
 
 

 
 

Reducing Non-Recurrent Urban 

Traffic Congestion using  

Vehicle Re-routing 
 

By 

Shen Wang 
M.Eng., B.Eng. 

 

A Dissertation submitted in fulfilment of the requirements for the 

award of Doctor of Philosophy (Ph.D.) 

to the 

 
Dublin City University 

School of Electronic Engineering 

 

Supervisors: Dr. Jennifer McManis and  

Dr. Soufiene Djahel (Manchester Metropolitan University) 

  
September, 2016 



 
 

 
 

 
 
Declaration 
 
I hereby certify that this material, which I now submit for assessment on the programme 

of study leading to the award of Ph.D. is entirely my own work, that I have exercised 

reasonable care to ensure that the work is original, and does not to the best of my 

knowledge breach any law of copyright, and has not been taken from the work of others 

save and to the extent that such work has been cited and acknowledged within the text of 

my work. 

 

Signed: __________________________ 

Student ID:_______11101385________ 

Date: ____________________________ 

 

 



 
 

i 
 

Acknowledgement 
 

It is an amazing journey for someone like me who was raised up by a family without 

even a local college degree in China, can eventually complete a PhD program in the 

“Silicon Valley of Europe”. My greatest thank to my dearest parents who fully understand 

and always support me to do what I am interested in. Also to my beloved wife for the 

wonderful and stable marriage life we have built together since we met three years ago. 

During the last four years, I feel grateful to the people I have been working with in 

Performance Engineering Laboratory (PEL). As my co-supervisor, in fact more like a 

friend, Dr. Soufiene Djahel is very professional and surprisingly patient to spend his time 

and energy on answering my questions ranging from “how to be a good researcher” to 

“where should I get Halal food”. My sincere gratitude goes to Dr. Jennifer McManis, my 

principal supervisor, for her valuable and elaborate comments on each of my significant 

submissions, as well as her trust on me, a non-native English speaker, for the opportunity 

to give guest lectures on her module.  My thank also goes to the weekly PEL group meeting, 

in which my PhD progress had been discussed critically for 15 times by many PEL 

members: Prof. Liam Murphy, Prof. John Murphy, Dr. Phillip Perry, Dr. Gabriel-Miro 

Muntean, Dr. Anthony Ventresque, Prof. Damien Magoni and so on. I’ve also set up 

friendships with my colleagues in PEL: like Yi Han and Imane since they helped me 

adapted to the new environment; like Sofiane since we had an unforgettable conference 

trip in 2014; also like Dr. Michal Vondra, who was a visiting PhD in PEL from Czech 

Republic, since the conversation with him that initiated the main contribution of my PhD. 

I highly appreciate the industry experiences in IBM that Dublin City University and 

PEL offer me. Cormac McKenna in IBM Software Group encouraged me to think research 

problem from industry perspective. Takashi Imamichi in IBM Research helped me to 

improve my technical and management skills, and broaden my research vision. I am also 

thankful to Xiaowen, Jiayuan, Liping, Matthias, Alex, Luca, Renan, Pedro, and Stephan 

for exciting soccer games and travelling experiences we had in Ireland and Brazil. 

 

 Dublin, May 2016 
 Shen Wang



 
 

ii 
 

 

List of Publications 
 

 

[Journal] 
• Shen Wang, Soufiene Djahel, Zonghua Zhang and Jennifer McManis, “Next 

Road Rerouting: A Multi-Agent System for Mitigating Unexpected Urban Traffic 

Congestion”, accepted at IEEE Transactions on Intelligent Transportation 

Systems, 2016. 

 

[Conferences] 
• Shen Wang, Soufiene Djahel, and Jennifer McManis, “An Adaptive and 

VANETs-based Next Road Rerouting System for Unexpected Urban Traffic 

Congestion Avoidance”, the 7th IEEE Vehicular Networking Conference (VNC), 

Kyoto, Japan, December, 2015. 

• Shen Wang, Soufiene Djahel, and Jennifer McManis, “A Multi-Agent Based 

Vehicle Re-routing System for Unexpected Traffic Congestion Avoidance”, the 

17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 

Qingdao, China, October, 2014. 

• Shen Wang, Soufiene Djahel, Jennifer McManis, Cormac McKenna and Liam 

Murphy, “Comprehensive Performance Analysis and Comparison of Vehicle 

Routing Algorithms in Smart Cities”, the 5th Global Information Infrastructure 

Symposium(GIIS), IEEE, Trento, Italy, October, 2013. 

• Shen Wang, Soufiene Djahel, and Jennifer McManis, “A Hybrid Vehicular Re-

routing Strategy with Dynamic Time Constraints for Road Traffic Congestion 

Avoidance”, the 12th Information Technology & Telecommunications (IT&T) 

Conference, Athlone, Ireland, May, 2013 

 
  



 
 

iii 
 

Table of Contents 
 
 
Acknowledgement ............................................................................................................... i 

List of Publications ............................................................................................................ ii 

Table of Contents .............................................................................................................. iii 

List of Figures .................................................................................................................. vii 

List of Tables ..................................................................................................................... ix 

List of Equations ................................................................................................................. x 

List of Abbreviations ......................................................................................................... xi 

Abstract ............................................................................................................................... 1 

Chapter 1 Introduction ........................................................................................................ 2 

1.1. Research Motivation ........................................................................................... 2 

1.2. Problem Statement .............................................................................................. 8 

1.3. Contributions .................................................................................................... 10 

1.4. Thesis Structure ................................................................................................ 12 

Chapter 2 State-of-the-art ................................................................................................. 14 

2.1 Brief Introduction of Road Traffic Modelling ........................................................ 14 

2.2 Routing for One O/D Pair ....................................................................................... 16 

2.2.1 Dijkstra’s Algorithm for Shortest Path Problem .............................................. 16 

2.2.2 Dijkstra’s Algorithm using Heap or Bucket .................................................... 17 

2.2.3 Heuristic Shortest Path Finding and Re-planning ............................................ 18 

2.2.4 Shortest Path Algorithm for Vehicle Road Guidance ...................................... 19 

2.3 Routing for Multiple O/D Pairs .............................................................................. 21 

2.3.1 User Equilibrium and System Optimum .......................................................... 21 

2.3.2 Dynamic Traffic Assignment ........................................................................... 25 



 
 

iv 
 

2.3.3 Stochastic Traffic Assignment ......................................................................... 26 

2.4 Multi-Agent Traffic Management Systems ............................................................ 27 

2.4.1 Multi Agent System for Traffic Signal Control ............................................... 27 

2.4.2 Multi-Agent System for Vehicle Route Guidance ........................................... 29 

2.5 Study of Non-Recurrent Traffic Congestion ........................................................... 30 

2.6 Summary of Limitations ......................................................................................... 31 

Chapter 3 Vehicle Routing on Centralised Traffic Management System: A Performance 

Evaluation Study ............................................................................................................... 33 

3.1 Motivation ............................................................................................................... 33 

3.2 Evaluation Framework ............................................................................................ 34 

3.2.1 Overview .......................................................................................................... 34 

3.2.2 Data Pre-processing ......................................................................................... 37 

3.2.3 Improved Travel Time Calculation .................................................................. 39 

3.2.4 Evaluation Metrics ........................................................................................... 42 

3.3 Evaluation Results .................................................................................................. 44 

3.4 Summary ................................................................................................................. 54 

Chapter 4 Next Road Rerouting: System Architecture ..................................................... 55 

4.1 Motivation for Next Road Rerouting ...................................................................... 55 

4.2 Deployment and Architecture of NRR ................................................................... 57 

4.3 Overview of Rerouting Using NRR ........................................................................ 59 

4.4 Multi-Agent System Architecture ........................................................................... 63 

4.5 Summary ................................................................................................................. 65 

Chapter 5 Next Road Rerouting: Heuristic Approach ...................................................... 66 

5.1 Heuristic Routing Cost Function ............................................................................ 66 

5.1.1 Road Occupancy .............................................................................................. 68 

5.1.2 Estimated travel time ....................................................................................... 68 



 
 

v 
 

5.1.3 Geographic Distance to Destination ................................................................ 69 

5.1.4 Geographic Closeness of Congestion .............................................................. 69 

5.1.5 Adaptive Weight Assignment Approach ......................................................... 70 

5.2 Evaluation Methodology ......................................................................................... 73 

5.2.1 Simulation Settings .......................................................................................... 73 

5.2.2 Evaluation Metrics ........................................................................................... 75 

5.3 Evaluation Results and Analysis ............................................................................. 77 

5.3.1 Impact of Selfish and Altruistic Rerouting on Traffic Conditions .................. 77 

5.3.2 Investigating NRR’s Scalability ...................................................................... 82 

5.3.3 NRR vs. The Existing Solutions ...................................................................... 83 

5.3.4 Study of the Impact of NRR on both Rerouted and Non-Rerouted Vehicles .. 86 

5.3.5 Impact of Varying Weight Allocation Strategies on NRR .............................. 88 

5.4 Summary ................................................................................................................. 89 

Chapter 6 Next Road Rerouting with High Resolution Traffic Information .................... 90 

6.1 Problems of Low Resolution Traffic Information .................................................. 90 

6.2 Motivation of VANETs for Vehicle Rerouting ...................................................... 92 

6.3 NRR with VANETs ................................................................................................ 94 

6.3.1 Architecture ...................................................................................................... 94 

6.3.2 Adaptive Selection for Operational Parameter ................................................ 95 

6.3.3 Evaluation Results and Analysis ...................................................................... 97 

Chapter 7 Conclusion and Future Work ........................................................................... 99 

7.1 Problem Overview .................................................................................................. 99 

7.2 Contributions to the State-of-the-Art .................................................................... 100 

7.3 Recommendation for Future Work ....................................................................... 103 

Bibliography ................................................................................................................... 106 

Appendix A – Key Code Snippets for Simulation ............................................................... i 



 
 

vi 
 

A.1 Crop the Large-Scale Simulation Scenario ............................................................... i 

A.2 Two-Step Rerouting in NRR ................................................................................... iv 

A.3 Adaptive Selection for NRR Parameters ................................................................. v 

  



 
 

vii 
 

List of Figures 
 
Figure 1.1: The world’s urban and rural populations, 1950-2050 [1]. ............................... 2	

Figure 1.2: Percent of delay for hours of day [2]. ............................................................... 3	

Figure 1.3: Growth rate of the number of vehicles in Beijing since 2008 [3]. ................... 4	

Figure 1.4: The schematic of adaptive traffic control systems ........................................... 5	

Figure 1.5: A use case of vehicle navigation systems ........................................................ 6	

Figure 1.6: How much extra time should you allow to be 'on-time' [2]. ............................ 7	

Figure 1.7: Traffic signs used after the occurrence of events. ............................................ 8	

Figure 2.1: Bi-directional search (a), sub-goal search (b), and hierarchical search (c) from 

shortest path in road network [25]. ................................................................................... 20	

Figure 2.2: 3-tier system architecture of SCATS [47]. ..................................................... 28	

Figure 3.1: Performance evaluation framework for vehicle routing algorithms based on 

centralized TMS. ............................................................................................................... 36	

Figure 3.2: The three scenarios as shown in TAPASCologne. ......................................... 37	

Figure 3.3: Traffic load in the three scenarios. ................................................................. 38	

Figure 3.4: Illustrative example of Origin-Destination pairs selection. ............................ 39	

Figure 3.5: Three typical cases showing the limitations of the travel time calculation 

using SUMO API and BPR. ............................................................................................. 40	

Figure 3.6: Number of selected nodes under various trip lengths .................................... 46	

Figure 3.7: Impact of various trip lengths and urban scenarios on the efficiency of vehicle 

routing algorithm in terms of travel time. ......................................................................... 47	

Figure 3.8: Computation time under various trip lengths. ................................................ 48	

Figure 3.9: Impact of various trip lengths and urban scenarios on the efficiency of vehicle 

routing algorithm in terms of travel distance. ................................................................... 50	

Figure 3.10: Impact of various trip lengths and urban scenarios on the efficiency of 

vehicle routing algorithms in terms of travel time variability .......................................... 51	



 
 

viii 
 

Figure 4.1: Architecture and deployment of NRR based on the existing SCATS. ........... 58	

Figure 4.2: Sequence diagram of a typical re-routing process using NRR. ...................... 59	

Figure 4.3: Activated iTLs in different NRR levels. ........................................................ 61	

Figure 4.4: Use case diagram of all key actors in NRR. ................................................... 61	

Figure 4.5: MAS architecture in NRR. ............................................................................. 64	

Figure 5.1: An example of weight values allocation calculation in NRR. ....................... 73	

Figure 5.2: Location of the closed road in grid map (left, 8X7) and realistic map (right, 

city center of Cologne). ..................................................................................................... 78	

Figure 5.3: Trip duration distribution of the evaluated scenarios in both 8 × 7 grid map 

(a) and city center of Cologne (b). .................................................................................... 80	

Figure 5.4: Impact of the penetration rate on the performance of ConRe. ....................... 81	

Figure 5.5: Comparison of the percentage of improvement achieved by NRR, ShoRe and 

FasRe over ERE in terms of ATT and PTI. ...................................................................... 86	

Figure 6.1: The impact of slow update frequency and limited traffic information coverage 

on the rerouting decision. .................................................................................................. 91	

Figure 6.2: The comparison of architecture of NRR deployed in ATCS and VANETs. . 94	

Figure 6.3: The geographical distribution of standard deviations (STD) of a set of RO 

values from all outgoing roads in each agent: before and after the occurrence of an event 

on the central road in 8X7 grid map scenario. The larger the circle is, the larger value of 

STD a certain agent has. ................................................................................................... 96	

 

  



 
 

ix 
 

List of Tables 
 
Table 3.1: Number of nodes and links in three scenarios. ................................................ 37	

Table 3.2: Travel time calculation results (unit: second) .................................................. 42	

Table 3.3: Data storage requirement for each algorithm under different urban scenarios.

........................................................................................................................................... 52	

Table 3.4: Suggestions on the most efficient vehicle routing algorithm urban different 

urban scenarios .................................................................................................................. 53	

Table 4.1: Summary of all messages used in NRR. .......................................................... 62	

Table 5.1: Key abbreviations ............................................................................................ 67	

Table 5.2: Simulation scenarios statistics. ........................................................................ 74	

Table 5.3: Performance comparison of ConRe and LoaRe against ORG and ERE in 8x7 

grid map. ........................................................................................................................... 79	

Table 5.4: Performance of NRR under different scalability levels in 8x7 grid map. ....... 82	

Table 5.5: Performance comparison of NRR, ShoRe, and FasRe with ORG and ERE 

scenarios (Cologne Center / 8x7). ..................................................................................... 84	

Table 5.6: Impact of NRR, ShoRe, and FasRe on rerouted vehicles (Cologne Center / 

8x7). .................................................................................................................................. 87	

Table 5.7: Impact of NRR, ShoRe, and FasRe on non-rerouted vehicles (Cologne Center 

/ 8x7). ................................................................................................................................ 88	

Table 5.8: Comparison of varying weight allocations strategies’ impact on NRR 

(Cologne Center / 8x7). ..................................................................................................... 88	

Table 6.1: Selected map statistics. .................................................................................... 93	

Table 6.2: Results of key congestion measurements for NRR with VANETs (N-V), and 

NRR with ATSC (N-A) with various traffic information update intervals. ..................... 98	

  



 
 

x 
  

List of Equations 
 
 
Equation 2.1: Formulation of traffic assignment problem to achieve SO and UE. .......... 22	

Equation 2.2: BPR function. ............................................................................................. 23	

Equation 3.1: The calculation of travel time variability using Polus’s method. ............... 44	

Equation 5.1: Cosines similarity to calculate geographic closeness of congestion. ......... 70	

Equation 5.2: Heuristic routing cost function. .................................................................. 70	

Equation 5.3: Normalization for each factor. .................................................................... 70	

Equation 5.4: Weight allocation using coefficient of variation. ....................................... 71	

 
 
 
  



 
 

xi 
 

List of Abbreviations 
 
 
AD*: Anytime D*. 

API: Application Programming Interface. 

ARA*: Anytime Re-planning A*. 

ATSC: Adaptive Traffic Signal Control 

ATT: Average Travel Time. 

BPR: Bureau of Public Road. 

BSM: Basic Safety Message. 

CAM: Cooperative Awareness Message. 

CPU: Central Processing Unit.  

CV: Coefficient of Variance. 

DA: Dijkstra’s Algorithm. 

DIKB: DA using Buckets. 

DIKF: DA using Fibonacci Heap. 

DTA: Dynamic Traffic Assignment. 

ERE: Scenario of En-Route Event. 

ETSI: European Telecommunications Standards Institute. 

FCD: Floating Car Data. 

GC: Geographic Closeness of Congestion. 

GD: Geographic Distance to Destination. 

IBM: International Business Machines Cooperation. 

ICT: Information and Communication Technology. 

IEEE:  Institute for Electrical and Electronics Engineers. 

iTL: Intelligent Traffic Light. 



 
 

xii 
 

ITS: Intelligent Transportation Systems. 

MAS: Multi Agent System. 

NRR: Next Road Rerouting. 

O/D: Origin / Destination. 

ORG: Scenario of Original Traffic. 

PTI: Planning Time Index. 

RO: Road Occupancy. 

RSU: Road Side Unit. 

SCATS: Sydney Coordinated Adaptive Traffic System. 

SCOOT: Split Cycle Offset Optimization Technique. 

SI: System Instability. 

SO: System Optimum. 

STA: Static Traffic Assignment. 

STD: Standard Deviation. 

SUMO: Simulation of Urban Mobility. 

TAPAS: Travel and Activity PAtterns Simulation. 

TCP: Transmission Control Protocol. 

TMS: Traffic Management Systems. 

TOC: Transportation Operation Centre. 

TraCI: Traffic Control Interface. 

TT: Travel Time. 

TTI: Travel Time Index. 

UDP: User Datagram Protocol. 

UE: User Experience. 

V2I: Vehicle to Infrastructure. 

V2V: Vehicle to Vehicle. 



 
 

xiii 
 

VANET: Vehicular Ad-hoc Network. 

VDF: Volume-Delay-Function. 

VNS: Vehicle Navigation Systems. 

WAVE: Wireless Access in Vehicular Environment. 

Wi-Fi: Wireless Fidelity. 



 
 Abstract 
 

1 
 

Abstract 
 

Title: Reducing Non-Recurrent Urban Traffic Congestion using Vehicle Re-routing 

PhD candidate: Shen Wang 

 

Recently, with the trend of world-wide urbanization, some of the accompanying problems 
are getting serious, including road traffic congestion. To deal with this problem, city 
planners now resort to the application of the latest information and communications 
technologies. One example is the adaptive traffic signal control system (e.g. SCATS, 
SCOOT). To increase the throughput of each main intersection, it dynamically adjusts the 
traffic light phases according to real-time traffic conditions collected by widely deployed 
induction loops and sensors. Another typical application is the on-board vehicle navigation 
system. It can provide drivers with a personalized route according to their preferences (e.g. 
shortest/fastest/easiest), utilizing comprehensive geo-map data and floating car data. 
Dynamic traffic assignment is also one of the key proposed methodologies, as it not only 
benefits the individual driver, but can also provide a route assignment solution for all 
vehicles with guaranteed minimum average travel time. 

However, the non-recurrent road traffic congestion problem is still not addressed properly. 
Unlike the recurrent traffic congestion, which is predictable by capturing the daily traffic 
pattern, unexpected road traffic congestion caused by unexpected en-route events (e.g. 
road maintenance, an unplanned parade, car crashes, etc.), often propagates to larger areas 
in very short time. Consequently, the congestion level of areas around the event location 
will be significantly degraded. Unfortunately, the three aforementioned methods cannot 
reduce this unexpected congestion in real time. 

The contribution of this thesis firstly lies in emphasizing the importance of the dynamic 
time constraint for vehicle rerouting. Secondly, a framework for evaluating the 
performance of vehicle route planning algorithms is proposed along with a case study on 
the simulated scenario of Cologne city. Thirdly, based on the multi-agent architecture of 
SCATS, the next road rerouting (NRR) system is introduced. Each agent in NRR can use 
the locally available information to provide the most promising next road guidance in the 
face of the unexpected urban traffic congestion. In the last contribution of this thesis, 
further performance improvement of NRR is achieved by the provision of high-resolution, 
high update frequency traffic information using vehicular ad hoc networks. Moreover, 
NRR includes an adaptation mechanism to dynamically determine the algorithmic (i.e. 
factors in the heuristic routing cost function) and operational (i.e. group of agents which 
must be enabled) parameters. 

The simulation results show that in the realistic urban scenario, compared to the existing 
solutions, NRR can significantly reduce the average travel time and improve the travel 
time reliability. The results also indicate that for both rerouted and non-rerouted vehicles, 
NRR does not bring any obvious unfairness issue where some vehicles overwhelmingly 
sacrifice their own travel time to obtain global benefits for other vehicles.
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Chapter 1  
Introduction 

 
1.1. Research Motivation 

	
Urbanization, a worldwide phenomenon describing a trend characterized by 

an increasing movement of the countryside’s population into urban areas, has been 

ongoing for the last six decades. In the momentous year of 2007, city’s populations 

exceeded for the first time rural area populations, as shown in Figure 1.1 from the 

2014 United Nations’ report [1]. This report also predicts that by the year 2050, 

there will be about two-thirds urbanized population in the world. 

 

 
Figure 1.1: The world’s urban and rural populations, 1950-2050 [1]. 
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Urbanization has many positive impacts on human society. It creates an 

increasing number of better opportunities for jobs, education, and healthcare that 

more and more people are moving from the countryside to pursue. Urbanization 

makes the global distribution of population more concentrated in areas where less 

natural disasters occur, more food can be produced and more infrastructure can be 

built. Additionally, urbanization facilitates the requirement of modern 

industrialized society so that individuals cooperate with more people from diverse 

backgrounds. Consequently, the past 60 years of global urbanization have resulted 

in an enormous economic growth, and concentration of population in densely 

populated cities.  

Urbanization leads to a series of unprecedented challenges including urban-

rural inequality and environmental. Traffic congestion, one of the aforementioned 

new challenges, will be particularly studied in this thesis. A recent urban mobility 

report [2] states that in the year 2014 in U.S., the monetary loss due to traffic 

congestion is evaluated as $160 billion, representing 6.9 billion hours of extra 

travel time and 3.1 billion gallons of wasted fuel. This economic loss was only $42 

billion back in 1982, and $114 billion in 2000. Urban road traffic congestion is 

considered as the consequence of short supply in road capacity with respect to 

fast growing traffic demand. The modification of road infrastructure is not as 

flexible as traffic demand; therefore, road traffic congestion often occurs during 

peak commuting hours when traffic can be built up by several times within only 

one hour, as indicated in Figure 1.2. 

 
Figure 1.2: Percent of delay for hours of day [2]. 
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Figure 1.3: Growth rate of the number of vehicles in Beijing since 2008 [3]. 

 

One way to alleviate urban traffic congestion is the implementation of a 

public policy to restrict the growth of traffic demand. For instance, the local 

authority of Beijing has carried out two typical policies to control the total volume 

of vehicles on the roads. The first representative policy is called “End-number 

license plate policy”. After a successful test during 2008 Beijing Olympic Games, 

all registered vehicles are classified into 5 groups by the last digit of their license 

plate numbers, 0 or 5, 1 or 6, 2 or 7, 3 or 8, and 4 or 9. Each group of vehicles is 

banned to be driven in the city center area during daytime of one of the 5 weekdays. 

For example, vehicles from the group “1 or 6” are not allowed to be on the road on 

Mondays from 7am to 8pm, those from the group “2 or 7” cannot appear in the 

central urban area on Tuesdays, and so on. This policy has resulted in a reduction 

of almost 40% of daily emission and nearly 20% of road traffic [4]. The other 

typical policy, “small passenger car purchase policy”, is defined to limit the annual 

quota for newly registered vehicles since 2011. For example, according to the result 

of the latest lottery, for every 665 applicants for a new car registration, only one is 

permitted by random selection. As shown in Figure 1.3, this policy significantly 

decreases the growth rate of the number of vehicles in Beijing. Likewise, a more 

modest example is the application of road pricing policy in London. Instead of 

restricting the traffic demand and penalizing the violators, the local authority in 

2.83%
4.56% 4.35% 3.62%

19.66%

14.70%

12.02%

2014 2013 2012 2011 2010 2009 2008
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London charges drivers whose vehicles are running in the congested area during 

daytimes on weekdays. Although these policies are somewhat effective, due to the 

fact that the institution of legislation and law enforcement varies a lot in different 

countries, this type of solutions cannot be easily generalized to other countries to 

reduce the traffic congestion. 

 

Figure 1.4: The schematic of adaptive traffic control systems1 

 

Another way to relieve urban traffic congestion is to apply information 

and communication technology (ICT) to enhance the information exchange 

for all road transportation participants. For example, as shown in Figure 1.4, 

adaptive traffic signal control (ATSC), such as SCATS [45] and SCOOT [46], 

adjusts the offset, cycle and split of traffic signals to optimize the throughput of 

each main intersection. The basis of this automatic adjustment is the real-time 

traffic information collected during fixed time intervals by induction loops. The 

induction loops are generally installed under the ground of a certain location of 

major urban roads. They can detect the percentage of time that the detection area 

of the induction loop is occupied by vehicles. This system enhances the awareness 

of traffic conditions for the traffic operation center (TOC), thus improving the 

traffic light timings to control vehicles queuing in front of junctions. The second 

                                                
1 http://www.internetbillboards.net/wp-content/uploads/adaptive-traffic-control.jpg 



 
 Chapter 1. Introduction 
 

6 
 

ICT application for congestion avoidance is vehicle navigation systems (VNS), as 

shown in Figure 1.5,  such as Google Maps, TomTom [100], etc. VNS collect real 

time traffic information by the widely used mobile devices. Drivers who use these 

VNS apps are able to check the current global traffic conditions easily to adjust 

their travel route plans. ICT may also be combined with administrative policies to 

reduce traffic. For example, automatic number plate recognition cameras are used 

in the aforementioned cases of Beijing and London to locate and confirm the 

violators and drivers who should be charged. In Singapore, they have introduced 

the real-time variable road pricing to charge drivers with different rates according 

to historical and real-time traffic conditions. 

 

Figure 1.5: A use case of vehicle navigation systems 

 

Nowadays, the aforementioned general urban road traffic congestion 

problem is not difficult to cope with using the state-of-the-art traffic prediction 

technology because this congestion is mostly recurrent, appears during the 

commuting peak hour or around the frequently used roads. Specifically, the daily 

traffic is predictable as the traffic variation within specific time periods (e.g. one 

hour, one day, one week) is known with good certainty. This is due to the fact that 

the generation of such type of traffic depends on the time and location of drivers’ 

work, study, and home, which, in general, changes relatively infrequently. In 
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contrast, the non-recurrent traffic congestion, which is caused by en-route events, 

such as poor weather conditions, sports or concerts in stadiums, car incidents, road 

works, unplanned parades, etc., can deteriorate the global traffic conditions in 

critical areas within a very short time period. In order to ensure drivers’ on-time 

arrival, according to the latest urban mobility report [2], they need to allow more 

than twice the anticipated travel time during peak hours to account for these 

unexpected incidents, as is shown in Figure 1.6. 

 

	
Figure 1.6: How much extra time should you allow to be 'on-time' [2]. 
 

As the fastest real-time traffic update for the two systems mentioned above 

(i.e.  ATSC and VNS) is at least 2 minutes, and more commonly ranges from 5 

minutes to 20 minutes, although they perform well when dealing with the recurrent 

congestion, they cannot deal with the non-recurrent congestion quickly enough. 

The response time is vital for the alleviation of en-route congestion using vehicle 

rerouting. If a rerouting decision is delayed, the vehicle may already have 

proceeded through one or more junctions, which reduces the rerouting 

opportunities. Specifically, under the stable traffic flow2, a vehicle needs 20-35 

seconds to traverse an urban road segment including its intersection. Thus, the 2-

                                                
2 HCM. Highway Capacity Manual. Washington, DC: Transportation Research Board; 2010 
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20 minutes update frequency that the existing ITS have is not sufficient to provide 

rerouting suggestions under non-recurrent traffic congestions. 

 In practice, the existing solutions to deal with the en-route events are 

divided into two categories. The first category makes use of static or variable traffic 

signs. As shown in Figure 1.7, after the occurrence of unexpected en-route events, 

the local authority often uses the static or variable traffic signs to notify road users, 

mostly drivers, to take a suggested detour or seek alternative routes by themselves. 

The second category is based on the application of VNS. For instance, Waze, which 

was acquired by Google in June 2013, periodically scraps road events information 

published by the official social media (e.g. Twitter and Facebook), or reported by 

trustworthy users, and presents them on Google Maps. This allows the drivers to 

adjust their own travel plans but without considering the future impact on the global 

traffic around the event area. 

 

 
Figure 1.7: Traffic signs used after the occurrence of events. 

 

 

1.2. Problem Statement 
 

Currently, there are no effective systems used in practice to deal with the 

unexpected urban road traffic congestion, and there is no theoretical work, to the 
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best of my knowledge, which investigates this non-recurrent congestion problem 

with practical assumptions and evaluations in realistic urban scenarios 3. The 

problem studied in this thesis is stated as follows: 

 

How to efficiently reduce non-recurrent traffic congestion in urban roads 

using advanced vehicle re-routing mechanisms? 

 

There are several clarifications on the scope of this problem, stated as 

follows: 

1. I focus on urban road scenarios rather than highway scenarios. In the 

latter, the number of junctions is lower and the road length is much longer 

compared to the former. Therefore, the designed solution for highways should be 

more focused on improving the real-time responsiveness for event information 

detection and notification, rather than rerouting the vehicles. Conversely, there are 

many possible solutions using vehicle rerouting to alleviate such congestion in 

urban scenario, due to its more sophisticated road network topologies. This 

increases the complexity to provide an effective approach, but also creates huge 

potential to deal with this problem with much better performance. 

2. I focus on the non-recurrent congestion problem rather than recurrent 

congestion. Thus, my proposed system is expected to react to the event quickly and 

should be effective in short time periods, but does not have to be optimal. Moreover, 

this thesis studies the non-recurrent congestion problem caused by full link closures, 

rather than partial reduction of flow, single lane closure, etc. 

3. To verify that the proposed system eventually reduces the congestion, 

many congestion indicators are used in this thesis to confirm that this objective is 

achieved indeed. Among these indicators, I use travel time index (TTI) for 

measuring average travel time and planning time index (PTI) for measuring travel 

time reliability. 

4. The methodology used in the proposed system is to re-route vehicles to 

                                                
3 The detailed limitations will be illustrated in the next chapter “state-of-the-art” 



 
 Chapter 1. Introduction 
 

10 
 

achieve my goal. The recurrent congestions are caused by the increased traffic 

demand where the traffic distribution over each local area is more or less balanced 

as the roads are all highly occupied. While, the non-recurrent congestions are 

caused by the lack of event notification to drivers, which often leads to imbalanced 

traffic. Theoretically, rerouting vehicles leads to redistribution of the traffic on the 

fixed road infrastructure topology. This achieves more efficient use of road 

resources. An ideal re-routing approach should also let vehicle to reach its 

destination as soon as possible, which sometimes contradict the traffic balancing. 

Practically, no system is currently being used as it is complicated to find a route 

with the desired quality within a very short time, and it is hard to convince drivers 

to take the suggestions from a third party. 

 

In addition, there are some practical constraints related to the studied 

research problem. The first constraint consists of keeping the number of rerouted 

vehicles as low as possible. In practice, drivers are reluctant to change their planned 

route unless they have to do so when a road closure occurs. Therefore, even though 

in most cases rerouting more vehicles will lead to higher traffic congestion 

reduction, I still need to keep the least number of rerouted vehicles to enhance the 

practicability of the proposed system. The second practical constraint is that the 

proposed system should not cause serious unfairness issue for other vehicles. That 

is, the reduction in average travel time should not come at the expense of a 

significant increase in travel time for a small number of individuals. 

	

1.3. Contributions 
 

The contributions of this thesis are summarized as follows: 

 

• I investigated the possibility of extending the existing ITS infrastructure by 

adding a route guidance component. To this end, I have conducted 

comprehensive performance (i.e. execution and functionality) evaluations 

and comparison of four typical vehicle routing algorithms (i.e. static A*, 
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static Dijkstra, dynamic A*, dynamic Dijkstra) based on the architecture of 

the existing ITS. I found that the dynamic A* can consume a lot of system 

resources, in terms of both computation and storage, although it guarantees 

the best performance for the least trip time. If the deployed system has 

limited capability, then the static A* algorithm is a more suitable alternative. 

 

• I proposed a next road rerouting (NRR) scheme to deal with the non-

recurrent congestions based on existing systems. My scheme fits perfectly 

the real-time requirement of non-recurrent congestions problem because it 

only gives the most promising next road choice, rather than the full route, 

for vehicles whose planned routes include the closed road. After being 

routed in uncongested areas, it starts using VNS to get the full route to 

complete the rest of its journey. Thus, it reduces a significant burden for the 

servers in TOC, returns in useful timeframe, and still manages to ensure 

effective control of the global traffic conditions, as shown in my simulation 

results based on an urban scenario. 

 

• I also proposed adaptation mechanisms for NRR to achieve better control 

of the current traffic by rerouting various vehicles. This adaptive feature 

enables NRR to calibrate its algorithmic and operational parameters.  The 

algorithmic parameters in NRR are the weight values for four different 

factors used in the routing cost function. NRR uses coefficient of variation 

to evaluate the deviations for each of the four given factors measuring the 

status of each available next road choices. The more deviation it has, the 

higher weight value it should be given. The operational parameters of NRR 

are the group of agents that should be enabled to perform rerouting. 

Generally, the more agents enabled, the better performances tend to be 

achieved. Unfortunately, the number of vehicles involved in the rerouting 

process will be increased as well. The intuition proposed in NRR is to 

enable agents only when their traffic is not balanced. These agents are 

chosen by k-means algorithm. The adaptive feature is facilitated by 
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Vehicular Ad-hoc Networks (VANETs) technology, which can provide 

high resolution traffic information. In VANETs, a beacon is broadcasted by 

each vehicle at least every 0.1 seconds to share the real time status of the 

vehicle including its speed, headings, steering angle, etc. The simulation 

results show that a further improvement of global traffic conditions is 

achieved using NRR with adaptation mechanisms, compared to NRR 

without adaptations and two other state-of-the-art practical approaches. 

 

 

1.4. Thesis Structure 
	

The structure of this thesis is outlined in chapters as follows: 
• Chapter 2 describes the related work on the research problem of this 

thesis. I firstly introduce two categories of vehicle routing algorithms 
in the transportation domain: routing for one O/D (Origin/Destination) 
pair and multiple O/D pairs. Then, I focus on multi agent systems in 
urban traffic management, which is followed by the most recent work 
on reducing non-recurrent congestion. Finally, I summarize the 
limitations of the related work as oppose to the research problem. 
 

• Chapter 3 investigates the performance of the four most commonly 
used vehicle routing algorithms based on centralised ITS under various 
routing requests. 

 
• Chapter 4 overviews the architecture of my proposed next road 

rerouting system. This chapter provides deployment details of NRR as 
an extension of existing ATSC. Then, a typical rerouting process using 
NRR is introduced. Finally, this chapter defines the fundamental 
elements in multi agent design of NRR and explains the agent 
coordination mechanism in particular. 
 

• Chapter 5 emphases closely on my next road rerouting idea. 
Specifically, to justify the effectiveness of NRR, I provide a detailed 
introduction to the four factors used in measuring the cost of next road 
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choice. Besides, I also propose an efficient weight value allocation 
mechanism to identify the importance of the four factors in each 
different routing request. 

 
• Chapter 6 applies VANETs on NRR to study how the granularity of 

traffic information can affect the rerouting decision. An adaptive 
mechanism is also proposed for the selection of operational parameters 
to avoid unnecessary rerouting. 

 
• Chapter 7 draws the conclusion and discusses some future research 

directions that can achieve further reduction in non-recurrent urban 
traffic congestion.
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Chapter 2  
State-of-the-art 
 

This chapter introduces the state-of-the-art approaches that are relevant to 

the research problem investigated in this thesis. Firstly, vehicle routing algorithms 

to find the least costly route for one Origin and Destination (O/D) pair are presented. 

Secondly, vehicle route assignment strategies seeking the lowest total cost routes 

for multiple O/D pairs are overviewed along with the discussion of two 

conventional traffic/route assignment objectives: user equilibrium (UE) and system 

optimum (SO). Thirdly, the up-to-date multi agent based traffic management 

systems for traffic light signal control and vehicle route optimization are discussed. 

Fourthly, the approaches particularly focusing on reducing non-recurrent urban 

traffic congestion are introduced. Finally, the limitations of all the above 

approaches are highlighted for addressing the thesis research problem. 

 

 

2.1 Brief Introduction of Road Traffic Modelling 
 
This section briefly introduces how road traffic is modelled and how the 

performance of a road traffic network is measured. Traditional traffic modelling 

approaches consider the road network as a directed acyclic graph, of which nodes 

represent junctions while edges represent roads and their corresponding driving 

directions. The key idea in the traditional approach is to model the traffic in the 

unit of “road” with solutions describing how many vehicles should be assigned to 

each road, rather than in the unit of “vehicle”, with solutions describing what route 

should be assigned for each vehicle. Specifically, to bridge the perspective from 
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“vehicle” to “road”, a volume-delay-function (VDF) is used to model how travel 

time varies with the number of “vehicles” on a specific “road”. In macroscopic 

view, both computer network modelling and road network modelling have the same 

performance objective, namely, to reduce the end to end packet delay in data 

networks or corresponding trip time for vehicles. However, in microscopic view, 

road traffic modelling has no concept like packet arrival distribution which can be 

found in computer network modelling. This is because the majority of trip time on 

the road network is spent on each road (i.e. modelled as link delay), while the main 

part of end to end packet delay occurring on each router (i.e. modelled as node 

delay) over its route. More details can be found in the section 2.3.1. 

 

Although the traditional road network modelling is based on each road 

segment, due to the instability of urban road traffic (i.e. short road length, various 

road conditions, and frequent disruption by signalized junction), there is a strong 

practical demand for assigning routes to each vehicle. Concretely, to reduce travel 

time (i.e. or travel distance) for a single trip, routing algorithms for one O/D pair 

can be used. For example, A* can compute the route with the least travel time for 

each vehicle then adapt to the road network with its heuristic function designed to 

find the lower bound of travel time between any given O/D pairs.  These algorithms 

are elaborated in section 2.2. Additionally, routing algorithms for all O/D pairs can 

obtain the reduction of the total travel time for all trips. For instance, User 

Equilibrium traffic condition can be achieved by the iterative execution of 

Dijkstra’s Algorithm, of which solutions are routes for each vehicle. More details 

of these algorithms are discussed in section 2.3. 

 

The remaining sections (i.e. section 2.4 & 2.5) in this chapter are the 

descriptions of various system implementations, based on the fundamental concept 

of road traffic modelling introduced above. 
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2.2 Routing for One O/D Pair 
 
This section introduces several important variants of shortest path finding 

algorithms used for route planning. In addition, their applications for vehicle route 

guidance in the transportation domain are also reviewed. 

 

2.2.1 Dijkstra’s Algorithm for Shortest Path Problem 
 

The foundation of finding a personalized route for one O/D pair is the study 

of the classic shortest path problem. In a connected graph, the shortest path problem 

consists in finding the path (i.e. the set of consecutive edges) with the least defined 

cost from the source to the target vertex. In 1958, E. W. Dijkstra designed an 

algorithm [5], named after himself, which firstly solved the shortest path problem 

with its optimality guaranteed using Proof by Contradiction.  

Algorithm 2.1: Dijkstra’s Algorithm 
1. function Dijkstra(graph, source, target): 
2.     create unvisited vertex set Q 
3.     for each vertex v in graph: 
4.         dist[v] ← ∞ 
5.         prev[v] ← Ø 
6.         add v to Q 
7.     dist[source] ← 0 
8.     while Q is not empty: 
9.         u  ←  vertex in Q with min dist[u] 
10.         if u = target: 
11.             return dist[], prev[] 
12.         else: 
13.             remove u from Q 
14.         for each neighbor v of u: 
15.             alt  ← dist[u] + length(u, v) 
16.             if alt < dist[v]: 
17.                 dist[v] ← alt 
18.                 prev[v] ← u 
19.     return dist[], prev[] 

 

As shown in Algorithm 2.1, Dijkstra’s Algorithm (DA) takes 3 input 

elements: the graph, the source and target vertex. It returns 2 output elements: one 

array dist[] for retrieving the cost value for the shortest path. This array (dist[]) 

stores the minimum cost value from source vertex to one of the other vertices 
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indicated in the array index, while the array prev[] is used for retrieving the shortest 

path sequence. prev[] stores the predecessor vertex of a certain vertex given in the 

array index, according to the found shortest path. DA initializes the value of dist[] 

as infinity, the value of prev[] as empty for all vertices in the given graph, and adds 

all initialized vertices into a set Q, which is used for recording the unvisited vertices 

during the following execution process of DA. As the last step before the searching 

process of DA, the minimum cost value from source to destination, formalized as 

dist[source], is set to 0. The algorithm starts from the source vertex searching each 

of its neighbours by updating their dist[], then it moves on to one neighbouring 

vertex with the minimum dist[]. DA repeats this searching process iteratively until 

the target vertex is chosen as the current vertex or until all vertices are examined. 

Based on the framework of DA, many variants of this algorithm have been 

proposed in the following decades using techniques such as improving the data 

structure, introducing new heuristic functions, and reinterpreting the definition of 

the cost function.  

 

2.2.2 Dijkstra’s Algorithm using Heap or Bucket 
 

The time complexity of DA depends on the implementation of Q, which is 

used for choosing the neighbouring vertex with minimum cost. For the given graph, 

the number of vertices and edges are denoted as 𝑛 and 𝑚 respectively. If DA does 

not use min-priority queue to implement Q, then its time complexity is 𝑂(𝑛%). The 

min-priority queue is used to implement Q as shown in the two most notable [23] 

DA variants: DA using buckets (DIKB) [6] and DA using Fibonacci heap (DIKF) 

[7]. The bucket data structure is used in DIKB to reduce the time complexity of 

DA to 𝑂(𝑚 + 𝑛𝐶), where 𝐶 denotes the maximum value of the edge cost in the 

given graph. The merit of DIKB is brought by the linear time complexity operation 

for insertion and deletion of Q. However, DIKB has huge storage requirements in 

creating maximally 𝑛𝐶 buckets. Moreover, DIKB needs to pre-process for the edge 

cost value to ensure 𝐶, the maximum value of the edge cost, is an integer and small 
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enough. DIKF also reduces DA time complexity to 𝑂(𝑚 + 𝑛𝑙𝑜𝑔(𝑛)) without any 

extra storage requirement and pre-processing. Therefore, DIKF is the suggested 

algorithm for the most cases in the transportation domain, according to the results 

presented in [8], where DIKF is evaluated in realistic transportation networks and 

compared to DIKB and many other shortest path finding algorithms. There are 

many techniques for accelerating the shortest path computations as outlined in [24]. 

Some of them are still useful in large-scale scenarios. 

 

 

2.2.3 Heuristic Shortest Path Finding and Re-planning  
 

The most important variant of DA is A*[9]. A* is the foundation for a 

heuristic search on the framework of DA. Specifically, to compute alt, the potential 

cost value when choosing a candidate node for next step expansion, in line 15 in 

Algorithm 2.1, instead of alt = dist[u] + length(u,v), A* uses alt = dist[u] + 

length(u, v) + est(v) by adding an output of a heuristic function est(v) to estimate 

the cost from one of u’s neighbours v to the given target vertex. In general, a 

heuristic is considered as a trade-off between computation time and optimality. 

Given a large-scale problem, heuristic-based methods are often used to provide a 

sub-optimal solution within acceptable time range. Unlike many other heuristic 

algorithms, A* with a well-designed, or more formally called admissible heuristic 

function can guarantee an optimal solution, but with a significantly reduced search 

space compared to DA. For example, in a road network scenario, the heuristic 

function in A* can be implemented using Euclidean distance. As the geographical 

length of any possible routes between any O/D pair cannot be less than its 

corresponding Euclidean distance, this heuristic implementation is called 

admissible, which means it never overestimates the cost in practice. 

In dynamic environments, where the edge cost is changing over time, the 

optimal route needs to be updated accordingly. The intuition to do re-planning is 

to run A* from scratch once the graph is updated. However, re-planning from the 

scratch is a waste of computation when the changing environment does not or only 
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has minor effect on the previous optimal solution. D* Lite [10] is an efficient re-

planning algorithm that only looks at certain areas that have their edge cost changed 

and repairs the previous route only if it is necessary. This process is achieved 

mainly by introducing a new heuristic function called “one-step look ahead cost”, 

which is able to detect the changes in environment. Moreover, the whole search 

process of D* Lite is done in the reverse way from the target vertex to the current 

vertex, thus preventing a lot of computation on updating the estimated cost from 

the moving current vertex to the target. Compared to re-planning using A*, D* Lite 

is more efficient by nearly two orders of magnitude [10]. In addition to the dynamic 

environment, the typical A* algorithm is also not applicable if a route solution is 

needed quickly in a complex environment, where the number of vertices and edges 

in the given graph is excessively large. Anytime Repairing A* [11] (ARA*) solves 

this problem by using “inflation factor 𝜖” to increase the output value of the 

admissible heuristic function in the typical A*. It is proven that maximally up to 𝜖 

times computation cost could be saved when 𝜖 >1. The larger 𝜖 value is set, the 

faster the algorithm runs, and the worse the optimality of the route will be. ARA* 

trades off the speed and the optimality by decreasing the value of 𝜖 iteratively from 

a relatively large value, until it reaches the time threshold. Anytime Dynamic A* 

(AD*) [12] combines the advantages of the two algorithms to deal with the 

dynamic and complex environment in real-time. 

 

2.2.4 Shortest Path Algorithm for Vehicle Road Guidance 
 

 Early stage research in applying shortest path algorithms for vehicle road 

guidance consists of three major directions: bi-directional search, sub-goal search, 

and hierarchical search. Due to the lack of powerful computation capability and 

efficient geographical data techniques, these three directions have the same 

objective: reducing the search spaces. To achieve this objective, as shown in Figure 

2.1, bi-directional search [26] starts the process from both directions in parallel, 

one from origin to destination, the other from destination to origin, until both search 

processes meet at the same vertex somewhere between origin and destination. 
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However, this termination condition cannot be satisfied all the time. Sub-goal 

search [27] is performed by manually selecting some points in the middle of the 

given O/D pair, before running bi-directional search. Thus, sub-goal search will 

always terminate in finite time. Its downside is that the principle to choose the 

appropriate “sub-goal” ensuring the best efficiency is subject to the map topology, 

which cannot be determined for general case. The hierarchical search method [28] 

has a pre-processing stage which splits the map data into multiple levels according 

to the priority of road infrastructure. It turns out to be very efficient for routing long 

trips, as the hierarchical search avoids a lot of computation for areas that are neither 

close to the origin nor the destination. 

 

Figure 2.1: Bi-directional search (a), sub-goal search (b), and hierarchical search (c) 
from shortest path in road network [25]. 

 

Most recent research activities on vehicle route guidance are focusing on 

proposing various extensions of the cost function, which is length(u, v), as shown 

at line 15 of Algorithm 2.1. In the transportation domain, the cost can be interpreted 

using metrics such as travel time, travel length, travel time reliability, fuel 

consumption, number of turns, or a combination of some of them. For example, 

Kanoh [13] uses a virus genetic algorithm to obtain multi-objective optimal routes 

considering various route types including number of junctions, type of turns, 

number of lanes, width of roads and so on. In [14], in a wireless sensor environment, 

the multi-attribute decision-making (MADM) method [18] is used for computing 

the best route in real-time in terms of lowest travel time, shortest travel distance, 

and the best lane status (largest sum of road width). Ronan and Gabriel [15] 

proposed an algorithm called EcoTrec that leverages the vehicular ad-hoc network 

(VANET) to collect and exchange information in order to obtain the optimal eco-
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route. EcoTrec applies Handbook Emission Factors for Road Transport (HBEFA) 

formula [19] to estimate a vehicle’s emission and achieves a good trade-off among 

travel distance, travel time, and vehicle emission. Instead of extending the number 

of relevant factors for the routing cost, some work focused on a particular cost 

factor and provided deep investigation. For instance, in [16], the travel time factor 

in the road network is modelled as a discrete time-dependent network where the 

weight value on each particular edge varies over discrete time dimension. This A* 

variant can provide a route for a given O/D pair with guaranteed least amount of 

travel time. However, due to the difficulty of traffic data acquisition and storage 

[17], this algorithm is seldom used in practice. 

 
 

2.3 Routing for Multiple O/D Pairs 
 

Routing vehicles for multiple O/D pairs is also called traffic/route 

assignment in the transport modelling domain. One category of assignment 

technology consists of directly applying single O/D pair routing for all given O/D 

pairs. However, this method usually does not result in reasonable traffic as it 

assumes that the road network has unlimited capacity, which means the travel time 

on each road is only in proportion to the road length without considering the 

number of vehicles running on this road. In a more realistic model, the route 

assignment problem should be considered as: given a set of O/D pairs, how to 

minimize a certain travel cost, usually the total travel time, constrained by a fixed 

road capacity. 

 

2.3.1 User Equilibrium and System Optimum 
 

There are two network traffic states that an ideal route assignment strategy 

can achieve, user equilibrium (UE) and system optimum (SO) [29]. According to 

the statement of Wardrop’s first principle [20]: 
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“The journey times on all routes actually used are equal, and less than those 

which would be experienced by a single vehicle on any unused route.” 

 

This traffic state is regarded as UE, which is similar to Nash equilibrium [21] 

in game theory. In this state, the traffic equilibrium is reached following an 

approach in which vehicles optimize their routes autonomously, until no faster 

route can be found. Another traffic state SO is described in Wardrop’s second 

principle [20] as: 

 

“The average journey time is a minimum.” 

 

SO implies that the best road network performance that a route assignment 

strategy can achieve is enabled through the vehicles’ cooperation. The objective 

functions of traffic assignment for UE and SO can be formalized as follows [30]: 

𝑈𝐸:	 argmin
78

𝑡: 𝑥 𝑑𝑥
78

=:

 

𝑆𝑂:	 argmin
78

𝑥: ∗ 𝑡:(𝑥:)
:

 

subject to:  𝑓ABCA = 𝑞BC:	∀𝑜, 𝑑 

𝑥: = 𝛿:,ABC ∗ 𝑓ABC
ACB

∶ 	 ∀𝑎 

𝑓ABC ≥ 0:	∀𝑝, 𝑜, 𝑑 

𝑥: ≥ 0:	𝑎 ∈ 𝐴 

Equation 2.1: Formulation of traffic assignment problem to achieve SO and UE.	
 

 

where 𝑡: is travel time on the road 𝑎, 𝑥: is the equilibrium flow assigned on the 

road 𝑎, 𝐴 is the set of all roads in the given map, 𝑝 is the route, 𝑞BC is the trip rate 

/ total traffic flow between 𝑜 and 𝑑, 𝑓ABC is the traffic flow on route 𝑝 connecting 

O/D pair 𝑜𝑑, 𝛿:,ABC  equals to 1 when road 𝑎 is on the route 𝑝 connecting O/D pair 

𝑜𝑑, otherwise it equals to 0. 
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 The above equations and inequalities describing the constraints are the 

principle of flow conservation and non-negativity. Both objective functions for UE 

and SO can be solved by an appropriate optimization technique, usually by Frank-

Wolfe algorithm [22], if the following four assumptions are satisfied: 

1. The volume-delay-function (VDF): 𝒕𝒂 𝒙𝒂  should be differentiable and 

non-decreasing. The purpose of this assumption is to ensure that the 

objective functions are convex, thus a global optimum can be found. 

Specifically, Bureau of Public Roads (BPR) [31] function is commonly 

chosen as the representative implementation of VDF for the traffic planner 

to estimate the traffic pattern. As shown below: 

 

𝑇T = 𝑇B ∗ (1 + 𝛼(
𝑉
𝐶)

X) 

Equation 2.2: BPR function. 

where: 

 𝑇T is actual travel time 

 𝑇B is free-flow travel time 

 𝑉 is current traffic flow 

 𝐶 is road capacity 

 𝛼, 𝛽 need to be tuned, often their suggested values are 0.15 and 4 

respectively [31]. 

 

Compared to other types of VDFs [32], BPR has much fewer compulsory 

parameters and is still proven to be efficient for traffic planning. It is worth 

noting that its assumption is not quite realistic, especially in urban road 

scenarios where the road travel time is unstable due to the signalized 

junction and short road length.  

 

2. The travel time on a given road is independent of other roads. This 

assumption simplifies VDF for all roads by using one variable only, which 

means that the travel time of a given road is a function of the traffic on this 



 
 Chapter 2. State-of-the-art 
 

24 
 

road only. In practice, the travel time on different roads, especially 

neighbouring roads, are actually correlated to each other as the traffic on a 

given road will propagate to its downstream roads.  

 

3. The network states are perceived as the same for all drivers. Concretely, 

this assumption means all drivers have complete knowledge about the 

global traffic states, when they are making routing decisions. So the case 

where a faster route is not chosen due to the lack of information for a driver 

will never occur. 

 

4. All drivers choose the route to minimize their travel cost. This assumes 

that all drivers are making their decisions to achieve one common goal. 

The aforementioned traffic/route assignment strategies to achieve UE and SO 

are called static traffic assignment (STA). STA plays a significant role in the early 

stage of traffic pattern estimation as it lays the foundation for the subsequent traffic 

assignment techniques. There are two main research works that investigated STA. 

The first one is the identification of the theoretical gap between UE and SO. In [33], 

the gap is quantified in two separate cases: when VDF is linear, the total travel time 

in UE is at most Z
[
 times more than the one in SO; when VDF is continuous and 

non-decreasing, then the total travel time in UE is at most twice as the one in SO. 

The second notable STA research work is the SO traffic assignment constrained by 

fairness conditions. The work shown in [34] proposed a new approach to achieve 

the constrained SO, so that its performance still advantages the one of UE, and at 

the same time ensures no one contributes the global benefit by choosing a much 

longer and slower route. Additionally, there is an interesting phenomenon called 

“Braess Paradox” in traffic assignment research. In general, this paradox means 

under some circumstances, when adding more roads, the congestion level will be 

counter-intuitively increased. The original statement of Braess Paradox translated 

into English can be found in [37], along with the mathematical formation, proof, 

and a case study. 
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“Braess Paradox” has been studied in [35] under a series of reasonable 

assumptions, the paradox is likely to occur more frequently than as an anomaly 

case. In [36], “Braess Paradox” is also tested in realistic scenarios repeatedly, and 

then the sufficient condition of this paradox is refined as experienced drivers with 

reasonable decision making behaviour. The Braess Paradox implies that the 

existing approaches dealing with traffic congestions are risky. Specifically, 

increasing the road capacity and using selfish routing (i.e. VNS) for all vehicles 

can sometimes (and in practice, not infrequently) increase the congestion level. 

This implication highlights the importance of using vehicle rerouting to alleviate 

non-recurrent traffic congestion, which is the research methodology used in this 

thesis. 

 

2.3.2 Dynamic Traffic Assignment 
 

The last few years have witnessed the development of computation capability 

and big data technology. Due to the numerous unrealistic assumptions made by 

STA, another traffic assignment methodology named dynamic traffic assignment 

(DTA) is more frequently used by city planners [38]. Compared to STA, DTA [39] 

models the traffic using a discrete time-dependent network, which means the VDF 

is also a function of a particular entry time of the vehicle into a certain road, rather 

than a function of the current traffic volume only. In other words, given the same 

OD pairs with different departure times, the results are still the same using STA, 

but different using DTA. A typical DTA for traffic simulation used by city planners 

is Gawron’s dynamic user equilibrium [40], which is used as the default traffic 

assignment algorithm in the well-known open source urban road traffic simulator, 

Simulation of Urban Mobility (SUMO) [41]. This algorithm firstly assigns routes 

for all O/D pairs using shortest path algorithm DA by considering the road length 

as edge cost. Then it runs the simulation, records the actual travel time on each 

road, then uses DA to re-assign the routes using DA treating travel time as edge 

cost. This step is done iteratively until the edge cost for all roads is relatively 

converged. Unlike the traditional path-based and link-based algorithms, Bar-Gera 
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[56] designed another “origin-based” algorithm to achieve DTA. For each origin, 

the algorithm creates a special “bush” data structure which is an acyclic connected 

sub-graph from the given origin to all possible destinations. For each bush, the 

algorithm applies the reduced Newton method to iteratively optimize the 

proportional approach to the flow on each node. Nie [59] improved it by adopting 

the second-order derivative of the objective function to achieve a more accurate 

approximation. For the same “origin-based” DTA, B Algorithm [60] balances the 

flow between the maximum flow path and the minimum flow path. Shin-ichi [57] 

further improved the B Algorithm for the operations on “bushes” and was evaluated 

[58] as the best DTA algorithm in terms of the efficiency in computation, memory, 

and convergence. 

 

2.3.3 Stochastic Traffic Assignment 
 

Another way to increase the practicability of traditional traffic assignment is to 

use stochastic models [42] to enable the relaxation of the last two aforementioned 

assumptions of STA. The stochastic traffic assignment assumes that the drivers do 

not have perfect information of the global traffic conditions of road network, and 

do not always make their routing decisions reasonably. Specifically, both drivers’ 

traffic knowledge and routing decisions follow a certain probability distribution. 

The closer the road is to the driver, or the lower cost the route is, then the higher 

probability a driver will know the traffic or choose the route. There are generally 

three types of stochastic models in the literature, multinomial probit [63], nested 

logit [61], and generalized nested logit [62]. The detailed description of these 

models will not be included in this thesis as stochastic traffic assignment models 

are computationally expensive (i.e. need to know all/most of the possible routes 

and the distribution of their usage frequencies) and the benefits these models have 

for traffic planning still need further investigation. 
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2.4 Multi-Agent Traffic Management Systems 
 

Agent technology is the key concept for implementing distributed artificial 

intelligence [43]. Specifically, the paradigm of multi agent systems is well suited 

for the management of road traffic [44], as the road traffic network can be treated 

as a collective set of geographically distributed local areas, the traffic state is 

changing over time in each local area, and this change is sensitive to behaviors 

from any road network participants (i.e. drivers, pedestrians, traffic regulators, etc.). 

This section divides multi-agent traffic management systems into two categories: 

traffic light signal control and vehicle routing optimization, then reviews the state-

of-the-art technologies and research in each category. 

 

 

 

2.4.1 Multi Agent System for Traffic Signal Control 
 

Traffic light signal control is considered the most typical application of the 

multi-agent concept in road traffic management. The most widely deployed 

systems are Sydney Coordinated Adaptive Traffic System (SCATS) [45] and Split 

Cycle Offset Optimization Technique (SCOOT) [46]. They have been successfully 

applied world-widely in over 27 [48] countries and over 200 [49] cities, 

respectively. Both SCATS and SCOOT have a similar 3-tier hierarchy. Take 

SCATS for example, as shown in Figure 2.2. The basic agent in the bottom layer is 

each intersection, which is controlled and coordinated by a regional computer 

according to the real-time traffic information. All the regional computers are then 

organized by a central server for high level configuration and optimization in a 

particular city. The agents here are regional computers controlling tens of 

intersections. The main differences between them are the mechanism of reaction to 

the real-time traffic information. When the traffic states are updated, SCATS 

chooses the best traffic light signal plan from several candidates that are configured 

manually in advance. On the contrary, SCOOT can adjust all the related parameters 
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(i.e. slip, cycle, offset, etc.) and provide an on-line optimized traffic signal plan. 

This difference is mainly due to the additional types of traffic data collectors (i.e. 

sensors and cameras) SCOOT has, while SCATS mainly relies on induction loops. 

More specifically, the different deployments of loop detectors, for example, have 

led to the aforementioned difference as well. SCATS installs one induction loop at 

the downstream for each lane to get the traffic information: occupancy, while 

SCOOT deploys two loop detectors on each lane, one in downstream, the other in 

upstream. So that it can retrieve traffic information like, queue length, speed, and 

occupancy. Therefore, more information allows SCOOT to tune the parameters in 

a finer granularity. Although SCOOT has more flexibility and advanced control 

mechanism, SCATS has less deployment cost and proven to have comparable 

effectiveness. The two systems have dominated the global market in urban traffic 

control during the last 4 decades. 

 

Figure 2.2: 3-tier system architecture of SCATS [47]. 
 

Traffic prediction technology frequently appears in the recent research on 

enhancing the multi-agent traffic signal control system. This prediction technology 

is driven by the increased number of types of collected traffic information from 

various deployed sensors. One typical example is InSync [52], which has been 

applied in 31 states and 2300 intersections in the U.S. up to November 2015. 

InSync ranked the top in terms of waiting time reduction in several U.S. cities, as 

evaluated and compared in a survey [50] with four other popular systems. The 

traffic information collection of InSync is mostly done by Internet Protocol (IP) 

video cameras. This leads to a huge advantage as many useful microscopic 



 
 Chapter 2. State-of-the-art 
 

29 
 

information can be extracted such as the exact number of vehicles, speed for each 

particular vehicle, and even vehicle types. By taking advantages of this rich 

information, InSync can predict short-term traffic conditions to create so call 

“green tunnels” minimizing the number of stops for the longest platoon. Another 

way of collecting rich traffic information for predictive control is to use vehicular 

ad-hoc networks (VANETs), where vehicles are connected and periodically 

broadcast their states.  VANETs are used in the approach proposed by K. Pandit 

[53] in which an online scheduling algorithm called “the oldest arrival first” is used. 

It is shown in the presented simulation results that approximately equal-sized 

platoons can be achieved with significantly reduced intersection delays, as 

compared to the state-of-the-art algorithm. VANETs are used in a predictive 

control method proposed by B. Asadi and A. Vahidi [54] that help to achieve 

minimum use of braking to improve fuel efficiency accordingly. Some pioneering 

work in this area like [51] have tried to apply multi-agent reinforcement learning 

for adaptive traffic signal control. Its effectiveness has been proven by the 

experiments on 59 intersections in the city center of Toronto, Canada. The results 

show that 27% travel time reduction can be achieved even when all agents are 

working independently. 

 

2.4.2 Multi-Agent System for Vehicle Route Guidance 
 

Similar to the robotics research in the artificial intelligence area, most multi-

agent systems for vehicle route guidance consider each vehicle as an agent, then 

use different proposed coordination mechanisms to achieve a reduction of total 

travel cost (i.e. travel time, travel distance, fuel consumptions, etc.). For example, 

a decentralized delegate multi-agent system [64] is proposed to reduce the traffic 

congestion using anticipatory vehicle routing. The word “delegate” comes from the 

pheromones in the ant colony algorithm used for agents to exchange information. 

CARAVAN [66] puts vehicle agents into VANETs environment, and applies 

“virtual negotiation” to exchange route allocation cooperatively to achieve the 

reduction of total travel delay and communication overhead. Sejoon Lim [55] built 
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a probabilistic path choice model based on a realistic dataset. In this model, each 

driver’s route decision is regarded as a fractional flow. All vehicle agents in the 

same local area can exchange their route choice to achieve UE or SO. Relying on 

a central server, participatory routing planning [67][68][69] uses the previously 

planned routes to estimate future traffic conditions for the incoming routing 

requests. This routing collaboration among vehicle agents is done by the 

communication between the cloud server and in-vehicle mobile devices (i.e. 

smartphone). Last but not least, BeeJamA [65] considers each junction-controlled 

region as an agent for traffic congestion problems. The agent in BeeJamA plays a 

role like a router in a computer network by keeping an updated routing table and 

assigns routes for vehicles. The coordination of agents mimics the process of bees 

foraging.   

 

2.5 Study of Non-Recurrent Traffic Congestion 
 

To the best of my knowledge, only a few applied research works can be 

found addressing the reduction of urban traffic congestions caused by en-route 

events. The most relevant work [70] appears for improving the rate of on-time 

delivery in logistics4. It applies a Markov decision process to achieve a significant 

increase in delivery performance especially when non-recurrent congestions occur. 

Some theoretical works like [71] and [72] have proposed dynamic route choice 

models to maximize the on-time arrival expectations according to the current 

observed traffic. Many recent related works focus on the study of the impact of this 

non-recurrent traffic congestion. In [77], Alexander et.al. quantified the non-

recurrent congestion impact that the incident-related delay contributes to 30% of 

total wasted travel time, by conducting statistical studies on the traffic data from 

loop detectors in California. Osogami [76] concluded from a simulation-based 

study on the traffic impact caused by various types of road closure including single 

lane, multiple lanes for single direction and all lanes for both directions. There is 

                                                
4 A variant of the typical vehicle routing problem, in which an ideal solution can minimize the 
travel cost of a certain vehicle when it returns its origin after traversed all the required places. 
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also research on detecting traffic incidents either from social media [74], or from 

the massive real-time trajectory data [75]. 

 

2.6 Summary of Limitations 
 

As the investigated research problem in this thesis is how to efficiently 

reroute vehicles in order to significantly reduce non-recurrent congestions in urban 

areas, the limitations of the discussed related works, with regard to this problem, 

are summarized as follows: 

• Limitations of one O/D pair routing: Generally, in a congested road 

network, one O/D pair routing cannot guarantee or lead to any types of 

global benefit, meaning that in the face of non-recurrent congestion, the 

travel time and the road network uncertainty will deteriorate, as all vehicles 

choose their routes selfishly, according to the Braess Paradox. 

• Limitations of multiple O/D pairs routing: As the information access and 

rerouting feedback process should be completed in a very short time, the 

computation intensive multiple O/D pairs routing, especially its 

requirement of global traffic and route choice information, is not suitable 

due to the limited capability of existing techniques.  

• Limitations of existing multi agent traffic management systems: In 

general, ATSC focuses on reducing the waiting time at intersections, which 

is not directly correlated to minimizing the total travel time. Vehicle-based 

MAS requires the exchange of route choices among vehicles either locally 

or globally. However, in practice, the route choice information is private to 

an individual user. Moreover, the route choice for the whole trip is not 

always available while driving, especially when driving on a long trip or in 

unfamiliar areas. Additionally, vehicle-to-vehicle communication is not 

reliable when exchanging relatively long messages such as route choice 

information in real-time. Region-based MAS needs a lot of infrastructure 

replacement and upgrade. It also has complex and inefficient hierarchy for 

collecting traffic and optimizing route assignments. 
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• Limitations of studies on non-recurrent traffic congestions: There is 

much less work in the literature devoted to determining the appropriate 

reaction to reduce congestion due to unexpected en-route events. From the 

theoretical research, [73] reveals that many unrealistic assumptions and the 

lack of computation/memory performance analysis made theoretical 

models inapplicable in practice. 

The aforementioned limitations are addressed in the next chapters by the 

proposed solution named “Next Road Rerouting (NRR)”. In general, NRR tends to 

reroute vehicles to the less congested road, thus Braess Paradox would be much 

less likely to occur. Moreover, NRR only provides vehicles with the best next road 

direction, hence it fits the rigorous real-time requirement of reducing non-recurrent 

congestions. It also avoids complex and error-prone coordination mechanisms 

among vehicles by considering each junction and its controlled roads as an agent. 

Another worth noting feature of NRR is that it only needs locally accessible 

information for the rerouting decision without considering the route choices of all 

relevant vehicles and global traffic conditions. Finally, NRR increases the 

practicability of research in reducing non-recurrent urban traffic congestions by 

relying on the widely deployed ATSC and popular VNS. 
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Chapter 3  
Vehicle Routing on Centralised 

Traffic Management System: A 

Performance Evaluation Study 
 

This chapter presents an investigation of the effectiveness of adding a 

vehicle routing component to an existing centralised Intelligent Transportation 

product (e.g. IBM Intelligent Transportation [101]) in response to en-route events. 

I firstly discuss the motivation of this work, followed by the evaluation 

methodology including the compared algorithms, evaluation metrics, and the 

background of simulation settings. At the end, the evaluation results are presented 

along with the discussion on how this work inspires my proposed next road 

rerouting system.  

 

3.1 Motivation 
 

Although the optimal or quasi-optimal vehicle route assignment can 

significantly reduce the traffic congestion as shown in a lot of recent research, most 

of the existing Traffic Management Systems (TMS) such as ATCS [50] and IBM 

Intelligent Transportation [101] lack vehicle routing functionality to reduce the 

non-recurrent congestion. The most probable reason for this is that unlike other 

products such as Google Maps, the TMS is mainly designed for traffic managers 

rather than drivers. Moreover, traditional TMSs lack communication facilities to 
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push or disseminate messages directly to each road user. A compromised way to 

implement this communication, namely, a radio station for broadcasting road 

traffic information has been used for decades. With the fast development of 

communication technology, the efficient bi-directional communication link 

between TOC and road user is expected to be realized very soon. In the face of en-

route events, drivers are more likely to take route suggestions from trustworthy 

agencies (e.g. TMS) as these drivers are missing the required information for 

making decisions in real-time. Therefore, to successfully plug a vehicle routing 

component into the existing centralized TMSs for non-recurrent congestion 

reduction, a performance comparison study is highly needed to reveal the 

effectiveness of popular vehicle routing algorithms under various use cases.  

 

3.2 Evaluation Framework 

3.2.1 Overview 
 

The evaluation framework contains a set of metrics (i.e. travel time, travel 

distance, travel time variability, number of selected nodes, computation time and 

data storage requirement) and scalability levels (i.e. length and location of O/D pair, 

e.g. whether O/D pair is in city center, suburban, or remote area), as shown in red 

and dark blue blocks respectively in Figure 3.1. Besides, the execution process of 

this evaluation framework is presented on the left, while the required data and its 

types are illustrated on the right.  

Simulation of Urban MObility (SUMO)5 is used to conduct experiments in 

this thesis as it is the most widely used open-source microscopic (i.e. at the vehicle 

level instead of the traffic level) simulator for urban mobility (i.e. mainly the 

mobility of vehicles). This discrete event simulator is developed in C++, and can 

be used on Windows, Linux, and Mac OS in the format of a Graphic User Interface 

or command line console. There are 3 fundamental inputs (i.e. XML files) for any 

SUMO simulation: map, representing an urban road network (i.e. roads, junctions, 

                                                
5 Official website: http://sumo.dlr.de/ 
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and their connections); traffic, indicating the departure time, O/D pair, route, and 

type for each vehicle; and configuration, containing the required information to 

control the simulation (e.g. specify input/output files, start and end time). TraCI 

(Traffic Control Interface)6 is a set of APIs for retrieving information (e.g. current 

number of vehicles) and change behaviors (e.g. reroute vehicles) of the running 

road traffic simulation. All the vehicle routing algorithms in this study are 

implemented in Python and their solutions replace the original route for each 

vehicle as soon as it enters the simulation using TraCI. More samples of using 

SUMO can be found in the official tutorial7. 

The evaluation process starts from the preprocessing of the simulation 

dataset TAPASCologne [78]. As TAPASCologne has fully covered the greater area 

of Cologne, and contains lots of information (i.e. road types, shapes of buildings, 

etc.) that is irrelevant to this study, I firstly cut this dataset into 3 typical scenarios: 

city center, suburban, and remote areas including both geographic and traffic 

information. Then, I construct discrete time-dependent road network data by 

extracting the basic network structure and recording periodically the travel time on 

each road. Based on the preprocessed data structure, a Python script is applied for 

randomly generating O/D pairs in different areas with various trip lengths. After 

the data preprocessing stage, the data storage for each algorithm can be measured. 

While the routing algorithm runs, it takes two types of input: network data (i.e. 

connectivity and link cost) and O/D pairs, and after each iteration, it updates the 

four measurements: travel time, travel distance, travel time variability, and number 

of selected nodes. At the end of the algorithm execution, the computation time is 

recorded. 

                                                
6 http://sumo.dlr.de/wiki/TraCI 
7 http://sumo.dlr.de/wiki/Tutorials 
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Figure 3.1: Performance evaluation framework for vehicle routing algorithms 
based on centralized TMS. 

 

In order to compare vehicle routing algorithms, I consider travel distance 

and travel time to be the most two important factors for drivers’ route choice. I 

firstly choose two data structures to model the road network: a static network for 

finding shortest distance route, and a discrete time-dependent network for finding 

the shortest time (i.e. fastest) route. In the static road network, the edge cost is 

mapped as road length, while in the dynamic road network, the edge cost is defined 

as travel time that varies under different road entry time. Then, for each road 

network, I applied Dijkstra’s Algorithm (DA) and A*8 respectively. Thus, the four 

compared algorithms in this study are denoted as static DA, static A*, dynamic DA, 

and dynamic A*. It worth to mention as well that Dijkstra’s Algorithm is 

implemented using binary heap for priority queue, while the chosen Heuristic 

function of A* is the Euclidean distance in the static network and the mixed lower 

bound [16] in the dynamic network. 

 

 

                                                
8 Details can be found in section 2.2.1 for DA, and section 2.2.3 for A* 
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3.2.2 Data Pre-processing 
 

As shown in Figure 3.2, three scenarios are extracted from three different 

areas in the original larger Cologne road network: city centre, suburban and remote 

area. Thus, the different simulation scenarios are named centre, suburban and 

remote, represent a different scalability level at the same time. Although these 3 

sub-maps have the same size: 5.350(width) * 9.350(length) = 50.0225𝑘𝑚%, they 

can still ensure varying scalability levels in terms of the number of nodes and links 

in the graph representing the road map as well as the traffic load (i.e. the number 

of cars in a certain time period), as depicted in Table 3.1 and Figure 3.3 respectively. 

 
Figure 3.2: The three scenarios as shown in TAPASCologne. 

Table 3.1: Number of nodes and links in three scenarios. 
 Number of nodes 

(Junctions) 
Number of links (Road 

segments) 
Centre area 4025 8496 

Suburban area 2597 5711 
Remote area 1810 4170 

 



 
 Chapter 3. Vehicle Routing on Centralized TMS: A Performance Evaluation Study 
 

38 
 

 

Figure 3.3: Traffic load in the three scenarios. 
 

As the test scenarios have already been set with different scalability levels, 

for routing algorithms searching a path for each OD pair, I need to find out how 

the performance of these algorithms varies with the trip length. In practice, the 

exact trip length can only be known when the car reaches its destination. In order 

to use trip length as another scalability parameter in my experiments before each 

trip begins, the Euclidean Distance between the origin and the destination nodes is 

applied to measure the trip length. Usually, the longest trip distance in an urban 

area is around 10km, so if a driver plans a trip longer than 10km, the hierarchical 

routing algorithm [28] is more suitable in this case. Consequently, in my 

experiments, the testing groups of OD pair are organized into 5 trip length scales, 

2km, 4km, 6km, 8km, 10km as depicted in Figure 3.4. It is worth noting also that 

two OD pairs with similar Euclidean trip lengths may have quite different real trip 

distance due to the difference in the topology of the area between the origin and 

destination nodes. To mitigate the potential negative impact caused by this fact, 4 

different OD pairs are selected for one trip length group in one specific simulation 

and the average of their results is calculated. Hence, I have 60 sets of testing results 

for each routing algorithm. 
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Figure 3.4: Illustrative example of Origin-Destination pairs selection. 

 

3.2.3 Improved Travel Time Calculation 
 

Simulation of Urban Mobility (SUMO) [41] is the most commonly used 

open-source simulator for urban transportation simulation. Based on SUMO, 

Traffic Control Interface (TraCI) [79] is one of its official plugins. It can enable 

the functionality for retrieving information from the running traffic scenario and 

perform behaviours of vehicles and traffic lights during the simulation run time. 

Although SUMO and TraCI can provide a powerful and high quality simulation 

for researchers, there are still some issues on design and implementation that need 

to be further refined. In this section, a new method is proposed to rectify the 

problems (i.e. unsuitability for urban scenario and infinity travel time) happening 

when the SUMO API implementation or well-known equation – BPR (Bureau of 
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Public Roads) [31] is used for travel time calculation. The improvement is 

highlighted through comparative evaluation of the proposed method against the 

original SUMO API under two error-prone cases. 

 

The two existing solutions (SUMO API and BPR) and their disadvantages 

are presented based on three cases when using SUMO. In this experiment, the road 

network of German city Eichstätt in SUMO format9 is used, then I generate the 

random traffic flow by using the Python script tools in SUMO, and finally use 

TraCI API to calculate the average travel time every second for each road on the 

map while the simulation is running. 

 

Figure 3.5: Three typical cases showing the limitations of the travel time calculation 
using SUMO API and BPR. 

 

To study the problem of the first travel time calculation, SUMO API : 

“traci.lane.getTravelTime()”, the lane “-2847#2_0” is selected for tracking. As 

shown in Figure 3.5(a), this lane is empty, so the return value of this API is 

“18.6962785114s”, as the default free flow travel time. As shown in Figure 3.5 (b), 

the problem is when this car approaches the end of this lane, its speed as well as 

that of the cars following it is decreasing to zero. Therefore, the travel time is 

increasing sharply to infinity. I need to prevent this unrealistic value as in practice 

it should depend on the duration of the red traffic light, which is usually a few 

minutes but not infinity. I assume that the implementation of the SUMO API for 

calculating travel time is just to divide the road length by the average vehicle speed. 

                                                
9 http://sumo.dlr.de/wiki/Tutorials/OSMActivityGen/eichstaett.net.xml 
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And to compute the latter, it simply sums the speed of all vehicles running on the 

road and then makes it averaged. This assumption is confirmed by the source code 

of this API located at “SUMO_HOME/src/traci-server/TraCIServerAPI_Lane.cpp” 

where “SUMO_HOME” is the home directory where user stores the SUMO source 

code. 

 

I track the same lane “-2847#2_0” to investigate the problem of using BPR 

as shown in Equation 2.2 to calculate the travel time in the urban scenario. For the 

implementation of BPR, a set of induction loops are deployed on the middle of all 

road segments to record the number of cars passed through during a time interval 

to calculate the current traffic flow. The problem is shown in the comparison of 

two scenarios: first, as in Figure 3.5(a), there is no car running on this lane, thus the 

volume is zero, the current travel time is the free-flow travel time; this scenario is 

reasonable. Second, in Figure 3.5(c), when the lane is almost full of cars and they 

just stand still for at least one time interval, thus there is no car running through the 

induction loop, therefore the current volume is zero, similar to the first case. This 

means the travel time is incorrectly computed as the free flow travel time. However, 

in this case the current travel time should be much slower than the free-flow travel 

time. 

 

To overcome the aforementioned problems, a simple solution is proposed 

and implemented that ensures more accurate calculation of travel time in urban 

scenarios. In this solution, each road segment is considered as two separate parts. 

One is occupied with vehicles, while the rest is unoccupied. So for the unoccupied 

part, the maximum allowed speed is used to calculate the travel time while the 

average vehicle speed is used for the calculation of the occupied part. Particularly, 

I introduce the minimum vehicle speed for the occupied part and set it to10  0.1 m/s 

for the case where all the vehicles on the road are standing still. This is because 

those vehicles will not stop forever, they are just waiting for the chance (i.e. green 

                                                
10 Inspired from http://sumo.dlr.de/userdoc/Simulation/Output/TripInfo.html as it defines the 
“waitSteps” as the number of steps in which the vehicle speed was below 0.1m/s 
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traffic light or congestion mitigation in the road ahead) to go. Finally, the temporal 

results of the above two parts are summed as the travel time for each road. As each 

simulation step in SUMO lasts 1 second, the average travel time is calculated every 

30 seconds. the experiment results are outlined in Table 3.2 . Note that the first case 

lasts from the 30th second to 60th second; the second case lasts from the 480th second 

to 540th second; the third case lasts from the 1440th second to 1500th second. From 

these results it can be seen that the improved travel time computation shows more 

stable outputs. It avoids the occurrence of infinity values when the average speed 

is zero, and distinguishes the two cases where the current traffic flows all equal to 

zero. 

 

Table 3.2: Travel time calculation results (unit: second) 

Simulation Time Stamp SUMO API BPR Improved Calculation 

30 18.70 18.70 18.70 

60 18.70 18.70 18.70 

480 92.53 18.70 43.59 

510 1000000.0 18.70 611.49 

540 1000000.0 18.70 611.49 

1440 531.90 20.54 512.98 

1470 1000000.0 20.54 1500.69 

1500 1000000.0 20.54 1500.69 

 

 

 

 

 

3.2.4 Evaluation Metrics 
 

The metrics used in the performance evaluation of vehicle routing 

algorithms are the number of selected nodes, computation time, data storage 

requirement, travel distance, travel time, and travel time variability.  
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• Number of selected nodes. The number of selected nodes is a widely 

used metric in artificial intelligence research to measure the magnitude 

of search space of a certain shortest path algorithm. It is an indicator to 

show the theoretical efficiency of a shortest path algorithm, the less is 

the better.  

• Computation time. The computation time is measured in seconds to 

show how fast a shortest path algorithm runs. It is different from the 

previous metric “number of selected nodes” because sometimes the 

algorithm can decrease the number of selected nodes, but at the same 

time it may bring too many time-consuming computations such as 

square or square root operations (e.g. compute Euclidean distance). 

Hence, the computation time is an indicator to assess the practical 

efficiency of a shortest path algorithm.  

• Data storage requirement. The dynamic memory usage is not easy to 

be monitored during the algorithm's execution. Therefore, I measure the 

data storage requirements as it is proportional to the memory cost. Some 

algorithms show the best performance in terms of computation time but 

this advantage may cost large memory space usage. Although the 

storage space is not as big an issue as it used to be due to recent 

developments in data storage technology, it is still one of the key 

indicators from an engineering perspective, especially when deploying 

or optimizing the operations of the existing large scale ITSs.  

• Travel distance and travel time. The travel distance and travel time 

represent the realistic length of the route travelled by the vehicle and 

the time spent over the trip. These two metrics are very important to 

drivers as the cost of a route. Many more meaningful costs depend on 

them, such as, fuel consumption and emissions. Generally11, the longer 

                                                
11 The fuel consumption and emissions are also highly depend on the type of vehicle’s engine, 
road conditions, and weather[102]. 
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time or distance a vehicle travels, the more fuel it consumes, and more 

emission it produces.  

• Travel time variability. The travel time variability (𝑇𝑇]:^_:`_a_bc ) 

indicates the uncertainty of the travel time for a route. Specifically, 

according to the historical traffic data, it describes how travel time 

varies given a certain route. In this study, the travel time variability is 

calculated based on Polus’s study [80], as shown in Equation 3.1. In the 

simulation of this evaluation study, for each road, 240 average travel 

time samples have been collected over the period from 6:00am to 

8:00am with 30 seconds sampling interval. Subsequently, these samples 

are used to calculate the standard deviation and 𝐴𝑉𝐺_𝑇𝑇 (i.e. average 

travel time). Then, the travel time variability for the same road can be 

calculated. Finally, the travel time variability for a certain route is the 

summation of the travel time variability for all the individual roads 

along this route, under the assumption that the travel time variations on 

road segments are independent from each other. 

 

𝑇𝑇]:^_:`_a_bc =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝐴𝑉𝐺_𝑇𝑇  

Equation 3.1: The calculation of travel time variability using Polus’s method. 

 

3.3 Evaluation Results 
 

The results shown in Figure 3.6 highlight the theoretical performance for 

different vehicle routing algorithms. Generally, for all algorithms, the number of 

selected nodes decreases [16] gradually with the decrease of scalability level (i.e. 

the size of the road network that varies from centre, suburban and remote areas) as 

well as the trip length. These results lead to some interesting conclusions. First, the 

dynamic and static versions of DA exhibit similar performance and are much less 

effective in the magnitude of search space (i.e. number of selected nodes) compared 

to A*, which means that DA confirms its lack of advantage from a design point of 
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view. However, due to the ease of its implementation, as shown in the following 

test, DA is still useful under many circumstances. Second, due to the advanced 

design of its lower bound, dynamic A* always performs the best and left the other 

three algorithms far behind even compared with static A*.  The only exception is 

when the trip is planned in the centre area with a length of 2km, where both 

dynamic A* and static A* show the same theoretical performance. In this case, 

static A* is recommended for the sake of implementation simplicity. Third, it is 

found that in the remote area scenario, the theoretical performance of static A* 

shows clear degradation when the trip length gets longer (i.e. ≥ 6km), especially 

when the trip length is about 10km. 
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Figure 3.6: Number of selected nodes under various trip lengths 
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The computation time reflects the practical performance of an algorithm 

based on its execution time and is calculated after the prerequisite data (i.e. map 

and lower bounds) have been loaded into memory. As depicted in Figure 3.8, the 

computation time for all the algorithms is proportional to the scenario scalability 

level as well as the trip length. In the remote area scenario, the performance of 

static A* decreases sharply when the trip length is equal to or greater than 6 km. 

These results are mainly in line with the theoretical performance results (i.e. 

number of selected nodes) discussed above.  

Additionally, there are three observations worth noting. First, dynamic A* 

outperforms other algorithms under almost all tested scenarios. It performs even 

better than static A* as the latter needs to calculate the lower bound, which needs 

time consuming operations like square and square root, during its execution, while 

dynamic A* loads the lower bound it needs into the memory, and just spends 

memory access time for the heuristic function. Second, dynamic DA always shows 

the worst performance and is much less effective when compared with the other 

three algorithms because it has no heuristic function as A* to estimate the cost, thus 

it has to check the travel time information from the hard disk whenever a new node 

is selected. Last but not least, static A* achieves the best practical performance 

when the trip length is less than 6km in the centre area, 4km and 2km in the 

suburban area, and 2km in the remote area.  

Figure 3.7: Impact of various trip lengths and urban scenarios on the 

efficiency of vehicle routing algorithm in terms of travel time. 
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Figure 3.8: Computation time under various trip lengths. 
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Note that Figure 3.7 and Figure 3.9 apply for either A* or DA, as it 

represents a lower bound on the cost which will be estimated by A*. Therefore, in 

the discussion of the evaluation results for travel time and travel distance, both 

algorithms are considered as a whole and I just make a comparison between their 

static and dynamic versions. 

As shown in the histogram of travel time in Figure 3.7, the results are clear 

for the cases when trip length is 10km, 8km, and 6km. Then, it can be concluded 

that for the same trip length the dynamic algorithms ensure a faster route in the 

remote scenario compared to suburban and centre areas. Notice that in the city 

centre scenario the calculated route is the slowest. On the contrary, for shorter trips 

length (i.e. 2km and 4km) the results are unclear for the static algorithms, as in this 

case the travel time of the route would be highly dependent on the road topology 

between the OD pairs. Although the results for the dynamic algorithms more or 

less have the same pattern for the trip lengths greater than or equal to 4km, the 

order is not as normal as I expected because they provide better routes in suburban 

scenario compared to the centre area scenario. Moreover, the calculated route in 

the remote scenario is faster than that calculated in centre scenario for trip lengths 

of 10km and 4km only, while very similar routes, in terms of travel time, are 

calculated for trip lengths of 8km and 6km. From these results it can be concluded 

that the dynamic algorithms can provide more stable routes, in terms of travel time, 

compared to the static counterpart. Finally, for short trips of 2km and 4km, all the 

algorithms provide very similar quality of route. Hence, in this case the simplest 

algorithm is suggested. 

Looking at the graph of travel distance depicted in Figure 3.9, it can be seen 

that the static algorithms can always give the shortest route compared with the 

dynamic ones. However, this advantage is limited to trips of the same lengths in 

one specific scenario. Consequently, if the travel distance is the only metric 

considered for vehicle routing then any of four algorithms can satisfy the drivers’ 

requirements. The only exception for this metric is the case of trip length of 2 km 

where the travel distance planned in the remote area is almost 3 times, much longer 
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than the other two scenarios. This is mainly due to the characteristics of the road 

network topology in the remote area. To overcome this issue, it is suggested that 

the vehicle's navigation system might recommend alternative metrics when the 

computed travel distance exceeds some thresholds. 

Figure 3.9: Impact of various trip lengths and urban scenarios on the 

efficiency of vehicle routing algorithm in terms of travel distance. 

 

The results plotted in Figure 3.10 divulge, as expected, that the 𝑇𝑇]:^_:`_a_bc 

differs significantly in the three scenarios. For the suburban scenario, the travel 

time variability of the routes provided by both static and dynamic algorithms is 

lower than that of the routes calculated in the centre area. However, this supremacy 

decreases gradually when the trip length gets shorter. When the trip length drops 

to 2km the four algorithms show roughly the same performance. 

On the other hand, for the remote scenario, the travel time variability of the 

routes calculated by the four algorithms is much lower (around 2500 times) than 

the previous case. This is due to the fact that during the period from 6:00am to 

8:00am there is almost no change for the traffic flow in the remote area, as depicted 

in Figure 3.3. Last, for algorithm comparison, in the centre scenario, static 

algorithms perform slightly better than the dynamic ones, in the suburban case they 
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show roughly the same performance, while in remote area, dynamic algorithms are 

better. 

It can be seen that one abnormal point exists in the remote scenario trip 

length of 4km. The reason is probably the extremely low change of traffic flow in 

the remote scenario, so the result of travel time variability would be very sensitive 

to the various topologies in the area between the different O/D pairs. To conclude, 

there is no obvious difference among the four algorithms in terms of travel time 

variability. Therefore, an improvement would require a new algorithm to be 

devised. 

 

Figure 3.10: Impact of various trip lengths and urban scenarios on the 

efficiency of vehicle routing algorithms in terms of travel time variability 
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In the Table 3.3, the memory space needed by each algorithm to perform the 

route calculation under different scalability levels is presented. Basically, static 

algorithms need only to load the map data into the memory, and in my 

implementation this data consists of a static map "StaticMap" data in SUMO format. 

In contrast, for the dynamic algorithms more data need to be loaded such as 

link status data "DynMap_Links", node data "DynMap_Nodes" and lower bound 

data "DynMap_LBs". The link data shows the different travel times on different 

time intervals for every link, in addition to the transportation topology data which 

includes node data and basic link information. The link status in the dynamic 

context is thus a huge volume of data where its size is “the number of time intervals” 

times larger than the corresponding size in the static context. In my simulation, the 

travel time update frequency is 30 seconds, and the simulation duration lasts 2 

hours, which means that the dynamic link status data is 240 times larger than the 

static links data. 

For dynamic A*, its advanced lower bounds need to be pre-calculated by 

static all-to-all DA and the results should be stored for each scenario. Afterwards, 

these results will be loaded to the memory to enable the execution of A* algorithm. 

Table 3.3 indicates that dynamic A* needs 55.56 times more memory space 

than its static counterpart when the execution being performed in centre area, and 

even for the remote area, it still needs 126,713,008 bytes, which is 31.47 times 

more that static A*. This is the only one obvious disadvantage of dynamic A*. 

Table 3.3: Data storage requirement for each algorithm under different 

urban scenarios. 
 Centre area Suburban area Remote area 
 Static DynDA DynA* Static DynD

A 
DynA* Static DynD

A 
DynA* 

Static
Map 

7,884,
103 

null null 5,455,
490 

null null 4,039,
884 

null null 

DynM
ap 

Nodes 
null 

217,250 217,250 null 144,66
9 

144,669 null 101,62
8 

101,628 

DynM
ap 

Links 
null 

144,139,
906 

144,139,
906 

null 96,389,
386 

96,389,3
86 

null 69,029,
812 

69,029,8
12 

DynM
ap LBs null null 293,667,

771 
null null 120,703,

021 
null null 57,581,5

68 
Total 7,884,

103 
144,357,

156 
438,024,

927 
5,455,

490 
96,534,

055 
217,237,

076 
4,039,

884 
69,131,

440 
126,713,

008 
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Besides the five metrics that have been discussed above, the algorithm 

implementation cost is another important aspect that should be taken into account 

to ensure a more informed decision about which algorithm to use in a centralized 

ITS. Since sometimes the algorithms are implemented at the hardware level which 

is highly dependent on the number and type of statements for the algorithm 

execution, a simple implementation can not only reduce the computation time but 

also decrease the energy consumption. Since A* has similar implementation to DA 

with one more heuristic function, the ranking of the implementation cost of the four 

algorithms studied in this work can be defined as follows: 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝐴∗ > 𝐷𝑦𝑛𝑎𝑚𝑖𝑐	𝐷𝐴 > 𝑆𝑡𝑎𝑡𝑖𝑐	𝐴∗ > 𝑆𝑡𝑎𝑡𝑖𝑐	𝐷𝐴 

Finally, the suggestions on the most suitable algorithm to apply in different 

scenarios are presented in Table 3.4.  These suggestions are based on the 

centralized ITS architecture, in which the ITS server receives a large number of 

driver’s requests of fastest and shortest routes. For example, when a vehicle is 

driving in the suburban area, and it requests the fastest route with a trip length of 

about 6km, then the centralised ITS will choose to run dynamic A* to response in 

the most efficient way. 

 

Table 3.4: Suggestions on the most efficient vehicle routing algorithm 

urban different urban scenarios 

 Trip length 
Fastest / Shortest 10km 8km 6km 4km 2km 

Center area Dynamic A*/ 
Static A* 

Dynamic A*/ 
Static A* 

Dynamic A*/ 
Static A* 

Static A*/ 
Static DA 

Static A*/ 
Static DA 

Suburban area Dynamic A*/ 
Static A* 

Dynamic A*/ 
Static A* 

Dynamic A*/ 
Static A* 

Static A*/ 
Static DA 

Static A*/ 
Static DA 

Remote area Dynamic A*/ 
Static A* 

Dynamic A*/ 
Static DA 

Static A*/ 
Static DA 

Static A*/ 
Static DA 

Static A*/ 
Static DA 
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3.4 Summary 
 

This chapter presents a thorough performance evaluation of four vehicle 

routing algorithms followed by deep analysis and comparison of the obtained 

results. This evaluation work for both static and dynamic routing algorithms is 

carried out based on a realistic transportation network and highly realistic traffic 

load. To the best of my knowledge, such valuable performance assessment under 

different scalability levels and trip lengths has never been done in the literature. 

Moreover, the implementation cost of these algorithms and the suggested most 

suitable algorithm to apply in several scenarios are also discussed. 

Dynamic DA has never been suggested for any scenario of practical use due 

to its enormous computation time. If the driver needs the shortest route, static DA 

is recommended for centralized ITS use in remote area due to its low complexity 

and good performance in terms of computation time. In the centre and suburban 

scenarios, static A* is a good choice for long trips (i.e. ≥ 6km) whereas static DA 

is a better alternative for short trips (i.e. ≤4km). For fastest route queries, dynamic 

A* would be highly recommended due to its low computation time and high quality 

of the calculated route, especially for long trips. For shorter trips, static A* is 

preferred as it can also provide routes with good travel time and its memory usage 

cost is low. 

The following observations about the evaluated routing algorithms motivate 

my Next Road Rerouting approach to routing in the presence of en-route events. 

Firstly, after this evaluation study, it can be inferred that the centralized TMS 

cannot handle lots of routing requests within an acceptable time frame, when a non-

recurrent urban congestion occurs. Secondly, this evaluation work reveals that the 

performance of vehicle routing algorithms varies from region to region, and is 

sensitive to the length of the trip. This conclusion highlights the need of designing 

an adaptive routing algorithm in order to achieve the high level system efficiency. 

Moreover, the system architecture should remain based on the typical 3-tier 

architecture including traffic operation centre, regional computers, and junction / 

road side unit controllers. 
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Chapter 4  
Next Road Rerouting: System 

Architecture 
 

This chapter is an introduction of the proposed Next Road Rerouting from a 

system architecture perspective. Firstly, the deployment of NRR on a typical ATCS: 

SCATS is overviewed. The design of the multi-agent architecture in NRR is 

presented in detail including the agent definition and the coordination mechanism 

description. The explanation of why NRR can achieve the global benefit by making 

use of the locally accessible information follows. In addition to the deployment 

details and multi-agent design, I elaborate a typical rerouting process using NRR 

in the face of non-recurrent traffic congestion. Finally, the concepts of centralised 

and distributed system design used in NRR are highlighted. 

 

4.1 Motivation for Next Road Rerouting 
 
Generally, traffic rerouting decisions may be classified as altruistic, where 

vehicle routing decisions are made to benefit the overall system, or selfish, where 

individual vehicles make decisions to try to optimize their own performance. While 

in theory global rerouting would offer the best system wide benefits, the lack of 

practical implementations and fairness issues make it unlikely to be adopted by 

users. Selfish solutions are already in use in the form of vehicle navigation systems 

(VNS), but these solutions suffer in terms of performance as penetration rates rise. 

My solution heuristically tries to balance the benefits of selfish and altruistic 
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solutions while mitigating the drawbacks of these solutions, that is, it is 

implementable, has benefits for individual users, but also seeks to balance traffic 

to obtain global benefits.  

Altruistic routing works under the assumption that urban traffic congestion 

is a result of unevenly assigned traffic with respect to the capacity of existing road 

infrastructure [29] and hence seeks to balance the traffic load throughout the road 

network. Working cooperatively [81] by exchanging route choices (i.e., altruistic 

routing) among vehicles can lead to system optimum, in which the minimum ATT 

is obtained, as stated in Wardrop’s second principle [82]. Although the fairness 

issue of system optimum solutions is addressed in [29], there are two limitations 

which hinder their application in the real world. Firstly, the route choice 

information is not always available for exchange due to privacy issues and drivers’ 

unawareness of their full routes. Secondly, the dynamic traffic assignment for 

system optimum is practically intractable due to its huge complexity [40] which 

cannot provide real-time response to en-route events. 

By contrast to altruistic routing, selfish routing is relatively easily 

implemented via the use of VNS. However, according to Wardrop’s first principle 

[20], if every vehicle chooses the fastest route for itself, then a user equilibrium 

will eventually be reached wherein no one can unilaterally choose a faster route. 

This represents a local rather than global optimum, even if the user equilibrium can 

now be achieved in both travel time and travel time reliability [83]. Additionally, 

in the context of en-route events, the VNS response time might not be sufficiently 

responsive to allow the vehicle to avoid the impacted area. 

To address the aforementioned issues with selfish and altruistic rerouting, 

NRR proposes a heuristically inspired two step rerouting process. 

At an NRR enabled junction NRR seeks as a first step to divert vehicles 

around en-route events. Depending on the area of junctions enabled near the event, 

this will have the effect of routing the vehicle over a small number of road segments 

around the event. These immediate rerouting decisions are based on both global 

and vehicle-centric considerations, taking into account both the balancing of traffic 

exiting the junction (altruistic rerouting) and the impact of the diversion on the 
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individual vehicle’s optimal route (selfish rerouting). These decisions are based on 

quickly calculable factors, and can be made in time to avoid the en-route event. 

As a second step, while being diverted to an area beyond the influence of 

the en-route event, a VNS is used to propose a route from the end of the diversion 

to the destination. The static optimal route suggested by VNS is usually very close 

to the exact fastest route computed by dynamic A∗ [16] with considerable 

computational and storage cost [17], but still easily achieved within the time frame 

of traversing one or more road segment. 

 

4.2 Deployment and Architecture of NRR 
 
As the most widely deployed ATSC shares a similar 3-tier architecture, I 

take SCATS as an example to discuss the deployment details of NRR. As depicted 

on the left side of Figure 4.1, in the top of SCATS 3-tier architecture is the central 

manager located at the Traffic Operation Center (TOC). It can manage up to 64 

regional computers residing in the middle tier. At the bottom tier, up to 250 

intersections, where traffic lights and in-ground loop detectors are deployed, can 

be controlled by each regional computer. The regional computer is responsible for 

adjusting the scheduling and synchronization of various traffic lights’ phase it 

controls, based on the real-time traffic information gathered from loop detectors it 

connects.  
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Figure 4.1: Architecture and deployment of NRR based on the existing SCATS. 

 

As shown on the right of Figure 4.1, NRR needs only one hardware upgrade 

to the existing SCATS architecture (i.e., V2I communication module) at the bottom 

tier to enable the exchange of the information required for the rerouting process 

between traffic light and vehicle. As opposed to V2V communication, V2I is much 

less likely to suffer from non-line-of-sight communication problems, meaning that 

almost full communication coverage can be achieved around each intersection by 

avoiding signal blockage due to buildings and other obstacles. Moreover, in 

unexpected congestion scenarios, V2I can ensure high rate of timely and successful 

transmissions in the range of all the roads that each traffic light controls. Secondly, 

instead of deploying high-cost hardware such as a powerful road side unit, an 

additional feature of NRR is the low-cost software upgrade for all regional 

computers in order to enable the re-routing calculation and its corresponding local 

data management. 

In practice, at each intersection the traffic lights, loop detectors combined 

with the regional computer controlling them are all connected with cable. This 

bidirectional wired communication has prompt transmission rate and fairly low 

loss rate. As a result, in the rest of this thesis, I consider regional computers, traffic 

lights and loop detectors together as one entity called intelligent Traffic Light (iTL). 
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4.3 Overview of Rerouting Using NRR 
 

The proposed vehicle rerouting process using NRR is presented in this sub-

section along with the corresponding UML sequence diagram. As shown in Figure 

4.2, when an en-route event occurs, (1) the Traffic Operation Center (TOC) verifies 

it and (2) notifies the iTL located at the upstream of the road where the event 

occurred to activate NRR by sending an emergency message. (3) This iTL 

broadcasts the rerouting alarm to all the vehicles in the incoming roads that it 

controls. (4) Those vehicles which, first, confirm that the blocked road is included 

in their ongoing route, then send a re-routing request which contains their 

destination locations, rather than the full route information which is usually 

inaccessible, to respond to the iTL. (5) For each rerouting request, the iTL uses the 

latest local traffic information gathered from induction loops, along with the local 

map (all outgoing roads that it controls) to compute the routing cost for each of its 

possible next road choices. (6) Subsequently, it suggests the one with the least cost 

value by sending back the rerouting result. (7) The vehicle then enters the NRR 

suggested optimal next road and re-computes the route for the rest of its journey 

with the help of its online VNS. Finally, when the event is cleared the TOC sends 

event dismiss to the iTL to disable NRR as described in steps (8), (9), and (10) 

shown in Figure 4.2.  

 
Figure 4.2: Sequence diagram of a typical re-routing process using NRR. 
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There are some clarifications for VNS. Firstly, similar to the regional 

computer in iTL that can run the computational unit of NRR, the VNS is the 

specific device of the vehicle that can compute the full route from a vehicle’s origin 

to its destination. This assumes that every vehicle is equipped with VNS that are 

used for computing the original route when this vehicle enters the network, and 

rerouting in the step 7 as shown in Figure 4.2. This assumption also implies that 

even the drivers who are not using VNS would choose ‘rational’ routes that are 

very similarly to what would be calculated by VNS. Secondly, in step 7, the 

location of a closed road already known to the vehicle from the rerouting alarm 

received in step 3, thus the closed road would not appear in the solution provided 

by VNS. 

In general, adapting the route of vehicles which are only one junction away 

from the blocked road is not enough to avoid congestion. In addition to the general 

ten steps mentioned above, my scalable NRR can also work in different operating 

levels involving more iTLs to alleviate the congestion in a wider area around the 

blocked road segment. As shown in Figure 4.3, I define Level 0 NRR as the NRR 

system with the closest iTL enabled only. Without loss of generality, Level i+1 

NRR means I enable all of Level i NRR’s neighboring iTLs additionally with the 

iTLs that are already enabled in Level i. By enabling Level i, I have access to 

additional road segments for the rerouting process, allowing traffic to be more 

evenly spread around the en-route event. To enhance the description of the NRR 

rerouting process, all use cases of the key actors are visualized in Figure 4.4 and the 

messages exchanged among them are presented in Table 4.1. 
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Figure 4.3: Activated iTLs in different NRR levels. 

 

 

 

Figure 4.4: Use case diagram of all key actors in NRR. 
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Specifically, in Figure 4.4, the Traffic Operation Center is in charge of 

verifying and notifying the occurrence and completion of en-route events. It is a 

centralized system design as the information related to events must be broadcasted 

by a trustworthy third party. iTL is an important distributed intermediary between 

TOC and the vehicle. In general, iTL updates current traffic conditions by 

retrieving information from induction loops. When events occur, iTL accepts 

rerouting request from the vehicle and replies the suggested next road direction 

computed by itself. As a basic component, besides driving on the road, each vehicle 

is assumed to be aware its location by GPS equipment, to get a route decision for 

its full trip by equipped VNS, and to interact with iTL for making the next road 

direction choice in the face of en-route events. 

 

 

 
Table 4.1: Summary of all messages used in NRR. 

Message name Message content Transmission 

Mode 

Transmission 

direction 

Emergency Event Closed Road ID, 

Level of NRR 

Wired TOC → iTL 

Rerouting Alarm Blocked Road ID, 

iTL ID 

Wireless 

Unicasting / IEEE 

802.11p 

iTL → Vehicles 

Rerouting 

Request 

Destination 

Location, Current 

Location, Vehicle 

ID 

Wireless 

Unicasting / IEEE 

802.11p 

Vehicle → iTL 

Rerouting Result Suggested Road ID, 

Vehicle ID 

Wireless 

Unicasting / IEEE 

802.11p 

iTL → Vehicle 

Event Dismiss Released Road ID, 

Level of NRR 

Wired TOC → iTL 
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4.4 Multi-Agent System Architecture 
 

The design of the multi-agent system in the proposed NRR makes it possible 

to improve the global road traffic by making decisions using locally available 

information. In my MAS architecture of NRR, I define an agent as a iTL deployed 

on each junction. The environment consists of the traffic states on all outgoing 

roads that the agent controls, as well as all vehicles on the incoming roads the agent 

monitors. The interactions between each agent and the environment in the 

proposed system appear in two ways as follows: the agent accesses traffic 

information of its outgoing roads from its neighboring agents; the agent receives 

and responds to rerouting requests from vehicles driving on its incoming roads. 

Specifically, the action that an agent can take to change the environment is to send 

rerouting suggestions to vehicles which are going to be stuck in the closed road. 

Thus, the states of the current surrounding traffic will be changed subsequently.  
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Figure 4.5: MAS architecture in NRR. 
 

The agent coordination mechanism of NRR relies on the natural 

propagation of traffic. In the transportation modelling study, for the sake of 

simplicity, the volume-delay function or travel time function of a certain road is 

often assumed to be independent from the traffic on its neighboring roads. However, 

this is not the case in practice. Specifically, for a congested long route, if the 

congestion on the downstream road is released, the following roads on the upstream 

along the same congested route will be mitigated gradually.  

As depicted in Figure 4.5, the outgoing roads of agent 1 are the lanes 1, 3, 5, 

and 7 which are the available options of a vehicle to be rerouted (i.e., agent’s 

actions). This decision should be taken by collecting the current traffic information 

of these outgoing roads with the vehicles’ re-routing requests that are received by 

the iTL from the incoming roads (e.g., roads 2, 4, 6, and 8 in the case of agent 1). 

The purpose of balancing the traffic load is to maximize the utility of the existing 

road infrastructure. In general, balancing the local traffic load only does not 

guarantee that the global traffic load will be balanced as well. NRR starts to balance 
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the local traffic load from the area where the stability of traffic load decreases most 

(i.e., where an en-route event occurred), then takes advantage of the agent’s 

connectivity in urban road networks to propagate this mitigation effect. For 

instance, in Figure 4.5, when the road 3 is blocked the traffic load of all other three 

outgoing roads will be suddenly increased due to 1/4 loss of output under the same 

traffic input. NRR starts to guide the vehicles requesting re-routing to different road 

directions to stabilize the local traffic distribution. The key point is that each 

outgoing road in this agent is also an incoming road for another agent. In this case, 

lane 1 is an outgoing road in agent 1 but also incoming road in agent 2, thus the en-

route event will soon affect the status of agent 1 and the other agents follow because 

the heavy traffic in lane 1 will quickly increase the traffic on lanes 9, 11 and 13 as 

well. If NRR is enabled for a suitable amount of surrounding agents, the traffic load 

will be more widely balanced, leading to an increased probability to reduce travel 

time for more vehicles. 

 

 

4.5 Summary 
 
In this chapter, the proposed Next Road Rerouting is discussed from the 

system architecture perspective. NRR implements the centralized system design to 

ensure the reliability of the dissemination of en-route events information. NRR also 

implements the responsive distributed system design using a multi-agent model 

based on a highly practical 3-tier architecture commonly used in the existing ACTS. 

Specifically, the architecture of SCATS is taken as an example to introduce the 

deployment of NRR and its potential cost accordingly. A rerouting process using 

NRR is also overviewed using a sequence diagram, use case diagram, and a table 

summarizing all types of required messages. More importantly, the multi-agent 

system architecture in NRR is discussed with the definition of each fundamental 

component and elaboration of the agents’ coordination mechanism to reduce the 

non-recurrent congestion. 
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Chapter 5  
Next Road Rerouting: Heuristic 

Approach 

 
 

This chapter presents Next Road Rerouting mechanism by detailing its 

decision making process using a heuristic approach. Specifically, the four factors 

considered in the proposed heuristic routing cost function, when making the next 

road rerouting choice, are described; namely, road occupancy, estimated travel 

time, geographic distance to destination, and geographic closeness of congestion. 

The definition, motivation, and calculation of these four factors are presented 

respectively along with a proposed weight assignment algorithm to identify the 

importance of each factor in each different rerouting request. Finally, the 

evaluation methodology and results are presented under synthetic and quasi-

realistic simulation scenarios. 

 
 

5.1 Heuristic Routing Cost Function 
 

The basic idea of proposed Next Road Rerouting in the face of en-route 

events is its 2-step rerouting: firstly, NRR gets a quick decision for vehicles to its 

next road; then, the vehicle uses the slower solution, VNS, to get a route choice 

decision for the rest of its trip. In step 5 of NRR rerouting process shown in Figure 

4.2, the iTL will suggest the next road with the least cost for each rerouting request. 
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Particularly, after receiving a rerouting request from a specific vehicle 𝑣𝑒, iTL 

retrieves the current location of this vehicle (𝑣𝑒. 𝑐𝑢𝑟𝐿𝑜𝑐) as well as its intended 

destination location (𝑣𝑒. 𝑑𝑒𝑠𝑡𝐿𝑜𝑐) (see Table 5.1 for key abbreviations). 

 

Table 5.1: Key abbreviations 
𝑣𝑒 Vehicle which sends rerouting request to iTL 

𝑣𝑒. 𝑐𝑢𝑟𝐿𝑜𝑐 The current location of 𝑣𝑒 

𝑣𝑒. 𝑑𝑒𝑠𝑡𝐿𝑜𝑐 The destination location of 𝑣𝑒 

𝑣𝑒. 𝑛𝑟𝑠 The set of all available next roads for 𝑣𝑒 

𝑣𝑒. 𝑛𝑟 The NRR suggested next road for 𝑣𝑒 

𝑒 A certain road in 𝑣𝑒. 𝑛𝑟𝑠 

𝑒sat The closed road 

𝑅𝑂 Road occupancy 

𝑇𝑇 Estimated travel time 

𝐺𝐷 Geographic distance to destination 

𝐺𝐶 Geographic closeness of congestion 

𝑥 A certain factor in {𝑅𝑂, 𝑇𝑇, 𝐺𝐷, 𝐺𝐶} 

𝑒. 𝑥 A certain factor of 𝑒. E.g. 𝑒. 𝑅𝑂 represents the road occupancy of 𝑒 

𝐶𝑉7 The coefficient of variation for 𝑥 of 𝑣𝑒. 𝑛𝑟𝑠 

𝐶𝑉txy The summation of all 𝐶𝑉7 

𝑤7 The weight value of 𝑥 . E.g. 𝑤{|  represents the weight value of road 

occupancy 

𝒘 The weight value of all factors, 𝒘 = (𝑤{|, 𝑤~~, 𝑤��, 𝑤��)𝑻 

𝒄𝒆 The cost of all factors for 𝑒. 𝒄𝒆 = (𝑒. 𝑅𝑂, 𝑒. 𝑇𝑇, 𝑒. 𝐺𝐷, 𝑒. 𝐺𝐶) 

 

 

Firstly, iTL uses 𝑣𝑒. 𝑐𝑢𝑟𝐿𝑜𝑐 and its map data to retrieve all available next 

roads 𝑣𝑒. 𝑛𝑟𝑠 = {𝑒�, 𝑒%,⋯ , 𝑒��, } (𝑁�: the total number of available next roads). If 

𝑁� > 1, then iTL should select the most suitable next road (𝑣𝑒. 𝑛𝑟) for 𝑣𝑒 to follow. 

Then, iTL measures the routing cost of each road 𝑒 in 𝑣𝑒. 𝑛𝑟𝑠 considering 

the weighted linear combination of the following four factors: a measure of 
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occupancy the new road, estimated travel time for the new road, distance to 

destination using the new road, and geographic closeness to the congestion using 

the new road. In the following, I describe how to assess each of the cost factors: 

e.RO, e.TT, e.GD, and e.GC.  

 

5.1.1 Road Occupancy 
 

Road Occupancy (𝑒. 𝑅𝑂) is measured as the percentage of time that a loop 

detector is occupied by a vehicle during a fixed time interval, which is commonly 

known as degree of saturation in SCATS [45]. It is a significant indicator showing 

the real time traffic load of a certain road, thus it can be used for balancing the local 

traffic. In this thesis, I assume that 𝑒. 𝑅𝑂 can be directly retrieved by the loop 

detector. 

 

5.1.2 Estimated travel time 
 

Travel Time (𝑒. 𝑇𝑇) is the estimated mean travel time over the road e. It is 

the ratio of the road length (𝑒. 𝑙𝑒𝑛) to the mean travel speed on this road (𝑒. 𝑢). 

Greenshield’s Model [84] is used to estimate 𝑒. 𝑢 because the induction loop in 

SCATS can only provide 𝑒. 𝑅𝑂. Let us denote by 𝑒. 𝑘 the current traffic density 

(i.e., number of vehicles per km) of 𝑒 and by 𝑒. 𝑘� the traffic density when traffic 

jam occurs on 𝑒, then basically, �.�
�.��

= �������	������	��	��������	��	�
�������	������	��	��������	��	�

 ) [85]. In this 

particular problem, only 𝑒 with the minimum cost is suggested, rather than getting 

its accurate cost value, as 𝑒. 𝑅𝑂 is proportional to the number of vehicles on 𝑒, thus 
�.�
�.��

≈ 𝑒. 𝑅𝑂, then. 

𝑒. 𝑇𝑇 =
𝑒. 𝑙𝑒𝑛
𝑒. 𝑢 =

𝑒. 𝑙𝑒𝑛

𝑒. 𝑢T(1 −
𝑒. 𝑘
𝑒. 𝑘�

)
≈

𝑒. 𝑙𝑒𝑛
𝑒. 𝑢T(1 − 𝑒. 𝑅𝑂)
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where 𝑒. 𝑢T is the free flow speed or maximum permitted speed of 𝑒. It is 

worth noting that 𝑒. 𝑢T and 𝑒. 𝑙𝑒𝑛 are static values that can be retrieved from the 

digital map data stored in iTL 

 

5.1.3 Geographic Distance to Destination 
 

Geographic Distance to destination (𝑒. 𝐺𝐷) shows how close a road 𝑒 can 

lead 𝑣𝑒 to 𝑣𝑒. 𝑑𝑒𝑠𝑡𝐿𝑜𝑐. Considering the facts that the size of city center map that 

NRR needs to mitigate an unexpected congestion is not large (i.e., usually less than 

1000 nodes, refer to Table 5.2) and its topology is almost static (i.e., rarely changes), 

NRR precomputes the shortest distance in kilometers for all possible origin and 

destination pairs using one-to-all Dijkstra’s Algorithm, and loads this data to the 

server’s memory. Thus, 𝑒. 𝐺𝐷 can be accurately retrieved in a much faster way (i.e., 

memory access time only without any on-line computation) than applying on-line 

estimation using Euclidean distance. Note that the origin and destination of all trips 

are within the range of the road network scenario used in the simulation of this 

thesis. The technical details on getting the subset of a simulation scenario can be 

found in Appendix A.1. 

 

5.1.4 Geographic Closeness of Congestion 
 

Geographic Closeness of congestion (𝑒. 𝐺𝐶) shows how far one of the next 

road choices 𝑒 can deviate 𝑣𝑒 from the closed road 𝑒sat. In general, when a road is 

closed, the congestion level of other roads around it is increased, and the closer a 

road is to the blocked road, the higher its congestion level will be. This factor is 

expressed, as shown in Equation 5.1, by the similarity of the vector 𝒗𝒆 =

(𝑒. 𝑠𝐿𝑜𝑐, 𝑒. 𝑒𝐿𝑜𝑐) from the start junction location to the end junction location of 𝑒, 

and the vector 𝒗𝒆𝒄𝒍𝒔 = (𝑒sat. 𝑠𝐿𝑜𝑐, 𝑒sat. 𝑒𝐿𝑜𝑐) from the start junction location to the 

end junction location of 𝑒sat. Notice that  𝒗𝒆 can be obtained when iTL receives 

the rerouting request while 𝒗𝒆𝒄𝒍𝒔 can be retrieved when iTL verifies the reported 



 
 Chapter 5. Next Road Rerouting: Heuristic Approach 
 

70 
 

event in the rerouting step 2. The law of cosine [86] is used for calculating the 

similarity of the two vectors. 

𝑒. 𝐺𝐶 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝒗𝒆, 𝒗𝒆𝒄𝒍𝒔 =
𝒗𝒆 ∙ 𝒗𝒆𝒄𝒍𝒔
𝒗𝒆 𝒗𝒆𝒄𝒍𝒔

 

Equation 5.1: Cosines similarity to calculate geographic closeness of congestion. 
So far, NRR can construct the cost vector 𝒄𝒆 = (𝑒. 𝑅𝑂, 𝑒. 𝑇𝑇, 𝑒. 𝐺𝐷, 𝑒. 𝐺𝐶) 

for each possible next road 𝑒. It is worth to mention that lower values of the above 

four factors lead to a better rerouting for 𝑣𝑒. Given a specific weight assignment 

vector for the aforementioned four factors 𝒘 = (𝑤{|, 𝑤~~, 𝑤��, 𝑤��)~, the NRR 

suggested next road for 𝑣𝑒 is the one with the least value of cost function 𝒄𝒆 ∙ 𝒘 as 

shown in Equation 5.2 

𝑣𝑒. 𝑛𝑟 = 	𝑎𝑟𝑔𝑚𝑖𝑛
�
𝒄𝒆 ∙ 𝒘 

Equation 5.2: Heuristic routing cost function. 
where 𝒄𝒆  is the normalized 𝒄𝒆  with each of its element 𝑒. 𝑥 scaled in the 

range [0,1] using Equation 5.3 

𝑒. 𝑥 =
𝑒. 𝑥 − 𝑒. 𝑥y_¥

𝑒. 𝑥y:7 − 𝑒. 𝑥y_¥
 

Equation 5.3: Normalization for each factor. 
where 𝑒. 𝑥y_¥ = min 𝑒. 𝑥, 𝑒 ∈ 𝑣𝑒. 𝑛𝑟𝑠  , 𝑒. 𝑥y:7 = max 𝑒. 𝑥, 𝑒 ∈

𝑣𝑒. 𝑛𝑟𝑠  

 

5.1.5 Adaptive Weight Assignment Approach 
 

Through identifying the importance of each of these four factors, the system 

will be able to assign the most suitable weight value to each of them to compute 

the final routing decision. In NRR, the values of the factors used in the next road 

cost function vary depending on the different time stamp (i.e., 𝑒. 𝑅𝑂, 𝑒. 𝑇𝑇 ) and 

different current/destination location of the vehicle to be rerouted (i.e., 𝑒. 𝐺𝐷 , 

𝑒. 𝐺𝐶 ). Therefore, a suitable weight value allocation 𝒘  should be variable for 

different rerouting requests [87]. In the next road selection, for a particular factor 

over all next road choices, the greater the variation of its value is, the more 

importance is given to it in the computation of the rerouting decision. Indeed, the 
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next road choice with the least cost value of this factor represents a substantial gain 

compared to other road choices which have higher values of this factor. Since all 

factors represent different measurements, the coefficient of variation (𝐶𝑉) is used 

instead of standard deviation to compute the variability for each factor. Specifically, 

as shown in the following equations. iTL calculates 𝐶𝑉  for each factor 𝑥 ∈

	{𝑅𝑂, 𝑇𝑇, 𝐺𝐷, 𝐺𝐶} over all available next roads, then, it gets summation of all 

factors. Finally, the weight value of 𝑥 is its corresponding proportion to 𝐶𝑉txy. 

 

𝐶𝑉7 = 𝐶𝑉(𝑒�. 𝑥, 𝑒%. 𝑥,⋯ , 𝑒��. 𝑥) 

𝐶𝑉txy = 𝐶𝑉7 

𝑤7 =
𝐶𝑉7
𝐶𝑉txy

 

 
Equation 5.4: Weight allocation using coefficient of variation. 

 

In the example shown in Figure 5.1, when a vehicle is approaching a junction, 

it has three road choices to follow: 𝑟�, 𝑟%, and 𝑟[. To calculate the road occupancy 

𝑅𝑂 factor, I assume that all vehicles have the same length (4.5 meters) and the 

same minimum gap with each other (2.0 meters). By knowing the actual length of 

those three roads, 𝑅𝑂 for all roads is calculated as 

𝑅𝑂� =
1×6.5
80.0

= 8.125% 

𝑅𝑂% =
2×6.5
30.0

= 43.33% 

𝑅𝑂[ =
4×6.5
80.0

= 32.5% 

 

In this example, I simplify the calculation of the second factor (i.e. estimated 

travel time 𝑇𝑇) as the ratio of the road length to its average instantaneous travelling 

speed. When there is no vehicle running on this road, the average speed is replaced 

by the maximum allowed speed in this calculation. In this case, the calculations are 

as follows:  
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𝑇𝑇� =
80.0
11.0

= 7.27𝑠 

𝑇𝑇% =
30.0

(10.1 + 9.3) 2
= 3.09𝑠 

𝑇𝑇[ =
80.0

(3.7 + 3.7 + 3.9 + 3.5) 4
= 21.62𝑠 

 

The third factor is the geographic distance to destination 𝐺𝐷. As described 

ealier, the value of this factor is directly retrieved from the pre-loaded memory. 

Thus, I just give these three values as:  

𝐺𝐷� = 1300𝑚, 𝐺𝐷% = 900𝑚, 𝐺𝐷[ = 600𝑚 

 

The coefficient of variation 𝐶𝑉 is the ratio of standard deviation to the mean 

value. In this case, I get the following 𝐶𝑉 s for all three factors12:  

𝐶𝑉(𝑅𝑂) = 0.53, 𝐶𝑉(𝑇𝑇) = 0.74, 𝐶𝑉(𝐺𝐷) = 0.31, 

 

Their summation is 1.58. Then I get the following weight allocation:  

𝑤{| =
𝐶𝑉(𝑅𝑂)
1.58

= 0.333 

𝑤~~ =
𝐶𝑉 𝑇𝑇
1.58

= 0.472 

𝑤~� =
𝐶𝑉(𝑇𝐷)
1.58

= 0.195 

Notice that the summation of these weight values should equal to 1. 

 

                                                
12 For the sake of simplicity in this example, I avoid the calculation of geographic closeness to 
congestion as it is relatively complicate. 
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Figure 5.1: An example of weight values allocation calculation in NRR. 
 

 

 

5.2 Evaluation Methodology 

 

5.2.1 Simulation Settings 
 

The version (0.24.0) of Simulation of Urban Mobility (SUMO) [41] 

combined with the Traffic Control Interface (TraCI) [79] is the simulation platform 

used to carry out the performance evaluation of NRR. 

The evaluation of NRR is carried out in both realistic and synthetic scenarios. 

A sub-set of TAPASCologne 0.17.0 [78] is chosen as a realistic evaluation scenario 

for NRR. TAPASCologne is an open source project providing a large-scale dataset 

with the highest realism for urban vehicular simulation based on SUMO. It uses a 

realistic map of Cologne extracted from OpenStreetMap  and generates traffic 

demand from 6:00 am to 8:00 am using Travel and Activity PAtterns Simulation 

(TAPAS) methodology [89] and Gawron’s [40] traffic assignment algorithm .  

A subset only (i.e. different from three subset maps shown in Chapter 3) of 

this map is used in my evaluation because the original size of TAPASCologne is 
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too large (1129.71 km2) to investigate the impact of a single closed road. The 

chosen sub map is a 3.69 km2 large area located on the west of the river in the 

Cologne city center. The first 30 min of original traffic of this sub-map, ranging 

from 6:00 am to 6:30 am is used for NRR evaluation. 

Table 5.2: Simulation scenarios statistics. 
 Cologne_center 8 x 7 

#Juncitons 389 86 

#Roads 737 254 

#Roads / #Junctions 1.89 2.95 

Average Road Length (m) 93.20 115.80 

Covered Area (𝒌𝒎𝟐) 3.69 1.22 

Total Lane Length (km) 95.15 58.83 

Traffic (#vehicles) 7665 2942 

Traffic Density 

(#vehicles/km/lane/hour) 

96.86 100 

 

Even though a realistic map can provide trustworthy evaluation results, the 

great diversity of urban road network topologies may lead to a significant 

difference in the corresponding NRR evaluation results. In order to mitigate this 

impact, in my evaluation, I generated grid maps. Due to the limited rerouting 

choices of small grid maps and the large observation area for studying the impact 

of closing one road in a big grid map, the 8 × 7 map (i.e., 8 intersections in the 

horizontal axis and 7 intersections in the vertical axis) is chosen as a representative 

grid map for the following evaluations. Apart from the number of junctions, they 

share all the rest of settings, e.g., all road segments in this grid map set have equal 

length of about 120 meters. Each road segment comprises of two roads each of 

which has two lanes (i.e., mimic main urban roads) in the same direction. 

For the 8 × 7 grid map testbed, 30 minutes traffic demand is generated evenly 

according to the road length and the number of lanes for each road. Three key 

parameters in this random generation process are chosen to ensure that the synthetic 

scenario can still simulate the city center scenario in peak hours traffic. First, the 
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repetition rate is the amount of time in seconds between vehicles insertion over the 

whole network. Its value varies across all grid map scales to maintain the 

consistency of the traffic density with that of the city center of Cologne, which is 

about 100 vehicles per km per lane per hour (see Table 5.2). Second, the minimum 

trip distance is set to twice the average road length because a meaningful route in 

this study should have at least two consecutive roads. Last but not least, the fringe 

factor is set to 10, which means edges that have no successor or predecessor will 

be 10 times more likely to be chosen as start or endpoint of a trip. This allows us 

to model through-traffic which starts and ends outside of the simulated area. The 

setting of traffic lights is also set to static, meaning that every traffic light has a 

fixed phase duration regardless of the changes in traffic conditions. 

It is worth emphasizing that to make these synthesis maps capable of 

simulating a realistic urban road network, the three configuration parameters (i.e., 

the ratio between number of roads to junctions (#R/#J), the average road length, as 

well as the traffic density outlined in Table 5.2) should be in line with their 

corresponding values in the city center of Cologne. 

For both scenarios, grid map and city center of Cologne, the whole 

simulation keeps running until all the vehicles finish their trips. Therefore, the full 

simulation time is longer than the predefined 30 mins trip generation time. 

 

5.2.2 Evaluation Metrics 
 

• Travel Time: Also called trip time in this thesis, is the amount of time a 

specific vehicle needs to finish its trip. It is calculated as the sum of the travel 

time this vehicle spends on each individual road along its route. 

• Free-Flow Travel Time: Free-flow travel time for a specific road is the amount 

of time a vehicle needs to traverse it at the maximum-allowed speed on this 

road. 

• Average Travel Time (ATT): Average travel time is a mean value of the travel 

time of all vehicles’ trips. It indicates the overall status of traffic for the whole 

observed road network. 
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• Travel Time Index (TTI): Also called congestion index, is a commonly used 

metric for measuring urban traffic congestion level [2]. It is calculated as the 

ratio of the sum of the travel time to the sum of the free-flow travel time for all 

vehicles. This metric is more meaningful than the average travel time because 

it gives a measure of the proportional increase over the ideal. 

• Travel Time Reliability: This concept refers to the unpredictability of travel 

time. For drivers it can give some measure of likely worst case delay [90]. The 

focus of this thesis is on the travel time reliability for the whole set of trips 

instead of a single trip only. 

• Planning Time Index (PTI): In practice, travel time reliability is measured by 

the planning time index [90]. In order to keep consistency with TTI, for all trips 

as a whole, PTI is calculated as the ratio of the 95th percentile travel time (i.e., 

which is shorter than 5% of all trips) to the average free-flow travel time. 

• System Instability (SI): System instability is a metric that I introduce to 

describe the variation of traffic load distribution over the whole simulation 

duration and road network. Given the set of discrete time intervals of a 

simulation duration 𝑇 = {𝑇�, 𝑇%,⋯ , 𝑇¥} and the set of all roads in the simulated 

road network 𝐸 = {𝑒�, 𝑒%,⋯ , 𝑒¥}. 

 

𝑆𝐼 = 𝜎(𝜎 𝑒. 𝑅𝑂b, 𝑒 ∈ 𝐸 , 𝑡 ∈ 𝑇) 

 

where 𝜎  means the computation of standard deviation, 𝑒. 𝑅𝑂b  means the 

occupancy of road 𝑒 at the time interval 𝑡. When the value of 𝑆𝐼 is low, the 

system is described as stable which represents that the traffic load is more or 

less evenly distributed on all roads. Note that both non-congested and fully 

congested road networks will result in low 𝑆𝐼. In these cases, further rerouting 

is not necessary or helpful, as the existing road capacity is already well used. 

A high value for 𝑆𝐼 indicates that further rerouting may be of benefit, as the 

traffic is unevenly distributed. 
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5.3 Evaluation Results and Analysis 
 

In the following I first explore the impact of purely altruistic and selfish 

routing strategies on traffic performance in the presence of en-route events. The 

benefits and disadvantages of these strategies are illustrated through simulations 

using a grid map. It should be noted, however, that implementations of altruistic 

strategies do not exist in practice. Thus when evaluating the performance of my 

NRR routing policy I compare it to two commonly used selfish rerouting strategies. 

These comparisons are made both for a grid map and a subset of the city centre of 

Cologne. 

 

 

5.3.1 Impact of Selfish and Altruistic Rerouting on Traffic Conditions 
 

I have evaluated 4 scenarios, as described below, and compared their results 

against each other: 

• Original (ORG): The original scenario with the initial 30 minutes traffic 

demand, as described previously in the simulation setting section, 

without any closed road or any particular dynamic routing strategies 

applied. The routes for all vehicles are generated before the simulation 

using Gawron’s traffic assignment algorithm. 

• En Route Event (ERE): The ORG scenario with two roads of one road 

segment in the center of the map (as shown in Figure 5.2) closed for 20 

minutes (from the 5th min to the 25th min). I set the maximum allowed 

speed for the closed road to 0.1 m/s to mimic the road closure, which is 

a commonly suggested technique in the SUMO community. The closed 

road also lies in the center of geographical traffic distribution in the map. 

• Constant Rerouting (ConRe): This scenario represents selfish rerouting. 

Here, upon encountering an en-route event, vehicles update their fastest 

route according to up to date traffic information. 
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• Load Balance Rerouting (LoaRe): I choose this scenario to represent 

altruistic rerouting which focuses on balancing local traffic without 

considering the destinations of individual vehicles. In this scenario, 

when encountering an en-route event, vehicles update their next road 

choice according to current local traffic, choosing the road with the 

lowest occupancy level. The sacrifice is that it is highly likely for an 

individual vehicle to be diverted further and further away from their ideal 

route. 

 

Figure 5.2: Location of the closed road in grid map (left, 8X7) and realistic map 
(right, city center of Cologne). 

 

 

 

Table 5.3 summarizes the performance metrics (Average Travel Time, Travel 

Time Index, 95th Percentile Travel Time, Planning Time Index, and System 

Instability) for each of the four above scenarios. I observe that in ERE scenario, 

compared to ORG, 2 closed roads only, representing 0.79% of the total road 

capacity in the map, can bring a significant negative impact even on those vehicles 

running through the other 252 open roads. This table reveals as well that the 

Average Travel Time (ATT) has increased by 28.94%, in addition to an 80.99% 

rise in Planning Time Index (PTI), which means that the trip time becomes 

extremely unreliable. Moreover, the considerable growth of system instability up 

to 123.21% is also in line with the degradation of travel time reliability. 
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Table 5.3: Performance comparison of ConRe and LoaRe against ORG and ERE in 

8x7 grid map. 
 Average 

Travel Time 

(sec) 

Travel Time 

Index (TTI) 

95th 

Percentile 

Travel 

Time 

(sec) 

Planning 

Time 

Index 

(PTI) 

System 

Instability 

ORG 207.55 2.79 375.95 5.05 0.56 

ERE 267.61 3.40 719.75 9.14 1.25 

ConRe 246.42 2.96 446.95 5.37 0.61 

LoaRe 212.99 2.82 573.0 7.59 0.45 

 

 

 

Compared to ERE scenario, both ConRe and LoaRe can mitigate the 

unexpected traffic congestion in terms of the achieved ATT and trip time reliability. 

However, the 7.92% reduction of ATT that ConRe brings is much less than 20.41% 

that LoaRe does. This is due to the exceptionally good system stability achieved 

by the latter, which is even 19.64% better than the original scenario, whereas the 

former is 8.93% worse than the ORG case in terms of the achieved stability. 
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(a) 8 × 7 grid map 

 
(b) city center of Cologne 

 
Figure 5.3: Trip duration distribution of the evaluated scenarios in both 8 × 7 

grid map (a) and city center of Cologne (b). 
 

On the other hand, as a consequence of omitting the vehicle’s destination 

location, when LoaRe is applied, there are a few vehicles which have much longer 
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travel time than the average. Correspondingly, the trip duration distribution shown 

in Figure 5.3 reveals that LoaRe has a significantly longer right tail than ConRe. 

Thus LoaRe shows a much lower trip time reliability performance improvement 

(i.e., 16.96% only, as compared to ConRe’s 41.25% of improvement) and causes 

serious fairness issues for a certain number of vehicles. 

 

Figure 5.4: Impact of the penetration rate on the performance of ConRe. 
 

In these tests, the routing algorithm is only invoked upon encountering an 

en-route event. Thus, only a small number of cars use the algorithm. In the final 

test, I explore the consequence of increased use of the ConRe algorithm. In 

particular, I modify the ORG scenario so that a certain percentage of cars 

recalculate their route once every second. Figure 5.4 indicates the impact of 

penetration rate (percentage of cars employing the strategy) on Average Trip Time 

and Planning Time. Clearly increasing the number of vehicles using selfish 

rerouting has a very negative impact on performance. This is consistent with the 

results in [85] and in line with Braess’s paradox [37]. 
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In summary, even a small portion of roads closed in the center of a road 

network, can cause a substantial degradation of traffic conditions. However, neither 

selfish rerouting nor altruistic rerouting is suitable for improving both average trip 

time and trip time reliability when such events occur, especially under higher 

penetration rates. In the following I will demonstrate the benefits of my proposed 

NRR policy vs. commonly available selfish solutions. 

 

5.3.2 Investigating NRR’s Scalability 
 

As discussed in Chapter 4, NRR has multi-level options, i.e., the higher the 

level the traffic manager chooses, the more junctions with NRR-enabled iTLs 

around the closed road will be activated to run NRR. To find the best scalability 

level of NRR, I have evaluated its performance using 8 × 7 grid maps from Level 

0 to Level 4. Compared to Level 0 NRR, the reduction of ATT and 95th percentile 

trip time (expressed in percentage) achieved by NRR in all other higher levels are 

shown in Table 5.4. 
Table 5.4: Performance of NRR under different scalability levels in 8x7 grid map. 
NRR level L0 L1 L2 L3 L4 

# enabled iTL 2 8 18 32 44 

ATT 218.60 216.09 216.26 213.53 212.88 

Percentage of ATT reduction to 

L0 (%) 

0 1.15 1.07 2.32 2.62 

95th Percentile Travel Time (PTT) 403.0 396.0 397.0 387.95 380.0 

Percentage of 95th PTT reduction 

to L0 (%) 

0 1.74 1.49 3.73 5.71 

 

One important conclusion that can be drawn from this table is that the 

upgrade from Level 0 to Level 1 brings enough performance enhancement while 

upgrades to Level 2, Level 3 and even Level 4 bring only minor additional 

improvements. In order to minimize operational costs (i.e., the number of NRR 

enabled iTLs), I suggest implementation of Level 1 NRR only. 
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5.3.3 NRR vs. The Existing Solutions 
 

To show the performance gain when applying NRR, the two most commonly 

used solutions in practice, namely Fastest Rerouting and Shortest Rerouting, are 

implemented in this evaluation. 

• Fastest rerouting (FasRe): During the road closure time period in ERE scenario, 

all vehicles that have the closed road included in their ongoing routes, reroute 

once according to global traffic information. This scenario aims to mimic the 

fastest route that existing VNS can provide. When a driver is notified about an 

event ahead, this common solution uses the on-vehicle navigation system again 

based on the latest global traffic information, excluding the closed road from 

the rerouting result since it will appear as a bottleneck. 

• Shortest rerouting (ShoRe): During the road closure time period in ERE 

scenario, all vehicles that have the closed road included in their ongoing routes, 

reroute once only based on the length of roads. This scenario mimics the 

shortest route that existing VNS can provide. In practice, the drivers are usually 

notified about an en-route event only one junction away from the location 

where it has occurred. This notification can be either through temporary road 

signs, or the observations of the drivers of deteriorating road conditions. 

Therefore, in my simulation, FasRe and ShoRe are implemented as Level 0 

rerouting strategies. Notice that when the traffic congestion propagates back 

further than one link from the closed link, I assume that the drivers are waiting 

in the congestion queue rather than rerouting themselves. This is because 

drivers usually tend to follow their pre-selected route with more patience, and 

tend to act only when they become aware of the en-route event typically one 

junction ahead. 

• NRR: During the road closure time period in ERE scenario, my proposed Level 

1 NRR is enabled for congestion avoidance. 
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Table 5.5 compares the performance of the algorithms for the grid topology 

and city center of Cologne respectively. I discuss the performance according to the 

performance parameters of travel time index, 95th percentile travel time, planning 

time index and system instability. 

Table 5.5: Performance comparison of NRR, ShoRe, and FasRe with ORG and 
ERE scenarios (Cologne Center / 8x7). 

 Average 

Travel Time 

(sec) 

Travel 

Time 

Index 

(TTI) 

95th 

Percentile 

Travel 

Time 

(sec) 

Planning 

Time 

Index 

(PTI) 

System 

Instability 

Total 

Travel 

Length 

(km) 

ORG 140.09 / 207.55 1.40 / 

2.79 

269.75 / 

375.95 

2.70 / 

5.05 

0.74 / 0.56 4483.79 

/ 

2719.31 

ERE 214.88 / 267.61 2.11 / 

3.40 

705.50 / 

719.75 

6.91 / 

9.14 

3.32 / 1.25 4483.79 

/ 

2719.31 

FasRe 216.10 / 218.39 2.12 / 

2.83 

711.75 / 

403.95 

6.97 / 

5.24 

3.34 / 0.69 4486.05 

/ 

2741.18 

ShoRe 227.69 / 218.15 2.25 / 

2.83 

746.75 / 

400.95 

7.37 / 

5.21 

3.43 / 0.66 4485.55 

/ 

2735.48 

NRR 145.98 / 216.09 1.42 / 

2.79 

292.0 / 

396.0 

2.85 / 

5.12 

0.81 / 0.63 4571.11 

/ 

2873.25 

 

Travel time: In terms of the reduction of the ATT, according to the 

evaluation results shown in Table 5.5, Level 1 NRR shows the best performance 

compared to ShoRe and FasRe. More precisely, in 8 × 7 grid map, NRR decreases 

the ATT by 19.25% compared to ERE, while this improvement is limited to 18.48% 

for ShoRe and 18.39% for FasRe. Although the advantage NRR brings is relatively 

marginal, less than 1% compared to ShoRe and FasRe, in realistic scenario (i.e., 
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city center of Cologne) this advantage becomes a much more significant 32.06%, 

with ShoRe and FasRe perform even worse than ERE by 5.96% and 0.57% 

respectively. Similar conclusions can be drawn regarding the achieved TTI. 

According to the trip distribution statistics plotted in Figure 5.3, in both grid 

and city center of Cologne maps, NRR still has a long right tail similar to that of 

ERE, ShoRe and FasRe, due to the fact that there have been always a few vehicles 

already stuck in the closed road before any rerouting strategy is applied. Thus, their 

trip time will be severely affected but for most of the other vehicles NRR 

successfully moves the trip time distribution to the left in Figure 5.3, saving more 

time for more trips compared to other rerouting strategies. 

Travel time reliability: In terms of PTI reduction for both maps, Level 1 

NRR performs the best among ShoRe and FasRe, and shows higher gain compared 

to that shown by ATT evaluation metric. Specifically, in 8 × 7 grid map, NRR 

performs 43.98% better than ERE, while ShoRe and FasRe outperform the latter 

by 43.00% and 42.67% respectively. In realistic scenario, NRR maintains this 

advantage by 58.76% compared to ERE, while, similar to ATT, ShoRe and FasRe 

even perform 6.66% and 0.87% worse than ERE. 

All solutions perform worse in city center of Cologne than in the grid map. 

A reasonable explanation is that compared to 8 × 7 grid map, city center of Cologne 

scenario has almost 3 times more vehicles and larger areas, and there is only one 

road segment closed for both scenarios. Hence, as opposed to 8 × 7 grid map 

scenario, there are a lot more vehicles in city center of Cologne which are not or 

only slightly affected by the en-route event but still being counted in the overall 

simulation results. 

Due to many direction-changing restrictions in realistic urban roads (i.e., 

one-way road, prohibited left/right turn), as well as the limited scalability of the 

two compared solutions (i.e., Level 0), ShoRe and FasRe always have much less 

rerouting choices than NRR, therefore, they tend to give the same rerouting 

direction to a higher percentage of vehicles, leading to more congested roads. This 

is the reason why ShoRe and FasRe performs even worse than ERE in which no 
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rerouting strategy is applied, apart from the previously discussed limitations of 

selfish rerouting. 

Other evaluation metrics: From the evaluation results of system instability 

I observe that NRR can also balance the traffic load on the roads better than FasRe 

and ShoRe. Additionally, the notable traffic improvement NRR brings is not a 

result of diverting event-affected vehicles to a much longer route which is usually 

not preferred by the drivers. There are only marginal differences among NRR, 

FasRe and ShoRe in terms of total travel length, maximally 5.04% in grid map and 

1.91% in realistic map, nevertheless, the considerable variations of performance 

gain among them compared to ERE can go up to 32.06% in ATT gain and 58.76% 

in PTI gain in realistic scenario (see Figure 5.5). 

 

Figure 5.5: Comparison of the percentage of improvement achieved by NRR, ShoRe 
and FasRe over ERE in terms of ATT and PTI. 

 

5.3.4 Study of the Impact of NRR on both Rerouted and Non-Rerouted 
Vehicles 
 

The previous results assess the impact of the strategies on all vehicles, 

whether they are directly impacted by having the en-route event as part of their 

original route, or only indirectly by potential increased traffic due to rerouted 

vehicles. I have further examined the rerouted and non- rerouted vehicles 

separately. 
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As shown in the Table 5.6 and Table 5.7, there is a common advantage among 

FasRe, ShoRe and NRR which consists in the small portion of vehicles chosen to 

be rerouted in both grid and realistic scenario, which means that the three rerouting 

strategies would not affect the travel experience of the most drivers by repetitive 

rerouting requests. Although in grid map, they can all reduce the trip time 

considerably for rerouted vehicles, only NRR maintains this advantage in the city 

center of Cologne, while FasRe and ShoRe increase more trip times even for the 

rerouted vehicles. Therefore, in spite of the fact that NRR is designed for mitigating 

traffic congestion mainly from the global point of view, it still can provide 

attractive incentive for each individual driver to encourage them to accept rerouting 

instructions given by NRR. 

If the driver does not accept the rerouting decision given by NRR, 

surprisingly, the results also indicate that in both maps, NRR is the only rerouting 

strategy that can reduce more trip time for more non-rerouted vehicles, in 

comparison to the number of non-rerouted vehicles which have their trip time 

increased. However, drivers are still being strongly encouraged to accept NRR’s 

decision, because on average they would save up to at least 10 times more trip time 

than when not doing so. 

Based on all the findings illustrated above, and one extra fact that even for 

non-rerouted vehicles the average wasted trip time is much less than the average 

saved trip time, the conclusion can be drawn that NRR is the only rerouting strategy 

that can not only bring significant benefit for rerouted vehicles, but also improve 

traffic which consists of non-rerouted vehicles and cause nearly no serious fairness 

issue. 
Table 5.6: Impact of NRR, ShoRe, and FasRe on rerouted vehicles (Cologne Center 

/ 8x7). 
 NRR ShoRe FasRe 

# vehicles having SAME trip time 0 / 1 0 / 0 0 / 0 

# vehicles WASTED trip time 1 / 3 3 / 0 5 / 1 

Average WASTED trip time (sec) 40.0 / 121.0 152.67 / 0 64.6 / 88.0 

# vehicles SAVED trip time 136 / 124 3 / 117 3 / 118 

Average SAVED trip time (sec) 558.69 / 854.35 81.33 / 896.91 47.33 / 886.94 
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Table 5.7: Impact of NRR, ShoRe, and FasRe on non-rerouted vehicles (Cologne 

Center / 8x7). 
 NRR ShoRe FasRe 

# vehicles having SAME trip time 865 / 926 854 / 855 910 / 862 

# vehicles WASTED trip time 855 / 880 1284 / 1015 1205 / 997 

Average WASTED trip time (sec) 4.25 / 24.05 39.45 / 22.15 13.67 / 23.33 

# vehicles SAVED trip time 1218 / 1008 922 / 955 943 / 964 

Average SAVED trip time (sec) 85.65 / 62.85 12.61 / 66.04 13.72 / 65.78 

 

 

5.3.5 Impact of Varying Weight Allocation Strategies on NRR 
 

In this subsection, I analyze the results of multiple NRR versions with 

varying weight allocations. I have compared 6 typical weight allocation strategies 

for NRR: one (NRR_ada) of them uses the adaptive process described with 

Equation 5.4; NRR_even is another strategy which evenly assigns weight values 

for all four factors of the cost function; the other four strategies assign full weight 

value for each of the four factors as shown in Table 5.8. 

Table 5.8: Comparison of varying weight allocations strategies’ impact on NRR 
(Cologne Center / 8x7). 

 𝑤 TTI PTI SI 

NRR_ada adaptive 1.42 / 2.79 2.85 / 5.12 0.81 / 0.63 

NRR_even (
1
4
,
1
4
,
1
4
,
1
4
)~ 1.44 / 2.82 2.85 / 5.22 1.04 / 0.67 

NRR_oc (1, 0, 0, 0)~ 1.43 / 2.82 2.85 / 5.25 0.90 / 0.67 

NRR_tt (0, 1, 0, 0)~ 2.04 / 2.83 6.53 / 5.26 2.70 / 0.67 

NRR_gd (0, 0, 1, 0)~ 1.67 / 2.79 3.89 / 5.15 2.06 / 0.67 

NRR_gc (0, 0, 0, 1)~ 1.44 / 2.86 2.91 / 5.31 0.88 / 0.73 

 

Table 5.8 validates that in both 8 × 7 and center of Cologne testbeds, NRR 

using adaptive weight allocation achieves the lowest congestion level (TTI) and 
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system instability (SI) while ensuring the highest travel time reliability (PTI). The 

NRR using evenly assigned weight values can also achieve good results in both 

testbeds, but it still performs a bit worse than NRR_ada. Moreover, as there is no 

justification for evenly assigned weights in the general case, it is risky (i.e. the 

performance could be much worse) when applied to other urban scenarios. Except 

for the strategy which assigns full weight to the road occupancy factor (NRR_oc), 

the other three weight allocation strategies do not show consistent performance in 

both testbeds.  

 

5.4 Summary 
 

In this chapter, the proposed Next Road Rerouting (NRR) based on the 

widely used adaptive traffic light control system and vehicle navigation system 

(VNS) is introduced. NRR diverts each vehicle affected by an en-route event to its 

optimal next road considering four factors measured in real time, namely the road 

occupancy, the travel time, the geographic distance to its intended destination and 

the geographic closeness to the closed road. The obtained evaluation results 

highlight that in comparison to the commonly used existing solutions, NRR can 

achieve a reduction of average trip time and an improvement of travel time 

reliability up to 38.02% and 65.42% respectively in a realistic map. Moreover, 

NRR can even improve the traffic conditions for more than half of non-rerouted 

vehicles. Besides, my evaluation results reveal also the devastating impact on 

traffic when overusing selfish rerouting (i.e., VNS) and highlight the benefit of the 

smart altruistic rerouting strategy (i.e., NRR).  
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Chapter 6  
Next Road Rerouting with High 

Resolution Traffic Information 
 

In this chapter, I firstly illustrate two problems incurred by using traffic 

information with low update frequency and limited coverage for rerouting vehicles. 

Then, I introduce the high resolution traffic information provider: VANETs and 

describe the motivation of applying it to improve the performance of NRR. Based 

on VANETs environment, an adaptive mechanism using k-means algorithm is 

proposed to select the most suitable group of iTLs to perform NRR more efficiently. 

Finally, the performance gains brought by the aforementioned improvements are 

shown by comparing NRR with existing induction loops. 

 

6.1 Problems of Low Resolution Traffic Information 
 

Compared to the existing solution using traditional shortest path finding 

algorithms in VNS, NRR reroutes vehicles efficiently by only calculating the best 

“next road” rather than the entire route. Moreover, all the required information to 

perform this rerouting is locally available, which saves huge potential cost for 

obtaining global information. However, the provider of information on road traffic 

conditions in NRR (i.e. induction loop) has limited update frequency (i.e. no less 

than 1 min) and coarse granularity (i.e. only arterial roads are covered), preventing 

it from supplying sufficient information to allow making better rerouting decision. 
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Besides, this problem can also be found in another popular existing method to 

collect traffic information, floating car data (FCD), which is usually applied in 

VNS with 2-5 mins update frequency and arterial roads coverage only. 

For example, rerouting system in Figure 6.1 aims to balance traffic load 

locally, when vehicles are approaching the junction from road 𝑟�two cases can be 

distinguished as follows: in the first case, as shown in Figure 6.1  (a), the system 

will reroute the vehicles from 𝑟� to 𝑟%, after a time duration 𝑡�, as shown in Figure 

6.1 (b), the system should reroute the vehicles from 𝑟� to 𝑟[ but due to its slow 

update frequency (𝑇 > 𝑡� + 𝑡%), the system’s view stays at Figure 6.1 (a). Thus, the 

system keeps incorrectly rerouting the vehicles from 𝑟� to 𝑟%. In the second case, 

as shown in Figure 6.1 (d), the system should reroute the vehicles from 𝑟� to 𝑟[ 

because the latter has more capacity than 𝑟%. However, due to its limited coverage 

for major roads, the system considers that 𝑟% has no traffic as in Figure 6.1 (e), and 

incorrectly reroute the vehicles into it. The results shown in both Figure 6.1 (c) and 

Figure 6.1 (f) reveal that the system has created another bottleneck without actually 

balancing the traffic. 

Figure 6.1: The impact of slow update frequency and limited traffic information 
coverage on the rerouting decision. 



 
 Chapter 6. Next Road Rerouting with High Resolution Traffic Information 
 

92 
 

6.2 Motivation of VANETs for Vehicle Rerouting 
 

One of the pre-requisite technologies to address the aforementioned 

problems is the emerging VANETs. VANETs can provide real-time traffic 

information with full coverage, high resolution and high update frequency to make 

timely adaptation possible in face of unexpected congestions. In a typical VANETs 

scenario, each vehicle broadcasts and receives “beacon” messages periodically to 

enable better awareness of the local traffic situation within its transmission range. 

In the two most widely recognized VANETs standards, this “beacon” message is 

called Cooperative Awareness Message (CAM) and is part of the “Facilities Layer” 

of ETSI ITS [92], or defined as “Basic Safety Message” in IEEE WAVE protocol 

stack [93]. A beacon message contains information about the speed, acceleration, 

position, heading, etc. of a certain vehicle. It is broadcast at least 10 times per 

second. VANETs can also cover all areas where roads have vehicles. Most 

importantly, VANETs technology fits perfectly into local urban scenarios, 

especially in NRR system where a whole city map is processed separately and 

simultaneously in different agents. This is because I surprisingly found that the 

length of up to about 90% of urban roads is within VANET’s one-hop transmission 

area which is typically 300 m [94] (could be up to 1000 m [93]).  

Note that the beacons suffer from high loss rate in practice, as shown in [103] 

where in some scenarios the effective transmission range can be shrank by up to 

90%. NRR based on one-hop transmission can avoid this issue to some extent, 

compared to the extensive applications of multi-hop transmission in the literature 

to get the global traffic conditions. Moreover, some state-of-the-art technologies 

[104] can help to achieve more reliable transmission for one-hop used in NRR by 

implementing reliable beacons congestion control mechanisms such as the works 

done by [105]. The sampling rate can be accelerated to overcome the beacon loss 

as well. As can be found in Table 6.2 in the later evaluation this chapter, the best 

traffic condition can be achieved when sampling rate of traffic information is every 

10s. While the normal frequency of beacons in VANETs is every 0.1s. This leaves 

huge potential for accelerating sampling rate. 
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Table 6.1: Selected map statistics. 

 #roads<300m / 

#all roads 

Average 

road length 

(m) 

Area 

(𝒌𝒎𝟐) 

World 

Congestion 

Ranking 

Beijing (Asia) 89.31% 138.04 1235.51 15th 

Cape Town (Africa) 95.84% 94.51 646.03 55th 

London (Europe) 98.27% 57.90 865.24 16th 

Los Angeles (North 

America) 

94.21% 115.08 864.68 10th 

Rio de Janeiro (South 

America) 

96.14% 96.80 572.37 3rd 

Sydney (Australia) 97.43% 78.01 404.41 21st 

 

This interesting conclusion is made from the statistics of various city maps 

from OpenStreetMap [88]. As shown in Table 6.1, I select a representative city from 

each continent (excluding Antarctica, because it has no big city with serious 

congestion problems) where citizens often experience heavy congestion in peak 

hours according to a well-recognized worldwide congestion report released by 

TomTom [91]. 

However, compared to driving safety and infotainment [96], the VANETs’ 

research community has devoted little effort to improving traffic management. 

Most of related solutions in the literature are not practical enough as they usually 

require the exchange of vehicles’ routing decisions, which violates the drivers’ 

privacy. Moreover, the full route information can even be unknown for drivers 

traveling in new areas. Additionally, these solutions often need global traffic 

conditions information, relying on the error-prone coordination mechanism, based 

on ad hoc communication, among various moving vehicles. This mechanism also 

suffers from the non-line-of-sight problem [96] around intersections. 
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6.3 NRR with VANETs 

 

6.3.1 Architecture 

The deployment of NRR in VANETs maintains the major part of previous 

NRR’s architecture (i.e. TOC connects multiple regional computers (RC) which 

are in charge of one or more NRR agents) with only one replacement of induction 

loops by VANETs. As shown in Figure 6.2, in the NRR shown in the previous 

chapters, the communication between the RSU and vehicles is in one-to-one 

manner only for rerouting confirmation. The same communication is now extended 

in a-NRR by adding one (RSU) to all (vehicles on one particular road) manner for 

traffic information collection. Another tip for on-site deployment is that the RSU 

should be placed in a higher location to avoid non-line-of-sight problem. 

 

Figure 6.2: The comparison of architecture of NRR deployed in ATCS 

and VANETs. 
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6.3.2 Adaptive Selection for Operational Parameter 

The NRR-enabled local areas (agents), which are the operational parameters 

of NRR, aim at achieving the best trade-off between system cost and traffic 

improvement. In my previous work [99], the evaluation results on grid maps reveal 

that with the increase of the number of NRR-enabled local areas, the improvement 

of traffic performance increases sharply up to the peak value when 5 agents are 

enabled, then slowly decreases. Therefore, the traffic improvements are not 

rigorously proportional to the system cost (i.e. amount of activated NRR agents). 

However, enabling 5 local areas/agents cannot guarantee that the peak value 

will be reached under any set of traffic conditions and urban scenario. In order to 

find the most suitable agents to be enabled, traffic managers need to tune NRR with 

several trials manually according to various traffic and closed road locations. The 

extra cost raised from this process could potentially prevent NRR to be applied in 

future smart cites. 

The version of NRR in the previous chapters chooses the number of 

activated agents based on the closed road location. It assumed that the closed road 

is the centre of en-route congestion distribution. It then chose the agent that 

contained the closed road first, if the achieved traffic improvements were not 

sufficient it enabled all its neighboring agents until reaching a satisfactory traffic 

improvement. However, its underlying assumption is not always correct and the 

number of agents will increase exponentially as the level value grows [99], making 

the selection more inaccurate. To solve these two problems, based on the 

philosophy of NRR, I believe that if a certain local area does not have a roughly 

balanced traffic load, then NRR needs to be executed. Thus, this selection process 

deals directly with the cause of congestion rather than the weak assumption of 

closed road. 

Therefore, the key question is how NRR can determine whether a given local 

area has a balanced traffic load or not. To solve this problem, by making advantages 

of high-resolution traffic information provided by VANETs, k-means [95] 

algorithm is applied in NRR. First, for each local area with at least two outgoing 
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roads, the TOC of NRR calculates and updates the standard deviation STD of RO 

of all outgoing roads periodically, then k-means is applied to generate two (k=2) 

clusters in each time interval. One cluster has relatively smaller STD while the 

other has larger STD. The latter cluster of local areas needs to enable rerouting 

because larger STD means such agent does not have roughly balanced traffic load. 

Let us consider the example shown in Figure 6.3 where in 1800 secs simulation test, 

I close the central road of 8X7 grid map (in Figure 6.3.a) from 300th to 1500th sec. 

From in Figure 6.3.b it can be observed that all agents have similar small STD before 

the road closure. 600 secs after the occurrence of an event, it can be seen from in 

Figure 6.3.c that only few agents located in the vicinity of the closed road have 

much larger STD. It is, therefore, difficult to accurately determine a threshold 

separating the small number of agents with large STD from the majority of agents 

with small STD, but k-means algorithm, as a typical clustering algorithm, can 

easily achieve this with low computation cost because in this case k=2 and only 

one-dimension input data is used. As the STD of the most of agents still remains a 

small value when the event occurs, the initial centroids of k-means algorithm used 

in NRR is chosen as the maximum value, and median value of STD for all agents.  

 

Figure 6.3: The geographical distribution of standard deviations (STD) of a set of 
RO values from all outgoing roads in each agent: before and after the occurrence of 
an event on the central road in 8X7 grid map scenario. The larger the circle is, the 

larger value of STD a certain agent has. 
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6.3.3 Evaluation Results and Analysis  

To check if the adaptive mechanism for operational parameters selection can 

still provide competitive results, and the high resolution traffic information 

provided by VANETs can further reduce the congestion, I conducted a 

performance evaluation study by comparing NRR with both ATSC (N-A) and NRR 

with VANETs (N-V). In this study, I kept the same simulation settings as in the 

previous chapter for this evaluation, and only focused on the city center of Cologne 

scenario. 

The first part of this evaluation consists in investigating the best update 

interval of traffic information for N-V. As previously introduced, each vehicle in 

VANETs environment periodically broadcasts its status every 0.1 second. 

However, if I choose this value as the update interval of traffic information, then 

the incurred overhead for the system to store and process the data would be 

excessively large. Moreover, this update interval is very sensitive to the traffic 

change, meaning that the rerouting decision will more likely lead to an increase in 

congestion, according to the instability of urban road traffic and Braess’s Paradox.  

Therefore, in this evaluation I chose six update interval candidates: 1s, 10s, 30s, 

60s, 120s, and 300s. The best one should present the lowest value in terms of both 

TTI and PTI. 

From the results shown in Table 6.2, 10 seconds update interval for NRR 

with VANETs can provide the lowest value of TTI and PTI. These results are in 

line with my previous assumption (i.e. made in the second last paragraph in Chapter 

1.1) stating that the ideal update frequency of traffic information for routing should 

be less than 30 seconds. N-V with 1 s has achieved a little increase in terms of TTI 

and PTI. This also confirms the assumption I made in the previous paragraph in 

this section and which states that unnecessarily short interval can even increase the 

congestion. Starting from 30 seconds, the effectiveness of congestion reduction 

decreases as the interval length grows. 

The second part of this evaluation is to compare N-A and N-V. Here, I put 

N-A into a more practical setting. As all selected 8 agents (level 1) in the previous 
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evaluation for N-A are not controlled with traffic lights indeed, I enable all traffic 

light controlled agents in N-A to ensure the highest effectiveness of congestion 

reduction. Additionally, the update interval is set as 120 seconds, which is the 

shortest [50] that the common ATSC system can provide. 

 
Table 6.2: Results of key congestion measurements for NRR with VANETs (N-V), 

and NRR with ATSC (N-A) under various traffic information update intervals. 
 TTI PTI 

N-V (1s) 1.46 2.91 

N-V (10s) 1.45 2.90 

N-V (30s) 1.47 2.96 

N-V (60s) 1.48 2.96 

N-V (120s) 1.48 2.96 

N-V (300s) 1.49 3.04 

N-A (120s) 1.53 3.20 

 

It is encouraging to see from Table 6.2 and Table 5.5 that even in a more 

practical setting, N-A can still outperform the best competing solution (FasRe) by 

27.83% for TTI and 54.09% for PTI. More importantly, when comparing N-A and 

N-V under the same update interval 120 s, it can be concluded that 3.27% and 7.5% 

improvement in TTI and PTI can be achieved due the more accurate traffic 

information provided by VANETs. Finally, when N-A is compared with N-V under 

the best interval (i.e. 10 seconds), the reduction in TTI and PTI brought by N-V is 

5.23% and 9.38%, respectively. 

Additionally, N-V can outperform the best setting of practical N-A under all 

various update intervals. This observation ascertains that my proposed adaptive 

mechanism for operational parameters selection can replace the previous manual 

tuning process using the concept of “level” by providing competitive results 

without any human intervention. 
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Chapter 7  
Conclusion and Future Work 

 
Chapter 7 concludes this thesis by recalling the investigated research 

problem, summarizing the contributions made to state-of-the-art, and proposing 

three recommendations for future work. 

 

7.1 Problem Overview 
 

Urban traffic congestions have arisen since the beginning of urbanization 

around six decades ago. It incurs a huge amount of monetary loss as a result of 

excessive travel time and fuel consumptions in both developed and developing 

countries. Nowadays, thanks to the wide penetration of mobile devices and big data 

related technologies, commonly used intelligent transportation systems can reduce 

recurrent traffic congestion down to an acceptable or at least predictable level. 

However, to the best of my knowledge, there is still no solid improvement to the 

non-recurrent traffic congestion, due to its rigorous requirement for real-time 

decision making. This type of traffic congestion is often caused by en-route events, 

such as an unplanned parade, road works, sudden changes in weather conditions, 

car crashes and so on. This non-recurrent traffic congestion can propagate to wider 

areas in a very short time period. Consequently, the uncertainty of drivers’ trips, 

which is supposed to go through or around the event-impacted area, will be 

significantly increased. Therefore, the objective of this thesis is to propose a vehicle 

rerouting system that can effectively and practically reduce traffic congestion due 

to unpredictable events in real-time. 
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7.2 Contributions to the State-of-the-Art 
 

To address the unexpected urban traffic problem, this thesis proposes a 

highly practical and novel adaptive system called Next Road Rerouting (NRR). 

The three major contributions in this thesis are summarized as follows: 

• Improved multi-agent system architecture for vehicle rerouting in 

Adaptive Traffic Signal Control (ATSC) systems. There are two 

common multi-agent system (MAS) designs in the state-of-the-art traffic 

management.  For the first MAS design in ATSC, the agent is defined as 

regional computer and incoming lanes of each controlled intersection. 

The agent coordination mechanism is achieved by adapting the 

parameter “cycle” in traffic light scheduling. This parameter defines the 

time difference of the same traffic light timing plan for two consecutive 

junctions. Compared to this MAS architecture, my proposed architecture 

NRR extends the concept of agent by adding outgoing lanes. It also 

ensures coordination between neighbouring agents such that each of 

them gets accurate real-time traffic information about traffic conditions 

in its outgoing lanes. Moreover, vehicles running on the incoming lanes 

of each agent are required to send their destinations, if rerouting is 

needed, so that the geographical distance to each destination can be 

computed.  Thus, MAS design in NRR makes use of all road information 

and improves the global trip delay rather than the local intersection delay 

ATSC focuses. Additionally, compared to the second common MAS 

design (i.e. often seen in vehicle routing system) which defines each 

moving vehicle as an agent, my NRR design defines an agent as a 

junction-centred region instead of a moving vehicle, hence greatly 

decreases the system complexity. In particular, the error-prone and 

impractical route choice exchange for agent coordination is also avoided.  
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• NRR satisfies the rigorous real time requirement of non-recurrent 

congestion by initially computing only the next road direction. In the 

literature, many vehicle rerouting systems use time consuming multi-

hop approach to aggregate the real-time global traffic conditions. 

Moreover, the algorithms used in these systems for route assignment are 

all based on the typical shortest path finding algorithm, and need to run 

for many iterations to find the user equilibrium (UE) or system optimum 

(SO) solution. In the face of an en-route event, a meaningful rerouting 

consists in finding an alternative direction to bypass the incurred 

congestion, rather than seeking a full route a complete a trip. Thus, the 

usage of typical shortest path finding algorithms with the acquisation of 

global traffic info is unnecessary for this particular problem. In addition, 

the iterative algorithm does not fit the rigorous real time requirements of 

non-recurrent congestion. NRR uses local traffic info to compute the 

most promising next road only for a vehicle to avoid the congestion. 

Meanwhile, NRR reduces the potential negative impact on global traffic 

since the destination of each rerouting request is considered in 

minimizing the heuristic routing cost function. 

• Increased practicability in assumptions, design and validation 

methodology. The state-of-the-art systems often assume the route 

choice for each vehicle is always available to share among each other. 

This assumption is critical for shifting UE (i.e. local optimum) to SO (i.e. 

global optimum) according to game theory. However, the route choice 

is in fact not precisely available, especially when drivers are moving in 

unfamiliar regions.  Conversely, NRR only needs driver’s destination 

which is already available for most vehicles already on the road. The 

design for calculating next road direction only fits driver’s intuition and 

rigorous real-time requirement of actions in response to en-route events. 

Finally, instead of performing experiments on macroscopic (flow-level) 

small-scaled grid map, the methodology of performance evaluation used 

in NRR is done by using microscopic (vehicle-level), medium-scaled 
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quasi-realistic urban scenario. Therefore, the evaluation results of NRR 

are more convincing.  

The effectiveness of NRR has been validated using the microscopic traffic 

simulator SUMO under both synthetic and quasi-realistic urban scenarios. The 

performance of NRR is evaluated and compared to two commonly used variations 

of VNS, ShoRe and FasRe, which are shortest travel distance rerouting and fastest 

travel speed rerouting respectively. Specifically, ShoRe and FasRe are using static 

A* algorithm one junction away from the closed road. In addition, two other 

approaches are used to set the evaluation benchmark. One is en-route event (ERE), 

which means “do nothing” when an event occurs. ERE shows how non-recurrent 

congestion can deteriorate the surrounding traffic conditions. The other is original 

(ORG), which is the best case of traffic, when no event happens in the observed 

area of simulation. 

In comparison to the commonly used existing solutions (i.e. ShoRe and 

FasRe), NRR can achieve a reduction of average trip time and an improvement of 

travel time reliability up to 38.02% and 65.42% respectively in a quasi-realistic 

scenario of Cologne city center. With the help of high resolution traffic information 

by VANETs, and k-means based adaptive mechanism for operational parameter 

selection, the gain can further be improved by 5.23% and 9.38% for travel time and 

travel time reliability. Moreover, NRR can even improve the traffic conditions for 

more than half of non-rerouted vehicles, with the cost of 1.91% total travel length 

increase, and 4.46% vehicles rerouted only. Besides, my evaluation results reveal 

also the devastating impact on traffic when overusing selfish rerouting (i.e., VNS) 

and highlight the benefit of the smart altruistic rerouting strategy (i.e., NRR). 

Therefore, the conclusion can be draw that the thesis objective has been achieved. 

Specifically, as stated in the statement of research problem, the non-recurrent urban 

road congestion has been efficiently reduced under two practical constraints. 
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7.3 Recommendation for Future Work 
 

To further improve the proposed NRR in reducing urban non-recurrent 

traffic congestion, three recommendations are suggested as follows: 

• Investigate the traffic impact of various road events according to 

realistic dataset. This thesis shows a significant reduction of 

unexpected road congestion when applying NRR under one road closure 

in the centre of an urban road network. In practice, there are various 

types of en-route events that can lead to non-recurrent congestion. These 

events differ in the number of closed roads, the location of closed roads, 

the number of lanes closed or restricted on a certain road, the duration 

for road closure and so on.  Thus, various events will have different 

impact on traffic conditions, and they call for different approaches to 

cope. For instance, when several consecutive minor roads are closed in 

a remote region like residential areas, this may cause heavy congestion 

in the vicinity but is unlikely to propagate to wider areas with major 

roads. Conversely, if even only one road is closed in the city centre 

during peak hour; it will increase the trip uncertainty for a great number 

of vehicles. When more realistic data become accessible in the future, 

the aforementioned research could be done to design a proactive vehicle 

rerouting solution able to act prior to congestion propagation. 

• Optimize the traffic signal decision by integrating route guidance 

with traffic light scheduling in the existing ATSC. This thesis 

describes the idea of introducing vehicle rerouting functionality (NRR) 

based on the existing ATSC. NRR makes rerouting decision using the 

traffic information (i.e. degree of saturation) provided by induction loops 

in ATSC, and uses similar system architecture as ATSC. However, NRR 

does not merge the two types of decision (i.e. route guidance by NRR 

and traffic light scheduling by ATSC) into one single optimized decision 

to improve the traffic conditions. The recommended idea here is to 

extend the concept of “traffic signal” in traditional ATSC, making it not 
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confined to “traffic light signal” by introducing a “route guidance signal”. 

It has been proven through decades of successful practice around the 

world that ATSC can reduce the delay when going through major 

intersections. However, the reduction of average trip time, which ATSC 

ignores, is more important to improve the performance of the whole road 

network. For instance, when en-route events occur, the alternative routes 

which NRR suggests will also need ATSC to assign higher priority 

traffic light plan to accommodate the sudden increased traffic.  

• Replace destination query process in NRR by the up-to-date 

prediction techniques. In the typical rerouting process of NRR, as 

shown in Figure 4.2, the steps 3 and 4 combined represent the process for 

rerouting confirmation. The agent authorised by TOC broadcasts the 

rerouting alarm to all vehicles nearby, then if the vehicle needs to be 

rerouted, it sends the confirmation along with its intended destination 

back to the agent controlling it. Specifically, the reason why NRR needs 

to know the destination is to compute the value of the factor “geographic 

distance to destination”, which is the key factor making the proposed 

routing cost function shifting its perspective from local to global. This is 

practical when compared to the state-of-the-art approaches, in which 

they assume the route choices are available for exchange among vehicles. 

However, it is still possible that some drivers will refuse to share their 

destinations for privacy reasons. Moreover, driver behaviour (e.g. 

manually choose destination location on the map shown in VNS and 

click the button to send) is involved in this rerouting confirmation 

process response. This increases the risk that the whole rerouting process 

might be stuck waiting for drivers’ response, thus significantly increase 

the react time. By introducing destination prediction technology using 

large scale trajectory data [97][98], as the agent knows its own location 

and controls incoming and outgoing lanes, the improved process can be 

described as follows: the agent broadcasts the rerouting alarm message 

that contains the location of the closed road, as well as the suggested 
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next road directions for several most possible destination regions, 

without explicitly asking drivers’ accurate destination location. 

Consequently, NRR becomes more practical and efficient by preventing 

the human involvement.
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Appendix A – Key Code Snippets 
for Simulation 
 
A.1 Crop the Large-Scale Simulation Scenario 
 
In this thesis, several subsets of a large-scale simulation scenario, TAPASCologne 

0.24.0, are used for multiple simulation experiments. For instance, in Chapter 3, 

the three subsets: city centre, suburban, and remote area scenario are cut from the 

scenario of the greater Cologne area and used for evaluating the performance of 

vehicle routing algorithms. Additionally, in Chapter 5 and Chapter 6, the city centre 

of the same large-scale simulation scenario is used for evaluating the performance 

of proposed Next Road Rerouting system. 

 

To get the subset of the original large scale simulation scenario is a non-trivial 

technical problem. This process consists in two steps: crop the map given the 

limited spatial boundary, and crop the traffic demand given the same limited spatial 

boundary and limited temporal range. 

 

The Python implementation of my way to crop the large-scale simulation scenario 

in SUMO is given as follows: 

 

1. # This script crops the specific map and its corresponding demand data given a map ra
nge.   

2. # Please refer to http://sumo.dlr.de/wiki/NETCONVERT for the parameter setting.   
3. import argparse   
4. import subprocess   
5. import os   
6. import sys   
7. import xml.etree.cElementTree as ET   
8.    
9.    
10. def get_options():   
11.     arg_parser = argparse.ArgumentParser()   
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12.     arg_parser.add_argument('--in_dir', default=r"C:\SUMO\Scenarios\TAPASCologne-
0.24.0",   

13.                             help='The root directory of input')   
14.     arg_parser.add_argument('--geo_bound', default='12200,13000,14000,14200',   
15.                             help='The geographic boundary for cropping the map')   
16.     arg_parser.add_argument('--time_bound', default='0,3600',   
17.                             help='The time boundary coordinates for cropping the traf

fic demand')   
18.     arg_parser.add_argument('--out_dir', default=r"C:\SUMO\Scenarios\adanrr",   
19.                             help='The root directory of output')   
20.     arg_parser.add_argument('--out_fn', default=r"cologne_mini",   
21.                             help='The file name of three output scenario files')   
22.     return arg_parser.parse_args()   
23.    
24.    
25. def path_conv(in_dir, out_dir, out_fn):   
26.    
27.     in_map = os.path.join(in_dir, 'cologne2.net.xml')   
28.     in_demand = os.path.join(in_dir, 'cologne6to8.rou.xml')   
29.     in_vtype = os.path.join(in_dir, 'vtypes.add.xml')   
30.    
31.     mid_demand = os.path.join(out_dir, out_fn+'_mid.rou.xml')   
32.    
33.     out_map = os.path.join(out_dir, out_fn+'.net.xml')   
34.     out_demand = os.path.join(out_dir, out_fn+'.rou.xml')   
35.     out_cfg = os.path.join(out_dir, out_fn+'.sumocfg')   
36.    
37.     return in_map, in_demand, in_vtype, mid_demand, out_map, out_demand, out_cfg   
38.    
39.    
40. def crop_demand_by_time(in_file, time_bound, out_file):   
41.     tree = ET.parse(in_file)   
42.     root = tree.getroot()   
43.     new_root = ET.Element(root.tag, root.attrib)   
44.     min_bound, max_bound = time_bound.split(',')   
45.     item_count = 0   
46.     for child in root:   
47.         item_count += 1   
48.         cur_dpt_time = float(child.attrib['depart'])   
49.         if item_count == 1:   
50.             start_time = cur_dpt_time   
51.             min_bound = start_time + float(min_bound)   
52.             max_bound = start_time + float(max_bound)   
53.         elif min_bound <= cur_dpt_time < max_bound:   
54.             new_child = ET.SubElement(new_root, child.tag, child.attrib)   
55.             for child2 in child:   
56.                 ET.SubElement(new_child, child2.tag, child2.attrib)   
57.         elif cur_dpt_time >= max_bound:   
58.             ET.ElementTree(new_root).write(out_file)   
59.             return   
60.    
61.    
62. def create_sumocfg(net_file, demand_file, cfg_file, vtype_file):   
63.    
64.     tree = ET.parse(r"C:\SUMO\Scenarios\TAPASCologne-0.24.0\cologne.sumocfg")   
65.     root = tree.getroot()   
66.     new_root = ET.Element(root.tag, root.attrib)   
67.    
68.     for child in root:   
69.         new_child = ET.SubElement(new_root, child.tag, child.attrib)   
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70.         for child2 in child:   
71.             if child2.tag == "net-file":   
72.                 child2.attrib['value'] = net_file   
73.             elif child2.tag == "route-files":   
74.                 child2.attrib['value'] = demand_file   
75.             elif child2.tag == "additional-files":   
76.                 child2.attrib['value'] = vtype_file   
77.             ET.SubElement(new_child, child2.tag, child2.attrib)   
78.     ET.ElementTree(new_root).write(cfg_file)   
79.    
80.    
81. def main():   
82.     print "Step1 - Reading arguments..."   
83.     args = get_options()   
84.     in_map, in_demand, in_vtype, mid_demand, out_map, out_demand, out_cfg = \   
85.         path_conv(args.in_dir, args.out_dir, args.out_fn)   
86.    
87.     print "Step2 - Cropping original map..."   
88.     sumo_netcon = os.path.join(os.environ.get('SUMO_HOME'), 'bin', 'netconvert.exe')  

 
89.     netcon_proc = subprocess.Popen([sumo_netcon, '-s', in_map, '--keep-edges.in-

boundary', args.geo_bound,   
90.                       '--remove-edges.isolated', '-o', out_map], stdout=sys.stdout)   
91.     netcon_proc.wait()   
92.    
93.     print "Step3 - Cropping original demand by time boundary..."   
94.     crop_demand_by_time(in_demand, args.time_bound, mid_demand)   
95.    
96.     print "Step4 - Cropping original traffic demand by cropped map boundary..."   
97.     sumo_cutroute = os.path.join(os.environ.get('SUMO_HOME'), 'tools', 'route', 'cutR

outes.py')   
98.     cutrou_proc = subprocess.Popen(['python', sumo_cutroute, out_map, mid_demand, '--

routes-output',   
99.                                     out_demand, '--orig-

net', in_map], stdout=sys.stdout)   
100.     cutrou_proc.wait()   
101.    
102.     print "Step5 - Generating SUMO configuration file for cropped scenario..."   
103.     create_sumocfg(out_map, out_demand, out_cfg, in_vtype)   
104.     print "Cropping succeed!"   
105.    
106. if __name__ == '__main__':   
107.     main()   

 
The above script is written using Python 2.7, and tested on Windows 8 64-bit 

Professional and SUMO 0.25.0. I appreciate the suggestions from two senior 

developers in SUMO community: Jakob Erdmann and Michael Behrisch. 
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A.2 Two-Step Rerouting in NRR 
 
In this thesis, the two-step rerouting process in the proposed NRR has been 

previously described using a sequence diagram Figure 4.2. To show more details, 

the implementation of this two-step rerouting process using Python 2.7 is shown 

as follows: 

 

First step rerouting, choose a suitable next road direction to follow: 

1. def next_road_rerouting(sumo_map, closed_roads, act_tls):   
2.     '''''  
3.     The first step of next road rerouting.  
4.   
5.     Args:  
6.         sumo_map: The objects of test map in SUMO format.  
7.         closed_roads: The ids of the closed road segments.  
8.         act_tls: The objects of the junctions where NRR enables.  
9.     '''   
10.     # key: vehicle id;    
11.     # value: [suggested next road id, destination road id]   
12.     global NEXT_ROAD_DICT   
13.     # key: "origin road id,destination road id";    
14.     # value: the length in meters of the shortest path; 99999.99 if not connected   
15.     global REACHABILITY_DICT     
16.        
17.     for k in act_tls:   
18.         for j in k.getIncoming():   
19.             j_id = j.getID()   
20.             # get vehicles' ids on the road j_id   
21.             road_vehs = traci.edge.getLastStepVehicleIDs(j_id)   
22.             if len(road_vehs) != 0:   
23.                 # get id of the first vehicle on the road j_id   
24.                 first_veh_id = road_vehs[-1]   
25.                 first_veh_route = traci.vehicle.getRoute(first_veh_id)   
26.                 # check if the next road direction already suggested for this vehicle 

  
27.                 if not NEXT_ROAD_DICT.has_key(first_veh_id):   
28.                     # check if the first vehicle needs to be rerouted   
29.                     if is_affected(closed_roads, first_veh_route):   
30.                         # get the destination road id of the first vehicle   
31.                         first_veh_destrd_id = first_veh_route[-1]   
32.                         nr_id = next_road_id(sumo_map, closed_roads, sumo_map.getEdge

(first_veh_destrd_id), k)   
33.                         # ignore when the suggested road is not available to drive   
34.                         if nr_id == -1 or \   
35.                                         REACHABILITY_DICT[j_id+','+nr_id] == '99999.9

9' or \   
36.                                         REACHABILITY_DICT[nr_id+','+first_veh_destrd_

id] == '99999.99':   
37.                             continue   
38.                         NEXT_ROAD_DICT[first_veh_id] = [nr_id, first_veh_destrd_id]   
39.                         traci.vehicle.setRoute(first_veh_id, [j_id, nr_id])   
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Second step rerouting, when drives into the suggested next road, get the full route 

for the rest journey using VNS: 

1. def update_route():   
2.     '''''  
3.     The second step of next road rerouting.  
4.   
5.     Check whether the vehicle already entered its suggested next road.  
6.     If it is the case, retrieve its intended destination   
7.     and use VNS to get full route for its rest journey.  
8.   
9.     '''   
10.     global NEXT_ROAD_DICT   
11.     if NEXT_ROAD_DICT != {}:   
12.         for k in NEXT_ROAD_DICT.keys():   
13.             if k in traci.vehicle.getIDList():   
14.                 if traci.vehicle.getRoadID(k) == NEXT_ROAD_DICT[k][0]:   
15.                     traci.vehicle.changeTarget(k, NEXT_ROAD_DICT[k][1])   
16.                     traci.vehicle.rerouteTraveltime(k)   
17.                     del(NEXT_ROAD_DICT[k])   

 

A.3 Adaptive Selection for NRR Parameters 
 
In the framework of the two-step rerouting process, there are two adaptive 

mechanisms for selecting algorithmic and operational parameters. 

 

The implementation of the function next_road_id (i.e. invoked in line 32 of the first 

snippet in Appendix A.2) is shown as below, in which the adaptive weight 

allocation (i.e. algorithmic parameters) mechanism can be found between line 58 

and line 82. The code between line 84 and line 109 is used for evaluating NRR 

with different weights allocations in Chapter 5.3.5.  

 

1. def next_road_id(sumo_net, closed_roads, dest_road_obj, tl_obj, scenario_name):   
2.     '''''  
3.     The key process first step of next road rerouting.  
4.   
5.     Get the id of the NRR suggested next road using routing cost function.  
6.   
7.     Args:  
8.         sumo_net: The map data in sumo format.  
9.         closed_roads: The objects of closed roads  
10.         dest_road_obj: The sumo object of the destination road.  
11.         tl_obj: The object of the junction where NRR agents enabled.  



 
 Appendix A - Key Code Snippets for Simulation 
 

vi 
 

12.         scenario_name: The name of NRR version represents different weight allocation
s.  

13.   
14.     Returns:  
15.         The id of the NRR suggested next road in string type.  
16.     '''   
17.    
18.     # Only for outgoing roads   
19.     cost_dict = {}   
20.     travel_time_dict = {}   
21.     road_occupancy_dict = {}   
22.     geo_dist_dict = {}   
23.     geo_close_dict = {}   
24.    
25.     # If the CURRENT road is destination, return minus one   
26.     # Means don't need to do next road rerouting   
27.     if tl_obj is dest_road_obj.getToNode() or len(tl_obj.getOutgoing()) <= 1:   
28.         return -1   
29.    
30.     for i in tl_obj.getOutgoing():   
31.         i_id = i.getID()   
32.         # If one of its NEXT roads is destination, return it. NRR finished   
33.         if i_id == dest_road_obj.getID():   
34.             return i_id   
35.    
36.         travel_time_dict[i_id] = travel_time(i)   
37.         road_occupancy_dict[i_id] = road_occupancy(i)   
38.         geo_close_dict[i_id] = geoclose_cng(sumo_net.getEdge(closed_roads[0]), sumo_n

et.getEdge(closed_roads[-1]), i)   
39.         geo_dist_dict[i_id] = geodist_dest(i_id, dest_road_obj.getID())   
40.    
41.     max_dict = {}   
42.     max_dict["tt"] = max(travel_time_dict.values())   
43.     max_dict["oc"] = max(road_occupancy_dict.values())   
44.     max_dict["gd"] = max(geo_dist_dict.values())   
45.     max_dict["gc"] = max(geo_close_dict.values())   
46.    
47.     min_dict = {}   
48.     min_dict["tt"] = min(travel_time_dict.values())   
49.     min_dict["oc"] = min(road_occupancy_dict.values())   
50.     min_dict["gd"] = min(geo_dist_dict.values())   
51.     min_dict["gc"] = min(geo_close_dict.values())   
52.    
53.     deno_tt = max_dict["tt"]-min_dict["tt"]   
54.     deno_oc = max_dict["oc"]-min_dict["oc"]   
55.     deno_gd = max_dict["gd"]-min_dict["gd"]   
56.     deno_gc = max_dict["gc"]-min_dict["gc"]   
57.    
58.     # adaptive weights allocation   
59.     if scenario_name == 'nrr_ada':   
60.         if np.mean(travel_time_dict.values()) == 0:   
61.             cv_tt = 0.0   
62.         else:   
63.             cv_tt = np.std(travel_time_dict.values())/np.mean(travel_time_dict.values

())   
64.         if np.mean(road_occupancy_dict.values()) == 0:   
65.             cv_oc = 0.0   
66.         else:   
67.             cv_oc = np.std(road_occupancy_dict.values())/np.mean(road_occupancy_dict.

values())   
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68.         if np.mean(geo_dist_dict.values()) == 0:   
69.             cv_gd = 0.0   
70.         else:   
71.             cv_gd = np.std(geo_dist_dict.values())/np.mean(geo_dist_dict.values())   
72.         if np.mean(geo_close_dict.values()) == 0:   
73.             cv_gc = 0.0   
74.         else:   
75.             cv_gc = np.std(geo_close_dict.values())/np.mean(geo_close_dict.values())  

 
76.    
77.         cv_sum = cv_tt + cv_oc + cv_gd + cv_gc   
78.    
79.         w_tt = cv_tt/cv_sum   
80.         w_oc = cv_oc/cv_sum   
81.         w_gd = cv_gd/cv_sum   
82.         w_gc = cv_gc/cv_sum   
83.    
84.     # five other compared weights allocations   
85.     if scenario_name == 'nrr_even':   
86.         w_tt = 0.25   
87.         w_oc = 0.25   
88.         w_gd = 0.25   
89.         w_gc = 0.25   
90.     if scenario_name == 'nrr_tt':   
91.         w_tt = 1.00   
92.         w_oc = 0.00   
93.         w_gd = 0.00   
94.         w_gc = 0.00   
95.     if scenario_name == 'nrr_oc':   
96.         w_tt = 0.00   
97.         w_oc = 1.00   
98.         w_gd = 0.00   
99.         w_gc = 0.00   
100.     if scenario_name == 'nrr_gd':   
101.         w_tt = 0.00   
102.         w_oc = 0.00   
103.         w_gd = 1.00   
104.         w_gc = 0.00   
105.     if scenario_name == 'nrr_gc':   
106.         w_tt = 0.00   
107.         w_oc = 0.00   
108.         w_gd = 0.00   
109.         w_gc = 1.00   
110.    
111.     for i in tl_obj.getOutgoing():   
112.         i_id = i.getID()   
113.    
114.         if deno_tt == 0.0:   
115.             term1 = 0.0   
116.         else:   
117.             term1 = w_tt * ((travel_time_dict[i_id]-min_dict["tt"])/deno_tt)   
118.         if deno_oc == 0.0:   
119.             term2 = 0.0   
120.         else:   
121.             term2 = w_oc * ((road_occupancy_dict[i_id]-min_dict["oc"])/deno_oc)   
122.         if deno_gd == 0.0:   
123.             term3 = 0.0   
124.         else:   
125.             term3 = w_gd * ((geo_dist_dict[i_id]-min_dict["gd"])/deno_gd)   
126.         if deno_gc == 0.0:   
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127.             term4 = 0.0   
128.         else:   
129.             term4 = w_gc * ((geo_close_dict[i_id]-min_dict["gc"])/deno_gc)   
130.         cost_dict[i_id] = term1 + term2 + term3 + term4   
131.     return min(cost_dict.iterkeys(), key=lambda k: cost_dict[k])   

 
In addition to the code implementation shown above, the rigorous description of 

next road choice has already been presented using equations from Equation 5.1 to 

Equation 5.4. 

 

The implementation of adaptive selection for NRR agents (i.e. operational 

parameter) is shown as follows: 

1. from pylab import *   
2. from scipy.cluster.vq import *   
3.    
4. def nrr_juncs_kmeans():   
5.        
6.     global STD  # {junction_obj: the standard deviation of occupancy of outgoing lane

s}   
7.    
8.     input_data = vstack((array(STD.values())))   
9.     initial_centroids = array([[max(STD.values())], [median(STD.values())]])   
10.    
11.     centroids, _ = kmeans(input_data, initial_centroids)   
12.     idx, _ = vq(input_data, centroids)   
13.    
14.     return array(STD.keys())[idx == 0]   

 


