as well. Besides, it follows from [36, Lemma 8.5.4,
p.541] that Uk0,k is primitive: “if a square matrix is irreducible, nonnegative and all its
main diagonal entries are positive, then the matrix is primitive".

Proof for Theorem 1. Theorem 1 can be proved by following similar steps in proving
[10, Theorem 4]. The claim in the thorem is true if limk→∞ xk = xk0 · limk→∞ Uk0,k =

xk0 ·1>Θ = Θ. In order for that, the matrix product Uk0,k should (i) be strongly ergodic
and (ii) have Θ as its unique limit vector, i.e., limk→∞ Uk0,k = 1>Θ. We will show that
the two conditions are valid under the assumption that (R1)-(R4) are satisfied.

From Lemma 6, we found that (a) Uk0,k is primitive (thus, regular); (b) there is a
positive lower bound κ such that 0 < κ ≤ min+

j,lMk[j, l], ∀k; and (c) Mk is asymp-
totically homogeneous. Then, it follows from [31, Theorem 4.15, p.150] that Uk0,k is
strongly ergodic with respect to a certain vector v ∈ Pnb , which fulfils the condition (i).

Let ek ∈ Pnb be the unique stationary distribution vector corresponding to Mk (i.e.,
ekMk = ek). Due to the prior condition (b) and the fact that (d) Mk is irreducible for
∀k ≥ k0, it follows from [31, Theorem 4.12, p.149] that the asymptotical homogeneity
of Mk with respect to Θ (i.e., limk→∞ΘMk = Θ), given by Lemma 6, is equivalent to
both limk→∞ ek = e, where e is a limit vector, and Θ = e. According to [31, Corollary,
p.150], under the prior conditions (b) and (d) and if Uk0,k is strongly ergodic with its
unique limit vector v, then v = e. Hence, it turns out that the unique limit vector
of Uk0,k is v = e = Θ (i.e, limk→∞ Uk0,k = 1>Θ). Thereby, the condition (ii) is also
fulfilled.
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B. Proof for Corollary 3

Proof for Corollary 3. We can prove this by following the proof of [10, Corollary 1].
Suppose that the problem is only subject to (R4) and (2.13), without (R1)-(R3) and
(R5). Then, the off-diagonal elements of an optimal matrix should be their correspond-
ing lower bounds in (2.13) if Ak[j, l] = 1. The diagonal elements of the matrix do
not affect the objective function due to the fact that Ek[j, j] = 0, ∀j. Accordingly,
the matrix Pk that holds (2.15) and (2.16) is also an optimal matrix for the simplified
problem.

Let us now additionally consider (R1)-(R3) and (R5). Since εM , fξ(ξ̄k[j], ξ̄k[l]) and
fE(Ek[j, l]) are upper-bounded by 1 and

∑
∀l 6=j Θ[l] < 1, Pk[j, j] in (2.16) is always

positive for all j, which fulfils (R2). It is also obvious that (R1) is satisfied by Equation
(2.16). From Equation (2.15), it holds that Θ[j]Pk[j, l] = Θ[l]Pk[l, j], complying with
(R3). Since (R1)-(R4) are satisfied, the Markov process is converging to a desired
distribution due to Theorem 1. Noting that fξ(ξ̄k[j], ξ̄k[l]) diminishes as ξ̄k gets close
to 0 (i.e., x̄k → Θ̄), (R5) is also fulfilled by Equations (2.15) and (2.16). Hence, Pk is
the optimal solution for the problem (P1).
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Chapter 3

Anonymous Hedonic Game for Task
Allocation in a Large-Scale Multiple
Agent System

3.1 Introduction

Decision-making frameworks for a robotic swarm should be decentralised (i.e., the de-
sired collective behaviour can be achieved by individual agents relying on local infor-
mation), scalable, predictable (e.g., regarding convergence performance and outcome
quality), and adaptable to dynamic environments (e.g., unexpected elimination or ad-
dition of agents or tasks). The frameworks are also desirable to be robust against
asynchronous environments because, due to the large cardinality of the system and its
decentralisation, it is very challenging for every agent to behave synchronously. Fur-
thermore, it is also preferred to be capable of accommodating different interests of
agents (e.g., different swarms operated by different organisations).

To this end, in addition to the previous chapter, we propose another novel decision-
making framework based on hedonic games [1–3]. The task allocation problem consid-
ered is about, given a set of large number of agents being much larger than the number
of tasks, how to partition the agents into subgroups and assign the subgroups to each
task. It is assumed that each agent can be assigned to at most one task, whereas
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each task may require multiple agents: this case falls into ST-MR (single-task robot
and multi-robot task) category [4, 5]. This chapter models the problem considered as
a coalition-formation game where self-interest agents are willing to form coalitions to
improve their own interests. The objective of this game is to find a Nash stable par-
tition, which is a social agreement where all the agents agree with the current task
assignment. Despite any possible conflicts between the agents, this chapter shows that
if they have social inhibition, then a Nash stable partition can always be determined
within polynomial times in the proposed framework and all the desirable characteris-
tics mentioned above can be achieved. Furthermore, we analyse the lower bound of the
outcome’s suboptimality and show that 50% of suboptimality is at least guaranteed for
a particular case. Various settings of numerical experiments validate that the proposed
framework is scalable, adaptable, and robust even in asynchronous environments.

This chapter is organised as follows. Section 3.2 reviews existing literature on decen-
tralised task allocation schemes for robotic swarms, and introduces a recent finding in
hedonic games that inspires this study. Section 3.3 proposes our decision-making frame-
work, named GRAPE, and analytically proves the existence of and the polynomial-time
convergence to a Nash stable partition. Section 3.4 discusses the proposed framework’s
algorithmic complexity (i.e., scalability), suboptimality, adaptability, and robustness.
Section 3.5 shows that the framework can also address a task allocation problem in
which each task may need a certain number of agents for completion. Numerical sim-
ulations in Section 3.6 confirm that the proposed framework holds all the desirable
characteristics. Finally, concluding remarks are followed in Section 3.7.

3.2 Related Work

3.2.1 Decentralised Coordination of Robotic Swarms

Existing approaches for task allocation problems can be categorised into two branches,
depending on how agents eventually reach a converged outcome: orchestrated and (fully)
self-organised approaches [6]. In the former, additional mechanism such as a negotiation
or voting model is imposed so that some agents can be worse off if a specific condition
is met (e.g., the global utility is better off). Alternatively, in self-organised approaches,
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each agent simply makes a decision without negotiating with the other agents. The
latter generally induce less resource consumption in communication and computation
[7], and hence they are preferable in terms of scalability. On the other hand, the former
usually provide a better quality of solutions with respect to the global utility, and a
certain level of suboptimality could be guaranteed [8–10]. A comparison result between
the two approaches [7] presents that as the available information to agents becomes
local, the latter becomes to outperform the former. In the following, we particularly
review existing literature on self-organised approaches because, for large-scale multiple
agent systems, scalability is at least essential and it is realistic to regard that the agents
only know their local information but instead the global information.

Self-organised approaches can be categorised into top-down approaches and bottom-
up approaches according to which level (i.e., between an ensemble or individuals) is
mainly focused on. Top-down approaches emphasise developing the macroscopic model
for a whole system. For instance, population fractions associated with given tasks are
represented as states, and the dynamics of the population fractions is modelled by
Markov chains [11–15] or differential equations [16–20]. Given a desired fraction dis-
tribution over the tasks, agents can converge to the desired status by following local
decision policies (e.g., the associated rows or columns of the current Markov matrix).
One advantage of using top-down approaches is predictability of average emergent be-
haviour with regard to convergence speed and the quality of a stable outcome (i.e., how
well the agents converge to the desired fraction distribution). However, such prediction,
to the best of our knowledge, can be made mainly numerically. Besides, as top-down
generated control policies regulate agents, it may be difficult to accommodate each
agent’s individual preference. Also, each agent may have to physically move around
according to its local policy during the entire decision-making process, and this fact
may cause unnecessary time and energy costs for the transitioning.

Bottom-up approaches focus on designing each agent’s individual rules (i.e., micro-
scopic models) that eventually lead to a desired emergent behaviour. Possible actions
of a single agent can be modelled as a finite state machine [21], and change of be-
haviours occurs according to a probabilistic threshold model [22]. A threshold model,
which determines the decision boundary between two motions, is adjustable based on
an agent’s past experiences such as the time spent on working a task [6, 23], the suc-
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cess/failure rates [21, 24], and direct communication from a central unit [22]. This
feature can improve system adaptability, and may have the potential to incorporate
each agent’s individual interest if required. However, it has been shown in [24–30] that,
in order to predict or evaluate an emergent performance of a swarm utilising bottom-
up approaches, a macroscopic model for the swarm eventually has to be developed by
abstracting the microscopic models.

3.2.2 Hedonic Games

Hedonic games [1–3] model a conflict situation where self-interest agents are willing
to form coalitions to improve their own interests. Nash stability [3], which is inspired
by Nash equilibria in other game theories, plays a key role since it yields a social
agreement amongst the agents even without having any negotiation between them.
Many researchers have investigated conditions under which a Nash stable partition is
guaranteed to exist and to be determined [3,31–33]. Amongst them, the works in [32,33]
mainly addressed an anonymous hedonic game, in which each agent considers the size
of a coalition to which it belongs instead of the identities of the members. Recently,
Darmann [33] showed that selfish agents who have social inhibition (i.e., preference
towards a coalition with a fewer number of members) could converge to a Nash stable
partition in an anonymous hedonic game. The author also proposed a centralised
recursive algorithm that can find a Nash stable partition within O(n2

a ·nt) of iterations.
Here, na is the number of agents and nt is that of tasks.

3.2.3 Main Contributions

Inspired by the recent breakthrough of [33], we propose a novel decentralised frame-
work that models the task allocation problem considered as an anonymous hedonic
game. The proposed framework is a self-organised approach in that agents make de-
cisions according to its local policies (i.e., individual preferences). Unlike top-down or
bottom-up approaches reviewed in the previous section, which primarily concentrate on
designing agents’ decision-making policies either macroscopically or microscopically, our
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work instead focuses on investigating and exploiting advantages from socially-inhibitive
agents, while simply letting them greedily behave according to their individual prefer-
ences. Explicitly, the main contributions of this chapter are as follows:

1. We show that selfish agents with social inhibition, which we refer to as SPAO
preference (Definition 4), can reach a Nash stable partition within less algorithmic
complexity compared with [33]: O(n2

a) of iterations are required1.

2. We provide a decentralised algorithm, which is executable under a strongly-
connected communication network of agents and even in asynchronous environ-
ments. Depending on the network assumed, the algorithmic complexity may be
additionally increased by O(dG), where dG < na is the graph diameter of the
network.

3. The suboptimality of a Nash stable partition in term of the global utility is anal-
ysed. We firstly present a mathematical formulation to compute the suboptimality
lower bound by using the information of a Nash stable partition and agents’ indi-
vidual utilities. Furthermore, we additionally show that 50 % of the suboptimality
can be at least guaranteed if the social utility for each coalition is defined as a
non-decreasing function with respect to the number of members in the coalition.

4. Our framework can accommodate different agents with different interests as long
as their individual preferences hold SPAO.

5. Through various numerical experiments, it is confirmed that the proposed frame-
work is scalable, fast adaptable to environmental changes, and robust even in a
realistic situation where some agents are temporarily unable to proceed a decision-
making procedure and to communicate with the other agents.

1Note that the definition of iteration is described in Definition 5. This comparison assumes the
fully-connected communication network because the algorithm in [33] is centralised.
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Table 3.1: Nomenclature

Symbol Description

A a set of na agents {a1, a2, ..., ana}

T ∗ a set of nt tasks {t1, t2, ..., tnt}

t0 the void task (i.e., not to work any task)

T a set of tasks, T = T ∗ ∪ {t0}

(tj, pj) a task-coalition pair (i.e. to do task tj with pj participants)

X the set of task-coalition pairs, X = X ∗ ∪ {t0},

where X ∗ = T ∗ × {1, 2, ..., na}

Pi agent ai’s preference relation over X

�i the strong preference of agent ai

∼i the indifferent preference of agent ai

�i the weak preference of agent ai

Π a partition: a disjoint set that partitions the agent set A,

Π = {S1,S2, ...,Snt ,S0}

Sj the task-specific coalition for tj

Π(i) the index of the task to which agent ai is assigned given Π

dG the graph diameter of the agent communication network

Ni The neighbour agent set of agent ai, given a communication
network
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3.3 GRoup Agent Partitioning and placing Event

3.3.1 Problem Formulation

Firstly, we introduce the multi-robot task allocation problem considered in this chapter
and underlying assumptions regarding agents and tasks.

Problem 1. Suppose that there exist a set of na agents A = {a1, a2, ..., ana} and a
set of tasks T = T ∗ ∪ {t0}, where T ∗ = {t1, t2, ..., tnt} is a set of nt tasks and t0 is
the void task (i.e., not to perform any task). Each agent ai has the individual utility
ui : T × |A| → R, which is a function of the task to which the agent is assigned
and the number of its co-working agents (including itself) pj ∈ {1, 2, ..., na} (called
participants). The individual utility for t0 is zero regardless of the participants. Every
task requires multiple agents for its completion because each agent is considered to have
limited individual capabilities. Thus, an agent can be assigned to at most one task.
The objective of this task allocation problem is to find an assignment that maximises
the global utility, i.e., the sum of individual utilities of the entire agents. The problem
described above is defined as follows:

max
{xij}

∑
∀ai∈A

∑
∀tj∈T

ui(tj, pj)xij, (3.1)

where for every tj
pj =

∑
∀ai∈A

xij,

subject to ∑
∀tj∈T

xij ≤ 1 ∀ai ∈ A, (3.2)

xij ∈ {0, 1} ∀ai ∈ A, ∀tj ∈ T . (3.3)

Here, xij is a binary decision variable that represents whether or not task tj is assigned
to agent ai.

This chapter uses the term social utility to indicate the sum of total individual
utilities within any agent group.
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Assumption 1 (Homogeneous agents with limited capabilities). We consider a large-
scale multi-robot system that consists of physically homogeneous agents. This can be
justified because the realisation of a swarm can be in general achieved through mass
production [34]. Hence, each individual utility ui is concerned with not the combinations
of co-working agents, but their cardinality. Despite that, it is worth noting that agents
in this chapter may have different preferences with respect to the given tasks (e.g., for
an agent, a spatially closer task is more preferred, whereas this may not be the case
for another agent). Besides, noting that “mass production favours robots with fewer
and cheaper components, resulting in lower cost but also reduced capabilities [35]", we
also assume that each agent can be only assigned to perform at most a single task.
According to [4], such a robot is called a single-task (ST) robot.

Assumption 2 (Agents’ communication). The communication network of the entire
agents is at least strongly-connected, i.e., there exists a directed communication path
between any two arbitrary agents. Given a network, Ni ⊆ A denotes a set of neighbour
agents for agent ai.

Assumption 3 (Multi-robot-required tasks). Every task is a multi-robot (MR) task,
meaning that the task may require multiple robots [4]. For now, we assume that each
task can be performed even by a single agent although it may take a long time. However,
in Section 3.5, we will also address a particular case in which some of the tasks need at
least a certain number of agents for completion.

Assumption 4 (Agents’ pre-known information). Every agent ai only knows its own
individual utility function ui with regard to every task tj, while not being aware of
those of other agents. Through communication, however, they can notice which agent
currently choses which task, i.e., partition (Definition 2). Note that the agents do not
necessarily have to know the true partition information at all the time. Each agent may
own its locally-known partition information.

3.3.2 Proposed Game-theoretical Approach: GRAPE

Let us transform Problem 1 into an anonymous hedonic game event where every agent
selfishly tends to join a coalition according to its preference.
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Definition 1 (GRAPE ). An instance of GRoup Agent Partitioning and placing Event
(GRAPE) is a tuple (A, T ,P) that consists of (1) A = {a1, a2, ..., ana}, a set of na
agents; (2) T = T ∗ ∪ {t0}, a set of tasks; and (3) P = (P1,P2, ...,Pna), an na-tuple of
preference relations of the agents. For each agent ai, Pi describes its preference relation
over the set of task-coalition pairs X = X ∗ ∪ {t0}, where X ∗ = T ∗ × {1, 2, ..., na}; a
task-coalition pair (tj, pj) is interpreted as “to do task tj with pj participants”. For any
task-coalition pairs x1, x2 ∈ X , x1 �i x2 implies that agent ai strongly prefers x1 to x2,
and x1 ∼i x2 means that the preference regarding x1 and x2 is indifferent. Likewise, �i
indicates the weak preference of agent ai.

Note that agent ai’s preference relation can be derived from its individual utility
ui(tj, pj) in Problem 1. For instance, given that ui(t1, p1) > ui(t2, p2), it can be said
that (t1, p1) �i (t2, p2).

Definition 2 (Partition). Given an instance (A, T ,P) of GRAPE, a partition is defined
as a set Π = {S1,S2, ...,Snt ,S0} that disjointly partitions the agent set A. Here, Sj ⊆ A
is the (task-specific) coalition for executing task tj such that ∪nt

j=0Sj = A and Sj∩Sk = ∅
for ∀j 6= k. S0 is the set of agents who choose the void task t0. Given a partition Π,
Π(i) indicates the index of the task to which agent ai is assigned. For example, SΠ(i) is
the coalition that the agent belongs to.

The objective of GRAPE is to determine a stable partition that all the agents agree
with. In this chapter, we seek for a Nash stable partition, which is defined as follows:

Definition 3 (Nash stable). A partition Π is said to be Nash stable if, for every agent
ai ∈ A, it holds that (tΠ(i), |SΠ(i)|) �i (tj, |Sj ∪ {ai}|), ∀Sj ∈ Π.

In other words, in a Nash stable partition, every agent prefers its current coalition to
joining any of the other coalitions. Thus, every agent does not have any conflict within
this partition, and no agent will not unilaterally deviate from its current decision.

Remark 1 (An advantage of Nash stability: low inter-agent communication). The ra-
tionale for the use of Nash stability amongst various stable solution concepts in hedonic
games [1, 36–38] is that it can reduce communication burden between agents required
to reach a social agreement. In the process of converging to a Nash stable partition,
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an agent does not need to get any permission from the other agents when it is willing
to deviate. This property may not be the case for the other solution concepts. There-
fore, each agent is only required to notify its altered decision without any negotiation
with other agents. This fact can reduce inter-agent communication in the proposed
approach.

3.3.3 SPAO Preference: Social Inhibition

This section introduces the key condition, called SPAO, that enables our proposed
approach to provide all the desirable properties described in Section 3.1, and then
explains its implications.

Definition 4 (SPAO). Given an instance (A, T ,P) of GRAPE, it is said that the
preference relation of agent ai with respect to task tj is SPAO (Single-Peaked-At-One)
if it holds that, for every (tj, pj) ∈ X ∗, (tj, pj1) �i (tj, pj2) for any pj1 , pj2 ∈ {1, ..., na}
such that pj1 < pj2 . Besides, we say that an instance (A, T ,P) of GRAPE is SPAO if
the preference relation of every agent in A with respect to every task in T ∗ is SPAO.

For an example, suppose that Pi is such that

(t1, 1) �i (t1, 2) �i (t1, 3) �i t0 �i (t2, 1) ∼i (t1, 4) �i (t2, 2).

This preference relation indicates that agent ai has (t1, 1) �i (t1, 2) �i (t1, 3) �i (t1, 4)

for task t1, and (t2, 1) �i (t2, 2) for task t2. According to Definition 4, the preference
relation for each of the tasks holds SPAO. For another example, given that

(t1, 1) �i (t1, 2) �i (t1, 3) �i t0 �i (t2, 2) ∼i (t1, 4) �i (t2, 1),

the preference relation regarding task t1 holds SPAO, whereas this is not the case for
task t2 because of (t2, 2) �i (t2, 1). Apart from that, in any of the two examples above,
the agent prefers not to work instead of choosing (t2, 1), (t2, 2), or (t1, 4).

This chapter only considers the case in which every agent has SPAO preference
relations regarding all the given tasks. Such agents prefer to execute a task with smaller
number of collaborators, namely, they have social inhibition.
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Remark 2 (Implications of SPAO). SPAO implies that an agent’s individual utility
should be a monotonically decreasing function with respect to the size of a task-specific
coalition. In practice, SPAO can often emerge. For instance, experimental and simu-
lation results in [39, Figures 3 and 4] show that the total work capacity resulted from
cooperation of multiple robots does not proportionally increase due to interferences of
the robots. In such a non-superadditive environment [40], an agent’s individual utility,
which represents its work efficiency, monotonically drops as the number of collaborators
enlarges even though the social utility is increased. For another example, SPAO also
arises when individual utilities are related with shared-resources. As more agents use
the same resource simultaneously, their individual productivities become diminished
(e.g., traffic affects travel times [41] [42, Example 3]): this situation can be interpreted
by the law of diminishing returns in economics. As the authors in [40] pointed out, a
non-superadditive case is more realistic than a superadditive case: agents in a super-
additive environment always attempt to form the grand coalition whereas those in a
non-superadditive case are willing to reduce unnecessary costs.

Remark 3 (Cooperation of selfish agents with different interests). Selfish agents with
different interests can be accommodated in the proposed framework as long as their
individual preferences hold SPAO. This implies that the framework may be utilised for
a combination of swarm systems from different organisations under the condition that
the multiple systems satisfy SPAO.

3.3.4 Existence of and Convergence to a Nash Stable Partition

To begin with, let us provide a counter example showing that a Nash stable partition
may not be determined if SPAO does not hold. Given an instance (A, T ,P), where
A = {a1, a2}, T = {t1, t2}, and P are as follows:

For a1, {t1, 1} �1 {t2, 1} �1 {t1, 2} �1 {t2, 2} �1 t0,

For a2, {t2, 2} �2 {t1, 1} �2 {t1, 2} �2 {t2, 1} �2 t0.

Here, agent a2, who does not hold SPAO with regard to any of the given tasks, tends
to be together with agent a1. Whereas, agent a1 always try to avoid agent a2 in any
case. Consequently, a Nash stable partition does not occur in this example.
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For now, let us prove that if an instance of GRAPE holds SPAO, there always exists
a Nash stable partition and it can be found within polynomial time.

Definition 5 (Iteration). This chapter uses the term iteration to represent an iterative
stage in which an arbitrary agent compares the set of selectable task-coalition pairs given
an existing partition, and then determines whether or not to join another coalition.

Assumption 5 (Mutual exclusion algorithm). We assume that, at each iteration, a
single agent exclusively makes a decision and updates the current partition Π if nec-
essary. This chapter refers to this agent as the deciding agent at the iteration. Based
on the resultant partition, another deciding agent also performs the same process at
the next iteration, and this process continues until every agent does not deviate from
a specific partition, which is, in fact, a Nash stable partition. To implement this al-
gorithmic process in practice, the agents need a mutual exclusion (or called mutex )
algorithm to choose the deciding agent at each iteration. In this section, for simplicity
of description, we assume that all the agents are fully-connected, by which they some-
how select and know the deciding agent. However, in Section 3.3.5, we will present a
distributed mutex algorithm that enables the proposed approach to be executed under
a strongly-connected communication network even in an asynchronous manner.

Lemma 1. Given an instance (A, T ,P) of GRAPE that is SPAO, suppose that a
new agent ar /∈ A holding SPAO preference relations with regard to every task in T
joins (A, T ,P) in which a Nash stable partition is already established. Then, the new
instance (Ã, T ,P), where Ã = A ∪ {ar}, also (1) satisfies SPAO; (2) contains a Nash
stable partition; and (3) the maximum number iterations required to re-converge to a
Nash stable partition is |Ã|.

Proof. Given a partition Π, for agent ai, the number of additional co-workers tolerable
in its coaltiion is defined as:

∆Π(i) := min
∀Sj∈Π\{SΠ(i)}

max
∆∈Z

{
∆ | (tΠ(i), |SΠ(i)|+ ∆) �i (tj, |Sj ∪ {ai}|)

}
. (3.4)

Due to the SPAO preference relations, this value satisfies the following characteristics:
(a) if Π is Nash stable, for every agent ai, it holds that ∆Π(i) ≥ 0; (b) ∆Π(i) < 0 implies
that agent ai is willing to deviate to another coalition at a next iteration; and (c) for
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the agent ai who deviated at the last iteration and updated the partition as Π′, it holds
that ∆Π′(i) ≥ 0.

From Definition 4, it follows that the new instance (Ã, T ,P) still holds SPAO. Let
Π0 denote a Nash stable partition in the original instance (A, T ,P). When a new agent
ar /∈ A decides to execute one of the tasks in T and creates a new partition Π1, it holds
that ∆Π1(r) ≥ 0, as shown in (c). If there is no existing agent aq ∈ A whose ∆Π1(q) < 0,
then the new partition Π1 is Nash stable.

Suppose that there exists at least an agent aq whose ∆Π1(q) < 0. Then, the agent
must be one of the existing members in the task-specific coalition that agent ar selected
in the last iteration. As agent aq moves to another coalition and creates a new partition
Π2, the previously-deviated agent ar holds ∆Π2(r) ≥ 1. In other words, an agent who
deviates to a coalition and expels one of the existing agents will not deviate again even
if another agent joins the coalition in a next iteration. This implies that at most |Ã| of
iterations are required to hold ∆Π̃(i) ≥ 0 for every agent ai ∈ Ã, where the partition Π̃

is Nash stable.

Lemma 1 is essential not only for the existence of and convergence to a Nash stable
partition but also for fast adaptability to dynamic environments.

Theorem 1 (Existence). If (A, T ,P) is an instance of GRAPE holding SPAO, then a
Nash stable partition always exists.

Proof. This theorem will be proved by induction. Let M(n) be the following math-
ematical statement: for |A| = n, if an instance (A, T ,P) of GRAPE is SPAO, then
there exists a Nash stable partition.

Base case : When n = 1, there is only one agent in an instance. This agent is allowed
to participate in its most preferred coalition, and the resultant partition is Nash stable.
Therefore, M(1) is true.

Induction hypothesis : Assume that M(k) is true for a positive integer k such that
|A| = k.

Induction step : Suppose that a new agent ai /∈ A whose preference relation regard-
ing every task in T is SPAO joins the instance (A, T ,P). This induces a new instance
(Ã, T ,P) where Ã = A ∪ {ai} and |Ã| = k + 1. From Lemma 1, it follows that the
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new instance also satisfies SPAO and has a Nash stable partition Π̃. Consequently,
M(k + 1) is true. By mathematical induction, M(n) is true for all positive integers
n ≥ 1.

Theorem 2 (Convergence). If (A, T ,P) is an instance of GRAPE holding SPAO,
then the number of iterations required to determine a Nash stable partition is at most
|A| · (|A|+ 1)/2.

Proof. Suppose that, given a Nash stable partition in an instance where there exists
only one agent, we add another arbitrary agent and find a Nash stable partition for this
new instance, and repeat the procedure until all the agents in A are included. From
Lemma 1, if a new agent joins an instance in which the current partition is Nash stable,
then the maximum number of iterations required to find a new Nash stable partition is
the number of the existing agents plus one. Therefore, it is trivial that the maximum
number of iterations to find a Nash stable partition of an instance (A, T ,P) is given as

|A|∑
k=1

k = |A| · (|A|+ 1)/2. (3.5)

Note that this polynomial-time convergence still holds even if the agents are ini-
tialised to a random partition. Suppose that we have the following setting: the entire
agents A are firstly not movable from the existing partition, except a set of free agents
A′ ⊆ A; whenever the agents A′ find a Nash stable partition Π′, one arbitrary agent in
ar ∈ A\A′ additionally becomes liberated and deviates from the current coalition SΠ′(r)

to another coalition in Π′. In this setting, from the viewpoint of the agents in A′\SΠ′(r),
the newly liberated agent is considered as the new agent in Lemma 1. Accordingly, we
can still utilise the lemma for the agents in A′ \ SΠ′(r) ∪ {ar}. The agents also can find
a Nash stable partition if one of them moves to SΠ′(r) during the process, because, due
to ar, it became ∆Π′(i) ≥ 1 for every agent ai ∈ SΠ′(r) \ {ar}. In a nutshell, the agents
A′∪{ar} can converge to a Nash stable partition within |A′∪{ar}|, which is equivalent
to Lemma 1. Hence, Theorem 1 and this theorem are also valid for the case when the
initial partition of the agents are randomly given.
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3.3.5 Decentralised Algorithm

In the previous section, it was assumed that only one agent is somehow chosen to
make a decision at each iteration under the fully-connected network. On the contrary,
in this section, we propose a decentralised algorithm, as shown in Algorithm 1, in
which every agent does decision making based its local information and affects its
neighbours simultaneously under a strongly-connected network. Despite that, we show
that Theorems 1 and 2 still hold thanks to our proposed distributed mutex subroutine
shown in Algorithm 2. The details of the decentralised main algorithm are as follows.

Each agent ai has local variables such as Πi, satisfiedi, ri, and si (Line 1–2). Here, Πi

is the agent’s locally-known partition; satisfiedi ∈ {0, 1}na×1 is a binary-variable vector
that indicates whether or not each agent is satisfied with Πi; ri ∈ Z+ is an integer
variable to represent how many times Πi has evolved (i.e., the number of iterations
happened for updating Πi until that moment); and si ∈ [0, 1] is a uniform-random
variable that is generated whenever Πi is newly updated (i.e., a random time stamp).

Given Πi, agent ai examines which coalition is the most preferred amongst others,
assuming that other agents remain at the existing coalitions (Line 5). Then, the agent
joins the newly found coalition if it is strongly preferred than the existing coalition (Line
6). In this case, the agent updates Πi to reflect its new decision, increases ri, and gener-
ates a new random time stamp si (Lines 7–10). In any case, the agent ascertained that
the currently-selected coalition is the most preferred, so the agent becomes satisfied with
Πi (Line 12). Then, agent ai generates and sends a message msgi = {ri, si,Πi, satisfiedi}
to its neighbour agents, and vice versa (Line 14).

As such, every agent locally updates its locally-known partition simultaneously.
Thus, amongst the newly-updated partitions, only one should be regarded as if it were
the partition updated by a deciding agent (defined in Assumption 5) at the previous
iteration. We refer to this partition as the valid partition at the iteration. The dis-
tributed mutex subroutine in Algorithm 2 enables the agents to recognise the valid
partition even under a strongly-connected network and in asynchronous environments.
Before executing this subroutine, each agent ai collects all the messages received from
its neighbour agents ∀ak ∈ Ni (including msgi) as Mi

rcv = {msgi, ∀msgk}. Using this
message set, the agent examines whether or not its own partition Πi is valid (Lines
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Algorithm 1 Decision-making algorithm for each agent ai
// Initialisation

1: satisfiedi ← 0na×1; ri ← 0; si ← 0

2: Πi := the initial partition (e.g., {S0 = A,Sj = ∅ ∀tj ∈ T })
// Decision-making process begins

3: while satisfiedi 6= 1na×1 do
// Make a new decision if necessary

4: if satisfiedi[i] = 0 then
5: (tj∗, |Sj∗|)← arg max∀Sj∈Πi {ui(tj, |Sj ∪ {ai}|)}
6: if (tj∗, |Sj∗|) �i (tΠi(i), |SΠi(i)|) then
7: Join Sj∗ and update Πi

8: ri ← ri + 1

9: si ∈ unif[0, 1]

10: satisfiedi ← 0na×1

11: end if
12: satisfiedi[i] = 1

13: end if
// Broadcast the local information to neighbour agents

14: Broadcast msgi = {ri, si,Πi, satisfiedi} and receive msgk

from its neighbours ∀ak ∈ Ni
// Select the valid partition from all the received messages

15: Collect all the messagesMi
rcv = {msgi,∀msgk}

16: {ri, si,Πi, satisfiedi} := D-Mutex(Mi
rcv)

17: end while
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2–9 in Algorithm 2). If there exists any other partition Πk such that rk > ri, then the
agent considers Πk more valid than Πi and keeps the corresponding information rk, sk,
and satisfiedk. This also happens if rk = ri and sk > si, i.e., Πk and Πi have evolved
the same amount of times, but the former has a higher time stamp, which implies that
they are not the same. After completing this subroutine, depending on satisfiedi[i],
each agent proceeds the decision-making process again (i.e., Line 4–13 in Algorithm
1) and/or just broadcasts the existing locally-known partition to its neighbour agents
(Line 14 in Algorithm 1).

Algorithm 2 Distributed Mutex Subroutine
1: function D-Mutex(Mi

rcv)
2: for each message msgk ∈Mi

rcv do
3: if (rk > ri) or (rk = ri & sk > si) then
4: ri ← rk

5: si ← sk

6: Πi ← Πk

7: satisfiedi ← satisfiedk

8: end if
9: end for
10: return {ri, si,Πi, satisfiedi}
11: end function

In a nutshell, the distributed mutex algorithm makes sure that there is only one valid
partition that dominates (or will finally dominate depending on the communication
network) any other partitions. In other words, multiple partitions locally evolve, but one
of them only eventually survives as long as a strongly-connected agents communication
network is given. From each partition’s viewpoint, it can be regarded as being evolved
by a random sequence of the agents under the fully-connected network. Thus, the
partition becomes Nash stable within the polynomial time as shown in Theorem 2.
In an extreme case, we may encounter multiple Nash stable partitions at the very
last. Nevertheless, according to the mutex algorithm, one of them can be distributedly
selected by the agents. All the features imply that agents using Algorithm 1 can find a
Nash stable partition in a decentralised manner and Theorems 1 and 2 still hold.
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3.4 Analysis

3.4.1 Algorithmic Complexity (Scalability)

Firstly, let us discuss about the running time for the proposed framework to find a Nash
stable partition. This chapter refers to a unit time required for each agent to proceed the
main loop of Algorithm 1 (Line 4-16) as time step. Depending on the communication
network considered, especially if it is not fully-connected, it may be possible that some
of the given agents have to execute this loop to just propagate their locally-known
partition information without affecting ri as Line 8. Because this process also spends a
unit time step, we call it as dummy iteration to distinguish from a (normal) iteration,
which increases ri.

Notice that such dummy iterations happen sequentially at most dG times before a
normal iteration occurs, where dG is the graph diameter of the communication network.
Hence, thanks to Theorem 2, the total required time steps until finding a Nash stable
partition is O(dGn

2
a). For the fully-connected network case, it becomes O(n2

a) because
of dG = 1. Note that this algorithmic complexity is less than that of the centralised
algorithm, i.e., O(n2

a · nt), in [33].

Every agent at each iteration investigates nt + 1 of selectable task-coalition pairs
including t0 given a locally-known valid partition (as shown in Line 5 in Algorithm
1). Therefore, the computational overhead for the agent is O(nt) per any iteration.
With consideration of the total required time steps, the running time of the proposed
approach for an agent can be bounded by O(dGntn

2
a). Note that the running time in

practice can be much less than the bound since Theorem 2 was conservatively analysed,
as described in the following remark.

Remark 4 (The number of required iterations in practice). Algorithm 1 allows the
entire agents in A to be involved in the decision-making process, whereas, in the proof
for Theorem 2, a new agent can be involved after a Nash stable partition of existing
agents is found. Since agents using Algorithm 1 do not need to find every Nash stable
partition for each subset of the agents, unnecessary iterations can be reduced. Hence,
the number of required iterations in practice may become less than that shown in
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Theorem 2, which is also supported by the experimental results in Section 3.6.2.

Let us now discuss about communication overhead for each agent per iteration.
Given a network, agent ai should communicate with |Ni| of its neighbors, and the
size of each message grows with regard to na. Hence, the communication overhead of
the agent is O(|Ni| · na). It could be quadratic if |Ni| increases in proportional to na.
However, this would not happen in practice, for example, with consideration of a spatial
distribution of agents, but instead |Ni| would be saturated.

Remark 5 (Communication overhead vs. Running time). To reduce the communi-
cation overhead, we may impose the maximum number of transactions per iteration,
denoted by nc, on each agent. Even so, Theorems 1 and 2 are still valid as long as the
union of underlying graphs of the communication networks over time intervals becomes
connected. However, in return, the number of dummy iterations may increase, so does
the framework’s running time. In an extreme case such that nc = 1 (i.e., unicast mode),
dummy iterations may happen in a row at most na times. Thus, the total required time
steps until finding a Nash stable partition could be O(n3

a), whereas the communica-
tion overhead is O(na). In short, the running time of the framework can be traded off
against the communication overhead for each agent per iteration.

3.4.2 Suboptimality

This section investigates the suboptimality lower bound (or can be called approximation
ratio) of the proposed framework in terms of the global utility, i.e., the objective function
in Equation (3.1). Given a partition Π, the global utility value can be equivalently
rewritten as

J =
∑
∀ai∈A

ui(tΠ(i), |SΠ(i)|). (3.6)

Note that we can simply derive {xij} for Equation (3.1) from Π for Equation (3.6), and
vice versa. Let JGRAPE and JOPT represent the global utility of a Nash stable partition
obtained by the proposed framework and the optimal value, respectively. This chapter
refers to the fraction of JGRAPE with respect to JOPT as the suboptimality of GRAPE,
denoted by α, i.e.,

α := JGRAPE/JOPT . (3.7)
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The lower bound of the suboptimality can be determined by the following theorem.

Theorem 3 (Suboptimality lower bound: general case). Given a Nash stable partition
Π obtained by the proposed framework, its suboptimality in terms of the global utility is
lower bounded as follows:

α ≥ JGRAPE/(JGRAPE + λ), (3.8)

where
λ ≡

∑
∀Sj∈Π

max
ai∈A,p∈{1,...,na}

{
p ·
[
ui(tj, p)− ui(tj, |Sj ∪ {ai}|)

]}
(3.9)

Proof. Let Π∗ denote the optimal partition for the objective function in Equation (3.6).
Given a Nash stable partition Π, from Definition 3, it holds that ∀ai ∈ A

ui(tΠ(i), |SΠ(i)|) ≥ ui(t
∗
j←i, |Sj ∪ {ai}|), (3.10)

where t∗j←i indicates task tj ∈ T to which agent ai should have joined according to the
optimal partition Π∗; and Sj ∈ Π is the coalition for task tj whose participants follow
the Nash stable partition Π.

The right-hand side of the inequality in Equation (3.10) can be rewritten as

ui(t
∗
j←i, |Sj ∪ {ai}|) = ui(t

∗
j←i, |S∗j |)−

{
ui(t

∗
j←i, |S∗j |)− ui(t∗j←i, |Sj ∪ {ai}|)

}
, (3.11)

where S∗j ∈ Π∗ is the ideal coalition of task t∗j←i that maximises the objective function.

By summing over all the agents, the inequality in Equation (3.10) can be said that∑
∀ai∈A

ui(tΠ(i), |SΠ(i)|) ≥

∑
∀ai∈A

ui(t
∗
j←i, |S∗j |)−

∑
∀ai∈A

{
ui(t

∗
j←i, |S∗j |)− ui(t∗j←i, |Sj ∪ {ai}|)

} (3.12)

The left-hand side of the inequality in Equation (3.12) represents the objective
function value of the Nash stable partition Π, i.e., JGRAPE, and the first term of the
right-hand side is the optimal objective function value, i.e., JOPT . The second term in
the right-hand side can be interpreted as the summation of the utility lost of each agent
caused by the belated decision to its optimal task, provided that the other agents still
follow the Nash stable partition.
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The upper bound of the second term is given by

nt∑
j=1

|S∗j | · max
ai∈S∗j

{
ui(t

∗
j←i, |S∗j |)− ui(t∗j←i, |Sj ∪ {ai}|)

}
. (3.13)

This is at most ∑
∀Sj∈Π

max
ai∈A,p∈{1,...,na}

Lij[p] ≡ λ, (3.14)

where Lij[p] = p ·
[
ui(tj, p) − ui(tj, |Sj ∪ {ai}|)

]
. Note that ui(t0, p) was defined to be

zero regardless of p.

Hence, the inequality in Equation (3.12) can be rewritten as

JGRAPE ≥ JOPT − λ.

Dividing both sides by JGRAPE and rearranging them yield the suboptimality lower
bound of the Nash stable partition, as given by Equation (3.8).

Although Theorem 3 does not provide a fixed-value lower bound, it can be deter-
mined as long as a Nash stable partition and agents’ individual utility functions are
given. Nevertheless, as a special case, if the social utility for any coalition is non-
decreasing (or monotonically increasing) in terms of the number of co-working agents,
then we can obtain a fixed-value lower bound for the suboptimality of a Nash stable
partition.

Theorem 4 (Suboptimality lower bound: a special case). Given an instance (A, T ,P)

of GRAPE, if (i) the social utility for any coalition is non-decreasing with regard to the
number of participants, i.e., for any Sj ⊆ A and al ∈ A \ Sj, it holds that∑

∀ai∈Sj

ui(tj, |Sj|) ≤
∑

∀ai∈Sj∪{al}

ui(tj, |Sj ∪ {al}|),

and (ii) all the individual utilities hold SPAO preference relations, then a Nash stable
partition Π obtained by the proposed framework provides at least 50% of suboptimality
in terms of the global utility.

Proof. Firstly, we introduce some definitions and notations that facilitate to describe
this proof. Given a partition Π of an instance (A, T ,P), the global utility is denoted
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by

V (Π) :=
∑
∀ai∈A

ui(tΠ(i), |SΠ(i)|). (3.15)

We use the operator ⊕ as follows. Given any two partitions ΠA = {SA0 , ...,SAnt
} and

ΠB = {SB0 , ...,SBnt
},

ΠA ⊕ ΠB := {SA0 ∪ SB0 , SA1 ∪ SB1 , ..., SAnt
∪ SBnt

}.

Since ∪nt
j=0SAj = ∪nt

j=0SBj = A, there may exist the same agent ai even in two different
coalitions in ΠA ⊕ ΠB. For instance, suppose that ΠA = {{a1}, {a2}, {a3}} and ΠB =

{∅, {a1, a3}, {a2}}. Then, ΠA ⊕ ΠB = {{a1}, {a1, a2, a3}, {a2, a3}}. We regard such an
agent as two different agents in ΠA ⊕ ΠB. Accordingly, the operation ⊕ may increase
the number of total agents in the resultant partition.

Using the definitions described above, the condition (i) implies that

V (ΠA) ≤ V (ΠA ⊕ ΠB). (3.16)

From now on, we will show that 1
2
V (Π∗) ≤ V (Π̂), where Π∗ = {S∗0 ,S∗1 , ...,S∗nt

} is an
optimal partition and Π̂ = {Ŝ0, Ŝ1, ..., Ŝnt} is a Nash stable partition. By doing so, this
theorem can be proved. From the definition in Equation (3.15), it can be said that

V (Π̂⊕ Π∗) =
∑
∀ai∈A

ui(tΠ̂(i), |ŜΠ̂(i) ∪ S
∗
Π̂(i)
|) +

∑
∀ai∈A−

ui(tΠ∗(i), |ŜΠ∗(i) ∪ S∗Π∗(i)|), (3.17)

where A− is the set of agents whose decisions follow not the Nash stable partition Π̂ but
only the optimal partition Π∗. Due to the condition (ii), the first term of the right-hand
side in Equation (3.17) is no more than∑

∀ai∈A

ui(tΠ̂(i), |ŜΠ̂(i)|) ≡ V (Π̂). (3.18)

Likewise, the second term is also at most∑
∀ai∈A−

ui(tΠ∗(i), |ŜΠ∗(i) ∪ {ai}|). (3.19)
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By the definition of Nash stability (i.e., for every agent ai ∈ A, ui(tΠ̂(i), |ŜΠ̂(i)|) ≥
ui(tj, |Ŝj ∪ {ai}|), ∀Ŝj ∈ Π̂), the above equation is at most∑

∀ai∈A−
ui(tΠ̂(i), |ŜΠ̂(i)|), (3.20)

which is also no more than, because of A− ⊆ A,∑
∀ai∈A

ui(tΠ̂(i), |ŜΠ̂(i)|) ≡ V (Π̂). (3.21)

Accordingly, the left-hand side of Equation (3.17) holds the following inequality:

V (Π̂⊕ Π∗) ≤ 2V (Π̂). (3.22)

Thanks to Equation (3.16), it follows that

V (Π∗) ≤ V (Π̂⊕ Π∗).

Therefore, V (Π∗) ≤ 2V (Π̂), which completes this proof.

3.4.3 Adaptability

Our proposed framework is also expected to be adaptable to dynamic environments
such as unexpected addition or loss of agents or tasks, owing to its fast convergence
to a Nash stable partition. Thanks to Lemma 1, if a new agent additionally joins an
ongoing mission in which an agreed assignment was already determined, the number of
iterations required for converging to a new Nash stable partition is at most the number
of the total agents. Responding to any environmental change, the framework is able to
establish a new agreed task assignment within polynomial time.

3.4.4 Robustness in Asynchronous Environments

In the proposed framework, for every iteration, each agent does not need to wait until
nor ensure that its locally-known information has been propagated to a certain neighbor
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group. Instead, as described in Remark 5, it is enough for the agent to receive the local
information from one of its neighbors, to make a decision, and to send the updated
partition back to some of its neighbors. Temporary disconnection or non-operation of
some agents may cause dummy iterations additionally. However, it does not affect the
existence of, the convergence toward, and the suboptimality of a Nash stable partition
under the proposed framework, which is also supported by Section 3.6.5.

The information-sharing requirement for GRAPE is weaker than Global Informa-
tion Consistency Assumption (GICA) (i.e., global information needs to be consistently
known by the entire agents at each iteration) or Local Information Consistency Assump-
tion (LICA) (i.e., local information needs to be consistently known by a local agent
group at each iteration) [42]. In this thesis, we refer to this requirement as Neighbour
Information Consistency Assumption (NICA) (i.e., an agent’s local information only
needs to be known by one of its neighbour agents at each iteration).

3.5 GRAPE with Minimum Requirements

This section addresses another task allocation problem where each task may require at
least a certain number of agents for its completion. This problem can be defined as
follows.

Problem 2. Given a set of agents A and a set of tasks T , the objective is to find an
assignment {xij} such that

max
{xij}

∑
∀ai∈A

∑
∀tj∈T

ui(tj, pj)xij, (3.23)

where for every tj
pj =

∑
∀ai∈A

xij,

subject to ∑
∀ai∈A

xij ≥ Rj ∀tj ∈ T , (3.24)

∑
∀tj∈T

xij ≤ 1 ∀ai ∈ A, (3.25)
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xij ∈ {0, 1} ∀ai ∈ A, ∀tj ∈ T . (3.26)

Here, Rj ∈ N ∪ {0} is the number of minimum required agents for task tj, and all the
other variables are identically defined as those in Problem 1. It is considered that, for
∀ai ∈ A and ∀tj ∈ T ,

ui(tj, pj) = 0 if pj < Rj, (3.27)

because task tj cannot be completed in this case. Note that any task tj without such
a requirement is regarded to have Rj = 0.

For each task tj having Rj > 0, even if ui(tj, pj) is monotonically decreasing when
pj ≥ Rj, the individual utility can not be simply transformed to a preference relation
holding SPAO because of Equation (3.27). Thus, we need to modify the utility function
to yield alternative values for the case when pj < Rj. We refer to the modified utility
as auxiliary individual utility ũi, which is defined as

ũi(tj, pj) :=

u0
i (tj, pj) if pj ≤ Rj,

ui(tj, pj) otherwise,
(3.28)

where u0
i (tj, pj) is the dummy utility of agent ai with regard to task tj when pj ≤ Rj.

The dummy utility is intentionally used also for the case when pj = Rj. The value of
ũi(tj, Rj) should satisfy the following condition.

Condition 1. For every agent ai ∈ A, its preference relation Pi holds that

(tj, Rj) �i (tk, Rk + 1) ∀tj, tk ∈ T .

This condition enables every agent to prefer a task for which the number of co-working
agents is less than its minimum requirement, over any other tasks whose require-
ments are already fulfilled. Under this condition, if the agent set A is such that
|A| ≥

∑
∀tj∈T Rj and a Nash stable partition is found, then the resultant assignment

satisfies Equation (3.24).

Proposition 1. Given an instance of Problem 2 where ui(tj, pj) ∀i ∀j is a monotoni-
cally decreasing function with regard to ∀pj ≥ Rj, if the dummy utilities u0

i (tj, pj) ∀i ∀j
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in Equation (3.28) are set to satisfy Condition 1 and SPAO for ∀pj ≤ Rj, then all the re-
sultant auxiliary individual utilities ũi(tj, pj) ∀i ∀j ∀pj can be transformed to a na-tuple
of preference relations P that hold Condition 1 as well as SPAO for ∀pj ∈ {1, ..., na}.
In the corresponding instance of GRAPE (A, T ,P), a Nash stable partition can be de-
termined within polynomial times as shown in Theorems 1 and 2 because of SPAO, and
the resultant partition can satisfy Equation (3.24) due to Condition 1.

Let us give an example. Suppose that there exist 100 agents A, and 3 tasks T =

{t1, t2, t3} where only t3 has its minimum requirement R3 = 5; for every agent ai ∈ A,
individual utilities for t1 and t2, i.e., ui(t1, p) and ui(t1, p), are much higher than that for
t3 in ∀p ∈ {1, ..., 100}. We can find a Nash stable partition for this example, as described
in Proposition 1, by setting u0

i (t3, p) := max∀tj{ui(tj, Rj +1)}+β for ∀p ≤ R3,∀ai ∈ A,
where β > 0 is an arbitrary positive constant.

After a Nash stable partition is found, in order to compute the objective function
value in (3.23), the original individual utility function ui should be used instead of the
auxiliary one ũi.

Proposition 2. Given a Nash stable partition Π obtained by implementing Proposition
1, its suboptimality bound α is such that

α ≥ JGRAPE

JGRAPE + λ̃
· JGRAPE
JGRAPE + δ

. (3.29)

Here, δ := J̃GRAPE − JGRAPE, where J̃GRAPE (or JGRAPE) is the objective function
value in (3.23) using ũi (or using ui) given the Nash stable partition. Likewise, λ̃ is
the value in (3.9) using ũi. In addition to this, if every ũi satisfies the conditions for
Theorem 4, then

α ≥ 1

2
· JGRAPE
JGRAPE + δ

. (3.30)

Proof. Since the Nash stable partition Π is obtained by using ũi, it can be said from
Equations (3.7) and (3.8) that

J̃GRAPE

J̃OPT
≥ J̃GRAPE

J̃GRAPE + λ̃
. (3.31)

Due to the fact that ũi(tj, pj) ≥ ui(tj, pj) for ∀i, j, pj, it is clear that J̃GRAPE ≥ JGRAPE

and J̃OPT ≥ JOPT . By letting that δ := J̃GRAPE − JGRAPE, the left term in (3.31) is at
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most (JGRAPE+δ)/JOPT . Besides, the right term in (3.31) is a monotonically-increasing
function with regard to J̃GRAPE, and thus, it is lower bounded by JGRAPE

(JGRAPE+λ̃)
. From

this, Equation (3.31) can be rewritten as Equation (3.29) by multiplying JGRAPE

(JGRAPE+δ)
.

Likewise, for the case when every ũi satisfies the conditions for Theorem 4, it can
be said that J̃GRAPE ≥ 1/2 · J̃OPT , which can be transformed into Equation (3.30) as
shown above.

Notice that if δ = 0 for the Nash stable partition in Proposition 2, then the subop-
timality bounds become equivalent to those in Theorems 3 and 4.

3.6 Simulation and Results

This section validates the performances of the proposed framework with respect to its
scalability, suboptimality, adaptability against dynamic environments, and robustness
in asynchronous environments.

3.6.1 Mission Scenario and Settings

3.6.1.1 Utility functions

Firstly, we introduce the social and individual utilities used in this numerical experi-
ment. We consider that if multiple robots execute a task together as a coalition, then
they are given a certain level of reward for the task. The amount of the reward varies
depending on the number of the co-working agents. The reward is shared with the
agents, and each agent’s individual utility is considered as the shared reward minus the
cost required to personally spend on the task (e.g., fuel consumption for movement).
In this experiment, the equal fair allocation rule [43, 44] is adopted. Under the rule, a
task’s reward is equally shared amongst the members. Therefore, the individual utility
of agent ai executing task tj with coalition Sj is defined as

ui(tj, |Sj|) = r(tj, |Sj|)/|Sj| − ci(tj), (3.32)

where r(tj, |Sj|) is the reward from task tj when it is executed by Sj together, and ci(tj)

is the cost that agent ai needs to pay for the task. Here, we simply set the cost as
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a function of the distance from agent ai to task tj. We set that if ui(tj, |Sj|) is not
positive, agent ai prefers to join S0 over Sj.

This experiment considers two types of tasks. For the first type, a task’s reward
becomes higher as the number of participants gets close to a specific desired number.
We refer to such a task as a peaked-reward task, and its reward can be defined as

r(tj, |Sj|) =
rmax
j · |Sj|
ndj

· e−|Sj |/nd
j+1, (3.33)

where ndj represents the desired number, and rmax
j is the peaked reward in case that ndj

of agents are involved in. Consequently, the individual utility of agent ai with regard
to task tj becomes the following equation:

ui(tj, |Sj|) =
rmax
j

ndj
· e−|Sj |/nd

j+1 − ci(tj). (3.34)

For the second type, a task’s reward becomes higher as more agents are involved, but
the corresponding marginal gain decreases. This type of tasks is said to be (monotone)
submodular-reward, and the reward can be defined as

r(tj, |Sj|) = rmin
j · logεj(|Sj|+ εj − 1), (3.35)

where rmin
j indicates the reward obtained if there is only one agent involved, and εj > 1 is

the design parameter regarding the diminishing marginal gain. The resultant individual
utility becomes as follows:

ui(tj, |Sj|) = rmin
j · logεj(|Sj|+ εj − 1)/|Sj| − ci(tj). (3.36)

Figure 3.1 illustrates examples of the social utilities and individual utilities for the
task types introduced above. For simplification, agents’ costs are ignored in the figure.
We set rmax

j , ndj , rmin
j and εj to be 60, 15, 10, and 2, respectively. Notice that the

individual utilities are monotonically decreasing in both cases, as depicted in Figure
3.1(b). Therefore, given a mission that entails these task types, we can generate an
instance (A, T ,P) of GRAPE that holds SPAO.

3.6.1.2 Parameters generation

In the following sections, we will mainly utilise Monte Carlo simulations. At each run,
nt tasks and na agents are uniform-randomly located in a 1000 m×1000 m arena and a
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Figure 3.1: Examples of utility functions used in the numerical experiment are shown,
depending on the two different task types (i.e., peaked-reward and submodular-reward): (a)
the social utility of a coalition; (b) an agent’s individual utility.

250 m×250 m arena within there, respectively. For a scenario including peaked-reward
tasks, rmax

j is randomly generated from a uniform distribution over [1000, 2000]×na/nt,
and ndj is set to be the rounded value of (rmax

j /
∑
∀tk∈T ∗ rmax

k ) × na. For a scenario in-
cluding submodular-reward tasks, εj is set as 2, and rmin

j is uniform-randomly generated
over [1000, 2000]× 1/ logεj (na/nt + 1).

3.6.1.3 Communication network

Given a set of agents, their communication network is strongly-connected in a way
that only contains a bidirectional minimum spanning tree with consideration of the
agents’ positions. Furthermore, we also consider the fully-connected network in some
experiments in order to examine the influence of the network. The communication
network is randomly generated at each instance, and is assumed to be sustained during
a mission except the robustness test simulations in Section 3.6.5.
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3.6.2 Scalability

To investigate the effectiveness of nt and na upon the scalability of the proposed ap-
proach, we conduct a Monte Carlo simulation with 100 runs for the scenarios introduced
in Section 3.6.1 with a fixed nt = 20 and various na ∈ {80, 160, 240, 320} and for those
with na = 160 and nt ∈ {5, 10, 15, 20}. Figure 3.2 shows the statistical results using
box-and-whisker plots, where the green boxes indicate the results from the scenarios
with the peaked-reward tasks and the magenta boxes are those with the submodular-
reward tasks. The blue and red lines connecting the boxes represent the average value
for each test case (na, nt) under a strongly-connected network and the fully-connected
network, respectively.

The left subfigure in Figure 3.2(a) shows that the ratio of the number of required
(normal) iterations to that of agents linearly increases as more agents are involved.
This implies that the proposed framework has quadratic complexity with regard to the
number of agents (i.e., C1n

2
a), as stated in Theorem 2, but with C1 being much less

than 1
2
, which is the value from the theorem. Even C1 can become even lower (e.g.,

C1 = 5× 10−4 in the experiments) under the fully-connected network. Such a C1 being
smaller than 1

2
may be explained by Remark 4: the algorithmic efficiency of Algorithm

1 can reduce unnecessary iterations that may be induced in the procedure of the proof
for Theorem 2.

On the other hand, the left subfigure in Figure 3.2(b) shows that the number of
required iterations decreases with regard to the number of tasks. This trend may be
caused by the fact that more selectable options provided to the fixed number of agents
can reduce possible conflicts between the agents.

Furthermore, in the two results, the trends regarding either na or nt have higher
slopes under a strongly-connected network than those under the fully-connected net-
work. This is because the former condition is more sensitive to conflicts between agents,
and thus causes additional iterations. For example, agents at the middle nodes of the
network may change their decisions (and thus increase the number of iterations) while
the local partition information of the agent at one end node is being propagated to
agents at the other end nodes. Such unnecessary iterations in the middle might not
have occurred if the agents at all the end nodes were directly connected to each other.
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(a) na ∈ {80, 160, 240, 320} with fixed nt = 20

(b) nt ∈ {5, 10, 15, 20} with fixed na = 160

Figure 3.2: Convergence performance of the proposed framework is shown, depending on
communication networks (i.e., Strongly-connected vs. Fully-connected) and utility function
types (i.e., Peaked-reward vs. Submodular-reward) with different number of agents and tasks:
(Left) the number of (normal) iterations happened relative to that of agents; (Right) the
number of time steps happened (i.e., normal and dummy iterations) relative to that of itera-
tions.
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The right subfigures in Figure 3.2(a) and (b) indicate that approximately 3–4 times
of dummy iterations, compared with the required number of normal iterations, are
additionally needed under a strongly-connected network. Noting that the mean values
of the graph diameter dG for the instances with na ∈ {80, 160, 240, 320} are 36, 58, 75

and 92, respectively, the results show that the amount of dummy iterations happened is
averagely much less than the bound value, which is dG as pointed out in Section 3.4.1.
On the contrary, under the fully-connected network there is no need of such a dummy
iteration, and thus the required number of iterations and that of time steps are the
same.

3.6.3 Suboptimality

This section examines the suboptimality of the proposed framework by using Monte
Carlo simulations with 100 instances. In each instance, there are nt = 3 of tasks and
na = 12 of agents who are strongly-connected. Figure 3.3 presents the true suboptimal-
ity of each instance, which is the ratio of the global utility obtained by the proposed
framework to that by a brute-force search, i.e., JGRAPE/JOPT , and the lower bound
given by Theorem 3. A blue circle and a red cross in the figure indicate the true sub-
optimality and the lower bound, respectively. The results show that the framework
provides near-optimal solutions in almost all cases and the suboptimality of each Nash
stable partition is enclosed by the corresponding lower bound.

The suboptimality may be improved if the agents are let to investigate a larger
search space, for example, possible coalitions caused by co-deviation of multiple agents.
However, this strategy in return may increase communication transactions between the
agents because they have to notice each other’s willingness unless their individual utility
functions are known to each other, which is in contradiction to Assumption 4. Besides,
the computational overhead for each agent per iteration also becomes more expensive
than O(nt), which is the complexity bound for unilateral searching, as shown in Section
3.4.1. Hence, the resultant algorithm’s complexity may hinder its practical applicability
to a large-scale multiple agent system, which is believed to be more critical rather than
global optimality in the domain [45–47].

Figure 3.4 depicts the suboptimality lower bounds for the large-size problems that
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Figure 3.3: True suboptimality of a Nash stable partition obtained by GRAPE for each run
of the Monte Carlo simulation (denoted by a blue circle) and its lower bound provided by
Theorem 3 (denoted by a red cross) under a strongly-connected communication network: (a)
the scenarios with peaked-reward tasks; (b) the scenarios with submodular-reward tasks

(a) (b)

Figure 3.4: The suboptimality lower bound, given by Theorem 3, of a Nash stable partition
obtained by GRAPE, depending on communication networks (i.e., Strongly-connected vs.
Fully-connected) and utility function types (i.e., Peaked-reward vs. Submodular-reward):
(a) fixed nt = 20 with varying na ∈ {80, 160, 240, 320}; (b) fixed na = 160 with varying
nt ∈ {5, 10, 15, 20}
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were previously addressed in Section 3.6.2. It is clearly shown that the agent com-
munication network does not make any effect on the suboptimality lower bound of a
Nash stable partition. Although there is no universal trend of the suboptimality with
regard to na and nt in both utility types, it is suggested that the features of the lower
bound given by Theorem 3 can be influenced by the utility functions considered. In the
experiments, the suboptimality bound averagely remain above than 60–70 %.

3.6.4 Adaptability

This section discusses the adaptability of our proposed framework in response to dy-
namic environments such as unexpected inclusion or loss of agents and tasks. Suppose
that there are 10 tasks and 160 agents in a mission, and a Nash stable partition was al-
ready found as a baseline. During the mission, the number of agents (or tasks) changes;
the range of the change is from losing 50% of the existing agents (or tasks) to addi-
tionally including new ones as much as 50% of them. For each dynamical environment,
a Monte Carlo simulation with 100 instances is performed by randomly including or
excluding a subset of the corresponding number of agents or tasks. Here, we consider
a strongly-connected communication network.

Figure 3.5(a) illustrates that the more agents are involved additionally, the more
iterations are required for converging to a new Nash stable partition. This is because
the inclusion of a new agent may lead to additional iterations at most as much as the
number of the total agents including the new agent (as shown in Lemma 1). On the
contrary, the loss of existing agents does not seem to have any apparent relation with
the number of iterations. A possible explanation is that the exclusion of an existing
agent is favourable to the other agents due to SPAO preferences. This stimulates only a
limited number of agents who are preferred to move to the task-specific coalition where
the excluded agent was. This feature induces fewer additional iterations to reach a new
Nash stable partition, compared with the case of adding a new agent.

Figure 3.5(b) shows that to eliminate existing tasks causes more iterations than
including new tasks. This can be explained by the fact that removing any task releases
the agents performing the task free and it results in extra iterations at least the number
of the freed agents. On the other hand, adding new tasks induces relatively fewer
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(a) Dynamic Agents

(b) Dynamic Tasks

Figure 3.5: The number of additional iterations required for re-converging a Nash stable
partition relative to the number of agents in the case when some agents or tasks are partially
lost of newly involved (Baseline: nt = 10, na = 160, and a Nash stable partition was already
found). Negative values in the x-axis indicate that the corresponding number of existing agents
or tasks are lost. Positive values indicate that the corresponding number of new agents or tasks
are included in an ongoing mission. A strongly-connected communication network is used.
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additional iterations, because only some of the existing agents are attracted to these
tasks.

In summary, as the ratio of the number of agents to that of tasks increases, the
number of additional iterations for convergence towards a new Nash stable partition
also increases. This actually corresponds to the trend described in Section 3.6.2, i.e., the
left subfigures in Figure 3.2(a) and (b). In all the cases of this experiment, the number of
additionally induced iterations still remains at the same order of the number of the given
agents, which implies that the proposed framework provides excellent adaptability.

3.6.5 Robustness in Asynchronous Environments

This section investigates the robustness of the proposed framework in asynchronous
environments. This scenario assumes that a certain fraction of the given agents, which
are randomly chosen at each time step, somehow can not execute Algorithm 1 and
even can not communicate with other normally-working neighbour agents. We refer to
such agents as non-operating agents. Given that nt = 5 and na = 40, the fractions of
the non-operating agents are set as {0, 0.2, 0.4, 0.6, 0.8}. In each case, we conduct 100
instances of Monte Carlo experiments for which the submodular-reward utilities are
used.

Figure 3.6(a) presents that the number of (normal) iterations required for converging
towards a Nash stable partition remains the same level regardless of the fraction of the
non-operating agents. Despite that, the required time steps increase as more agents
become non-operating, as shown in Figure 3.6(b). Note that time steps growth rate
means the ratio of the total required time steps to those for the case when all the agents
operate normally. These findings indicate that, due to communicational discontinuity
caused by the non-operating agents, the framework may take more time to wait for these
agents to operate again and then to disseminate locally-known partition information
over the entire agents. Accordingly, dummy iterations may increase in asynchronous
environments, but the proposed framework is still able to find a Nash stable partition.
Furthermore, the resultant Nash stable partition’s suboptimality lower bound obtained
by Theorem 3 is not affected, as presented in Figure 3.6(c).
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(a) (b) (c)

Figure 3.6: Robustness test in asynchronous environments at scenarios with nt = 10, na =

160, and the submodular-reward tasks: the plot shows the effectiveness of the fraction of
non-operating agents with regard to: (a) the number of iterations happened until convergence
relative to that of agents; (b) the ratio of the time steps happened to those for the normal
case; (c) the suboptimality lower bound by Theorem 3.

3.6.6 Visualisation

We have na = 320 agents and nt = 5 tasks. The initial locations of the given agents are
randomly generated, and the overall formation shape is different in each test scenario
such as being circle, skewed circle, and square (denoted by Scenario #1, #2, and #3,
respectively). The tasks are also randomly located away from the agents. In this
simulation, each agent is able to communicate with its nearby agents within a radius
of 50 m. Here, the submodular-reward tasks are used.

Figure 3.7 shows the visualised task allocation results, where the circles and the
squares indicate the positions of the agents and the tasks, respectively. The lines
between the circles represent the communication networks of the agents. The coloured
agents are assigned to the same coloured task, for example, yellow agents belong to
the team for executing the yellow task. The size of a square indicates the reward of
the corresponding task. The cost for an agent with regard to a task is considered as
a function of the distance from the agent to the task. The allocation results seem to
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(a) Scenario #1 (b) Scenario #2

(c) Scenario #3

Figure 3.7: Visualised task allocation results with different geographic scenarios (nt = 5,
na = 320). Each square and its size represent each task’s position and its reward (or demand),
respectively. The circles and the lines between them indicate the positions of agents and their
communication network, respectively. The colour of each circle implies that the corresponding
agent is assigned to the same coloured task.
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be reasonable with consideration of the task rewards and the costs. The number of
iterations required to find a Nash stable partition is 1355, 1380, and 1295 for Scenario
#1, #2, and #3, respectively. Since the communication networks are more connected
than a strongly-connected one, the number of dummy iterations happened is just 20–
30% of that of the iterations. This value is much lower than the results shown in Figure
3.2 because the networks considered here are more connected than those in Section
3.6.2.

3.7 Conclusion

This chapter proposed a novel game-theoretical framework that addresses a task al-
location problem for a robotic swarm consisting of self-interested agents. We showed
that selfish agents whose individual interests are transformable to SPAO preferences
can converge to a Nash stable partition by using the proposed simple decentralised al-
gorithm, which is executable even in asynchronous environments and under a strongly-
connected communication network. We analytically and experimentally presented that
the proposed framework provides scalability, a certain level of guaranteed suboptimal-
ity, adaptability, robustness, and the potential to accommodate different interests of
agents.

As this framework can be considered as a new sub-branch of self-organised ap-
proaches, one of our ongoing works is to compare it with one of the existing methods.
Defining a fair scenario for both methods is non-trivial and requires careful considera-
tion; otherwise, a resultant unsuitable scenario may provide biased results. Secondly,
another natural progression of this study is to relax anonymity of agents and thus to
consider a combination of the agents’ identities. Experimentally, we have often ob-
served that heterogeneous agents with social inhibition also can converge to a Nash
stable partition. More research would be needed to analyse the quality of a Nash sta-
ble partition obtained by the proposed framework in terms of min max optimisation
because our various experiments showed that the outcome provides individual utilities
to agents in a balanced manner.
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Chapter 4

A Comparative Study of
Game-theoretical and
Markov-chain-based Approaches to
Division of Labour in a Robotic
Swarm

4.1 Introduction

In this chapter, we are particularly interested in understanding the differences between
two frameworks proposed in the previous chapters: the game-theoretical one [1] and the
Markov-chain-based one [2]. We consider a mission scenario where a swarm of robots
(or agents) are supposed to make multiple disjoint teams (or coalitions) responsible for
individual tasks. The game-theoretical framework, called GRAPE (GRoup Agent Par-
titioning and placing Event), models the agents as selfish players who attempt to make
coalitions by unilaterally following their individual preferences regarding co-worker can-
didates. In the Markov-chain-based framework, to which we refer as LICA-MC (Lo-
cal Information Consistency Assumption-based Markov Chain framework), the agents
stochastically behave using a row-stochastic vector of a time-inhomogeneous Markov
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matrix, which is distributedly and adaptively generated based on local information
feedback. In both approaches, each agent chooses its action independently without
negotiating with the other agents, and thus, they can be classified as self-organised
approaches [3]. Since self-organised approaches generally impose less communicational
and computational burdens on agents when compared with other types of frameworks
such as orchestrated ones, which need additional negotiation or voting mechanism to
find a social agreement, they are considered more suitable for coordinating a large
number of agents [4].

However, within this category, GRAPE and LICA-MC still have their own distinct
features that provide different benefits and costs, which will be explored and compared
in this study. For the comparison, we implement the frameworks into a labour division
problem of a robotic swarm [5–7], the objective of which is to make a set of agents
(i.e., workforce) distribute themselves autonomously into a set of tasks in proportion
to the demands (i.e., workload) of the tasks. Primarily, we will focus on the required
convergence time until achieving the desired collective behaviour, because this is mainly
linked to real-time implementability of the frameworks. Furthermore, we discuss other
implicit advantages of the frameworks such as mission suitability, additionally-built-in
decision-making functions, and sensitivity to traffic congestion or robots’ mobility.

This chapter is organised as follows. After briefly introducing the two frameworks
in Section 4.2, we describe in Section 4.3 key components of this study such as the
problem domain, how to implement the frameworks into the domain, and evaluation
metrics. Then, Section 4.4 discusses the comparative benefits and costs of the frame-
works, depending on various environmental factors. Finally, concluding remarks are
followed in Section 4.5.

Definitions and Notations

A = {a1, a2, ..., ana} denotes a set of na agents, and T = {t1, t2, ..., tnt} is a set of nt
tasks. v ∈ Pn is a row-stochastic vector such that v ≥ 0 and v · 1> = 1, where 0 and 1
denote a row vector with each element being zero and that with one, respectively. v[i]

indicates the i-th element of vector v. dxe indicates the ceiling function that maps x
into the least integer that is greater than or equal to x.
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Table 4.1: Nomenclature

Symbol Description

A a set of na agents {a1, a2, ..., ana}

T a set of nt tasks {t1, t2, ..., tnt}

Θ The desired swarm distribution

xk The current swarm distribution at time step k

nk[j] The current number of agents assigned to task tj at time step k

DH Hellinger Distance (i.e., convergence error)

tk? The convergence time until reaching the target value D?
H

C The path network of the tasks

d[j, l] The distance between task tj and tl based on the given path
network

Nk(i) Agent ai’s neighbour agent set given the communication network
at k

v The moving speed of each robot

q The road capacity (i.e., the number of lanes)

tcol The time separation for collision avoidance in a lane

dG The graph diameter of the agent communication network

Πk the partition at time step k that partitions the agent set A,
Πk = {Sk1 ,Sk2 , ...,Sknt

}

Sj the task-specific robotic coalition for tj

Π(i) the index of the task to which agent ai is assigned given Π

uij Agent ai’s individual utility (interest) regarding task tj

Mk The stochastic policy matrix at time step k
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4.2 The Frameworks: GRAPE and LICA-MC

Given a swarm of robots A with a relatively fewer number of tasks T (i.e., na > nt), one
of the decision-making issues in multi-robot cooperation is to properly make disjoint
(robotic) coalitions for the tasks.

GRAPE regards each robot as a self-interested agent in an anonymous hedonic
game [8, 9], where the agent’s interest on each task varies depending on the number of
agents in the task (called participants). In this framework, a partition refers to a set
Π = {S1,S2, ...,Snt} that disjointly partitions the agent set A, where Sj ⊆ A is the
coalition for task tj. Roughly speaking, given the current partition at (algorithmic) time
step k, denoted by Πk, an arbitrary agent unilaterally selects the most preferred task
according to its preference, and updates and broadcasts the new partition information
(i.e., Πk+1) to its neighbour agents. This process continues until when the entire agents
converge towards a social agreement called Nash stable partition, in which every agent
cannot be unilaterally better off so that they do not have any conflict (see footnote1

for the formal description). It is worth noting that the entire agents do not need to
physically move from a task to another task until finding a Nash stable partition, which
is assumed throughout this chapter. In our previous work [1], we found that if each
agent’s interest on each task is decreasing with regard to the number of participants
(we refer to this property as SPAO (Single-Peaked-At-One) [1, Definition 4]), a Nash
stable partition can be always determined in a decentralised manner within polynomial-
time algorithmic complexity, bounded by O(dGn

2
a), even under a strongly-connected

communication network of the agents. Here, dG is the graph diameter of the network.

Alternatively, in a Markov-chain-based approach, the dynamics of a a robotic swarm
is considered as a continuum model governed by a Markov process: xk+1 = xkMk, where
xk ∈ Pnt denotes the current swarm distribution (i.e., population fraction) over the given
nt tasks, and Mk ∈ Pnt×nt is the state transition matrix at time step k. At every time
step k, each agent at task tj computes its local stochastic policy Mk[j, l] for ∀tl ∈ T ,

1 We quantify agent ai’s interest on task tj by individual utility uij ∈ R, which is a function of the
number of participants for the task, pj ∈ {1, 2, ..., nt}. A partition is said to be Nash stable if it holds
for every agent ai ∈ A that uiΠ(i) ≥ uij , ∀tj ∈ T . Here, Π(i) indicates the index of the task in which
agent ai is involved when Π is given.
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where each element represents the probability that the agent will transition to task tl
before the next time step. According to the policy, the agent stochastically moves to
another task (or stay in the current task). The entire agents can averagely converge to a
desired status regardless of any initial condition if the Markov process is designed to be
ergodic (i.e., the powers converge to a rank-one matrix) [10]. Using a time-homogeneous
Markov process causes the trade-off between convergence rate and unnecessary transi-
tions after reaching the desired status [11]. The trade-off was mitigated in the existing
work [7], where a time-inhomogeneous Markov process using global information-based
feedback was proposed in order that a robotic swarm can quickly converge in the initial
phase and gradually settle down as approaching the desired collective state. Using bio-
logical inspiration, our previous work [2] recently proposed LICA-MC and showed that
local information is enough to generate effective feedback as that in [7]2. Moreover,
it was shown in [2] that LICA-MC is more robust against asynchronous environments
(e.g., unexpected communication disconnection between agents) compared with [7].

4.3 Study Formulation

This section describes key settings for this comparison study, such as the mission sce-
nario, evaluation metrics, and how we implement the frameworks.

4.3.1 Mission Scenario: Swarm Distribution Guidance Problem

Labour division in a robotic swarm can be defined by Swarm Distribution Guidance
Problem (SDGP) [5]: a swarm of robots A have to autonomously distribute themselves
into a set of tasks T , satisfying the desired swarm distribution Θ over the tasks. Here,
the desired swarm distribution Θ ∈ Pnt is a row-stochastic vector such that each element

2Technically, our previous work [2] uses a function f(x̄k, Θ̄) as the feedback to adaptively con-
struct Mk, whereas f(xk,Θ) is utilised in [7]. Here, x̄k[j] = nk[j]/

∑
s:C[j,s]=1 nk[s] and Θ̄[j] =

Θ[j]/
∑

s:C[j,s]=1 Θ[s]. Note that nk, Θ, and C will be defined in Section 4.3.1. In a nutshell, agents
at task tj in [7] need to communicate with the entire agents somehow (even in a multi-hop manner)
to obtain xk, meanwhile those in [2] only have to do so for x̄k with other agents in all the neighbour
tasks such that C[j, s] = 1.
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Θ[j] > 0 indicates the desired population fraction (e.g., relative workforce demand) for
task tj ∈ T .

As a performance index, we use Hellinger Distance (denoted by DH), which mea-
sures the similarity between the current status xk and the desired one Θ. This is defined
as

DH(Θ,xk) :=
1√
2

√∑
∀tj∈T

(√
Θ[j]−

√
xk[j]

)2

, (4.1)

where, xk[j] = nk[j]/na, and nk[j] is the current number of agents assigned to (not
necessarily located at) task tj at time step k. For GRAPE, nk[j] is equivalent to |Skj |.
Note that this chapter interchangeably uses the term convergence error to refer to
Hellinger Distance.

For the comparison, we will investigate the actual necessary time tk? (called conver-
gence time in this chapter) for the agents not only to be assigned but also to “physically
converge” towards a distribution such that DH(Θ,xk?) ≤ D?

H , where D?
H is the target

level of convergence error. Here, tk? ∈ R is a function that maps k? of time steps
occurred in an algorithm onto the actual time it took. This function may be different
for different algorithms. Its details will be explained in Section 4.3.2.

Given the tasks’ minimum spanning tree (MST) based on their spatial closeness, we
assume that any two tasks have a direct path between them if their distance is shorter
than the tree’s maximum-length edge. The direct path availabilities over the tasks (or
called the path network) can be represented by the matrix C ∈ {0, 1}nt×nt , in which
C[j, l] = 1 means that tj and tl have the direct path between them. Note that all
its diagonal entries are set to be one, and C is assumed to be symmetric. Since the
path network are at least strongly-connected, agents can somehow move from a task to
another. Let d[j, l] denote the shortest path distance between task tj and tl based on
the path network.

For both frameworks, we equally assume that each agent in task tj can directly
communicate with any agent in tl if C[j, l] = 1. Given the agent communication
network for time step k, we denote by Nk(i) the set of agent ai’s neighbour agents (i.e.,
whom it can directly communicate). A scenario example is depicted in Figure 4.1.

Since this study focuses on the performance comparison in high-level mission plan-
ning and task allocation, we assume that each agent is capable of knowing locations
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Figure 4.1: A mission scenario example with nt = 20 of tasks: (a) the tasks’ positions
(indicated by circles) and their physical connections, i.e., available paths (represented by red
lines); (b) the desired swarm distribution over the tasks

of itself and all the given tasks, and able to do collision avoidance behaviours against
the other agents. It is also assumed that every agent has the mission description in-
formation, such as Θ, D?

H , C, and d, as well as can access to local information of its
neighbour agents in Nk(i).

4.3.2 Evaluation Metrics

A framework’s convergence time tk? in general consists of the time spent by agents on
communication, computation, and physical transition. However, strategical distinctions
of GRAPE and LICA-MC result in different forms of convergence time with regard to
algorithmic time steps. In GRAPE, making an agreed task assignment, which needs
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agents’ recursive computational and communicational behaviours only, precedes the
physical movement to the assigned tasks. On the contrary, agents in LICA-MC com-
pute, communicate, and move to a task at every algorithmic step. Let tGk? and tMk?

denote the convergence time for GRAPE and LICA-MC, respectively, and they can be
defined as follows:

tGk? :=
k?−1∑
k=0

(
∆tGcomm(k) + ∆tGcomp(k)

)
+ ∆tGtrans, (4.2)

tMk? :=
k?−1∑
k=0

(
∆tMcomm(k) + ∆tMcomp(k) + ∆tMtrans(k)

)
, (4.3)

where ∆tGcomm(k) or ∆tMcomm(k) is the time scale for the entire agents to communicate
and collect necessary local information for executing the corresponding algorithm for
time step k; and ∆tGcomp(k) or ∆tMcomp(k) is the time spent to compute local decision
rationales for time step k. For LICA-MC, ∆tMtrans(k) indicates the necessary time for
the agents physically move from one task to one another for time step k. For GRAPE,
∆tGtrans is the total transition time of the entire agents from their initial states to the
final assigned tasks.

The communication time, i.e., ∆tGcomm(k) or ∆tMcomm(k), varies depending on the
current communication network amongst the agents. In GRAPE, the agent network is
consistent during the decision-making process for finding a Nash stable partition. As-
suming synchronisation (i.e., for each time step, every agent waits for all the other agents
to collect necessary local information), we regard that ∆tGcomm(k) = tuc·max∀ai{|NG(i)|},
where tuc is the unit communication time between two agents, and NG(i) is agent ai’s
neighbour agent set in GRAPE. On the contrary, agents’ communication network in
LICA-MC changes as they move around for each time step, and thus ∆tMcomm(k) =

tuc · max∀ai{|NM
k (i)|}. Experimentally, we observed that the time average value of

max∀ai{|NM
k (i)|} in LICA-MC and the value of max∀ai{|NG(i)|} in GRAPE are al-

most the same. Hence, we consider that

∆tcomm := ∆tGcomm(k) ≈ ∆tMcomm(k). (4.4)

Regarding the computation time (i.e., ∆tGcomp(k) and ∆tMcomp(k)), since each agent
in either of the frameworks investigates nt tasks at each time step, we assume that

∆tcomp := ∆tGcomp(k) ≈ ∆tMcomp(k). (4.5)
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For the transition time (i.e., ∆tMtrans(k) and ∆tGtrans), we assume a simple congestion
model as follows. Every agent’s moving speed v is constant, and all the available paths
between the tasks have the same road capacity q (e.g., the number of (one-way) lanes).
Let tcol denote the time separation for collision avoidance between any two consecutively
moving robots in a lane. When a large number of robots (more than q) have to move
through a path, at most q of the robots can begin to pass the path the time interval
tcol after the previous robot group left.

For LICA-MC, let ntransk [j, l] denote the number of transitioning agents from tj to
tl for time step k. Then, the corresponding transition time can be defined as

∆t̄Mtrans[j, l](k) :=
d[j, l]

v
+ tcol ·

(⌈ntransk [j, l]

q

⌉
− 1
)
. (4.6)

Here, the first term d[j, l]/v means the baseline transition time of a robot. The second
term indicates additional required time if the number of moving agents is more than q,
assuming that the robots marginally satisfy the safety separation time tcol. We regard
the entire agents’ transition time for each time step k as

∆tMtrans(k) := max
∀j 6=l
{∆t̄Mtrans[j, l](k)}. (4.7)

On the contrary, in GRAPE, the transition time is not related to algorithmic steps
because all the agents start to move after finding a social agreement. Let d?max :=

max∀ai
{
d
[
Π0(i),Πk?(i)

]}
denote the longest path amongst those every agent ai ∈ A has

to move from its initial status tΠ0(i) to the finally assigned task tΠk? (i). Conservatively,
we regard the transition time ∆tGtrans in Equation (4.2) as the time for all the agents
to traverse the longest path simultaneously:

∆tGtrans :=
d?max
v

+ tcol ·
(⌈na

q

⌉
− 1
)

(4.8)

In summary, Equations (4.2) and (4.3) can be rewritten as

tGk? = (∆tcomm + ∆tcomp) · k? + ∆tGtrans, (4.9)

tMk? = (∆tcomm + ∆tcomp) · k? +
k?−1∑
k=0

∆tMtrans(k), (4.10)
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where ∆tGtrans and ∆tMtrans(k) are from Equations (4.8) and (4.7), respectively. Although
they are not precise models, we believe that it is enough to use them to explore each
framework’s relative benefits in this comparative study.

4.3.3 Implementations

4.3.3.1 GRAPE

For implementation of GRAPE into a decision-making scenario, agents’ individual utili-
ties (please refer to footnote 1 of Section 4.2 for the definition) are the main components
that we need to carefully design in order for the desired collective behaviour to emerge.
In this study, we define agent ai’s individual utility with regard to task tj as

uij := rj/pj − wc · cij, (4.11)

where rj is task tj’s constant reward which will be equally shared by pj of co-workers;
cij is the agent’s individual cost for executing the task; and wc ∈ R+ is the weight factor
for the cost relative to the shared reward. We regard that the agent can be rewarded
as much as it contributes to the task’s work demand. Thus, the task’s reward is set to
be proportional to its demand as follows:

rj := na ·Θ[j]. (4.12)

Since the evaluation metric shown in Section 4.3.2 (i.e., convergence time tk?) is affected
by transitioning time, it is desirable to reduce unnecessary travel distance of agents.
Hence, we set the cost cij in Equation (4.11) as a function of the distance from the
agent’s initial status to task tj:

cij := d[Π0(i), j]/dmax, (4.13)

where dmax := max∀j∀l d[j, l] is the maximum value amongst the distances between any
two tasks.

To examine the effect of the weight factor wc, we conduct 100 runs of Monte-
Carlo simulations with various wc ∈ {100, 10, 1, 0.1, 0.01}. We randomly generate each
instance of SDGP with nt = 20 and na = 400 within a 500 × 500 environment, and
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then investigate how well the resultant Nash stable partition satisfies with the desired
distribution (i.e., convergence error), the number of required algorithmic time steps,
and the total travelling costs of the agents. The statistical results in Figure 4.2 show
that there is a trade-off of convergence error versus the others. As wc increases, the
agents become more reluctant to move to any tasks even if they could be provided a
higher reward than the current one. Consequently, the number of time steps happened,
the number of transitioning agents, and the resultant travelling costs become lower, as
presented in Figure 4.2(b), (c), and (d), respectively. On the contrary, with a lower
value of wc, the agents tend to be more concerned with obtaining the shared rewards
and thus result in lower convergence error, as shown in Figure 4.2(a). A possible reason
why the required number of time steps have declined at wc = 0.01, as shown in Figure
4.2(b), is that the agents became almost indifferent to the travelling costs, which makes
their individual preferences simpler and reduces the algorithmic iterations occurred.
For the rest of this chapter, we will use wc = 0.1 since it yields reasonable performances
in terms of convergence error, iterations, and travelling costs.

4.3.3.2 LICA-MC

We use one of the implementation examples in our previous work [2, Section VI-A],
which is designed to address SDGP with minimising travelling costs. The followings
are its essential definitions, so please refer to the paper for more details.

The stochastic policy for each agent in task tj to move towards task tl is such that

Mk[j, l] := (1− ωk[j])Pk[j, l] + ωk[j]Sk[j, l]. (4.14)

The primary policy matrix Pk is defined by, for its off-diagonal elements (i.e., ∀l 6= j),

Pk[j, l] :=

εΘΘ[l] max(ξ̄k[j], ξ̄k[l])(1− d[j,l]
dmax+εE

) if C[j, l] = 1

0 otherwise,
(4.15)

and for its diagonal elements,

Pk[j, j] := 1−
∑
∀l 6=j

Pk[j, l], (4.16)

125



Chapter 4. A Comparative Study of Game-theoretical and Markov-chain-based Approaches
to Division of Labour in a Robotic Swarm

100 10 1 0.1 0.01

0

0.02

0.04

0.06

0.08

0.1

C
o

n
v
e

rg
e

n
c
e

 E
rr

o
r

(a) Convergence error

100 10 1 0.1 0.01

0

0.05

0.1

0.15

0.2

0.25

0.3

#
 R

e
q

u
ir
e

d
 I

te
ra

ti
o

n
s
 /

 #
 A

g
e

n
ts

(b) # Required time steps

100 10 1 0.1 0.01

 0%

 5%

10%

15%

F
ra

c
ti
o

n
 o

f 
T

ra
n

s
it
io

n
in

g
 A

g
e

n
ts

(c) Fraction of transitioning agents

100 10 1 0.1 0.01

0

1

2

3

4

T
ra

v
e

l 
c
o

s
t

10
4

(d) Total travel cost

Figure 4.2: Effectiveness of the weight factor wc in GRAPE
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where εΘ is the factor to enhance convergence rate [2, Remark 4]

εΘ := min{ 1∑
∀s 6=j:C[j,s]=1 Θ[s]

,
1∑

∀s 6=l:C[l,s]=1 Θ[s]
}; (4.17)

ξ̄k[j] is the local feedback gain

ξ̄k[j] :=
(
κ · |Θ̄[j]− x̄k[j]|

Θ̄[j]

)α (4.18)

being saturated to [εξ, 1] if the value lies outside this range; and εE, κ, α, and εξ are
design parameters. Note that Θ̄ and x̄k are defined in footnote 2 of Section 4.2. The
secondary policy matrix Sk is set to be the nt × nt identity matrix. The weight factor
between Pk[j, l] and Sk[j, l] is determined by ωk[j] ∈ [0, 1), which is defined as

ωk[j] := exp(−λk) · exp(β(Θ̄[j]− x̄k[j]))

exp(β|Θ̄[j]− x̄k[j]|)
, (4.19)

where λ and β are design parameters. For this study, all the design parameters are
set as follows: εE = 0.1 for (4.15); κ = 0.1, α = 0.65, and εξ = 10−9 for (4.18); and
λ = 10−6 and β = 1.8× 105 for (4.19).

4.4 Comparative Results and Discussion

4.4.1 Numerical Experiments

This section examines the effect of the number of agents on each framework’s perfor-
mances. We randomly generate 100 scenarios of SDGP with nt = 20 of tasks in a
500× 500 environment. For each scenario, we implement GRAPE and LICA-MC with
na ∈ {200, 400, 800, 1600, 3200} of agents. The initial and desired swarm distributions,
which are also randomly generated, remain consistent across the same scenario regard-
less of different na. Note that we will also include the LICA-MC results with infinite
agents. Such results can be simply obtained by assuming that the agents exactly follow
the Markov process due to the law of large numbers.

Figure 4.3(a) shows the comparative result for a particular scenario of the experi-
ments. The dotted lines indicate the converging behaviours of agents in GRAPE, while
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Figure 4.3: Performance Comparison between GRAPE and LICA-MC: (a) the converging
behaviours of agents (for a specific scenario); (b) the number of time steps for scenarios with
various na to those with na = ∞ in LICA-MC; (c) the convergence time (i.e., tk?); and (d)
the total travelling distance of agents until achieving D?

H = 0.03.
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the solid lines are those in LICA-MC. It is presented that even though na increases in
LICA-MC, the collective behaviours almost remain unchanged. Precisely, they become
close to the result of the case of na = ∞. This is also confirmed by Figure 4.3(b)
showing that the difference of the required time steps for the case with a certain na

from those for infinite agents becomes smaller as na grows. Moreover, Figure 4.3(a)
indicates that the residual error becomes lower with a larger number of agents, as
pointed out in [7, Theorem 6]. On the contrary, GRAPE needs more iterations as na
increases. Namely, LICA-MC is completely scalable with regard to na, while GRAPE
has polynomial-time complexity.

Using the convergence time models in Equations (4.9) and (4.10), we evaluate the
transition time tk? of each framework to reach the convergence error level D?

H = 0.03.
It is assumed that ∆tcomm = 0.1 sec and ∆tcomp = 0.01 sec. The robot speed v is set
as the communication range per second, which implies that, for the equal distance, the
order of transition time is approximately ten-times of that for communication. It is set
that the road capacity is q = na ·0.01 (i.e., 1% of the entire agents can begin to move at
the same time), and the time separation is tcol = 1 sec. The results are shown in Figure
4.3(c). As expected, the running time of GRAPE with regard to na is higher than that
of LICA-MC. In this experiment, LICA-MC averagely gives better performance when
na is greater than around 1500. Unlike the results in Figure 4.3(a), the convergence
time resulted from LICA-MC gradually increases. This is because the transition time
∆tMtrans(k) takes more time as na increases given the same road capacity.

On the other hand, despite such randomly-generated scenarios, GRAPE gives sim-
ilar converging performance within the same number of agents. Meanwhile, LICA-MC
yields wide range of results, being affected by the randomness of the path network and
the initial/desired swarm distributions.

Figure 4.3(d) indicates that GRAPE causes less travelling distances of agents than
LICA-MC since, as described in Section 4.3.2, the agents in LICA-MC have to move
around during the decision-making process.

Since some of the values set above might have different levels in reality, we conduct
sensitivity analysis to explore the effects of the parameters such as the road capacity
q, the time separation tcol, and the robot speed v. Figures 4.4(a) and (b) show that
the road capacity and the time separation have an influence on GRAPE, but not on
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Figure 4.4: Sensitivity analysis for the parameters such as q, tcol, and v.
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LICA-MC. It stems from the fact that all the agents under GRAPE have to move
to the assigned tasks simultaneously after determining a social agreement. This makes
GRAPE sensitive to traffic congestion. Hence, reducing q or increasing tcol causes higher
convergence time in GRAPE. For LICA-MC, on the contrary, the figures imply that
travelling agents per time step are well managed so that such severe traffic conditions
do not affect the framework.

Figure 4.4(c) presents that LICA-MC is easily affected by the robot speed: as the
robot speed reduces, LICA-MC needs more convergence time. This is because the
reduced speed directly influences the transition time per algorithmic step ∆tMtrans(k),
and this effect is amplified by the number of iterations happened, as shown in Equation
(4.10). However, the parametric change of robot speed v hardly has an impact on
GRAPE. Practically, it is highly possible that the actual robot speed is lower than
that in the setting for Figure 4.3(c). This implies that GRAPE could provide faster
convergence time even for na > 1500 of agents to some extent, depending on the robot
speed.

4.4.2 Additional Discussions

GRAPE and LICA-MC have different strategic attributes. GRAPE is characterised
by making a global agreed plan before action, whereas agents in LICA-MC myopically
generate and follow their local policies without confirming any social agreement. From
this difference, as noticed in Section 4.4.1, LICA-MC has greater scalability but may
have longer transition time as well as unnecessary travelling costs. Thus, using LICA-
MC may require a real-time battery recharging system for a swarm robots such as the
wireless system in [12, 13]. We believe that GRAPE is more suitable for a scenario
where robots do not need to move around during the mission, e.g., the cooperative
jamming mission in [14]. However, continuous movement of agents in LICA-MC might
be more preferred for some cases, for military examples, where the agents have to avoid
attacks or where they are required to deceive foes. If we forcibly use LICA-MC without
such transitioning, then the result would be just the same as that by the simple random
decision-making mechanism (i.e. the roulette rule) in [15], which is neither optimised
in terms of travelling costs nor have fast adaptability to dynamic environments (i.e., for
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compensating partial loss of agents, it needs the entire decision-making process from
the beginning again without exploiting existing information).

Agents in LICA-MC are only able to have absolute preferences over tasks (e.g., if
Θ[j] is the highest value of all, task tj is the most preferred by any agents). Thus, the
preferences should reflect the globally desired status in view of a single operator. Con-
trarily, agents in GRAPE can have different individual preferences (e.g., some agents
prefer task tj but the others more benefit from task tl even though the tasks are iden-
tically distant from them). This feature may provide benefits when different swarms
from different organisations need to be accommodated. It is worth noting that, for the
comparison in the previous section, we deliberately restricted the agents in GRAPE to
having absolute preferences as those in LICA-MC.

The two frameworks have another inherent decision-making function in addition to
that for task allocation. As shown in Section 4.4.1, LICA-MC includes a path planning
function, but which should be separately addressed when GRAPE is utilised. On the
other hand, when using LICA-MC, human operators have to determine what is the
desired collective status in advance, and then provide this information to agents. This
is not necessary for GRAPE because, as long as agents are given information about
tasks, they can find a social agreement based on their individual preferences.

We can say that the two frameworks are operable based on local information, but
technically there exist differences. It is desirable for agents in LICA-MC to collect
information from all the others in their neighbour tasks for each time step. Possible
asynchronisation, for which it is still assumed information collection from those in at
least one neighbour task, may gracefully degrade the framework’s performance (i.e.,
unnecessary travelling costs increase) [2]. Whereas, in GRAPE, each agent’s decision-
making loop can proceed even when the local information from a single neighbour
agent is only available. A deficient communication network of agents may increase the
convergence time but the suboptimality of the outcome almost remains the same [1].

We summarise some remarkable distinctions between GRAPE and LICA-MC into
Table 4.2.
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Table 4.2: Features Comparison between GRAPE and LICA-MC

Game-theoretical (GRAPE) Markov-chain-based (LICA-MC)

A Individual utility Local stochastic policy

B SPAO [1, Definition 4] Ergodicity [2, Definition 13]

C O(n2
a) O(1)

D One of neighbour agents All agents within neighbour tasks

E Make an agreement then act Locally plan then act, and repeat

F Individual preferences Absolute preferences

G Desired status determination Path planning

A: The decision rationale for each agent

B: The condition guaranteeing a desired collective behaviour

C: Scalability with regard to the number of agents

(the required algorithmic time steps for convergence)

D: Other agents required to communicate with, for each time step

(at least a strongly-connected network is assumed)

E: The behavioural sequence of each agent

F: Applicable agent preferences

G: Additional built-in function except for task allocation

133



Chapter 4. A Comparative Study of Game-theoretical and Markov-chain-based Approaches
to Division of Labour in a Robotic Swarm

4.5 Conclusion

In this study, we have compared the pros and cons of the game-theoretical framework,
GRAPE, and the Markov-chain-based framework, LICA-MC. For the comparison, we
implemented both frameworks into a problem of robotic swarm labour division (i.e.,
swarm distribution guidance problem), and then introduced evaluation metric models
in terms of their convergence performances. The numerical experiments showed that
LICA-MC is more scalable, whereas GRAPE yields faster convergence time for a mod-
erate number of agents and causes less total travelling costs. We also presented through
the sensitivity analysis that possible traffic congestion may affect the performance of
GRAPE, which is not the case for LICA-MC owing to its built-in path planning func-
tion. Meanwhile, it was shown that LICA-MC is sensitive to slower robot speed because
of agents’ behavioural sequence in the framework. Moreover, we discussed about the
frameworks’ additional features in terms of strategic advantages depending on missions,
information-sharing requirements, and the ability to accommodate different interests of
agents.

For a future work, we would like to perform a comparative study based on real-robot
experiments.
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Chapter 5

A Game-theoretical Approach to
Heterogeneous Multi-Robot Task
Assignment Problem with Minimum
Workload Requirements

5.1 Introduction

Cooperation of a huge number of small-sized autonomous aerial robots, called UAV
swarms, will play a major role in complex missions that existing operational concepts
using a few large UAVs could not deal with [1]. Even if each robot (or called agent)
is incapable of accomplishing a task alone, their cooperation will lead to successful
outcomes because of the swarm system’s robustness and adaptiveness. The possible
applications include environmental monitoring [2], ad-hoc network relay [3], cooperative
military missions [4], to name a few.

One of the main technical challenges for utilisation of a swarm is collective decision-
making such as multi-robot task assignment (MRTA) problem [5]. Particularly, this
chapter addresses the case where each task can not be fulfilled by a single agent but re-
quires multiple agents to be completed, i.e., the task’s minimum workload requirement
should be met by cooperation of the agents. This case falls into ST-MR (Single-Task-
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executable robot and Multi-Robot-required task) category [5]. Moreover, we take into
account heterogeneous tasks and agents: each task needs a different type of workload
(e.g., task t1 requires sensing ability, whereas task t2 demands transportation capa-
bility); and each agent also, depending on the tasks, has different work capacities (or
efficiencies) and costs. The objective is to find an assignment, in a distributed man-
ner, that satisfies the requirements of all the tasks while minimising the aggregated
cost of assigned agents. We formulate this problem as the minimisation version of the
generalised assignment problem with minimum requirements (MinGAP-MR), which is
defined in Section 5.2.

The (standard) generalised assignment problem (GAP) has been extensively studied
over several decades. A general overview of GAP is available in [6] along with its real-
life applications such as scheduling, transporting, and facility location. One of its
key differences from MinGAP-MR is that GAP has maximum-capacity constraints for
knapsacks instead of minimum requirements. In multi-robot system domain, a single
robot has been typically considered as capable of executing multiple tasks (i.e., MT-
SR (Multi-Task-executable robot and Single-Robot-required task) case [7,8]) within its
work capacity limitation. Hence, some existing studies [9–11] address this type of MRTA
problems by modelling as GAP or its variants, where each robot and task are regarded
as a knapsack with its maximum-available size and an item to insert, respectively.

On the contrary, few works in the literature consider minimum-requirement con-
straints for knapsacks. Even for a single knapsack problem, approximation algorithms
based on greedy heuristics are relatively recently proposed in [12, 13]. For multiple-
knapsack cases, the works in [14,15] study assignment problems of students to lectures
where there is the minimum number of participants required for each lecture to launch.
However, this constraint is only concerned with the cardinality of assigned agents, and
thereby it is not suitable for heterogeneous agents. Although the work in [16] con-
siders such agents along with knapsack’s minimum requirements as well as maximum
limitations, the suggested approximation algorithm does not always provide a feasible
solution (i.e., the resultant assignment often violates the knapsack constraints).

This chapter proposes a game-theoretical approach for MinGAP-MR. As inspired
by coalitional games [17, Chap 7], we regard each robot as a selfish player (i.e., item)
who wants to join a task-specific coalition (i.e., knapsack) that minimises its cost. The
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objective of this game is to find a Nash stable partition, i.e., a set of disjoint coalitions
in which no agent will unilaterally deviate. To avoid possible conflicts between the
players, we adopt a self-learning scheme by which every player gradually penalises its
previously chosen coalition. In this chapter, we prove that the proposed approach always
determines a Nash stable partition, and then investigate its algorithmic complexity and
suboptimality through various experimental results. To the best of our knowledge, this
is the first work that proposes a distributed approach for MinGAP-MR and utilises it
for the MRTA problem considered.

5.2 Problem Formulation

Problem 1 (MinGAP-MR). Suppose that there exist a set of na agentsA = {a1, ..., ana}
and a set of nt tasks T = {t1, ..., tnt}. For each task tj, each agent ai is associated with
different work capacity wij and cost cij. Each task tj has its minimum workload require-
ment Rj to be fulfilled by the aggregated work capacities of multiple agents. Any of
the agents is incapable of executing any task alone (i.e., max∀ai∈Awij < Rj, ∀tj ∈ T ).
Note that Rj, wij and cij are non-negative. The objective is to distribute the agents to
the tasks in a way that satisfies the demands of the tasks while minimising the total
cost of assigned agents:

min
{xij}

na∑
i=1

nt∑
j=1

cijxij (5.1)

s.t.
nt∑
j=1

xij ≤ 1, ∀i = 1, 2, ..., na (C1)

na∑
i=1

wijxij ≥ Rj, ∀j = 1, 2, ..., nt (C2)

xij ∈ {0, 1} ∀i, j (C3)

where xij = 1 if agent ai is assigned to task tj. Constraint (C1) indicates that each
agent can be exclusively allocated to at most one task. (C2) ensures that every task’s
minimum requirement is satisfied. The number of the agents (i.e., na) is assumed
to be sufficiently large so that there are excessive agents who are not needed for the
requirements. Otherwise, there may not exist any feasible solution for the problem.
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Table 5.1: Nomenclature

Symbol Description

A A set of na agents {a1, a2, ..., ana}

T A set of nt tasks {t1, t2, ..., tnt}

t0 the void task (i.e., not to work any task)

wij The work capacity of agent ai with regard to task tj

cij The (original) cost of agent ai to perform task tj

cij+ The learnt cost of agent ai to perform task tj (Eqn. (5.3))

λ The learning rate to affect cij+ (Eqn. (5.3))

Rj The minimum requirement for task tj

Sj The (task-specific) coalition for task tj

Π The (disjoint) partition of A, i.e., {S1,S2, ...,Snt ,S0}

Π(i) The index of the task assigned to agent ai, given Π

eij The expense of agent ai for coalition Sj (Eqn. (5.2))

MinGAP-MR is NP-hard because it is a generalised version of the 0/1 minimisation
knapsack problem (will be shown in Definition 2), which is also the case [12].

Assumption 1 (Agents’ communication). The communication network of the entire
agents is at least strongly-connected. Given a network, Ni denotes a set of neighbour
agents for agent ai.

5.3 The Proposed Game-theoretical Approach

5.3.1 Preliminaries

Given A and T , we define a partition as a set Π = {S1, ...,Snt ,S0} such that Sj ⊆ A,
∀tj ∈ T ∪ {t0} and Sj ∩ Sk = ∅ for j 6= k. Here, t0 is the void task indicating that “not
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to work any task in T ”. Sj is the (task-specific) coalition of agents assigned to task tj.
Π(i) indicates the index of the task to which agent ai is assigned, for example, SΠ(i)

is the coalition where the agent belongs to. Let eij, which will be formally defined in
Section 5.3.2, denote the expense for agent ai to execute task tj with other co-workers
in Sj.

We model the problem considered as a coalitional game where every agent selfishly
seeks to form a coalition that minimises its expense. Note that the expense is not the
costs cij but the virtual currency of the game to coordinate the self-interested agents.
The key idea of our proposed approach is that, given a partition Π, an arbitrary agent
ai investigates the expenses for all possible coalitions (i.e., eij, ∀Sj ∈ Π) and joins the
most preferred one. The agent updates the partition information to reflect its new
decision, and broadcasts to other agents. Another agent executes the same procedure
at the next iteration, and so forth. This iterative process will be terminated if the
partition becomes Nash stable, where no agent can benefit by its unilateral deviation.

Definition 1 (Nash stable partition). A partition Π is said to be Nash stable if it holds
for every agent ai ∈ A that ei,Π(i) ≤ eij, ∀Sj ∈ Π.

In general, the existence of a Nash stable partition is not guaranteed. Our pre-
vious work [18] proposed a decentralised game-theoretical framework (called GRAPE
(GRoup Agent Partitioning and Placing Event)) whereby homogeneous agents with
SPAO (Single-Peaked-At-One) preferences, which can be interpreted as social inhibi-
tion, are able to find a Nash stable partition. Nevertheless, it can not be applied to the
problem considered in this chapter because of the heterogeneity of agents. Convergence
of such diverse agents towards a Nash stable partition will be discussed later.

This study will use an algorithm for the 0/1 minimisation knapsack problem (MinKP,
for short) [12] as its subroutine. MinKP is defined as:

Definition 2 (MinKP). Suppose that there are a knapsack with its minimum require-
ment R and a set of n items Z = {z1, ..., zn}, where each item zi has its value vi and
cost ci. The objective is to pack the knapsack with the items so that the total value
of all inserted items exceeds the minimum requirement while minimising the resultant
total cost:

min
{yi∈{0,1}}

n∑
i=1

ciyi s.t.
n∑
i=1

viyi ≥ R
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where yi = 1 if item zi is inserted in the knapsack. Let MinKP(Z,R,V , C) denote an
algorithm for MinKP, where V = {v1, ..., vn} and C = {c1, ..., cn}. The output of this
algorithm is the set of selected item for the knapsack.

5.3.2 Design of an Agent’s Expense Function

Given the current partition Π, the expense of agent ai’s with regard to each coalition
Sj ∈ Π \ {S0} is defined as follows:

eij :=

cij+ if ai ∈ Ŝj,

∞ otherwise,
(5.2)

where cij+ is the learnt cost of agent ai for task tj (which will be explain later), and Ŝj is
the set of agents eligible to join the coalition for task tj. During decision-making process,
there must happen the case where the existing coalition Sj has already superfluous
agents to comply the minimum requirement Rj so some of them may be redundant.
We set that each agent ai has to ascertain its eligibility for Sj by an algorithm for
MinKP: Ŝj := MinKP(Sj ∪ {ai}, Rj,Wj, Cj)1; if eligible (i.e., ai ∈ Ŝj), then the agent
regards expense eij as learnt cost cij+.

Ŝj may differ depending on the existing coalition Sj. For instance, MinKP selects
agent a1 instead of a2 in some cases, vice versa in the other cases. It was observed that
this fact sometimes prevent the agents from converging to a Nash stable partition.

Such possible divergence can be addressed by utilising learnt costs instead of original
costs. The learnt cost of agent ai with regard to task tj is updated, while the agent is
learning, as:

cij+ ← cij+ + λ · cij (5.3)

where λ > 0 is the learning rate. Initially, cij+ = cij. Whenever agent ai changes
its decision from task tj to another (or possibly the void task), the agent learns that
the previously chosen task is not suitable for itself and penalises the task gradually
by the learning rate as Equation (5.3). This can be called as tabu learning [19]. This

1Please refer to Definition 2. Here, Wj = {wkj | ∀ak ∈ Sj ∪ {ai}} and Cj = {ckj | ∀ak ∈
Sj \ {ai}} ∪ {cij+}.
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iterative decision-making and learning process develops the partition of agents as well
as their learnt costs, by which conflicts between the agents can be resolved and a Nash
stable partition can be determined (the proof is provided in Section 5.4.1). When the
process terminates, the resultant objective function value is calculated as Equation (5.1)
by using original costs cij instead of expenses in Equation (5.2), which are auxiliary
variables only to find a conflict-free assignment.

Note that if every expense for task tj ∈ T is infinity, then the agent chooses the
void task.

5.3.3 Decentralised Algorithm

Our proposed decision-making procedure is presented as Algorithm 1. Given the current
locally-known partition2, denoted by Πi, agent ai investigates every coalition Sj ∈ Πi

and computes the corresponding expense eij according to Equation (5.2) (Lines 5–10).
If the least expense value provides infinity, then the agent set the preferred coalition
index j∗ as zero (Lines 12–13), meaning that it will move to S0. If the preferred coalition
is not the existing one, then the agent updates the learnt cost for the existing coalition,
joins to Sj∗ , amends Πi to reflect its new decision, increases ri (which is the number
of evolutions of the partition), and generates a new random time stamp si (Lines 15–
21). Then, the agent constructs a message msgi := {ri, si,Πi, satisfiedi} and sends it
to other neighbour agents, and vice versa (Line 24). Amongst these multiple partition
information, only one can be distributedly chosen by any agent at last through the
distributed mutex algorithm [18] in Appendix, denoted by D-Mutex (Line 26). The
distributed mutex algorithm enables Algorithm 1 to be executed asynchronously and
distributedly as long as the network of the given agents is at least strongly-connected.
Note that the agent shares only msgi with other agents, keeping the learnt costs locally.

When updating Πi (Line 17), agent ai might be allowed to amend the statuses of
other agents who will be expelled by the agent (i.e., ∀ak ∈ Sj∗ \ Ŝj∗). However, this
setting certainly results in an increase of the corresponding communication transactions
at every iteration. To avoid this, Algorithm 1 is designed such that agent ai only notifies

2As the algorithm is decentralised, the current partition information may be differently known by
different agents. Thus, we let Πi denote the locally-known information of agent ai.
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its decision change to others. Although this might temporarily mislead some agents to
assume that they are still eligible for the existing coalitions, they can eventually notice
their ineligibilities (please refer to Section 5.4.1) if the MinKP algorithm in Line 8 holds
the following condition:

Condition 1. Suppose that Ŝ = MinKP(S, ...). The algorithm holds that Ŝ =

MinKP(Ŝ ∪ S◦, ...), ∀S◦ ⊆ S \ Ŝ.

This chapter utilises the approximation algorithm “MinGreedy” in [12], which holds
this condition.

5.4 Analysis

5.4.1 Convergence to a Nash stable Partition

For simplicity of description, this section assumes that the agents are communicationally
fully-connected and accessible to the shared memory, where the current partition Π is
stored. At each iteration, a single agent exclusively updates the partition information
if necessary.

We first show that it is enough for agent ai in Algorithm 1 to notify only its decision
change to others. Suppose that agent ai decides to join the coalition for task tj and
thereby al must be expelled from the coalition (i.e., al ∈ Sj \ Ŝj). At the next iteration,
in the case that agent al executes MinKP holding Condition 1, the agent realises that
itself is not supposed to be in the existing coalition, and then leaves from there.

In the other case, another arbitrary agent am misconceiving that agent al is still in
Sj executes Algorithm 1, and may also join the coalition for task tj. When agent am
obtains Ŝj = MinKP(Sj ∪{ai}∪ {am}, ...), Ŝj may include al because the combination
of al and am may be preferred than some existing agent (i.e., the agents’ eligibilities
for the coalition may be changed depending on the input agent set). As an extreme
case, suppose that all the other agents consequently join the coalition without expelling
any of all the existing agents in this way, and the lastly joined agent obtains Ŝ?j =

MinKP(A, ...). From the next iteration, agents who are supposed to be expelled (i.e.,
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Algorithm 1 Decision-making of agent ai
// Initialisation

1: satisfiedi ← 0na×1; ri ← 0; si ← 0

2: Πi := the initial partition
// Decision-making process begins

3: while satisfiedi 6= 1na×1 do
Make a new decision if necessary

4: if satisfiedi[i] = 0 then
5: for each coalition Sj ∈ Πi \ {S0} do
6: Wj = {wkj | ∀ak ∈ Sj ∪ {ai}}
7: Cj = {ckj | ∀ak ∈ Sj \ {ai}} ∪ {cij+}
8: Ŝj = MinKP(Sj ∪ {ai}, Rj,Wj, Cj)
9: Compute eij using Eqn. (5.2)
10: end for
11: j∗ = argmin∀jeij; e∗ = min∀jeij;
12: if e∗ =∞ then // No coalition is preferred
13: j∗ := 0

14: end if
15: if j∗ 6= Πi(i) then
16: ci,Πi(i)+ = ci,Πi(i)+ + λ · ci,Πi(i)

17: Join Sj∗ and update Πi

18: ri ← ri + 1

19: si ∈ unif[0, 1]

20: satisfiedi ← 0na×1

21: end if
22: satisfiedi[i] = 1

23: end if
// Broadcast the local information to neighbour agents

24: Broadcast msgi = {ri, si,Πi, satisfiedi} and receive msgk from
its neighbours ∀ak ∈ Ni

// Select the valid partition from all the received messages
25: Collect all the messagesMi

rcv = {msgi,∀msgk}
26: {ri, si,Πi, satisfiedi} := D-Mutex(Mi

rcv)
27: end while
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∀a ∈ A \ Ŝ?j ) eventually notice their ineligibilities for task tj because MinKP holds
Condition 1.

Theorem 1. Given that the communication of the agents is at least strongly-connected,
Algorithm 1 terminates and converges to a Nash stable partition within a finite number
of iterations.

Proof. Assuming the shared memory, we will first show the convergence of the cen-
tralised version algorithm, and then relax it for the decentralised version.

Suppose that the statement of the theorem is false, and there is an agent a∞ who
infinitely changes its decision amongst a set of task T∞ ⊆ T , preventing convergence
to a Nash stable partition. Whenever the agent revises its decision from a task, the
learnt cost for the task is increased by the tabu learning (Line 16). In the case where
T∞ ⊂ T , all the learnt costs for tasks in T∞ finally become more expensive than those
for any tasks in T \ T∞ as the agent travels within T∞. Thus, the agent will eventually
join Sj for any task tj ∈ T \ T∞, which contradicts our supposition.

If T∞ = T , agent a∞ finally cannot select any task in T and then join S0 (Lines
11–13), because the agent rules out itself due to the increased learnt costs and the
expense function in Equation (5.2). This fact also contradicts our supposition, which
proves the convergence of the centralised version algorithm.

Let us now turn to the setting where there is not shared memory and the agents are
strongly-connected. As is shown in Algorithm 1, consider that at each iteration, every
agent locally updates its locally-known partition and broadcasts the updated informa-
tion to its neighbour agents, simultaneously. From the view point of each partition, it
can be seen that the partition information is somehow circulated amongst and updated
by a sequence of the agents as if a centralised mutex algorithm supports this process
based on the fully-connected network and the shared memory. Hence, as we proved
before, each partition finally evolves to be Nash stable, but we have multiple Nash
stable partitions. Thanks to the subroutine D-Mutex, however, only one Nash stable
partition is eventually chosen (such a partition is said to be valid) by the entire agents
in a decentralised and asynchronous manner as long as their communication is at least
strongly-connected [18].

Remark 1. The proof of Theorem 1 implies that the idea of allowing agents to be selfish
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and addressing their possible conflicts by tabu-learning heuristics always guarantees
convergence towards a Nash stable partition, regardless of agents’ different interests
and whether they are homogeneous or heterogeneous. For the rest of this thesis, we
refer to this approach as T-GRAPE (Tabu-learning-based GRAPE).

Since it is assumed that there are sufficient agents for a mission, there must be some
agents in S0. This implies that a Nash stable partition provides a feasible assignment
satisfying all the constraints (C1)–(C3).

5.4.2 Computation & Communication Complexities

The computational complexity of Algorithm 1 for each agent per iteration can be said
to be O(

∑
∀tj∈T f(|Sj|+ 1)), where f(n) is the running time for MinKP when n items

(i.e., agents) are given as inputs. This complexity is lower than just O(f(|A|)) if f(n)

is super-additive (i.e., f(n1 + n2) ≥ f(n1) + f(n2)). This is the case for MinKP

used in this chapter, i.e., O(n ln(n)) [12]. Additionally, in practice, there may be
some redundant agents who belong to S0. This fact also makes the complexity of
the proposed algorithm much less than O(f(|A|)). Overall, it can be conservatively
said that the convergence time of the proposed approach is O(|T | · f(|Smax|) ·C). Here,
Smax = argmax∀τ,∀Sj∈Π\{S0}|Sj| is the maximum-size coalition until convergence except
S0, where τ indicates each iteration happened. C is the number of iterations until
convergence.

The required communicational traffic for an agent at each iteration is O(|A|), as the
agent needs to notify only its status change to at most |A| − 1 of other agents even in
a multi-hop fashion. Thus, the overall communicational complexity is O(|A| · C).

The number of required iterations C may vary depending on the communication
network. This effect will be experimentally investigated in the following section.

5.5 Empirical Validation

This section performs numerical experiments to validate the characteristics of the pro-
posed approach regarding its suboptimality and the number of required iterations until
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converging to a Nash stable partition on a strongly-connected (SC) network or the
fully-connected (FC) network of agents.

For small-sized instances (na = 10, nt = 3), we conduct 100 runs of Monte-Carlo
experiments and investigate the proposed algorithm, compared with the optimal results
obtained by a brute-force algorithm. For each instance, the parameters for agent ai
and task tj are uniform-randomly generated from the following ranges: Rj ∈ [5, 10];
cij ∈ [0.1, 1]; and wij ∈ [nt/na, 0.9] × Rj. Moreover, in order to identify the effect of
the learning rate, it is set as λ ∈ {0.1, 0.25, 0.5, 0.75, 1}. For each instance, a strongly-
connected network is randomly generated.

For the rest of this experiment, we set an initial assignment as follows. Every
agent firstly chooses the task that gives the least expense without consideration of
other agents. Based on this partition, the agent checks its eligibility to stay the most
preferred coalition, and goes to S0 if it is not eligible. The resultant partition from
this process is the initial assignment, and then an arbitrary agent begins to execute
Algorithm 1.

Figure 5.1(a) shows that the mean value of the suboptimality is approximately 95%

and its standard deviation is less than 8%, regardless of the learning rate. In Figure
5.1(b), it is also presented that the number of required iterations until convergence is
irrespective of the learning rate.

We also conduct Monte-Carlo experiments for large-sized instances where (nt, na) ∈
{(5, 50), (5, 100)}. The problem-related parameters are drawn as follows: cij ∈ [cmin, 1];
Rj ∈ [5, 10]; and wij ∈ [nt/na, wmax]×Rj. We also variously set cmin ∈ {0.1, 0.3, 0.5, 0.7,
0.9} and wmax ∈ {nt/na, 0.2, 0.3, 0.5, 0.7, 0.9}. For every combinational case of cmin and
wmax, 100 instances are uniform-randomly generated from the aforementioned ranges.
Here, we set λ to 0.25. We also perform the same experiments under the fully-connected
communication network.

For such large-sized instances, since it is not feasible to obtain the optimal solution
within a reasonable computation time, we instead utilise the Linear-and-Conflict Re-
laxation (LCR) solution to analyse the suboptimality of the proposed approach. The
LCR solution is the outcome when (C1) and (C3) are relaxed. This can be simply de-
termined as follows: fill every knapsack (i.e., task) with all the given items (i.e., agents)
in a greedy manner until (C2) is satisfied no matter which items are already assigned
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Figure 5.1: Parametric analysis regarding the learning rate λ (na = 10, nt = 3) under a
strongly-connected network: (a) the suboptimality (i.e., JOPT /JA, where JOPT is the total
cost by a brute-force algorithm and JA is that by the proposed algorithm); (b) the number of
iterations required for convergence to a Nash stable partition.

to other knapsacks (i.e., conflict-relaxed); and the last inserted item can be included
fractionally (i.e., linear-relaxed). It is obvious that JLCR ≤ JOPT , where JLCR denotes
the objective function value of the LCR solution. From this, the suboptimality of the
proposed algorithm can be conservatively investigated by comparing with JLCR instead
of JOPT , because the true suboptimality (i.e., JOPT/JA) is lower-bounded by JLCR/JA,
which we call the quasi-suboptimality. This approach is inspired from [20], where greedy
algorithms for the 0/1 single knapsack problem are investigated by comparing with the
linear relaxation solution and the optimal solution.

Figures 5.2 and 5.3 show the mean and the worst values regarding the quasi-
suboptimality and the number of required iterations, amongst 100 instances at each
combinational case of wmax and cmin under either the fully-connected network or a
strongly-connected network. Overall, the quasi-suboptimality is at least more than
50% at any of the cases, as shown in the-second-row subfigures. It is presented that
as wmax is decreasing and cmin is increasing, the quasi-suboptimality becomes higher.
One possible explanation is that agents in this setting become almost homogeneous
with having much smaller wij compared with Rj. This tendency makes the problem
trivial so that a near-optimal solution can be found by just assigning arbitrary agents
to any tasks. The-third-row and the-fourth-row subfigures illustrate that the number
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Figure 5.2: Contour plots of the quasi-suboptimality and the number of iterations required
for convergence to a Nash stable partition at every combinational case of wmax and cmin

under either the fully-connected network (FC) or a strongly-connected network (SC). The-
first-row and the-second-row subfigures show the mean and the minimum values of the quasi-
suboptimality, and the-third-row and the-fourth-row subfigures show the average and the
maximum values of the number of required iterations, respectively, amongst 100 uniform-
randomly-generated instances at each case.
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Figure 5.3: Contour plots of the quasi-suboptimality and the number of iterations required
for convergence to a Nash stable partition at every combinational case of wmax and cmin

under either the fully-connected network (FC) or a strongly-connected network (SC). The-
first-row and the-second-row subfigures show the mean and the minimum values of the quasi-
suboptimality, and the-third-row and the-fourth-row subfigures show the average and the
maximum values of the number of required iterations, respectively, amongst 100 uniform-
randomly-generated instances at each case.
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Figure 5.4: Parametric analysis regarding various na (with fixed nt = 10)
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Figure 5.5: Parametric analysis regarding various nt (with fixed na = 100)

of required iterations stays at a similar level of na in the FC test cases, but increases
in the SC test cases.

We further investigate the algorithmic complexity and the quasi-suboptimality with
various na and nt. The results of 100 simulation runs at cmin = 0.9 and wmax = 0.4

are provided in Figure 5.4 and 5.5. In all the test cases, more iterations are required
under SC than FC. This is because agents being less-connected may induce unnecessary
iterations that would not have happened if they were fully-connected [18]. The number
of required iterations moderately increases with respect to na or nt under FC, whereas,
under SC, the algorithmic complexity is shown to be more affected by nt. A possible
explanation is such that as nt/na increases, each agent has more options to choose and
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may have more tabu-learning process, especially under a strongly-connected network.

On the other hand, the quasi-suboptimality (i.e., JLCR/JA) is slightly reduced by
increasing na or nt, but still stays reasonable. This little decrease may be caused by
JLCR, which can be decreased as more agents or tasks are given. Another finding is
that the quasi-suboptimality is hardly affected by communication network, as is the
case in [18].

5.6 Conclusion

This chapter studied the MRTA problem where each task has its minimum workload
requirement to be fulfilled by multiple heterogeneous agents. The objective is to find an
assignment that minimises the total cost of assigned agents while satisfying the tasks’
requirements. We proposed a distributed game-theoretical approach, where each agent
selfishly joins the most favourite coalition, and showed that a Nash stable partition can
always be determined with tabu-learning heuristics. Our experimental results revealed
that the suboptimality of the proposed algorithm is at least more than 50%, and the
number of required iterations until convergence remains the same order of the number
of given agents at various problem settings.

More research is required to analytically evaluate the suboptimality of the proposed
algorithm, especially connecting with the approximation ratio of its subroutine for
MinKP. Furthermore, a natural progression of this work is to study how to exploit
finally-unassigned agents depending on the context of a given mission. It would also
be interesting to address a mixed mission scenario where there are additionally some
robots capable of executing a task alone.

Appendix

For Algorithm 1, we use the distributed mutex algorithm (i.e., Algorithm 2) proposed in
our previous work [18] as a subroutine. The algorithm makes sure that there is only one
(local) partition that dominates (or will finally dominate depending on the communi-
cation network) any other partitions. In other words, multiple partitions locally evolve
and some of them only eventually can survive even under asynchronous behaviours of
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Algorithm 2 Distributed Mutex Subroutine [18]

1: function D-Mutex(Mi
rcv)

2: for each message msgk ∈Mi
rcv do

3: if (ri < rk) or (ri = rk & si < sk) then
4: ri ← rk

5: si ← sk

6: Πi ← Πk

7: satisfiedi ← satisfiedk

8: end if
9: end for
10: return {ri, si,Πi, satisfiedi}
11: end function

agents as long as their communication network is at least strongly-connected. Even if we
may encounter multiple Nash stable partitions at last, one of them can be distributedly
selected by the agents.
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Chapter 6

An Integrated Decision-making
Framework of a Robotic Swarm

6.1 Introduction

A networked system of a large number of aerial robots, called (aerial) robotic swarm
or UAV swarm, has been attracting many researchers’ interest because of its promis-
ing advantages such as its versatility, robustness, and adaptiveness [1–3]. To name a
few, possible applications of UAV swarms include environmental monitoring [4], ad-hoc
network relay [5], disaster management [6], and cooperative military missions [7]. How-
ever, there still exist various technical challenges to realise a robotic swarm into real-life
applications: for example, in view of autonomous decision-making domain, multi-robot
task allocation problem [8–10], and trajectory optimisation including collision avoid-
ance [11,12].

Cooperation is essential for a robotic swarm: robots (or agents) with cheaper com-
ponents can be realised through mass production in lower cost, but each of them even-
tually has limited capability to complete a single task alone [13]. Given multiple tasks
spatially distributed, the robots have to partition themselves into disjoint task-specific
teams (or coalitions). This decision-making issue is referred to as coalition formation
problem [14] or ST-MR multi-robot task allocation problem [8]. Even though the robotic
swarm was identically manufactured, the agents may be heterogeneous in terms of the
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currently-available work resources because, for example, it is probably not possible to
charge every robot’s battery fully before a mission due to the large cardinality. Such
heterogeneity makes the coalition formation problem more complicated. Moreover, the
tasks may have their minimum workload requirements, which have to be cooperatively
fulfilled by the agents’ resources. Having extra resources, in some cases, it is desirable
to equitably distribute them in proportion to the minimum requirements to improve
the system’s fault tolerance.

When implementing a robotic swarm into a mission, we encounter further decision-
making issues on top of the task allocation problem. Each task-specific team of robots
also have to make decisions regarding who to go which (spatial) work position specifi-
cally, called position allocation problem (note that a coalition formation outcome only
can assign a certain sector for working). Besides, the agents’ trajectories towards the as-
signed positions should be optimised, guaranteeing that any collision with other agents
or obstacles will not happen during the mission. What makes the entire problem more
involved is that the trajectories affect the expected working resources of the agents
when they arrive at and execute their assigned tasks. Therefore, such effects should
also be considered in the coalition formation and position allocation problems, and
thereby the combined decision-making problem becomes much more complicated than
either of individual problems.

Over the last few years, some researchers have begun to address problems of si-
multaneously finding robot-task assignments and trajectories. One typical strategy is
to regard such a complex decision-making issue as a single optimisation problem (e.g.,
minimising the sum of distance travelled by all the agents towards their assigned posi-
tions) and solve it either in a centralised [15] or decentralised manner [16]. In particular,
Turpin et al. [16] show that, supposing homogeneous robots, the optimal assignment
minimising velocity-squared trajectories without considering collision avoidance can be
actually collision-free, and that a suboptimal outcome can be obtained in a decentralised
manner. However, one drawback of this work is that a robot’s trajectory is assumed
as a straight line, which may fail to deal with obstacle avoidance. Alternatively, there
have also been decoupling strategies, where tasks are first assigned and then trajecto-
ries are planned [17–19]. This type of approaches is advantageous in the sense that
each subproblem can be substituted as required depending on practical applications
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considered. The existing works [18, 19] utilise for task allocation a stochastic-policy-
based method and an auction-based method, respectively, and exploit an MPC-SCP
(Model Predictive Control and Sequential Convex Programming) algorithm for path
planning [20], which was experimentally shown to be implementable for a multi-robot
system on a real-time basis as well as has the potential to consider obstacle avoidance.
However, all of the existing studies reviewed consider neither heterogeneous robots nor
fair allocation concerning task requirements, which will be addressed in this chapter.

We first formulate all the prescribed decision-making issues of a heterogeneous
robotic swarm as a combined optimisation problem, and then propose an integrated
framework that addresses the problem in a decentralised fashion. Our approach ap-
proximates and decouples the problem into three subproblems, i.e., coalition formation,
position allocation, and path planning, which are sequentially addressed by three dif-
ferent subroutine algorithms. Due to the large cardinality of a robotic swarm system,
directly obtaining robot-to-position assignment can be restrictive regarding computa-
tional complexity. To avoid this hinderance, the proposed approach firstly partitions the
robots into disjoint task-specific coalitions, followed by dealing with the position alloca-
tion subproblem for the robots assigned to the same task. For the coalition formation
subproblem, we propose a game-theoretical method in which each agent unilaterally
selects a task-specific coalition with consideration of fair allocation regarding the given
tasks’ requirements. Then, we show that, given reasonable assumptions, the position
allocation subproblem can be efficiently addressed in terms of computational complex-
ity even using a simple sorting algorithm. For the trajectory optimisation, we utilise
an MPC-SCP algorithm because of its aforementioned advantages (e.g., real-time im-
plementability). As a proof of concept, we implement the framework into a cooperative
stand-in jamming mission scenario using a swarm of micro UAVs and show its feasibility,
fault tolerance, and near-optimality based on numerical experiment.

This chapter is organised as follows. Section 6.2 defines the original complex prob-
lem, which is decoupled into the three subproblems in Section 6.3. Then, Sections 6.4,
6.5, and 6.6 propose the subroutines for the coalition formation, the position allocation,
and the path planning subproblems, respectively. In Section 6.7, we propose the inte-
grated framework consisting of the three subroutines and discuss its properties. Section
6.8 shows the results of numerical experiments using the framework on a UAV swarm’s
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Figure 6.1: A brief illustration of the decision-making issues considered

cooperative stand-in jamming mission.

6.2 Problem Statement: The Original Problem

We have a set of agents A = {a1, a2, ..., ana}, and a set of a fewer number of spatially
distributed tasks T = {t1, t2, ..., tnt}, where nt < na, to be collaboratively executed by
the agents. Each task tj has a set of (spatial) work positions Pj = {pm1 , pm2 , ...}, where
every pm ∈ Rnd×1 is an nd-dimensional Euclidean-space position vector at which an
agent can execute the task. Each work position is only associated with a single task,
i.e., Pj1 ∩ Pj2 = ∅ for ∀j1 6= j2. Without loss of generality, let P1 = {p1, ..., p|P1|},
P2 = {p|P1|+1, ..., p|P1|+|P2|},..., Pnt = {p|Pnt−1|+1, ..., p|Pnt−1|+|Pnt |}. We denote the set
of the entire work positions by P := ∪∀tj∈T Pj. Furthermore, we have a set of (static)
obstacles O = {o1, o2, ..., ono} the agents have to avoid during the mission, where each
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Table 6.1: Nomenclature

Symbol Description

T A set of nt tasks {t1, t2, ..., tnt}

A A set of na agents {a1, a2, ..., ana}

Sj The task-specific coalition of agents for task tj

Π The set of coalitions Π = {S1,S2, ...,Snt ,S0}

O A set of no obstacles {o1, o2, ..., ono}

Pj A set of working positions {pm1 , pm2 , ...} where agents can exe-
cute task tj

P The set of the entire working positions i.e., P := ∪∀tj∈T Pj

wim Agent ai’s (expected) work resource at position pm

cim The cost if agent ai works at position pm

w̄ij Agent ai’s abstracted (expected) work resource for task tj (re-
gardless of working positions in Pj)

c̄ij The abstracted cost of agent ai for task tj (regardless of working
positions in Pj)

wi,0 Agent ai’s initial work resource

pj,0 task tj’s central position

Rj The minimum requirement for task tj to be completed

αj RSI (Requirement Satisfaction Index) for task tj (Eqn. (6.3))

xi The position and velocity vector of agent ai

Ni The neighbour agent set of agent ai, given a communication
network
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oq ∈ Rnd×1 indicates the central position vector of the q-th obstacle.

Each agent ai has its (expected available) work resource (or work capacity) wim,
which varies depending on work position pm ∈ P . For example, given the agent’s initial
work resource (denoted by wi,0), the cost to transition to work position pm (denoted by
cim) may result in a different level of expected work capacity at last. This is also the case
if the work position affects the agent’s work efficiency (e.g., in the cooperative jamming
mission [7], a position closer to a target radar provides higher jamming effectiveness).
Considering this, work capacity wim can be defined as

wim := ηm(wi,0 − cim), (6.1)

where ηm ∈ [0, 1] is the work efficiency ratio associated with position pm.

For each task tj to be completed, its minimum (workload) requirement Rj should
be met by its (task-specific) coalition, denoted by Sj ⊆ A (note that Sj1 ∩ Sj2 = ∅
if j1 6= j2). We regard that the task is completed if the aggregated work capacities
of the coalition exceed the minimum requirement. Having extra agents besides those
for marginally satisfying all the tasks’ minimum requirements, it would be desirable to
equitably distribute them as proportional to the requirements as possible to improve
the system robustness.

Furthermore, there is a particular final time tf by when all the agents should reach
appropriate work positions without any collisions. Such a deadline may be an important
factor for success in urgent missions, for instance, those in military applications or those
in the search and rescue domain.

In such a prescribed mission environment, the robotic swarm’s main decision-making
issues may include:

1. To form task-specific coalitions and choose work positions in a way that (a) satis-
fies every task’s minimum requirement at least and (b) equitably distributes the
agents’ work capacities in proportional to the tasks’ requirements as possible;

2. To maximise the agents’ work capacities by reducing travelling costs as well as
exploiting positions with higher work efficiency; and

3. To generate shortest trajectories towards the selected positions, while avoiding
any collisions with other agents or obstacles.
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This problem as a whole is briefly illustrated in Figure 6.1 and can be formally defined
as follows:

Problem 1 (Original problem).

max
{yim}

(
min
∀tj∈T

αj
)
, (6.2)

where

αj :=

∑
∀ai∈Sj

∑
∀pm∈Pj

wimyim

Rj

, (6.3)

subject to
αj ≥ 1, ∀tj ∈ T , (6.4)

∑
∀pm∈P

yim ≤ 1, ∀ai ∈ A, (6.5)

yim ∈ {0, 1}, ∀ai ∈ A,∀pm ∈ P . (6.6)

Here, αj is the requirement satisfaction index (RSI) for task tj, which should be equal
to or greater than one to comply with the task’s requirement (i.e., Equation (6.4)). yim
is a binary variable that is one if agent ai is assigned to position pm or zero otherwise.
Equation (6.5) indicates that, because every agent has limited work resource, it can
not execute more than two tasks in a mission and thus can be assigned to one working
position at most. For fair allocation, the objective of this problem is to find an assign-
ment set {yim} maximising the minimum value of αj. Work capacity wim is defined by
Equation (6.1), where cim is set by agent ai’s cost-to-go function f ic(dim), which is an
increasing function with regard to the corresponding travelling distance dim, i.e.,

cim := f ic(dim). (6.7)

The agent regards dim as the length of the shortest collision-free trajectory towards
position pm as follows:

dim := min
ui

∫ tf

t0

||Gẋi(t)|| dt, (6.8)

subject to
ẋi(t) = f(xi(t)) +Bui(t), ∀t ∈ [t0, tf ], (6.9)
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xi(t0) = xi,0, (6.10)

xi(tf ) = [pm;0nd×1], (6.11)

||G(xi(t)− xl(t))|| ≥ rcol, ∀t ∈ [t0, tf ],∀al ∈ A \ {ai}, (6.12)

||Gxi(t)− oq|| ≥ robs,q, ∀t ∈ [t0, tf ],∀oq ∈ O, (6.13)

||ui(t)|| ≤ Umax, ∀t ∈ [t0, tf ], (6.14)

||Hxi(t)|| ≤ Vmax, ∀t ∈ [t0, tf ], (6.15)

where xi(t) = [pi(t); ṗi(t)]; pi(t) ∈ Rnd×1 and ui(t) ∈ Rnd×1 are the agent’s position
vector and control vector at time t, respectively; f(.) represents its motion dynamics;
and xi,0 is the given initial state at the initial time t0. Here, G = [Ind×nd

0nd×nd
],

H = [0nd×nd
Ind×nd

], B = [0nd×nd
Ind×nd

]>. Each agent needs to keep the collision-
avoidance distance rcol from other agents and robs,q from obstacle oq while moving to the
assigned position (i.e., Equations (6.12)–(6.13)). Moreover, the collision-free trajectory
should be feasible in terms of the agent’s dynamics and physical constraints such as
its available maximum control power Umax and velocity Vmax (i.e., Equations (6.14)–
(6.15)).

Assumption 1 (The number of agents). Given an instance of Problem 1, the number
of the agents na is large enough such that there is at least a feasible agent-position
assignment that satisfies every task’s minimum workload requirement, i.e., αj ≥ 1 for
∀tj ∈ T . Otherwise, there is no solution for the instance.

Assumption 2 (Obstacle modelling). Each obstacle is enclosed with a circle (or sphere)
with a radius of rops. Note that a complex-shaped obstacle can be addressed by intro-
ducing multiple circle-shaped obstacle avoidance areas.

Assumption 3 (Robot capability). Each robot can know its position and follow the
trajectory obtained from the proposed framework. The robot is also capable of hovering
such as quadrotors.
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Path following & Situational Awareness  

Coalition Formation Position Allocation Path Planning 

Figure 6.2: The proposed framework consists of three phases: coalition formation (Problem
2), position allocation (Problem 3), and path planning (Problem 4).

6.3 Decoupling to subproblems: coalition formation,

position allocation, and path planning

Our idea is to split the original problem into three subproblems, i.e., coalition forma-
tion, position allocation, and path planning problems, and to make the agents address
the subproblems sequentially and repeatedly along with a finite time-horizon, as illus-
trated in Figure 6.2, in a decentralised manner. In the first phase, the agents partition
themselves into disjoint task-specific coalitions. Once an agreed set of coalitions {Sj}
are determined, every agent in Sj selects a working position amongst all the available
positions for task tj, i.e., pm ∈ Pj. After that, all the agents generate and follow
collision-free trajectories towards the selected working positions. The entire process is
executed again before reaching the end of the time-horizon. In this section, we will
show how the original problem can be decoupled into the three subproblems.

6.3.1 Coalition formation problem

Firstly, we introduce a decision variable xij ∈ {0, 1}, which equals to one if agent ai
joins coalition Sj and zero otherwise. It is implied from xij = 1 that the agent will be
allocated to one of the positions for the task (i.e., ∀pm ∈ Pj). From this, it turns out
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that
∑
∀pm∈Pj

yim = 1. Accordingly, it can be equivalently said that

xij ≡
∑
∀pm∈Pj

yim. (6.16)

We also introduce abstracted cost of agent ai for task tj, denoted by c̄ij, which
abstracts all the costs towards the task’s working positions, i.e., c̄ij ≈ cim for ∀pm ∈ Pj.
The abstracted cost is defined by

c̄ij := f ic(d̄ij), (6.17)

where d̄ij is the shortest travelling distance of agent ai towards task tj’s central position
(denoted by pj,0) without consideration of the inter-agent collision avoidance constraints
in (6.12). For clear explanation, Figure 6.3 illustrates the notations introduced.

Since the effectiveness of working positions will not be considered in this subproblem,
for the moment we let ηm = 1. As we did for the cost, we also abstract the agent work
resource in Equation (6.1) as abstracted work resource w̄ij ≈ wim for ∀pm ∈ Pj. Thus,
the equation can be rewritten as

w̄ij := wi,0 − c̄ij. (6.18)

Under the aforementioned abstractions, αj in (6.3) becomes equivalent to ᾱj :=∑
∀ai∈A w̄ijxij/Rj, which can be derived by substituting wim with w̄ij and using Equa-

tion (6.16). Eventually, the original problem is reduced to the coalition formation
problem defined as follows:

Problem 2 (Coalition formation for fair resource allocation).

max
{xij}

(
min
∀tj∈T

ᾱj
)
, (6.19)

where

ᾱj :=

∑
∀ai∈A w̄ijxij

Rj

, (6.20)

subject to
ᾱj ≥ 1, ∀tj ∈ T , (6.21)

∑
∀tj∈T

xij ≤ 1, ∀ai ∈ A, (6.22)
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xij ∈ {0, 1}, ∀ai ∈ A,∀tj ∈ T . (6.23)

6.3.2 Position allocation problem

After forming coalitions, agents in each coalition Sj have to decide working positions
amongst Pj to execute the assigned task tj. In this phase, we consider the work efficiency
of working positions ηm, which was not considered in the coalition formation problem.
This agent-position allocation problem, which is the one-to-one assignment of inde-
pendent single-position-required agents to independent single-agent-required positions,
can be formulated by a linear assignment problem from the combinatorial optimisation
literature [21]:

Problem 3 (Position allocation). Given coalition Sj and a set of positions Pj, the
objective is to find an assignment such that

max
{yim}

∑
∀ai∈Sj

∑
∀pm∈Pj

w̃imyim subject to (6.24)

∑
∀pm∈Pj

yim = 1, ∀ai ∈ Sj, (6.25)

∑
∀ai∈Sj

yim ≤ 1, ∀pm ∈ Pj, (6.26)

yim ∈ {0, 1}, ∀ai ∈ Sj,∀pm ∈ Pj. (6.27)

Here, w̃im is the expected available work resource of agent ai when it arrives at position
pm ∈ Pj via the corresponding task’s central position pj,0, defined by

w̃im := ηm(w̄ij − c̃im), (6.28)

where c̃im := f ic(||pm − pj,0||).
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Figure 6.3: An illustration of cim, c̄ij , and c̃im. They are used for the original problem, the
coalition formation subproblem, and the position allocation subproblem, respectively.

6.3.3 Path planning problem

In the last phase, given the position resulted by solving Problem 3, denoted by p∗i

for agent ai, the agent needs to generate a collision-free trajectory that minimises its
travelling distance, as follows:

Problem 4 (Path planning with collision avoidance). For each agent ai ∈ A,

min
ui

∫ tf

t0

||Gẋi(t)|| dt, (6.29)

subject to (6.9), (6.10), (6.12)–(6.15), and

xi(tf ) = [p∗i ;0nd×1]. (6.30)

6.3.4 Assumptions

The followings are assumptions considered in this study.
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Assumption 4 (Agents’ network). The communication network of the agents is at
least strongly connected as well as satisfies the property in Assumption 10, which will be
described in Section 6.7. Given the network at time t, Ni(t) denotes a set of neighbours
nearby agent ai, i.e., Ni(t) = {al ∈ A | ||G(xi(t) − xl(t))|| ≤ Rcomm}, where Rcomm is
the agent’s communication radius.

Assumption 5 (Accessible information). Every agent ai can sense every neighbour
agent al ∈ Ni(t), and obtain its local information such as c̄lj, w̄lj, xl within a reasonably
short time. The agent also knows the mission scenario information regarding tasks,
working positions and obstacles, e.g., Rj, P , ηm, O.

6.4 Coalition Formation

6.4.1 Algorithm

By letting ᾱmin := min∀tj∈T ᾱj (called the minimum RSI ), it can be said that the
objective of Problem 2 is to find the maximised ᾱmin, denoted by ᾱmax min. Supposing
that we already know the value, the corresponding optimal assignment {xij} complies
with the following conditions:

Condition 1. There is no unused agent. All the given agents join to any coalition (i.e.,∑
∀tj∈T xij = 1, ∀ai ∈ A).

Condition 2. Given ᾱmax min, it holds that

ᾱj ≥ ᾱmax min ∀tj ∈ T .

Condition 3. Within constraints (6.22)–(6.23) and Condition 2, the total work capaci-
ties of the agents (i.e.,

∑
∀ai∈A

∑
∀tj∈T w̄ijxij) are nearly maximised. Equivalently, from

the definition of w̄ij in (6.18), it can be also said that the total cost of the agents (i.e.,∑
∀ai∈A

∑
∀tj∈T c̄ijxij) is almost minimised. Note that the optimal assignment {xij} for

the max-min optimisation is not necessarily optimal for maximisation of the total work
capacities. However, the extent of the degradation is expected to be not significant due
to Condition 2 and the supposition that ᾱmax min was already optimised.

171



Chapter 6. An Integrated Decision-making Framework of a Robotic Swarm

Our fundamental approach towards Problem 2 is to search the optimised ᾱmax min

and its corresponding assignment set that meets all the conditions. Assuming that
a certain value of ᾱmax min ≥ 1 is given as the nominal value, we will firstly find an
assignment that satisfies Condition 2 while minimising the total cost of the agents (i.e.,
Conditions 3). This subproblem can be formulated as MinGAP-MR (Minimisation
version of General Assignment Problem with Minimum Requirements) [22], which is
defined as follows:

Problem 5 (MinGAP-MR). Given a nominal value of ᾱmax min,

min
{xij}

∑
∀ai∈A

∑
∀tj∈T

c̄ijxij (6.31)

subject to (6.22), (6.23), and for ∀tj ∈ T∑
∀ai∈A

w̄ijxij ≥ ᾱmax minRj. (6.32)

Note that Condition 2 can be transformed to Equation (6.32) by the definition of
ᾱj, i.e., Equation (6.20). If the resultant assignment also conforms with Condition 1,
the nominal value is a suboptimal objective function value of Problem 2. If either of
Conditions 1 or 2 fails, the nominal value ᾱmax min needs to be changed, and this process
is iteratively executed until both conditions are fulfilled.

Of importance is how to search ᾱmax min properly and quickly. To this end, we adopt
the concept of binary search [23]. Firstly, we set the nominal value of ᾱmax min as its
possible maximum value JLHR, which is defined in the following proposition.

Proposition 1. The optimal objective function value of Problem 2 is upper bounded
by its Linear-and-Homogeneous Relaxation (LHR) objective function value, which is
defined by

JLHR :=

∑
∀ai∈A(max∀tj∈T w̄ij)∑

∀tj∈T Rj

. (6.33)

Proof. Assume that the binary constraint (6.23) is relaxed so that an agent’s resource
can be assigned fractionally (i.e. Linear relaxation, xij ∈ [0, 1]). The optimal solution
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in the relaxed problem is such that the maximised value of
∑
∀ai∈A

∑
∀tj∈T w̄ijxij is

shared to the given tasks in exactly proportion to their minimum requirements. This
shared value always upper bounds the optimal objective function of Problem 2. The
maximised value of

∑
∀ai∈A

∑
∀tj∈T w̄ijxij is at most

∑
∀ai∈A(max∀tj∈T w̄ij), where each

agent is assumed to have its maximum resource regardless of the tasks (i.e., (Maximum)
Homogeneous relaxation). Combining the two relaxations yields the value as shown in
Equation (6.33), which also upper bounds the optimal objective function of Problem
2.

Algorithm 1 Coalition formation with fair allocation
1: ᾱmax min := the value of Equation (6.33)
2: β := ᾱmax min

3: repeat
4: β ← β/2

5: {xij} := the solution for Problem 5 (by Algorithm 2)
6: Modify ᾱmax min according to Table 6.2
7: until Conditions 1 and 2 are met as well as β ≤ εCF

8: return {xij}

The proposed coalition formation process is described in Algorithm 1. After setting
the nominal value ᾱmax min = JLHR intially, we try to find a solution assignment for
Problem 5 by Algorithm 2, which will be shown in the following section. Depending
on the solution’s fulfillness with regard to Conditions 1 and 2, the nominal value is
modified as shown in Table 6.2. In the table, β is the amount of variation to adjust
the previous nominal value. β is initially set by the half of JLHR, and is reduced to one
half at every search.

Failure of Condition 2 means that there exists no solution for Problem 5 with the
given nominal value ᾱmax min. Therefore, the value needs to be reduced. Failure of
Condition 1 implies that there must be another assignment that yields a higher value
of ᾱmax min exploiting all the given agents. This may be the case even if both conditions
are fulfilled, and hence, we try to increase the nominal value. This iterative search is
executed until the time not only when Conditions 1 and 2 are simultaneously satisfied
but also when β is less than a certain bound εCF . Note that the subroutine algorithm
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Table 6.2: How to change the nominal value of ᾱmax min in Algorithm 1

Given {xij} Condition 2 fulfilled Condition 2 failed

Condition 1 fulfilled Increase ᾱmax min Decrease ᾱmax min

Condition 1 failed Increase ᾱmax min Not applicable

· When increasing: ᾱmax min ← ᾱmax min + β

· When decreasing: ᾱmax min ← ᾱmax min − β

for Problem 5 (i.e., Algorithm 2) does not provide the case where both conditions fail,
the details of which will be described in Remark 1 in the following section.

6.4.2 The subroutine for MinGAP-MR

This section addresses Problem 5 by using the distributed game-theoretical algorithm
proposed in our previous study [22], where the problem is modelled as a coalition
formation game of selfish agents who have different preferences regarding task-specific
coalitions. We introduce some necessary definitions and notations for the algorithm.
We define a partition as a set Π = {S1, ...,Snt ,S0} that disjointly partitions the agent
set A. Here, S0 is the coalition of agents who do “not work any task” in T . Given
the partition, Π(i) indicates the index of the coalition to which agent ai joins. Let
eij denote the expense for agent ai with regard to coalition Sj (or equivalently task
tj). Under this algorithm, every agent tends to select the coalition requiring the lowest
expense.

The objective of the algorithm is to find a Nash stable partition, where no agent
will unilaterally deviate, which is defined as follows:

Definition 1 (Nash stable partition). A partition Π is said to be Nash stable if it holds
that, for every agent ai ∈ A, eiΠ(i) ≤ eij, ∀Sj ∈ Π.
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Given Π, the expense eij is defined as follows:

eij :=

c̄ij+ if ai ∈ Ŝj,

∞ otherwise,
(6.34)

where c̄ij+ is the learnt cost of agent ai for task tj (for now, we set c̄ij+ to c̄ij); and
Ŝj is the set of agents eligible to join the coalition for task tj. Agent ai can ascer-
tain its eligibility by an algorithm for MinKP (Minimum Knapsack Problem): Ŝj :=

MinKP(Sj ∪ {ai}, ᾱmax minRj,Wj, Cj)1, where Sj ∈ Π, Wj = {w̄kj|∀k : ak ∈ Sj ∪ {ai}}
and Cj = {c̄kj|∀k : ak ∈ Sj \ {ai}} ∪ {c̄ij+}.

Since there may exist any possible divergence from a Nash stable partition, we let
each agent ai update its learnt costs as follows:

c̄ij+ ← c̄ij+ + λ · c̄ij, (6.35)

where λ > 0 is the learning rate, and initially c̄ij+ = c̄ij. Whenever agent ai changes its
decision from coalition Sj to another one, the agent learns that the previous choice was
not suitable for itself and penalises it gradually by the learning rate as Equation (6.35).
This can be called as tabu learning [25]. This iterative decision-making and learning
process guarantees that a Nash stable partition always can be determined [22].

Its detailed procedure is described in Algorithm 2. For every agent ai, given the
current locally-known partition information, denoted by Πi, if the agent does not satisfy
with the partition (Line 5), then it investigates every coalition Sj ∈ Πi and computes
the corresponding expense eij according to Equation 6.34 (Lines 6–9). If the least
expense value provides infinity, then the agent set the preferred coalition index j∗ as
zero (Lines 11–13), meaning that it will move to S0. If the most preferred coalition
is not the existing one, the agent updates the learnt cost for the existing coalition,
joins to Sj∗ , amends Πi to reflect its new decision, increases ri (which is the number of
evolutions of the partition), and generates a new random time stamp si (Line 14–20).
Then, the agent constructs a message msgi := {ri, si,Πi, satisfiedi} and sends it to other
neighbour agents, and vice versa (Line 23). Amongst the multiple partition information,
only one can be distributedly chosen by any agent at last through the distributed mutex

1Please refer to Definition 2 in Appendix B for more details. This study uses MinGreedy algorithm
[24] as MinKP.
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algorithm [26] in Appendix C (i.e., Algorithm 5), denoted by D-Mutex (Line 25). The
distributed mutex algorithm enables Algorithm 2 to be executable asynchronously and
distributedly as long as the network of the given agents is at least strongly-connected.

Remark 1. Given an outcome {xij} from Algorithm 2, the simultaneous failure of
Conditions 1 and 2 does not happen. According to Lines 6–13, if there exists any task
tj not satisfying the constraint (6.32) (i.e., Condition 2 fails), there must be no agent
who wants to join S0. This means that all the agents join to any task-specific coalitions
(i.e., Condition 1 is fulfilled).

Remark 2 (How to reduce unnecessary process in Algorithm 1). We set that if agent ai
find the index of its most preferred coalition as j∗ = 0 (Line 12), the agent broadcasts
a notification signal to other agents so that they notice Condition 1 failed. This setting
enables the agents to early stop Algorithm 2 and change the nominal value of ᾱmax min

(as Table 6.2), and thus reduces possible unnecessary computation.

6.4.3 Analysis

We now discuss the properties of the proposed coalition formation algorithm.

Proposition 2 (Convergence of Algorithm 1). Algorithm 1 terminates in a finite num-
ber of iterations.

Proof. For the coalition formation algorithm to terminate, Line 7 in Algorithm 1 should
be met. Since β is gradually reduced by one half, it is obvious that β ≤ εCF within
a finite number of iterations. Now let us investigate if there will always be a moment
when Conditions 1 and 2 are simultaneously fulfilled. Considering the properties of
both conditions, it can be said that (1) Condition 1 is met if the nominal value of
ᾱmax min is within [ᾱc1 ,∞], where ᾱc1 < ∞; (2) Condition 2 is satisfied if the nominal
value of ᾱmax min is within [0, ᾱc2 ], where ᾱc2 > 0. From this, if ᾱc2 < ᾱc1 , then there
must be a possibility that Conditions 1 and 2 simultaneously fail. However, as described
in Remark 1, this is not the case, and hence [ᾱc1 , ᾱc2 ], which is the range when both
conditions are fulfilled, always exists and is non-empty. It follows that the modification
procedure of the nominal value ᾱmax min shown in Table 6.2 eventually makes the value
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Algorithm 2 MinGAP-MR algorithm for each agent ai
// Note: αmax min is given from Algorithm 1
// Initially, Πi := the initial partition; ri ← 0; si ← 0; satisfiedi ← 0na×1

1: if unexpected change of Πi is sensed then // For dynamic environments
2: ri ← ri + 1; si ← 0; satisfiedi ← 0na×1

3: end if
// Decision-making process begins

4: while satisfiedi 6= 1na×1 do
// Make a new decision if necessary

5: if satisfiedi[i] = 0 then
6: for each Sj ∈ Πi \ {S0} do
7: Ŝj := MinKP(Sj ∪ {ai}, ᾱmax minRj,Wj, Cj)
8: Compute eij using Eqn. (6.34)
9: end for
10: j∗ = argmin∀jeij; e∗ = min∀jeij
11: if e∗ =∞ then // No coalition is preferred
12: j∗ := 0

13: end if
14: if j∗ 6= Πi(i) then
15: c̄i,Πi(i)+ = c̄i,Πi(i)+ + λ · c̄i,Πi(i)

16: Join Sj∗ and update Πi

17: ri ← ri + 1

18: si ∈ unif[0, 1]

19: satisfiedi ← 0na×1

20: end if
21: satisfiedi[i] = 1

22: end if
// Broadcast the local information to neighbour agents

23: Broadcast msgi = {ri, si,Πi, satisfiedi} and
receive msgl from its neighbours ∀al ∈ Ni

// Select the valid partition from all the received messages
24: Collect all the messagesMi

rcv = {msgi,∀msgl}
25: {ri, si,Πi, satisfiedi} := D-Mutex(Mi

rcv)
26: end while
27: return {xij} corresponding to Πi 177
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converge to the range. The subroutine in Line 5 (i.e., Algorithm 2) terminates within
a finite time [22], so does Algorithm 1. This completes the proof.

Proposition 3 (The number of iterations in Algorithm 1). Suppose that, after κ it-
erations of the main loop of Algorithm 1 (i.e., Lines 3–7), the nominal value ᾱmax min

remains the range where Conditions 1 and 2 are both fulfilled. Then, the maximum
number of iterations happened is upper bounded by max{κ, dlog2 (JLHR/εCF )e}.

Proof. As β reduces to its half after each iteration, it can be said that β = JLHR ·
(1

2
)n, where n is the number of iterations happened. Until the time when β ≤ εCF ,

the required number of iterations is dlog2 (JLHR/εCF )e. For Algorithm 1 to finish,
Conditions 1 and 2 additionally need to be satisfied. Hence, the maximum number of
iterations is upper bounded by max{κ, dlog2 (JLHR/εCF )e}.

6.5 Position Allocation

After the coalition formation process, agents in each coalition Sj have to choose working
positions amongst ∀pm ∈ Pj to execute the assigned task tj (i.e., Problem 3). Since this
problem can fall into ST-SR case in multi-robot task allocation categories [8], it could
be optimally solved by a linear programming (e.g., Kuhn’s Hungarian method [27])
in O(|Sj||Pj|2) time. Note that any imbalance regarding the number of agents and
positions can be addressed by including dummy agents or positions as required [9].
Please refer to the review papers [8, 9] for more details.

This section addresses Problem 3 in a more computationally efficient manner under
the following assumptions:

Assumption 6 (Initial positions of agents from tasks). When a position allocation
process begins, the distance from agent ai ∈ Sj to task tj’s central position pj,0 is much
larger than the spatial difference from any position pm ∈ Pj to pj,0. Hence, the costs of
the agent to transition to any positions in Pj are approximately the same as that to pj,0,
i.e., cim ≈ c̄ij, ∀pm ∈ Pj. In other words, the difference between pj,0 and each pm ∈ Pj
can be negligible, and thereby it follows that c̃im ≈ 0 in Equation (6.28). Hence, it can
be approximated as

w̃im := ηm(w̄ij − c̃im) ≈ ηmw̄ij (6.36)
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Assumption 7 (Work efficiency depending on proximity). Given any two positions
pm1 , pm2 ∈ Pj, if pm1 is closer to task tj than pm2 , then an agent at pm1 works more
efficiently than one at pm2 , i.e., ηm1 > ηm2 . Likewise, ηm1 = ηm2 if pm1 and pm2 are iden-
tically distant from the task. This assumption can be considered reasonable because,
for example, in cooperative jamming mission [7] or in vision surveillence mission, an
agent’s proximity brings stronger work efficiency (e.g., jamming effectiveness or sensing
capability).

Proposition 4. Under Assumptions 6 and 7, the optimal solution for Problem 3 is the
allocation resulted by assigning higher work-capacity agents into higher work-efficiency
positions.

Proof. Since Problem 3 is only related to each task tj, we firstly let w̄i := w̄ij for
simplicity. Without loss of generality, it can be said that there are a set of agents Sj such
that w̄1 ≥ w̄2 ≥ ... ≥ w̄|Sj |, and |Sj| of working positions such that η1 ≥ η2 ≥ ... ≥ η|Sj |.

For any two numbers m,n ∈ {1, 2, ..., |Sj|} such that m ≤ n,

ηmw̄m + ηnw̄n ≥ ηmw̄n + ηnw̄m. (6.37)

This is because, considering that δ := ηm− ηn ≥ 0, the left-hand side in (6.37) becomes
(ηn+δ)w̄m+(ηm−δ)w̄n = ηnw̄m+ηmw̄n+δ(w̄m− w̄n), and hence, this is always greater
than or equal to the right-hand side in (6.37).

From this, it is obvious that, given any two agents in Sj, it is always better to
assign the higher work-resource agent to the higher work-efficiency position. According
to Assumption 7, such a position is the one closer to task tj. This also holds for
multiple agents more than two. Hence, by assigning higher work-capacity agents into
higher work-efficiency positions, we can find the optimal assignment for Problem 3
under Assumptions 6 and 7.

Owing to Proposition 4, a simple sorting algorithm can be utilised to find the optimal
solution for the approximated Problem 3. There exist various types of sorting algorithms
such as Quicksort, Mergesort, and Heapsort, and their complexities are averagely known
as O(n log n), where n is the number of the given items to be sorted [28]. Since such a
sorting algorithm is too simple, in this position allocation process, every agent executes
the algorithm in parallel.
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6.6 Path Planning with Collision Avoidance

After the position allocation process in the previous section, the agents need to generate
collision-free trajectories in a way that minimises their travelling distances (i.e., Problem
4). This chapter exploits the MPC-SCP path planning algorithm [20], which consists of
a MPC loop and a SCP loop. Given a non-convex trajectory optimisation problem along
with a nominal trajectory, the SCP loop recursively solves its approximated problem,
which is convexified by the nominal trajectory as explained in the following paragraph
(i.e., Problem 6), until the approximated solution is very close to the nominal one. In
order to reduce the problem size, each agent considers inter-agent collision avoidance
only for a time horizon from the current moment. While the myopic collision-free
trajectory is being used for the time horizon, the next one is calculated before reaching
the end of the horizon, which is the MPC loop. It is worth noting that the MPC-
SCP algorithm can consider not only inter-agent collision avoidance but also obstacle
avoidance, and that its real-time implementability was experimentally validated by
using multiple quadrotors [19]. In this section, we briefly introduce how to utilise the
MPC-SCP to Problem 4, then show the main difference of the proposed algorithm from
the existing MPC-SCP.

Given the nominal trajectory of agent ai (denoted by x̄i), we firstly linearise and
discretise the problem as described in Appendix A. In addition, the collision-avoidance
constraints in (6.55) and (6.56) should be convex-approximated into the following affine
constraints for a time horizon TH : for every agent ai ∈ A,

(x̄i[k]− x̄l[k])>G>G(xi[k]− x̄l[k]) ≥ rcol||G(x̄i[k]− x̄l[k])||,

k = k0, ...,min{T, k0 + TH}, ∀al ∈ Ni[k0] ∩ Ii,
(6.38)

(Gx̄i[k]− oq)>(Gxi[k]− oq) ≥ robs,q||Gx̄i[k]− oq||,

k = k0, ...,min{T, k0 + TH}, ∀oq ∈ O,
(6.39)

where Ni[k] is the discretised-version notation of Ni(tk), and Ii ⊆ A is the set of neigh-
bour agents who are more important than agent ai meaning that agent ai should avoid
them (the formal definition of Ii will be shown later in Assumption 8). The convexified
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constraints (6.38) and (6.39) are sufficient conditions for the original collision-avoidance
constraints (6.55) and (6.56) to hold [20]. Hence, Problem 4 can be reduced to the fol-
lowing convex-approximated problem:

Problem 6 (Convex program for path planning). For each agent ai ∈ A, given nominal
trajectories x̄l for ∀al ∈ (Ni[k0] ∩ Ii) ∪ {ai} at the current discretised time step k0,

min
xi

T−1∑
k=k0

||G(xi[k + 1]− xi[k])|| (6.40)

subject to (6.52),(6.30),(6.57),(6.58),(6.38),(6.39).

Assumption 8 (Importances of agents [19]). Let each agent ai has its importance
index ρi such that ρi 6= ρl for ∀l 6= i. For the convergence of Algorithm 3, it should be
that

Ii = {al ∈ Ni[k0] | ρl < ρi}.

The SCP loop for path planning is described in Algorithm 3. Firstly, each agent
ai sets its nominal trajectory x̄i from the solution for Problem 6 without considera-
tion of the inter-agent coalition avoidance constraint (Line 1). The agent shares the
information with all the neighbours (Line 2). Let Ki denote a local variable indicating
neighbour agents who have not found coalition-free trajectories yet. If this is the case
for agent ai, it tries to obtain the solution for Problem 6 (Line 6). If it is feasible, then
the nominal trajectory is updated. Otherwise, the previous nominal trajectory x̄i,prev

is set to any trajectory such that ||x̄i[k] − x̄i,prev[k]|| 6< εSCP,∀k (Lines 7–12). After
sharing the information with all the neighbours (Line 14), agent ai checks if the new
trajectory is close enough to the previous nominal trajectory and collision-free (Lines
15-19), and updates Ki (Lines 20-21).

Remark 3 (How to avoid infeasible solutions in Line 6). Although Problem 6 is a
convex programming, there might be no feasible solution if the nominal trajectory x̄i

is not proper. The convexified constraints (6.38) and (6.39) based on the nominal
trajectory occasionally induce the event that some agents can not generate feasible
trajectories using the given maximum velocity and control powers. In this case, it is a
remedy to solve Problem 6 with temporarily-reduced rcol or robs,q and then gradually
increase them and solve the problem again. Alternatively, making the initial velocity
profiles of the nominal trajectory become slowly also often works.
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Algorithm 3 Collision-free path planning for each agent ai
1: x̄i[k] := the solution to Problem 6 without (6.38), ∀k
2: Communicate x̄i to all neighbour agents al ∈ Ni[k0]

3: Ki := Ni[k0] ∪ {ai}
4: while Ki 6= ∅ do
5: if ai ∈ Ki then
6: xi[k] := the solution to Problem 6, ∀k
7: if xi[k] is feasible then
8: x̄i,prev[k] := x̄i[k], ∀k
9: x̄i[k] := xi[k], ∀k
10: else
11: x̄i,prev[k] := x̄i[k] + εSCP · 12nd×1, ∀k
12: end if
13: end if
14: Communicate x̄i to all neighbours al ∈ Ni[k0]

15: if ||x̄i[k]− x̄i,prev[k]|| < εSCP

16: and ||G(x̄i[k]− x̄l[k])|| > rcol ∀al ∈ Ni[k0] ∩ (Kc
i ∪ Ii)

17: and ||Gx̄i[k]− oq|| > robs,q ∀oq ∈ O, ∀k, then
18: Remove ai from Ki
19: end if
20: Communicate Ki to all neighbours al ∈ Ni[k0]

21: Ki := Ki ∩ (∪∀l∈Ni[k0]Kl)
22: end while
23: x̄i is the approximate solution to Problem 4
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The main difference of Algorithm 3 from the existing work [20] is Lines 7–12: agents
who are eventually not able to find feasible solutions for Problem 6 keep their previous
trajectories, whereas other agents use new ones. When implementing the existing al-
gorithm in the way it is (i.e., without the lines), agents who already obtained feasible
trajectories have to wait to receive their neighbours’ trajectories before proceeding Line
15. Although infeasible solutions can be avoided by Remark 3, this additional pro-
cess might induce unnecessary waiting times for other agents in a synchronous process.
Therefore, Algorithm 3 is designed such that some agents may temporarily skip their
trajectory computations, while keeping the existing trajectories. We now show that,
despite so, the proposed algorithm can converge to collision-free trajectories.

Proposition 5 (Convergence of the path planning algorithm). Even if some agents are
temporarily not able to find feasible solutions to Problem 6, Algorithm 3 can terminate
within a finite time and provide conflict-free trajectories for all the agents.

Proof. According to Lines 7-12 in Algorithm 3, if agent ai can not temporarily find
a feasible solution to Problem 6, then its neighbour agents maintain x̄i as they knew
before. For any agent amongst those neighbours, if it obtains a feasible solution in Line
6, the solution is conflict-free with regard to x̄i. As such, asynchronous computation for
new trajectories is more favourable for an agent to comply with the condition in Line
16, compared with the circumstance where all the agents obtain new solutions in Line
6. This is because each feasible solution xi considers the corresponding neighbours’
previous trajectories as the nominal values (as shown in Equation (6.38)), and thus the
simultaneous update of every xi ∀ai probably causes additional iterations. However,
despite the simultaneous update, Morgan et al. [19] shows that all the agents can
converge to collision-free trajectories within a finite time. Therefore, it can be said
that the occurrence of temporary infeasible solutions in Line 6 does not hinder the
convergence of Algorithm 3 towards conflict-free trajectories for all the agents.

Moreover, we experimentally observed that this asynchronous process results in
a faster agreement of the agents than a synchronous process, as pointed out in the
work [29].
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6.7 The Proposed Integrated Framework

This section presents our integrated framework including all the algorithms introduced
previously (as shown in Algorithm 4). At the current time k0, each agent firstly exe-
cutes the coalition formation process after obtaining its abstracted costs (Lines 3–6).
Note that d̄ij (i.e., the shortest travelling distance of agent ai towards task tj’s central
position) can be geometrically obtained under Assumption 2. Then, the agent proceeds
the position allocation process (Lines 7–11), and the path planning algorithm (Line 12)
over the time horizon TH . Although Algorithm 4 implies that all the subprocesses have
the same update rates, in practice they may be different. For example, those for the
coalition formation and the position allocation may be able to be executed in a less
frequent manner than those for the path planning and following.

Since inter-agent collision avoidance is considered during the time horizon only, we
need the following assumptions:

Assumption 9 (Computational feasibility). Every agent’s computational and commu-
nicational capability is such that the running time of each loop of Algorithm 4 (Lines
3–12) is less than TH∆t. This guarantees that there will be no inter-agent collision
during the entire mission period.

Assumption 10 (Detectable collisions [20]). To guarantee that there is no unexpected
collision with other neighbour agents during the time horizon TH , Rcomm and Vmax

should be such that

Rcomm ≥ 2VmaxTH∆t + rcol and ∆tVmax < rcol.

We conjecture that the integrated framework can be executed even by asynchronous
behaviours of the agents to some extent. Amongst the subroutines comprising the
framework, the path planning subroutine (i.e., Algorithm 3) needs a relatively more
ideal environment: it requires Local-Information Consistency Assumption (LICA) (i.e.,
local information needs to be consistently known by a local agent group at each itera-
tion) [30] over neighbour agents under a communication network holding Assumptions
4 and 10. Meanwhile, the coalition formation algorithm just requires Neighbour Infor-
mation Consistency Assumption (NICA) (i.e., local information needs to be known by
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Algorithm 4 Integrated decision-making framework
1: k0 = 0;
2: while k0 ≤ T − TH do

// Coalition Formation
3: for all ai ∈ A (in parallel) do
4: Compute d̄ij and c̄ij = f ic(d̄ij) for ∀tj ∈ T
5: end for
6: {Sj} := the partition resulted by Algorithm 1

// Position Allocation
7: for all ai ∈ Sj, ∀tj ∈ T (in parallel) do
8: Compute w̃im using (6.36) for ∀pm ∈ Pj
9: {yim} := solution to Problem 3
10: p∗i = pm such that yim = 1

11: end for
// Path planning

12: xi[k] := the trajectories by Algorithm 3, ∀ai ∈ A
for ∀k ∈ {k0, ..., k0 + TH}

// Path following
13: Follow xi[k] for ∀k ∈ {k0, ..., k0 + TH}, ∀ai ∈ A
14: Update k0 and xi,k0 to current time, ∀ai ∈ A
15: end while

only one neighbour agent at each iteration) under a simple strongly-connected commu-
nication network [22], and inter-agent communication is even not necessary for the po-
sition allocation process. As long as local-information consistency required for the path
planning process is guaranteed, the integrated framework can work asynchronously.
Therefore, considering the fact that the path planning process is dominant in terms
of environmental requirements, the experimental validation of the MPC-SCP [19] sug-
gests the real-time implementability of the proposed framework. More rigorous analysis
regarding detrimental effects of asynchronous agents will be subject to in our future
study.

For now, let us discuss about the suboptimality of the proposed integrated frame-
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work.

Proposition 6 (Suboptimality of the integrated framework). Let rPj
denote the maxi-

mum radius from the central position of task tj (i.e., pj,0) to any working positions for
the task (i.e., ∀pm ∈ Pj). For an instance of Problem 2 with setting c̄ij := fc(d̄ij− rPj

),
called the dummy problem, suppose that we have its LHR objective function value, de-
noted by J?LHR. Then, the suboptimality of an outcome from the integrated framework
(i.e., Algorithm 4) is lower bounded by JA/J?LHR, where JA is the outcome’s objective
function value.

Proof. Let JOPT and J?OPT denote the optimal objective function value of Problem 1
and that of the dummy problem, respectively. We will firstly show that J?OPT ≥ JOPT .
Work capacity w̄ij in the dummy problem is w̄ij = wi,0 − f ic(d̄ij − rPj

), which is always
greater than or equals to wim = ηm(wi,0−f ic(dim)) in the original problem for ∀pm ∈ Pj.
This is because: (a) for every agent ai and task tj,

d̄ij − rPj
≤ dim, ∀pm ∈ Pj;

(b) the dummy problem has work efficiency ratio ηm = 1. Hence, given the optimal
objective function values for both problems, it follows that J?OPT ≥ JOPT .

For the dummy problem, its LHR objective function value J?LHR can be found by
Equation (6.33). This value upper bounds J?OPT according to Proposition 1. From this,
it turns out that

J?LHR ≥ J?OPT ≥ JOPT .

Hence, the suboptimality of the outcome from the integrated framework (i.e., JA/JOPT )
is lower bounded by JA/J?LHR.

6.8 Application to Cooperative Jamming

6.8.1 Cooperative Stand-in Radar Jamming

We implement the proposed framework into a cooperative stand-in jamming mission.
This mission can be categorised as “escort jamming”, in which multiple aerial robots
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with ECM (electro counter measure) transmitters are to neutralise given target radars
to protect their allies being far behind. The strategy for stand-in jamming differs
from that for typical stand-off jamming in that the aerial robots penetrate into enemy
territory and jam the targets while being located nearby. This comparison can be
illustrated as in Figure 6.4.

RADAR 

STAND-OFF 
JAMMER AIRCRAFT 

FIGHTER 

RADAR 

STAND-IN 
JAMMER UAVs 

FIGHTER 

Figure 6.4: Stand-off Jamming vs. Cooperative Stand-in Jamming

A swarm of small-sized UAVs is suitable to carry out this mission because such
UAVs can take advantage of proximity effect by being close enough to the adversary
radars thanks to their small RCS (Radar Cross Section) i.e., lower observability, as well
as fault tolerance as a multi-agent system. Despite their limited jamming resources,
they can cooperatively provide enough jamming effectiveness by superimposing their
signal strengths.
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For now, we give a brief description of our prototype mission scenario. A set of
micro UAVs are deployed to cooperatively jam a set of adversary radars. They begin a
decision-making process for coalition formation and position allocation, and then tran-
sition to the assigned positions while avoiding any collision. After the agents succeed in
jamming the radars, the allies, which are armed with Air-to-Ground Missiles (AGMs)
and loitering until that moment, directly fly to and attack the radars. Note that the
agents are assumed to have small RCSs due to their small sizes, thus not being tracked
by the radars.

The cooperative jamming effectiveness by robotic coalition Sj towards the j-th radar
is a function of the Jamming to Signal ratio as follows [31]:

(J/S)j =

∑
∀ai∈SjJi,j

Sj
. (6.41)

Here, Sj is the backscattered signal strength to the j-th radar from one of the protected
allies with the largest RCS:

Sj =
kRj · σ(θa,j)

d4
a,j

, (6.42)

where kRj is the radar-dependent coefficient, which varies with the radar’s characteristics
such as its transmitted power, wavelength, and antenna gains; da,j is the distance from
the j-th radar to where the ally can be close to the radar while being protected; and
σ is the RCS of the ally, which depends on its attitude with respect to the j-th radar
(denoted by θa,j).

The individual jamming signal strength of the i-th agent towards the j-th radar is
defined by

Ji,j =
kAi · GR

i,j

d2
i,j

, (6.43)

where kAi is the agent-dependent coefficient; di,j is the distance between the i-th agent
and the j-th radar when the agent performs jamming; and GR

i,j is the radar antenna
gain, which relies on the agent’s position with respect to the radar’s main-lobe.

The cooperative jamming is successful if (J/S)j exceeds the radar’s burn-through
value (J/S)burnj , which is determined by the radar’s characteristics and signal processing
method.
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6.8.2 Implementation and Settings

In this numerical simulation, we have na = 50 of UAVs, nt = 3 of tasks (i.e., tar-
get radars). For the radar and jamming-agent relevant coefficients prescribed in the
previous section, the realistic values shown Table 6.3 are used. Note that kA of micro-
sized UAV is assumed from consideration of other UAV types’ values. We uniform
randomly generate kAi ∈ [0.025, 0.050] for the agents, and set that {kR1 , kR2 , kR3 } =

{2 · 109, 1.5 · 109, 1 · 109} for the radars.

Table 6.3: Parameters of Jamming UAVs and Adversary Radars [31]

UAV size kA Radar type kR

micro 0.05 short-range 2 · 107

small 0.25 med.-range 2 · 108

large 1 long-range 2 · 109

(J/S)burn GR main-lobe GR side-lobe

1 1 0.001

1 1 0.001

1 1 0.001

We set that the agents can approach to the tasks as close to 60 m as possible,
denoted by dmin, and they may not be located in the radars’ main lobes: from (6.43),
each agent ai’s initially-available work resource is set by

wi,0 =
kAi · GR

side

d2
min

, (6.44)

where the corresponding radar antenna gain, denoted by GR
side, is set to 0.001. Then,

work efficiency ratio ηm for position pm ∈ Pj is set by

ηm =
d2

min

(dmin + ∆dm)2
, (6.45)
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where ∆dm is the distance from the working position pm to the circle surrounding the
j-th radar with the radius of dmin, as illustrated in Figure 6.5.

We set that as an agent uses its resource to transition, its given kA is reduced:
the decreasing rate is 0.005 per km. From this, we can define each agent’s cost-to-go
function: f ic(d) = C1 · d, where C1 =

GR
side

d2
min
· 0.005.

We assume that the allies to protect are F-16 fighter, whose RCS is known as 5 m2,
and they should be protected until reaching 20 km before the radars (i.e., da,j). From
Equations (6.41) and (6.42), each task tj’s minimum requirement is set by

Rj =
kRj · σ(θa,j)

d4
a,j

· (J/S)burnj . (6.46)

In addition, we have no = 2 of obstacles. The inter-agent collision-avoidance radius
is rcol = 15 m. For every obstacle, its radius is robs,q = 60 m. For each agent ai, we
consider 2-dimensional space and the point-mass kinematics model:

ẋi(t) = Axi(t) +Bui(t), (6.47)

where

A = [02×2 I2×2;02×2 02×2],

B = [02×2 I2×2]>,

ui(t) = [u1(t) u2(t)]>.

The maximum speed and acceleration of every agent is Vmax = 10 m/s and Umax =

3 m/s2, respectively.

We set that the agents generate collision-free trajectories over the time-horizon
TH = 30 seconds, but update them at every 20 seconds. For the time-horizon, the
discretised time gap is set to ∆t = 1 sec. In order to reduce computation time, we use
∆t = 10 sec for the time range outside TH . It is assumed that before t = 0 the agents
already finished Algorithm 4 for the first time-horizon, in which they compute for the
next time-horizon, and so forth. The mission final time is tf = 180 sec. We set that
εCF = 0.05, εSCP = 2.5 and λ = 0.5.
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Figure 6.5: Definitions of dmin and ∆dm

In order to see how adaptively the agents using the proposed framework change
their behaviours, we consider a dynamic environment in which some of the agents are
lost in the middle of the mission: a half of agents assigned to task t1 are randomly failed
at t = 35 sec; even so, the communication network of the remaining alive agents still
holds Assumption 4; and every agent can notice the failure using the network shortly.

6.8.3 Results

Figure 6.6 show sequential snapshots of the resulted behaviours of the agents using
the proposed framework. Each subfigure shows the locations of the agents, the tasks,
the working positions and the obstacles at a certain time of the mission. The tasks are
represented as blue, red, and green circles in the right, and the obstacles as black circles
in the middle. The grey small circles around each task are the corresponding working
positions. The size of the solid circle for each task indicates its minimum workload
requirement, and that of the dashed black circle represents the boundary to which
the agents can be as close as possible, i.e., dmin. Each agent and its collision-avoidance
radius are illustrated as a coloured dot and the circle surrounding it, respectively. Here,
the circle is coloured by the colour of the agent’s assigned task. The size of each dot
indicates the agent’s currently-available work resource, and it shrinks as the resource
is consumed by transitioning towards its assigned working position. The dotted trail
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behind each agent is the agent’s previous trajectory.

As presented in Figure 6.6(a)–(b), the agents follow the trajectories towards their
assigned positions from t = 0 to t = 20. At t = 35, the half of the agent assigned to task
t1 are somehow failed (Figure 6.6(c)). Note that the lost agents and their trajectories are
represented as black-dotted circles and lines, respectively. Due to the update interval
for new trajectories, by t = 60, the remaining alive agents finish to reassign the positions
and generate new trajectories for the next time horizon (Figure 6.6(d)). Here, some of
agents previously assigned to tasks t2 and t3 are assigned to t1. After that, the alive
agents follow the new collision-free trajectories until the mission final time, as presented
in Figure 6.6(e)–(f). Figure 6.6(f) shows that the agents are sensibly allocated with
consideration of their working resources and the tasks’ requirements.

Figure 6.7 shows each agent’s minimum distance from its closest neighbour during
the entire mission. Each line is coloured corresponding to the agent colour of Figure
6.6. This result indicates that all the agents using the proposed framework comply with
the inter-agent collision avoidance constraints.

Table 6.4 presents the computation time spent to obtain the decision-making re-
sult. Because the framework sequentially solves an optimisation problem over the time
horizon, the computation time shown in the table is the average over every optimi-
sation. Note that the computation times spent for the coalition formation and po-
sition allocation are only significant when the agents planned over the time periods
t ∈ {[0, 20], [60, 80]}, thus we only used the corresponding computation times to obtain
the average value. All the simulations were performed using MATLAB R2016b on a
computer (Mac mini Late 2014) with Intel Core i5 2.8 GHz, 16GB Memory, and OS
X Yosemite v.10.10.5. To solve convex optimisations (i.e., Problem 6) in Algorithm
3, CVX ver. 2.1 [32] was utilised. The table shows that approximately 6 seconds
are required for each time horizon. Since the agents in the experiment updated their
trajectories at every 20 seconds, there still remain approximately 14 seconds extra.

In addition, Table 6.4 shows the suboptimality of the outcome from the proposed
framework. We exploited Proposition 6 to obtain the suboptimality lower bound, which
indicates that the outcome is near-optimal.
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Figure 6.6: The resulted behaviours of the agents using the proposed framework (na = 50,
nt = 3, and no = 2).
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Figure 6.7: Each agent’s minimum distance from its closest neighbour agent during the
mission time

6.9 Conclusion

This study addressed a swarm of heterogeneous robots’ decision-making issues includ-
ing team formation, team-to-task assignment, agent-to-working-position selection, fair
resource allocation considering tasks’ minimum requirements, and trajectory optimisa-
tion with collision avoidance. The proposed framework decouples the complex original
problem into three subproblems (i.e., coalition formation, position allocation, and path
planning) and deals with them sequentially by three different subroutine algorithms in
a decentralised manner. For the coalition formation subproblem, we introduced the
game-theoretical method that recursively sets the minimum RSI and minimises given
agents’ unnecessary costs (equivalently maximises their work capacities). We showed
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Table 6.4: Simulation results (na = 50, nt = 3, no = 2)

Subroutine Computation time (sec)

Coalition formation (Algorithm 1) 0.101

Position allocation 0.045

Path planning (Algorithm 3) 5.088

Suboptimality of Algorithm 4 (%)

Lower bound 97.42

that the position allocation subproblem can be solved by a simple sorting algorithm
under reasonable assumptions. For the trajectory optimisation, we utilised the MPC-
SCP algorithm by which the agents can generate collision-free trajectories over a time
horizon. By introducing the LHR solution concept, we proposed a methodology to
analyse suboptimality of the proposed framework. As a proof of concept, we imple-
mented the proposed integrated framework into a UAV swarm’s cooperative stand-in
jamming mission scenario. It was suggested from the numerical experiment results that
the framework could be computationally feasible, fault-tolerant, and near-optimal.

A natural progression of this study is to validate this framework in a real-robot
experiment. Furthermore, a formal analysis regarding the algorithmic complexity must
be a significant contribution.

Appendix

A. Linearisation and Discretisation

In order to address Problem 4, we firstly linearise the dynamics in (6.9) about the
nominal trajectory x̄i, which is assumed to be given.

ẋi = A(x̄i)xi +Bui + z(x̄i) (6.48)
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where A(x̄i) = δf
δxi
|x̄i

and z(x̄i) = f(x̄i) − δf
δxi
|x̄i

x̄i. Then, we transform the problem
to the discrete-time version. Regarding Equation (6.29), it follows from ||Gẋi(t)|| dt =

||dpi(t)/dt|| dt that ∫ tf

t0

||Gẋi(t)|| dt =

∫ tf

t0

||dpi(t)/dt|| dt

≈
∫ tf−∆t

t0

||pi(t + ∆t)− pi(t)

∆t
|| dt,

(6.49)

where ∆t is the time difference for the discretisation. We set that, for k = 0, 1, ..., T ,

xi[k] := xi(tk), pi[k] := pi(tk), ui[k] := ui(tk), (6.50)

where T := (tf − t0)/∆t is the number of discrete time steps; tT := tf ; tk0 := t0; and
tk+1 := tk + ∆t for all k. Then, Equation (6.49) becomes

∑T−1
k=k0
||pj[k + 1] − pj[k]||.

Finally, the right term in Equation (6.29) becomes

min
ui

T−1∑
k=k0

||G(xi[k + 1]− xi[k])||. (6.51)

Likewise, Equation (6.48) can be reduced to

xi[k + 1] = Ai[k]xi[k] +Bi[k]ui[k] + zi[k], k = k0, ..., T − 1, (6.52)

where

Ai[k] = eA(x̄i(tk))∆t, Bi[k] =

∫ ∆t

0

eA(x̄i(tk))τBdτ,

zi[k] =

∫ ∆t

0

eA(x̄i(tk))τz(x̄i(tk))dτ.

Equations (6.10), (6.30), (6.12)–(6.15) can be also written in discretised form as follows:

xi[k0] = xi,0, (6.53)

xi[T ] = [p∗;0nd×1], (6.54)
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||G(xi[k]− xl[k])|| ≥ rcol, k = k0, ..., T, ∀al ∈ A \ {ai}, (6.55)

||Gxi[k]− oq|| ≥ robs,q, k = k0, ..., T, ∀oq ∈ O, (6.56)

||ui[k]|| ≤ Umax, k = k0, ..., T, (6.57)

||Hxi[k]|| ≤ Vmax, k = k0, ..., T, (6.58)

B. Minimisation Knapsack Problem (MinKP)

Our proposed approach use an algorithm for the 0/1 minimisation knapsack problem
(MinKP, for short) [24] as its subroutine. MinKP is defined as:

Definition 2 (the 0/1 minimisation knapsack problem). Suppose that there are a knap-
sack with its minimum requirement R and a set of n items Z = {z1, ..., zn}, where each
item zi has its value vi and cost ci. The objective is to pack the knapsack with the
items so that the total value of all inserted items exceeds the minimum requirement
while minimising the resultant total cost:

min
{xi∈{0,1}}

n∑
i=1

cixi s.t.
n∑
i=1

vixi ≥ R

where xi = 1 if item zi is inserted in the knapsack. Let MinKP(Z,R,V , C) denote
an algorithm for MinKP, where V = {vi} and C = {ci} are sets of the items’ values
and costs, respectively. The output of this algorithm is the set of selected item for the
knapsack.

C. Distributed Mutex Subroutine

For Algorithm 2, we use the distributed mutex algorithm proposed in our previous
work [26], the detail of which is described in Algorithm 5. The algorithm makes sure
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Algorithm 5 Distributed Mutex Subroutine [26]

1: function D-Mutex(Mi
rcv)

2: for each message msgk ∈Mi
rcv do

3: if (ri < rk) or (ri = rk & si < sk) then
4: ri ← rk

5: si ← sk

6: Πi ← Πk

7: satisfiedi ← satisfiedk

8: end if
9: end for
10: return {ri, si,Πi, satisfiedi}
11: end function

that there is only one (local) partition that dominates (or will finally dominate de-
pending on the communication network) any other partitions. In other words, multiple
partitions locally evolve and some of them only eventually can survive at every main
loop of Algorithm 2 even under asynchronous behaviours of agents as long as their com-
munication network is at least strongly-connected. Even if we may encounter multiple
Nash stable partitions at last, one of them can be distributedly selected by the agents.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has aimed to develop innovative and transformative decision-making frame-
works that enable a robotic swarm to autonomously partition themselves into multiple
disjoint teams to collaborate a set of relatively fewer but complicated tasks. For such
a large-scale multi-agent system to be coordinated effectively, the frameworks should
be executable based on local information in a decentralised manner, operable for a
wide range of the system size, predictable in terms of collective behaviours, flexible to
dynamic environments, operable asynchronously, and preferably able to accommodate
heterogeneous agents [1–5].

Firstly, for a swarm of homogeneous robots, the thesis proposed two novel frame-
works based on biological inspiration in Chapter 2 and game theories in Chapter 3,
respectively. The former, called LICA-MC, is based on a Markov process in which
population fractions of a swarm are modelled as the system state, and each agent be-
haves stochastically according to a time-inhomogeneous Markov matrix (i.e., stochastic
policies) depending on the difference from the current swarm distribution to a desired
status. A swarm of fish in nature inspired this work: despite insufficient awareness of the
entire group, they can be well-coordinated (e.g., schooling, shoaling, milling) by sensing
and maintaining social distance from neighbours in the group [6–9]. Analogously, each
agent in the proposed framework only relies on local information and requires its local
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consistency over neighbouring agents (i.e. Local Information Consistency Assumption)
to adaptively generate the current stochastic policy: this is one of the main novelties
compared with existing frameworks, where global information needs to be known by
the entire agents (i.e., Global Information Consistency Assumption). Thanks to LICA,
the proposed framework has various advantages, e.g., less inter-agent communication, a
shorter timescale for using new information, and the potential to incorporate an asyn-
chronous decision-making process. We proved that, even using such limited information,
the agents can converge to the desired collective status while maintaining scalability,
flexibility, and long-term system efficiency, comparable to a recently-proposed exist-
ing global-information-based approach [3]. We numerically showed that the proposed
framework is robust in a realistic environment where information sharing over agents
is partially and temporarily disconnected. Moreover, the thesis explicitly presented the
design requirements to have all these advantages and provided specific implementa-
tion examples concerning travelling costs minimisation, over-congestion avoidance, and
quorum models, respectively.

The latter, called GRAPE, is based on anonymous hedonic games, where each robot
is regarded as a selfish agent attempting to join the most preferred coalition amongst all
in accordance with its individual preferences regarding the size of each coalition. The
thesis showed that selfish agents who have social inhibition (more specifically, whose
individual interests are transformable to SPAO preferences) can always converge to
a Nash stable partition by using the proposed decentralised decision-making frame-
work. The framework is straightforward and executable based on local interactions
with neighbour agents under a strongly-connected communication network and even
in asynchronous environments because it only relies on NICA (Neighbour Information
Consistency Assumption), i.e., an agent’s local information only needs to be known by
at least one of its neighbouring agents. The framework has a recursive process with
polynomial-time complexity O(n2

adG), where na is the number of agents and dG is the
graph diameter of the agents’ communication network. Even when it comes to a cen-
tralised version (i.e., the case when dG = 1), the analysed complexity is still lower than
that of the existing centralised algorithm in [10] (i.e., O(n2

ant), where nt is the number
of tasks). Furthermore, it was experimentally shown that the proposed framework in
practice could run rapidly with having its complexity of almost O(na). The thesis an-
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alytically presented a mathematical formulation for computing a converged outcome’s
minimum-guaranteed suboptimality, and numerically showed that the lower bound was
averagely 60% to 70%, depending on instances. We additionally showed that 50 % of
suboptimality is guaranteed if social utilities are non-decreasing functions with respect
to the number of coworking agents. Our numerical experiments confirmed that the
proposed framework is scalable, fast adaptable to dynamical environments, and robust
even in a realistic situation where some of the agents temporarily halt operation during
a mission.

Then, in Chapter 4, the thesis compared the characteristics of the bio-inspired
framework and the game-theoretical framework. For the comparison, we implemented
both frameworks for a problem of robotic swarm labour division, introduced evalu-
ation metrics concerning their convergence performances, then performed numerical
experiments with various environmental settings. The statistical results showed that
LICA-MC provides excellent scalability with respect to the number of robots, whereas
GRAPE has polynomial complexity but is more efficient in terms of convergence time
(particularly when accommodating a relatively fewer number of robots) as well as total
travelling costs. This is because GRAPE makes a global agreed plan before action,
whereas agents in LICA-MC myopically generate and follow their local policies without
confirming any social agreement. Additional sensitivity analysis suggested that possible
traffic congestion may degrade the performance of GRAPE, which is not the case for
LICA-MC owing to its built-in path planning function, meanwhile LICA-MC is vulner-
able to the slower mobility of each robot. On the other hand, GRAPE does not need
the specific description of a desired labour distribution status (i.e., as long as agents are
given information about tasks, they can find a social agreement based on their individ-
ual preferences), which is contrarily required to be pre-known to agents of LICA-MC.
More importantly, absolute preferences over tasks are only able to be incorporated in
LICA-MC, whereas agents in GRAPE can have different individual preferences: this
feature provides GRAPE the potential to accommodate heterogeneous agents to some
extent.

In Chapter 5, the thesis attempted to extend GRAPE to incorporate heterogeneous
agents because of the potential found in Chapter 4. The heterogeneity of agents pos-
sibly occur in practice even for a swarm consisting of homogeneously-manufactured
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robots, for example, because of different levels of battery remained. We considered the
case where each task has its minimum workload requirement to be fulfilled by multi-
ple agents, and the agents have different work capacities and costs depending on the
tasks. The decision-making objective is to find an assignment that minimises the to-
tal cost of assigned agents while satisfying the requirements, which was formulated as
MinGAP-MR. This optimisation problem reflects a business concern regarding reduc-
ing unnecessary costs but marginally complying with customers’ requirements. Since it
was not possible to directly use GRAPE for the problem due to the heterogeneity, we
adopted tabu-learning heuristics where an agent penalises its previously chosen coali-
tion whenever it changes a decision: this variant is called T-GRAPE. We proved that,
by doing so, a Nash stable partition is always guaranteed to be determined in a de-
centralised manner. Furthermore, our experimental results revealed that an outcome’s
suboptimality lower bound is at least greater than 50%, and the number of required
iterations until convergence remains the same order of the number of given agents.

Finally, Chapter 6 addressed additional practical issues in decision-making when a
robotic swarm is utilised for a cooperative mission: heterogeneous robots’ team for-
mation, team-to-task assignment, agent-to-working-position selection, fair resource al-
location considering tasks’ minimum requirements, and trajectory optimisation with
collision avoidance. We proposed an integrated framework that decouples the complex
original problem into three subproblems (i.e., coalition formation, position allocation,
and path planning) and deals with them sequentially by three different subroutine al-
gorithms. The coalition formation module based on T-GRAPE deals with a max-min
problem, the objective of which is to partition the agents into disjoint task-specific
teams in a way that balances the agents’ work resources in proportion to the task’s
requirements. For agents assigned to the same task, given reasonable assumptions, the
position allocation subproblem can be efficiently addressed in terms of computational
complexity. For the trajectory optimisation, we utilised the MPC-SCP algorithm which
reduces the size of the problem so that the agents can generate collision-free trajecto-
ries on a real-time basis. The integrated framework works under a non-fully-connected
network of the agents and by their asynchronous behaviours. As a proof of concept,
we implemented the proposed integrated framework into a cooperative stand-in jam-
ming mission scenario. It was suggested from the numerical experiment results that
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Table 7.1: Comparison of the proposed task allocation frameworks

LICA-MC GRAPE T-GRAPE

Decentralisation © © ©

Scalability O(1) O(n2
a) ?1

Predicability © © ?

Adaptability © © ©

Asynchronisation 42 © ©

(Information sharing level required LICA NICA NICA)

Heterogeneity × 43 ©

1Similar to GRAPE in empirical experiments, but not confirmed analytically.
2On the basis of agent subgroups
3Agents with different individual interests should be concerned with the cardinality of

other agents

the framework could be computationally feasible, fault-tolerant, and near-optimal.

In summary, this research has developed multiple decision-making frameworks for
a robotic swarm’s task allocation problem. We proposed LICA-MC and GRAPE for
a homogeneous robotic swarm, and then, based on the latter, we addressed heteroge-
neous agents by T-GRAPE. All the task allocation frameworks can be operated in a
decentralised manner based on local information, but technically there exist differences.
LICA-MC relaxes global information consistency assumption, but still requires agents
to collect local information from all the others in their neighbour tasks for each time
step (literally, LICA). Thus, its asynchronous operation is only possible on the basis of
agent subgroups (i.e., an agent needs to wait for local information to be shared within
its coalition at least). Meanwhile, in GRAPE or T-GRAPE, each agent’s decision-
making process can be independently performed even when local information from a
single neighbour agent is only available (i.e., NICA). Therefore, the frameworks are
executable in a fully-asynchronous manner. Table 7.1 summarises how the proposed
frameworks comply with the desired features presented in Chapter 1.
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In various domains apart from robotics, generic multi-agent systems have also been
considered as promising solutions, and thus we believe that the proposed frameworks
can be exploited to address some of their decision-making problems directly or with
some modifications. In particular, we have high expectations on GRAPE because, as
long as it is able to model SPAO preferences from given agents, one can benefit from
all the advantages of GRAPE presented in the thesis. For example, in the coordination
of self-driving cars, their individual interests regarding available lanes can be extracted
to SPAO preferences with consideration of their myopic future intentions such as turn-
ing left, right, or keeping straight. We expect that this application of GRAPE could
improve the traffic quality. For more generalised problems, the game-theoretical frame-
work with tabu-learning heuristics (i.e., T-GRAPE) would be useful to find a social
agreement of any heterogeneous agents. In fact, using the framework, we dealt with
a frequency channel assignment problem of networked multiple UAVs in [11] (i.e., the
paper C4 in Section 1.5). This problem is, as a resource allocation problem, such that
the communication network of agents should be linked in a way that minimises commu-
nicational interferences given limited frequency band. For the case where scalability is
essential and homogeneous agents are considered, LICA-MC would be much attractive.
Particularly, if the time scale for state transition is relatively inconsiderable compared
with those for computation and communication (e.g., in the domain of parallel com-
puting), it is highly recommended to use LICA-MC. In robotics, continuous movement
of agents in the framework may degrade the system performance in terms of fuel con-
sumption. However, this would be more preferred in some cases, for military examples,
where the agents have to avoid attacks or where they are required to deceive foes.

7.2 Future Work

Future work of this study, particularly regarding GRAPE, is to relax anonymity of
agents and thus to consider a combination of the agents’ identities. Empirical results
showed that heterogeneous agents with social inhibition also could converge to a Nash
stable partition if they share social utilities in a weighted balanced manner. Rigor-
ous analysis regarding their converging behaviours and the corresponding outcome’s
suboptimality must be significant contributions. Another progression is to analyse the
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quality of a Nash stable partition obtained by GRAPE in terms of fair task allocation
because our various experiments showed that the outcome provides individual utilities
to agents in a balanced manner. For T-GRAPE, more research is required to analyti-
cally evaluate its suboptimality, especially connecting with the approximation ratio of
its subroutine for MinKP, and the upper bound of possible iterations. For LICA-MC,
it would be interesting to relax the required local communication between neighbour
agents by incorporating a vision-based local density estimation such as [12].

Since this research assumed that high-level mission descriptions from human opera-
tors are already given, future research will focus on developing a human-robot interface
technique and linking this with decision-making frameworks for multiple robots. For
example, human operators directly control a subset of the robots, called leaders, and
under a swarm intelligence framework, the other remaining robots are to be influenced
in a way that a desired collective behaviour is generated quicker than usual. Here,
we need to consider how to select the swarm leaders and their effects to the other
remaining robots in terms of convergence rate and the system performance. Besides,
we may encounter teleoperational stability issues, which are known as difficult subjects
even for a single robot. Possible delayed input signals from the human to the leaders
may give rise to unexpected collective outcomes. Lastly, since a large number of robots
are given, it is not straightforward to represent the entire robots’ status as something
understandable to the human operators. Development of a useful swarm representation
will also be another future work.
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