2,212 research outputs found

    Alternative correction equations in the Jacobi-Davidson method

    Get PDF
    The correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to the current eigenvector approximation, whereas for the continuation of the process only vectors orthogonal to the search subspace are of importance. Such a vector is obtained by orthogonalizing the (approximate) solution of the correction equation against the search subspace. As an alternative, a variant of the correction equation can be formulated that is restricted to the subspace orthogonal to the current search subspace. In this paper, we discuss the effectiveness of this variant. Our investigation is also motivated by the fact that the restricted correction equation can be used for avoiding stagnation in case of defective eigenvalues. Moreover, this equation plays a key role in the inexact TRQ method [18]

    On large-scale diagonalization techniques for the Anderson model of localization

    Get PDF
    We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques in the implicitly restarted Lanczos method and in the Jacobi–Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude

    Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver

    Full text link
    In the numerical solution of large-scale eigenvalue problems, Davidson-type methods are an increasingly popular alternative to Krylov eigensolvers. The main motivation is to avoid the expensive factorizations that are often needed by Krylov solvers when the problem is generalized or interior eigenvalues are desired. In Davidson-type methods, the factorization is replaced by iterative linear solvers that can be accelerated by a smart preconditioner. Jacobi-Davidson is one of the most effective variants. However, parallel implementations of this method are not widely available, particularly for non-symmetric problems. We present a parallel implementation that has been included in SLEPc, the Scalable Library for Eigenvalue Problem Computations, and test it in the context of a highly scalable plasma turbulence simulation code. We analyze its parallel efficiency and compare it with a Krylov-Schur eigensolver. © 2011 John Wiley and Sons, Ltd..The authors are indebted to Florian Merz for providing us with the test cases and for his useful suggestions. The authors acknowledge the computer resources provided by the Barcelona Supercomputing Center (BSC). This work was supported by the Spanish Ministerio de Ciencia e Innovacion under project TIN2009-07519.Romero Alcalde, E.; Román Moltó, JE. (2011). Computing subdominant unstable modes of turbulent plasma with a parallel Jacobi-Davidson eigensolver. Concurrency and Computation: Practice and Experience. 23:2179-2191. https://doi.org/10.1002/cpe.1740S2179219123Hochstenbach, M. E., & Notay, Y. (2009). Controlling Inner Iterations in the Jacobi–Davidson Method. SIAM Journal on Matrix Analysis and Applications, 31(2), 460-477. doi:10.1137/080732110Heuveline, V., Philippe, B., & Sadkane, M. (1997). Numerical Algorithms, 16(1), 55-75. doi:10.1023/a:1019126827697Arbenz, P., Bečka, M., Geus, R., Hetmaniuk, U., & Mengotti, T. (2006). On a parallel multilevel preconditioned Maxwell eigensolver. Parallel Computing, 32(2), 157-165. doi:10.1016/j.parco.2005.06.005Genseberger, M. (2010). Improving the parallel performance of a domain decomposition preconditioning technique in the Jacobi–Davidson method for large scale eigenvalue problems. Applied Numerical Mathematics, 60(11), 1083-1099. doi:10.1016/j.apnum.2009.07.004Stathopoulos, A., & McCombs, J. R. (2010). PRIMME. ACM Transactions on Mathematical Software, 37(2), 1-30. doi:10.1145/1731022.1731031Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., & Thornquist, H. K. (2009). Anasazi software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on Mathematical Software, 36(3), 1-23. doi:10.1145/1527286.1527287Hernandez, V., Roman, J. E., & Vidal, V. (2005). SLEPc. ACM Transactions on Mathematical Software, 31(3), 351-362. doi:10.1145/1089014.1089019Romero, E., Cruz, M. B., Roman, J. E., & Vasconcelos, P. B. (2011). A Parallel Implementation of the Jacobi-Davidson Eigensolver for Unsymmetric Matrices. High Performance Computing for Computational Science – VECPAR 2010, 380-393. doi:10.1007/978-3-642-19328-6_35Romero, E., & Roman, J. E. (2010). A Parallel Implementation of the Jacobi-Davidson Eigensolver and Its Application in a Plasma Turbulence Code. Lecture Notes in Computer Science, 101-112. doi:10.1007/978-3-642-15291-7_11Über ein leichtes Verfahren die in der Theorie der Säcularstörungen vorkommenden Gleichungen numerisch aufzulösen*). (1846). Journal für die reine und angewandte Mathematik (Crelles Journal), 1846(30), 51-94. doi:10.1515/crll.1846.30.51G. Sleijpen, G. L., & Van der Vorst, H. A. (1996). A Jacobi–Davidson Iteration Method for Linear Eigenvalue Problems. SIAM Journal on Matrix Analysis and Applications, 17(2), 401-425. doi:10.1137/s0895479894270427Fokkema, D. R., Sleijpen, G. L. G., & Van der Vorst, H. A. (1998). Jacobi--Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils. SIAM Journal on Scientific Computing, 20(1), 94-125. doi:10.1137/s1064827596300073Morgan, R. B. (1991). Computing interior eigenvalues of large matrices. Linear Algebra and its Applications, 154-156, 289-309. doi:10.1016/0024-3795(91)90381-6Paige, C. C., Parlett, B. N., & van der Vorst, H. A. (1995). Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2), 115-133. doi:10.1002/nla.1680020205Stathopoulos, A., Saad, Y., & Wu, K. (1998). Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods. SIAM Journal on Scientific Computing, 19(1), 227-245. doi:10.1137/s1064827596304162Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., & van der Vorst, H. A. (1996). Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numerical Mathematics, 36(3), 595-633. doi:10.1007/bf01731936Balay S Buschelman K Eijkhout V Gropp W Kaushik D Knepley M McInnes LC Smith B Zhang H PETSc users manual 2010Hernandez, V., Roman, J. E., & Tomas, A. (2007). Parallel Arnoldi eigensolvers with enhanced scalability via global communications rearrangement. Parallel Computing, 33(7-8), 521-540. doi:10.1016/j.parco.2007.04.004Dannert, T., & Jenko, F. (2005). Gyrokinetic simulation of collisionless trapped-electron mode turbulence. Physics of Plasmas, 12(7), 072309. doi:10.1063/1.1947447Roman, J. E., Kammerer, M., Merz, F., & Jenko, F. (2010). Fast eigenvalue calculations in a massively parallel plasma turbulence code. Parallel Computing, 36(5-6), 339-358. doi:10.1016/j.parco.2009.12.001Merz, F., & Jenko, F. (2010). Nonlinear interplay of TEM and ITG turbulence and its effect on transport. Nuclear Fusion, 50(5), 054005. doi:10.1088/0029-5515/50/5/054005Simoncini, V., & Szyld, D. B. (2002). Flexible Inner-Outer Krylov Subspace Methods. SIAM Journal on Numerical Analysis, 40(6), 2219-2239. doi:10.1137/s0036142902401074Morgan, R. B. (2002). GMRES with Deflated Restarting. SIAM Journal on Scientific Computing, 24(1), 20-37. doi:10.1137/s106482759936465

    A Jacobi–Davidson type method for the generalized singular value problem

    Get PDF
    AbstractWe discuss a new method for the iterative computation of some of the generalized singular values and vectors of a large sparse matrix. Our starting point is the augmented matrix formulation of the GSVD. The subspace expansion is performed by (approximately) solving a Jacobi–Davidson type correction equation, while we give several alternatives for the subspace extraction. Numerical experiments illustrate the performance of the method

    A Jacobi-Davidson type method for the product eigenvalue problem

    Get PDF
    corecore