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1. Introduction

The generalized singular value decomposition (GSVD) was introduced by Van Loan [21] and further

developed by Paige and Saunders [15]. Let A ∈ Rm×n and B ∈ Rp×n be given. The generalized singular

values of the pair (A, B) are [21, Definition 1]

Σ(A, B) = {σ � 0 : ATA − σ 2BTB singular}.
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The (diagonal form of the) GSVD of A and B is given by [21, Theorem 2]; [15, p. 399]

UTAX = Σ1 = diag(αj), VTBX = Σ2 = diag(βj), (1)

where U ∈ Rm×m and V ∈ Rp×p are orthogonal, X ∈ Rn×n is nonsingular, Σ1 ∈ Rm×n,Σ2 ∈ Rp×n,

α2
j + β2

j = 1 and αj ,βj � 0. We can assume that the αj and βj are ordered such that

α1 � · · · � αn, β1 � · · · � βn;
in this case the generalized singular values σj = αj/βj are nonincreasing. There is also a triangular

form of the GSVD; see [15].

If B is square and nonsingular, the GSVD of (A, B) gives the SVD of AB−1 : AB−1 = UΣ1Σ
−1
2 VT .

In the special case B = In, the n × n identity matrix, we get the singular values of A. The GSVD has

many applications, such as the computation of the Kronecker form of the matrix pencil A − λB [14],

solving linear matrix equations [4], weighted least squares [21,3], constrained least squares [6, pp.

580ff.], the common null space of twomatrices [6, pp. 602ff.], regularization of ill-posed problems [7],

information retrieval [12], and linear discriminant analysis [16] and is also useful for the method of

particular solutions [2]. For an elaborate and interesting review, with relations with the cosine–sine

decomposition, we refer the reader to work by Bai [1].

We denote the jth column of U, V , X by uj , vj , xj , respectively. The GSVD is closely connected to two

different generalized eigenvalue problems. In the first place, the pencil

(ATA, BTB) (2)

has eigenvectors xj with corresponding eigenvalues α2
j /β

2
j = σ 2

j . In this paper, we will pursue the

second form: the generalized eigenvalue problem([
0 A

AT 0

]
,

[
I 0

0 BTB

])
(3)

has eigenvalues λj = ±αj/βj = ±σj corresponding to eigenvectors[
uj±xj/βj

]
(4)

(see [1]). This form expresses the GSVD as a structured eigenvalue problem; in this paper we will

exploit this specific structure. An important issue in the computation of the GSVD is the question how

to cope with the cross-product matrices ATA and BTB. Of course we will never form these matrices

explicitly. One potential advantage of the form (3) over (2) is that the action of multiplication by ATA

is effectively split up in two separate actions. This may for instance be favorable when A has a large

condition number. When not A, but B has a problematic condition number, we may interchange the

roles of A and B in (3); see Section 8 for more comments on this matter.

In several applications, such as the generalized total least squares problem, thematrices A and B are

large and sparse, and one is interested in a partial GSVD: only a few of the generalized singular vectors

corresponding to the smallest or largest generalized singular values are needed; see [22] and the

references therein. There seems to be only one earlier paper concerning a partial GSVD for large sparse

matrices. Zha [22] proposed a method for finding generalized singular pairs using the cosine–sine

decomposition and Lanczos bidiagonalization. On the one hand, his method is attractive for working

with [AT BT ]T , hence avoiding the cross-product matrices ATA and BTB. On the other hand, a difficulty

is that full-dimension orthogonal projections have to be computed in every step; inaccuracies in the

projections limit the accuracy of the computed generalized singular pairs.

In this paper, we examine a Jacobi–Davidson type subspacemethod, which is related to the Jacobi–

Davidsonmethod for the singular value problem (JDSVD, [8,9]), which in turn is inspired by the Jacobi–

Davidsonmethod for the eigenvalueproblem [19].Wewill discuss similarities anddifferences between

the proposed method and JDSVD in Section 8.

The generalized singular value problemmay have special types of generalized singular values: zero

values (α/β = 0/1), infinite values (α/β = 1/0), and undefined values (α/β = 0/0); these values

are called trivial. Zero generalized singular values correspond to zero singular values of A, infinite
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generalized singular values to zero singular values of B, and undefined generalized singular values to

zero singular values of [AT BT ]T . Because of these facts it is not very sensible to use the GSVD for the

computation of trivial values; we will therefore concentrate on the computation of nontrivial values.

Let ρ = rank([AT BT ]T ). If ρ > min{m, p} or n> ρ , then the presence of trivial values is guaranteed.

However, in most applicationsm� n, p� n, and ρ = n [1]. In this paper we assume that p� n and that

B is of full rank. If is not the case, butm� n and A is of full rank, we may interchange the role of A and

B (cf. comments in Sections 7 and 8). Although we need this assumption in several of the theoretical

results, we remark that the resulting method may still be tried if this assumption is not satisfied.

We will now introduce some notational conventions for later use. We will write ‖ · ‖ for the

Euclidean norm, and κ(X) for the associated (two-norm) condition number of a matrix X . Since by

assumption B has full rank, (x, y)(BTB)−1 :=yT (BTB)−1x is an inner product. The corresponding norm

satisfies ‖x‖2
(BTB)−1 = (x, x)(BTB)−1 . Inspired by the equality ‖Z‖2

F = trace(ZTZ) for a real matrix Z , we

define the (BTB)−1-Frobenius norm of Z by

‖Z‖2
(BTB)−1,F

= trace(ZT(BTB)−1Z). (5)

The rest of the paper is organized as follows. In Sections 2 and 3, we focus on the subspace expansion

and subspace extraction of the new subspace method. Section 4 concentrates on the computation of

the smallest generalized singular pairs, while Section 5 examines the convergence of the method and

the relation with an inexact accelerated Newton method. We will discuss various properties of the

method in Section 6. After numerical experiments in Section 7, we will present our conclusions in

Section 8.

2. Subspace extraction

Our starting point is given by (3) and (4). Let

wj = xj/βj;
we will come back to the relation between the wj and xj in Section 6.3. Inspired by (4), we will work

with two search spaces, Ũ for the generalized singular vectors uj , and W̃ for the scaled generalized

singular vectors wj .

Suppose we have k-dimensional search spaces Ũ and W̃ , and look for an approximation

(θ , ũ, w̃) ≈ (σ , u,w), with θ � 0, ũ ∈ Ũ , w̃ ∈ W̃.

As usual in subspace methods, Ũ and W̃ will bem × k and n × k search matriceswhose columns form

bases for Ũ and W̃ , respectively.

First we define the residual of the triple (θ , ũ, w̃) by

r =
[

Aw̃ − θ ũ

ATũ − θBTBw̃

]
. (6)

Since ũ ∈ Ũ and w̃ ∈ W̃ , we can write ũ = Ũc and w̃ = W̃d for (low-dimensional) k-vectors c and d.

To derive approximate triples, we impose two Galerkin conditions

AW̃d − θ Ũc ⊥ Ũ ,

ATŨc − θBTBW̃d ⊥ W̃.

This is equivalent to the low-dimensional, projected system

ŨTAW̃d = θ ŨTŨc,

W̃TATŨc = θW̃TBTBW̃d.
(7)

This suggests that it is convenient to let Ũ have orthonormal columns and W̃ have BTB-orthonormal

columns; that is, W̃TBTBW̃ = Ik . Then the subspace extraction amounts to computing singular values

θ with corresponding right and left singular vectors d and c (of unit norm) of the projected matrix
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H = ŨTAW̃ ,

where the columns of Ũ are orthonormal and the columns of W̃ are BTB-orthonormal. In line with the

terminology for the standard eigenvalue problem, the names Ritz value for θ and Ritz vectors for ũ and

w̃ suggest themselves. Since ‖c‖ = ‖d‖ = 1, it follows that ‖ũ‖ = ‖Bw̃‖ = 1. The Ritz value is equal

to the Rayleigh quotient

θ(ũ, w̃) = ũTAw̃

(
= ũTAw̃

w̃TBTBw̃
= ũTAw̃

ũTũ

)
(8)

of the vectors ũ and w̃. This Rayleigh quotient has the property that it minimizes the first part of the

residual (6):

θ = argmin
γ

‖Aw̃ − γ ũ‖.
However, it does not minimize the second part of the residual ‖ATũ − γ BTBw̃‖; in general, we cannot

choose a value that minimizes the norms of both parts of the residual simultaneously. Indeed, the

norm of the second part is minimized by γ = w̃TBTBATũ/‖BTBw̃‖2, since for that γ value we have

ATũ − γ BTBw̃ ⊥ BTBw̃. Given ũ and w̃, we can also choose the θ that minimizes ‖r‖. By setting the

derivative of ‖r‖2 with respect to θ to zero we get that the minimizing value is

ũTA(w̃ + BTBw̃)

1 + ‖BTBw̃‖2
.

We will not use this approximation in the method; it may, however, use it as a post-processing

(refinement) step.

The following result, a generalization of [8, Theorem4.1], shows that given Ũ and W̃ , with orthonor-

mal and BTB-orthonormal columns, respectively, H minimizes the residual matrices

R1(K):=AW̃ − ŨK and R2(L):=ATŨ − BTBW̃LT .

Theorem 2.1. For given m × k matrix Ũ and n × k matrix W̃ , let H = ŨTAW̃ .

(a) If the columns of the given matrix Ũ are orthonormal, then for all k × k matrices K we have

‖R1(H)‖ � ‖R1(K)‖. Moreover, H is the unique minimizer with respect to the Frobenius norm:
‖R1(H)‖F � ‖R1(K)‖F with equality only when K = H.

(b) If the columns of the given matrix W̃ are BTB-orthonormal, then H minimizes ‖R2(L)‖(BTB)−1 over all

k × k matrices L, and H is the unique minimizer with respect to the (BTB)−1-Frobenius norm (5).

Proof. Part (a) was proved in [8, Theorem 4.1]. For (b), suppose that the columns of W̃ are BTB-

orthonormal; then

R2(L)
T (BTB)−1R2(L)= ŨTA(BTB)−1ATŨ + LLT − LHT − HLT

= ŨTA(BTB)−1ATŨ − HHT + (L − H)(L − H)T

=R2(H)T (BTB)−1R2(H) + (L − H)(L − H)T .

Since (L − H)(L − H)T is positive semidefinite, it follows that (see, e.g., [20, p. 42])

‖R2(L)‖2
(BTB)−1 =λmax(R2(L)

T (BTB)−1R2(L))

�λmax(R2(H)T (BTB)−1R2(H))

=‖R2(H)‖2
(BTB)−1 .

For uniqueness, we realize, using (5), that for L /= H

‖R2(L)‖2
(BTB)−1,F

= trace(R2(L)
T (BTB)−1R2(L))
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= trace(R2(H)T (BTB)−1R2(H)) + ‖L − H‖2
F

> ‖R2(H)‖2
(BTB)−1,F

. �

The following theorem, a generalization of [8, Theorem 4.3], ensuresmonotonic convergence to the

largest generalized singular values.

Theorem 2.2. Let Ũk = [ũ1 · · · ũk], k = 1, 2, . . . , be a sequence of m × k matrices with orthonormal

columns and let W̃k = [w̃1 · · · w̃k], k = 1, 2, . . . , be a sequence of n × k matrices with BTB-orthonormal

columns. Let θ
(k)
k

� · · · � θ
(k)
1 be the ordered singular values of Hk :=ŨT

k AW̃k. Then, for all fixed j and

increasing k, the θ
(k)
j converge monotonically increasing to the σj.

Proof. Hk is a submatrix of Hk+1, so according to [11, (3.1.4)] θ
(k+1)
j

� θ
(k)
j for 1� j � k. Because of the

orthogonality conditions on the columns of Ũk and W̃k , the θ
(k)
j converge to the σj .

Thismonotonicity isoftenofgreatvalue inpractice:notonlydowehavea lowerboundon the largest

generalized singular value(s) during the process, but also a more rapid convergence. Similar to the

convergence for the smallest singular values in JDSVD [8], the convergence to the smallest generalized

singular values is not monotonic in general. The smallest generalized singular values correspond to

the interior eigenvalues of the augmented matrix formulation (3) and are often much harder to find

than the largest generalized singular values. Section 4 will be devoted to this subject.

For any approximation (θ , w̃)we have the following generalization of the Bauer–Fike theorem (see,

e.g., [17, Theorem 3.6]).

Theorem 2.3. Let (θ , w̃) be an approximate eigenpair of the pencil (ATA, BTB)with corresponding residual

ATAw̃ − θ2BTBw̃. Then there is a generalized singular value σ such that

|θ2 − σ 2| �
κ(X)‖(ATA − θ2BTB)w̃‖

σ 2
min(B)

,

where the columns of X are the generalized singular vectors satisfying ATAX = BTBXΣ2.

Proof. We have

‖r‖ �σmin(A
TA − θ2BTB)

�σmin(A
TAX − θ2BTBX)σmin(X

−1)

�σmin(Σ
2 − θ2I)σmin(B

TB)σmin(X)σmin(X
−1)

�min |σ 2 − θ2|σmin(B
TB)σmin(X)σ−1

max(X),

from which the conclusion follows. �

As is not unusual in this type of result, the columns of X in the proposition above can still be scaled

to tighten the upper bound; the problem of finding the scaling of X that minimizes this upper bound

is highly nontrivial.

3. Subspace expansion

Wenowcome to thegenuine Jacobi–Davidsonpart of themethod: the subspace expansion. Suppose

we have an approximate triple (θ , ũ, w̃), ‖ũ‖ = ‖Bw̃‖ = 1, and we would like to enlarge the search

spaces Ũ and W̃ to further improve the approximation. Then we look for orthogonal updates s ⊥ ũ

and t ⊥ w̃ such that the updated vectors are generalized singular vectors in the sense that
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A(w̃ + t) = μ1(ũ + s),

AT(ũ + s) = μ2B
TB(w̃ + t),

(9)

for certainμ1 andμ2.Wenote thatwe choose t ⊥ w̃ insteadof t ⊥ BTBw̃ to get anorthogonal subspace

expansion which we hope will lead to fast convergence. Rewriting these equations to an equation

involving the residual (6) gives[−θ I A

AT −θBTB

] [
s

t

]
= −r +

[
(μ1 − θ)ũ

(μ2 − θ)BTBw̃

]
+
[

(μ1 − θ)s

(μ2 − θ)BTBt

]
. (10)

Sincewe are not interested in approximating trivial generalized singular values,we assume thatB(w̃ +
t) /= 0. We have

μ1 = ũTA(w̃ + t) = θ + O(‖t‖),
μ2 = (w̃ + t)TAT(ũ + s)/‖B(w̃ + t)‖2 = θ + O(‖s‖ + ‖t‖), (11)

so

σ 2 = μ1μ2 = θ2 + O(‖s‖ + ‖t‖).
Therefore, the last term on the right-hand side in (10) is of second order, that is, O((‖s‖ + ‖t‖)2);
we will neglect this term in the following. The idea is not to discard the (first-order) second term on

the right-hand side, but to project the equation such that this term cancels. This forms the essence of

asymptotically quadratic convergence; see also Section 5.1 Apart for projecting out the last term on

the right-hand side in (10), we want to fix the residual r to preserve the available information. Since

the first component of the residual is orthogonal to ũ, and the second to w̃, this suggests using the

projection

P =
[
I − ũũT 0

0 I − BTBw̃w̃T

]
, (12)

which combines an orthogonal projection with an oblique projection and satisfies our two require-

ments. The resulting correction equation is

P

[−θ I A

AT −θBTB

] [
s

t

]
= −r, s ⊥ ũ, t ⊥ w̃. (13)

As usual in Jacobi–Davidson typemethods, in practicewewill often solve this equation approximately.

Since the operator in (12) is not symmetric in general, GMRES is a reasonable solver. One of the

advantages of Jacobi–Davidson type methods is that we may use a preconditioner, if available, to

speed up the linear solve; see also Section 6.4.

Since theprojectedoperator in (13)mapsspan(ũ)⊥ × span(w̃)⊥ onto itself, it caneasilybe repeated

in the context of a Krylov subspace method. As an alternative correction equation, we may consider[
I − ũũT 0

0 I − BTBw̃w̃T

] [−θ I A

AT −θBTB

] [
I − ũũT 0

0 I − w̃w̃TBTB

] [
s

t

]
= −r,

for s ⊥ ũ and t ⊥ BTBw̃. This formulation has the advantage that the operator is symmetric, but on the

other hand, since it maps span(ũ)⊥ × span(BTBw̃)⊥ to span(ũ)⊥ × span(w̃)⊥, we need a projected

preconditioner of the form[
I − ũũT 0

0 I − BTBw̃w̃T

]
M

[
I − ũũT 0

0 I − w̃w̃TBTB

]
to solve these equations by a Krylov subspace method; see also the remarks in [18,10].

1 In the context of subspace methods, asymptotic convergence means the convergence behavior of the approximate quantities

when they are sufficiently close to the true quantities.
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4. Alternative extraction methods

In this section, we develop alternative extraction methods that are often more suitable for small

generalized singular values than the standard extraction from Section 2. The alternatives, harmonic

and refined extraction processes, are generalizations of those proposed in [9] for small singular triples.

It turns out that some of these extractions can also be used for large generalized singular values and

for generalized singular values close to a target τ /= 0.

4.1. Refined extractions

A refined Rayleigh–Ritz extraction for the standard eigenvalue problem was advocated in [13], see

also [20], andwas proposed for the singular value problem in [9]. A refined extractionprocess is possible

for the generalized singular value problem for a target 0� τ ≤ ∞. To minimize the residual (6), we

solve [
ĉ

d̂

]
= argmin

c,d∈Rk

‖c‖=‖d‖=1

∥∥∥∥∥
[−τ Ũ AW̃

ATŨ −τBTBW̃

] [
c

d

]∥∥∥∥∥
and take û = Ũĉ and ŵ = W̃d̂.2 Here τ can be either a fixed target, or a varying approximate general-

ized singular value, for instance, the Rayleigh quotient.

Whenwe are interested in the smallest generalized singular value(s), wemay focus on target τ = 0

giving

d̂ = argmin
d∈Rk ,‖d‖=1

‖AW̃d‖, ĉ = argmin
c∈Rk ,‖c‖=1

‖ATŨc‖.

This approachamounts tocomputinga small SVDof the thin tallmatricesAW̃ ∈ Rm×k andATŨ ∈ Rn×k .

However, since B does not play a role in this extraction process, wemay not expect good results unless

the minimal generalized singular value is very small.

When trying to find (very) large generalized singular values, with τ → ∞, the refined approach

reduces to

d̂ = argmin
d∈Rk ,‖d‖=1

‖BW̃d‖, ŵ = W̃d̂,

after which we can take

û = ŨHd̂/‖ŨHd̂‖
as in the standard extraction. After the vector extraction, we can take a Rayleigh quotient (8) to get

a (new) approximation to the generalized singular value. Although, because of the properties of the

SVD, the smallest and largest singular values of AW̃ and BW̃ converge monotonically (decreasing and

increasing, respectively), in general they will not converge to a generalized singular value, since the

extraction only involves A (for τ = 0) or B (for τ = ∞). To ensure convergence in practice, we may

have to let the target converge to the wanted eigenvalue, for instance by setting τ equal to the current

Rayleigh quotient every now and then. (We note that this is also necessary in the refined approach for

the standard eigenvalue problem.) See also the numerical experiments in Section 7.

4.2. Harmonic extractions

The largest generalized singular values are exterior eigenvalues of (3), the smallest are interior

eigenvalues. Galerkin conditions usually work favorably for exterior values; in addition, we were able

2 In the literature, results of standard extraction are usually denoted with plain letters, those of harmonic extraction with a

tilde, and those of refined extractionwith a hat. Here, we have used a tilde to denote both the standard and harmonic extraction,

but will still use a hat for the refined extraction.
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Table 1

Possible Galerkin conditions to obtain harmonic extractions.

First condition Second condition

(1a) Aw̃ − θ ũ ⊥ Ũ (2a) AT ũ − θBTBw̃ ⊥ W̃
(1b) Aw̃ − θ ũ ⊥ AW̃ (2b) AT ũ − θBTBw̃ ⊥ ATŨ

to show monotonic convergence for large generalized singular values in Section 2. This motivates us

to look at the inverted problem.

Assume for the moment that A ∈ Rn×n is square and nonsingular; as before B ∈ Rp×n with full

rank. The smallest generalized singular value(s) are the largest generalized singular value(s) of the

problem involving σ−1:

A−1u=σ−1w,

A−T (BTB)w=σ−1u.

If we write BTB = GGT (for instance, a Cholesky decomposition), then we get

GTA−1u=σ−1y,

A−TGy=σ−1u,

with y = GTw. Therefore, this problem is also symmetric, and we expect monotonic convergence to

the smallest generalized singular values for suitable Galerkin conditions, which is indeed the case; see

Theorem 4.1.

This suggests to consider Petrov–Galerkin conditions on the residuals:

A−1ũ − θ̃−1w̃⊥ X̃ ,

A−T (BTB)w̃ − θ̃−1ũ⊥ Ỹ ,

for certain test spaces X̃ and Ỹ . To avoid working with the inverse of large sparse matrices, we want to

make a suitable choice for these test spaces. For the first equation, wemay choose X̃ = ATŨ leading to

the standard Galerkin condition Aw̃ − θ̃ ũ ⊥ Ũ , or X̃ = ATAW̃ yielding the requirement Aw̃ − θ̃ ũ ⊥
AW̃ . For the second condition, we may choose Ỹ = AW̃ , leading to the standard Galerkin condi-

tion ATũ − θ̃BTBw̃ ⊥ W̃ , or Ỹ = AATŨ giving ATũ − θ̃BTBw̃ ⊥ ATW̃ . We summarize possible Galerkin

conditions in Table 4.2.

Note that the combination (1a) and (2a) gives the standard extraction of Section 2. The combination

(1a) and (2b) is a generalizationof the Ũ-harmonic approach in [9]; a goodway to implement constraint

(2b) would be using a QR-decomposition of AT Ũ. Here, we will focus on the combination of (1b) and

(2a), which we will call the harmonic approach for τ = 0. An important reason for this choice is that

the resulting extraction method converges monotonically to the smallest generalized singular values;

see Theorem 4.1.

This harmonic approach is characterized by the equations

W̃TATAW̃d̃= θ̃W̃TATŨc̃,

W̃TATŨc̃= θ̃W̃TBTBW̃d̃.

In particular, d̃ solves a projected GSVD equation:

W̃TATAW̃d̃ = θ̃2W̃TBTBW̃d̃, c̃ = θ̃ (W̃TATŨ)−1W̃TBTBW̃d̃.

This is a generalization of what was called the V-harmonic approach in [9]. Although our derivation

assumed that A is square and invertible, for the resulting equations this is no longer needed. It seems

necessary that H = ŨTAW̃ is invertible, but this is not important in practice: if H is not invertible, we

may expand the search spaces Ũ and W̃ by random vectors, or restart the method. Also, we may take



M.E. Hochstenbach / Linear Algebra and its Applications 431 (2009) 471–487 479

the pseudoinverse, setting c̃ = θ̃ (W̃TATŨ)+W̃TBTBW̃d̃. Note that this harmonic approach resembles

an approach based on (2) in the extraction phase. However, it determines an extra vector ũ, and

splits up the action of ATA in the expansion phase. In a practical implementation, we may again take

BTB-orthonormal W̃ .

Theapproximations θ̃ to thegeneralizedsingularvalueshave thepropertyofmonotonicconvergence—

also for the smallest values, as is shown in the following theorem. Denote the approximate generalized

singular values in step k of the harmonic approach by

θ̃
(k)
k

� · · · � θ̃
(k)
1 .

Theorem 4.1. In the harmonic approach, the approximate generalized singular values θ̃
(k)
j convergemono-

tonically to both the largest and the smallest generalized singular values:
σmin � θ̃

(k)
k

� θ̃
(k−1)
k−1 , θ̃

(k−1)
1 � θ̃

(k)
1 � σmax.

Proof. With W̃ a BTB-orthonormal basis for W̃ , the θ̃
(k)
j are the singular values of AW̃k . Since AW̃k is a

submatrix of AW̃k+1, the result now follows from [11, (3.1.4)]. �

A harmonic approach is also possible for a target 0< τ < ∞. Denote

A =
[
0 A

AT 0

]
, B =

[
I 0

0 BTB

]
, Z =

[
Ũ 0

0 W̃

]
. (14)

The (usual) harmonic approach on the pencil (A, B) for the target τ and search space span(Z) consists

of determining the eigenpair(s) (ξ , [c̃T d̃T ]T ) of the generalized eigenvalue problem

ZT(A − τB)T(A − τB)Z

[
c̃

d̃

]
= ξZT(A − τB)TBZ

[
c̃

d̃

]
with the smallest |ξ | [20, p. 296] (see also [5]). With the QR-decomposition

(A − τB)Z =
[−τ Ũ AW̃

ATŨ −τBTBW̃

]
= QR,

this amounts to solving the generalized eigenvalue problem

QT

[
Ũ 0

0 BTBW̃

] [
c̃

d̃

]
= ξ−1R

[
c̃

d̃

]
,

for which |ξ−1| is maximal. In this approach, convergence is not monotonic, which is not surprising

since interior generalized singular values are approximated. It may be checked that for τ = 0 this

approach amounts to a combination of (1b) and (2b) in Table 4.2.

5. Convergence

We will now prove that the method has asymptotically quadratic convergence to generalized sin-

gular values when the correction equations are solved exactly, and linear convergence when they are

solved with a sufficiently small residual reduction.

Definition 5.1. We call a generalized singular value σj simple if σi /= σj , for all i /= j.

Lemma 5.2. Let (σ , u,w) be a generalized singular triple: Aw = σu and ATu = σBTBw, where σ is a

simple nontrivial generalized singular value, and ‖u‖ = ‖Bw‖ = 1. Write

P∞ =
[
I − uuT 0

0 I − BTBwwT

]
. (15)
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Then the map

P∞
[−σ I A

AT −σBTB

]
is a bijection from u⊥ × w⊥ onto itself.

Proof. Suppose

P∞
[−σ I A

AT −σBTB

] [
s

t

]
= 0

for s ⊥ u, t ⊥ w. We will show that s = t = 0; this proves that the operator in the lemma is injective

and therefore also a bijection from u⊥ × w⊥ onto itself. Omitting the projector, there must be scalars

α,β such that[−σ I A

AT −σBTB

] [
s

t

]
=
[

αu

βBTBw

]
. (16)

Multiplying the first equation by AT gives

σATs = ATAt − αATu = ATAt − ασBTBw.

Substituting this in σ times the second equation in (16),

σATs − σ 2BTBt = βσBTBw,

we get

(ATA − σ 2BTB)t = σ(α + β)BTBw.

Left-multiplying this last equation by wT gives 0 = wT(ATA − σ 2BTB)t = σ(α + β), hence ATAt =
σ 2BTBt. But since t ⊥ w and σ is a simple generalized singular value, wemust have t = 0. In that case

we get from the first equation in (16) that αu + σ s = 0. Since s ⊥ u, left-multiplication by sT renders

σ‖s‖2 = 0. Because of the assumption that σ is a nontrivial generalized singular valuewe have σ /= 0

hence s = 0 completing the proof. �

Theorem 5.3. With theassumptionsof Lemma5.2,assume that the correctionequations (13)are solvedex-
actly inevery step. If the initial vectors (ũ, w̃)are closeenough to (u,w), then the sequenceof approximations

(ũ, w̃) converges quadratically to (u,w).

Proof. Let P,A, and B be as in (12) and (14). Let [sT1 tT1 ]T with s1 ⊥ ũ and t1 ⊥ w̃ be the exact solution

to the correction equation

P(A − θB)

[
s1
t1

]
= −r. (17)

Moreover, letαu = ũ + s, s ⊥ ũ, andβw = w̃ + t, t ⊥ w̃, for certain scalarsα andβ , satisfy (9); note

that these decompositions are possible since uT ũ /= 0 and wTw̃ /= 0 because of the assumption that

the vectors (ũ, w̃) are close to (u,w). Projecting (10) yields

P(A − θB)

[
s

t

]
= −r + P

[
(μ1 − θ)s

(μ2 − θ)BTBt

]
. (18)

Subtracting (17) from (18) gives

P(A − θB)

[
s − s1
t − t1

]
= P

[
(μ1 − θ)s

(μ2 − θ)BTBt

]
.

Lemma 5.2 implies that for (ũ, w̃) close enough to (u,w), P(A − θB) is a bijection from ũ⊥ × w̃⊥ onto

itself. Together with (11) this implies asymptotic quadratic convergence:
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∥∥∥∥[ αu − (ũ + s1)
βw − (w̃ + t1)

]∥∥∥∥ =
∥∥∥∥[s − s1

t − t1

]∥∥∥∥ = O
(∥∥∥∥[st

]∥∥∥∥2
)

. �

Remark. If we solve the correction equation exactly for the expansion t ⊥ BTBw̃ (instead of t ⊥ w),

we even get cubic asymptotic convergence. The reason for this is that in this case (cf. (11))

μ1 = ũTA(w̃ + t) = θ + (ũ + s)TAt + O(‖s‖‖t‖) = θ + O(‖s‖‖t‖),
μ2 = w̃TAT(ũ + s) = θ + (w̃ + t)TATs + O(‖s‖‖t‖) = θ + O(‖s‖‖t‖),

since, with the notation of the previous proof,

(ũ + s)TA = ασwTBTB and (w̃ + t)TAT = βσuT .

This reduces thediscarded term in the correctionequationbyanextra order ofmagnitude.However,

since in practice we do not solve the correction equations exactly, this faster asymptotic convergence

ratemay not be very relevant. Instead, we choose an orthogonal subspace expansion t ⊥ w̃whichmay

be more important for fast overall convergence.

Theorem 5.4. With the assumptions of Lemma 5.2, assume that the correction (13) are solved inexactly

in every step with residual reduction

η < (κ (P∞(A − σB)))−1,

where P∞,A, and B are as in (15) and (14), and the operator is seen as bijection from u⊥ × w⊥ onto itself

as in Lemma 5.2. If the initial vectors (ũ, w̃) are close enough to (u,w), then the sequence of approximations

(ũ, w̃) converges linearly to (u,w).

Proof. It follows from Lemma 5.2 that the condition number in the statement is finite. We employ the

samenotations as in Theorem5.3, but hereweare satisfiedwith approximate solutions s2 ⊥ ũ, t2 ⊥ w̃

to the correction equation such that ‖P(A − θB)

[
s2
t2

]
+ r‖ � η‖r‖. Then there are 0� η1 � η, f ⊥ ũ,

and g ⊥ w̃, ‖[f T gT ]T‖ = 1, such that

P(A − θB)

[
s2
t2

]
= −r + η1‖r‖

[
f

g

]
.

Subtracting this equation from (18) gives

P(A − θB)

[
s − s2
t − t2

]
= −η1‖r‖

[
f

g

]
+ P

[
(μ1 − θ)s

(μ2 − θ)BTBt

]
,

where the second term on the right-hand side is of second order as we have seen in the proof of

Theorem 5.3. Furthermore,

r=
[

Aw̃ − θ ũ

ATũ − θBTBw̃

]
= −

[−θ I A

AT −θBTB

] [
s

t

]
+
[

A(w̃ + t) − θ(ũ + s)

AT(ũ + s) − θBTB(w̃ + t)

]
=−

[−θ I A

AT −θBTB

] [
s

t

]
+
[

(μ1 − θ)(ũ + s)

(μ2 − θ)BTB(w̃ + t)

]
,

so

r = Pr = −P

[−θ I A

AT −θBTB

] [
s

t

]
+ P

[
(μ1 − θ)s

(μ2 − θ)BTBt

]
.

This means that

‖r‖ � ‖P(A − θB)‖
∥∥∥∥[st

]∥∥∥∥+ O
(∥∥∥∥[st

]∥∥∥∥2
)
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and hence∥∥∥∥[s − s2
t − t2

]∥∥∥∥� η1κ(P(A − θB))

∥∥∥∥[st
]∥∥∥∥+ O

(∥∥∥∥[st
]∥∥∥∥2

)
.

We conclude that we get asymptotic linear convergence if the initial approximations are close enough

to (u,w) and if η is as indicated in the theorem. �

Finally, without giving further details, we mention that, similarly to [8], we can show that the new

method can be interpreted as an inexact acceleratedNewton scheme for the generalized singular value

problem.

6. The algorithm

Wenowdiscuss variouspractical properties of themethod.Wefirst givepseudocode for the JDGSVD

method in the following algorithm after which we discuss deflation and preconditioning.

6.1. Pseudocode

Algorithm: A Jacobi–Davidson type method for the GSVD

Input: Starting vectors u1 and w1, a target τ , and a tolerance ε
Output: An approximate triple (θ , u,w) for the generalized singular triple

closest to the target τ satisfying

∥∥∥∥[ Aw − θu

ATu − θBTBw

]∥∥∥∥� ε

1: s = u1, t = w1, U0 = [ ], W0 = [ ]
for k = 1, 2, . . . do

2: Uk = RGS(Uk−1, s)

Wk = RGSBTB(Wk−1, t)

3: Compute kth column of AWk , A
TUk , and BTBWk

Compute kth row and column of Hk = UT
k AWk

4: Compute approximate generalized singular triple(s) (θ , c, d),

with θ closest to τ , of the projected system

using standard, harmonic, or refined extraction techniques

5: u = Ukc, w = Wkd

6: r =
[

Aw − θu

ATu − θBTBw

]
7: Stop if ‖r‖ � ε

8: Solve (approximately) an s ⊥ u, t ⊥ w from[
I − uuT 0

0 I − BTBwwT

] [−θ I A

AT −θBTB

] [
s
t

]
= −r

In Step 2 of the algorithm, RGS and RGSBTB stand for repeated Gram–Schmidt, a numerically stable

way to form orthonormal, respectively BTB-orthonormal bases. In Step 4, we can choose between the

different extraction techniques described in Sections 2 and 4, depending on the generalized singular

valuesof interest. Everyouter iterationcosts fourmatrixvectorproducts (MVs)withA, AT , B, andBT (see

Step 3). In addition, j steps of the inner iteration cost 4jMVs (the vectorBTBwwill be precomputed) and,

if applicable, j + 2 applications of the preconditioner; see Section 6.4. Not included in this pseudocode,

but included in our implementation for the experiments in Section 7, are deflation (see Section 6.2)

and restarts. Also, we remark that in Step 8 of the JDGSVD algorithm, we may replace the shift θ by

a given target τ , if applicable. This may be sensible in the beginning of the process if the Rayleigh

quotient is not yet very accurate. This and other practical options are further discussed in Section 7.
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6.2. Deflation

Deflation is the name of a technique that ensures that once we have detected a generalized singular

value, we do not spend valuable effort to find it once again. We will need the following lemma.

Lemma 6.1. If B is of full rank, then thewj can be chosen to form an ATA-orthogonal and a BTB-orthonormal

system. The uj can be chosen to form an orthonormal system.

Proof. Since B is assumed to be of full rank, BTB allows for a Cholesky decomposition BTB = GGT . With

yj = GTwj , the equation ATAwj = σ 2
j B

TBwj becomes

G−1ATAG−Tyj = σ 2
j yj.

Since the matrix on the left-hand side is symmetric, the eigenvectors yj are orthogonal. Hence for i /=
j, 0 = yTiyj = wT

i B
TBwj . Moreover,wT

iA
TAwj = σ 2

j w
T
i B

TBwj = 0. We remark that in the case of multiple

generalized singular values, the yj can be chosen to be orthogonal, and likewise the wj can also be

chosen to be BTB-orthogonal. Moreover, since for i /= j

σiσju
T
i uj = wT

iA
TAwj = 0,

we see that the uj form an orthogonal system: for σiσj /= 0 we deduce uTi uj = 0, while for σiσj = 0

the corresponding u-vectors can be chosen orthogonal. With the scaling ‖Bwj‖ = 1 for all j, we have

that the wj are ATA-orthogonal and BTB-orthonormal, while the uj are orthonormal. �

Suppose we have already computed the generalized singular vectors Ul = [u1 · · · ul] and Wl =
[w1 · · ·wl], where BWl has orthonormal columns. Using the preceding lemma, it can be checked that

the pair of deflated matrices

Â:=(I − UlU
T
l )A(I − WlW

T
l B

TB) and B̂ :=B(I − WlW
T
l B

TB) (19)

has the samegeneralized singular values and vectors as the pair (A, B), except that the computed values

have been replaced by undefined ones (0/0).

6.3. A partial GSVD

If we compute l generalized singular values in combinationwith the deflation technique of the pre-

vious subsection, the result, in termsof the original undeflatedA andB, isAWl = UlR1, A
TUl = BTBWlR2,

forupper triangularR1 andR2.Butweknowevenmore. SinceUl hasorthonormal columns,R1 = UT
l AWl ,

and since Wl has B
TB-orthonormal columns, R2 = WT

l A
TUl . Therefore, R2 = RT1, and because both ma-

trices are upper triangular we deduce that R1 and R2 are both diagonal and hence equal. Therefore, the

JDGSVD method determines

AWl = UlSl , ATUl = BTBWlSl , (20)

where Sl = diag(σ1, . . . , σl) contains the computed generalized singular values.

If it is of interest to compute the full GSVD data: the αj and βj , as well as the vectors V = [v1 · · · vl]
and X = [x1 · · · xl] (see Section 1), it is straightforward to compute a partial GSVD from (20).

Definition 6.2. (Σ1,Σ2,U, V , X) is a partial GSVD of the pair (A, B) if, for k �min{m, n, p},Σ1,Σ2 ∈
Rk×k are diagonal, U ∈ Rm×k and V ∈ Rp×k have orthonormal columns, X ∈ Rn×k is of full rank,

AX = UΣ1, BX = VΣ2, and Σ2
1 + Σ2

2 = Ik .

SinceWl hasB
TB-orthonormalcolumns,BWl hasorthonormalcolumns, andWT

l A
TAWl + WT

l B
TBWl =

S2l + I. Therefore, we can cheaply compute the information Σ1,Σ2,U, V , and X from the computed

triples (σj , uj ,wj) as indicated in the following algorithm.
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Algorithm: Computing a partial GSVD from the JDGSVD data

Input: AWl = UlSl , A
TUl = BTBWlSl , with Sl = diag(σ1, . . . , σl);

Ul with orthonormal columns and Wl with BTB-orthonormal columns.
Output: A partial GSVD (Σ1,Σ2,U, V , X).
1 : V = BWl (already computed in the JDGSVD algorithm)

2 : Σ2 = (I + S2l )
−1/2

3 : Σ1 = SlΣ2

4 : X = WlΣ2

6.4. Preconditioning

Given a target τ , we may try to use a preconditioner

M ≈
[−τ I A

AT −τBTB

]
tomore efficiently solve the correction equations. For τ = 0,whichmeans thatwe are interested in the

smallest generalized singular values,M could be an approximation to the augmentedmatrix

[
0 A

AT 0

]
.

In the case that A is square, we may take

M =
[
0 N

NT 0

]
, M−1 =

[
0 N−T

N−1 0

]
, (21)

where N ≈ A is a (relatively) cheaply invertible preconditioner for A.

Preconditioning the correction equation (13) means solving s ⊥ ũ and t ⊥ w̃ from[
I − ũũT 0

0 I − BTBw̃w̃T

]
M

[
s

t

]
= b

for a right-hand side b. This means that

M

[
s

t

]
= b +

[
αũ

βBTBw̃

]
for certain α and β which are determined by the orthogonality conditions for s and t. From[

s

t

]
= M−1b + M−1

[
ũ 0

0 BTBw̃

] [
α
β

]
and

[
ũ 0

0 w̃

]T [
s

t

]
= 0

it can be verified that we have[
s

t

]
=
⎛⎝I − M−1

[
ũ 0

0 BTBw̃

] ([
ũ 0

0 w̃

]T
M−1

[
ũ 0

0 BTBw̃

])−1 [
ũ 0

0 w̃

]T⎞⎠M−1b.

Since at the beginning of the inner iteration M−1
[
ũ
0

]
and M−1

[
0

BTBw̃

]
may be precomputed, we need

j + 2 actions with our preconditioner for j inner iterations.

7. Numerical experiments

We start with similar experiments as Zha [22], but we take the dimension of thematrices ten times

as large (n = 1000 instead of n = 100). These test cases includematriceswith high condition numbers

and are therefore numerically challenging. In all experiments, we first initialize the Matlab’s random

generator by the command rand(’state’,0).
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Table 2 Results for experiments (1)–(4) (cf. [22]) for n = 1000. We give the number of outer iterations of the new method

for computing the three largest and three smallest generalized singular values for different extraction techniques. Note the

condition numbers in the two rightmost columns. For the cases indicated by an asterisk we used an inexact LU preconditioner

with drop tolerance 10−3.

# σmax σmin κ(A) κ(B)

Standard Harmonic Standard Harmonic Refined

(1) 81 157 784 334 280 4.4e2 5.7e0

(2) 93 153 703 393 277 4.4e2 5.7e0

(3) 662 597 16∗ 19∗ – 1.9e6 4.3e6

(4) 577 517 59∗ 20∗ – 1.9e9 4.3e9

Experiment 7.1. We choose two diagonal matrices: for j = 1, . . . , 1000,

C = diag(cj), cj = (n − j + 1)/2n, S =
√
I − C2,

D = diag(dj), dj = �j/250� + rj ,

where the rj are random numbers chosen from a uniform distribution on the interval (0, 1) and �·�
denotes the ceil function. With A = CD and B = SD, the condition numbers of A and B are modest. In

separate runs of the algorithm, we look for the three largest and smallest generalized singular values,

using the following default options of the proposed method:

Parameter Meaning Default value

tol Absolute tolerance for the outer iteration 10−6

maxit Maximum number of outer iterations 1000
mindim Dimension of search spaces after restart 10
maxdim Maximum dimension of search spaces 30
maxit_inner Maximum iterations to solve correction equation 10
inner_tol Relative tolerance inner iteration 0
fix Fix target until ‖r‖ � fix (see below) 0.01
u1, w1 Initial search spaces Random
krylov Start-up with Krylov spaces True
M1, M2 Preconditioner M = M1M2 M1 = M2 = I
Mtype Left or right preconditioning Left

The inner iterations are stopped once the inner tolerance inner_tol is met or if maxit_inner inner

iterations have been carried out. The default choices for these parameters mean that the correction

equations (13) are solved approximately by exactly ten steps of the GMRES method. If the krylov
parameter is set, then themethod first generates Krylov spaces of dimension maxdim; generated by ATA

if we look for the largest generalized singular values, and by BTB if we look for the smallest generalized

singular values. The only other parameter that may need some explanation is fix. On the left-hand

side of the correction equation (13), we take θ equal to the target τ as long as the residual norm is

larger than fix. If ‖r‖ drops under this value, we assume that convergence has set in, and we take θ
equal to the Rayleigh quotient in every step.We take the same starting vector for each of the extraction

methods. This forms experiment (1) in Table 7.1.

For experiments (2), (3), and (4), we take

A = Q1CDQ2, B = Q1SDQ2,

where Q1 and Q2 are two random orthogonal matrices. For experiment (2), we takeD as in experiment

(1). For experiments (3) and (4) we adjust D using

dj = dj − min
1� i � 1000

di + 10−e, j = 1, . . . , 1000,
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where we take e = 6, 9 for experiments (3) and (4), respectively. As can also be seen in Table 7.1, this

choice affects the condition numbers of both A and B. In [22] it is noted that ill-conditioning of the

matrices limits the final attainable accuracy for Zha’s method. For JDGSVD, high condition numbers

will generally also imply that the correction equations are harder to solve.

The results for the computationofσmax are in linewith the theory: the standard extraction is fine for

the largest generalized singular values; the harmonic extraction ((1b) and (2a) in Table 4.2) is primarily

meant for the smallest generalized singular values but also usable for the largest values. We remark

that for experiments (3) and (4), computing σmax did not take much longer than for experiments (1)

and (2); but computing the next two values did. The refined extraction (not in the table) with τ = ∞
failed in all cases. This is natural in view of σmax = 0.577 · · · 
 ∞. A suitable target might be helpful

in this situation; how to cheaply find a first rough approximation to σmax is an interesting research

question.

For σmin, the harmonic extraction indeed does a better job than the standard extraction for most

experiments. The refined extraction shows a goodperformance formodest-conditionedA and B thanks

to the fact that the target τ = 0 is rather accurate for σmin ≈ 5.0 · 10−4. If we do not use a precon-

ditioner in experiments (3) and (4), we have difficulties in computing the smallest singular value for

ill-conditioned matrices A and B to the prescribed tolerance 10−6. Only with a good preconditioner

(inexact LU decomposition with drop tolerance 10−3) we get a rapid convergence to the prescribed

tolerance in various cases. The refined approach with the same preconditioner fails for more difficult

test cases. We note that in experiments (3) and (4), due to the ill-conditioning of B, it turned out to be

advantageous to turn off the krylov option.

Experiment 7.2. Next, we illustrate the use of interchanging the roles of A and B. We generate random

sparse 1000 × 1000 A and B with a density of about 10% by the commands

n = 1000; A = sprand(n, n, 1e − 1, 1); B = sprand(n, n, 1e − 1, 1e − 2).

It turns out that κ(A) ≈ 9.4 · 104, κ(B) ≈ 6.0 · 101. Suppose we are interested in the largest gen-

eralized singular value. The convergence for σmax is slow; after 2000 outer iterations none of the

three extraction processes has succeeded in finding this value. However, to find σmax(A, B) we can

also compute σmin(B, A) instead. With target 0 and an ILU preconditioner with drop tolerance 0.001,

both the standard and harmonic extraction find σmin(B, A) in just five iterations. So in this case, since

we have a good target and an appropriate preconditioner, the smallest generalized singular value is

actually easier to detect than the largest, so that it is useful to interchange A and B.

8. Conclusions

Wehave proposed a new Jacobi–Davidson typemethod for the computation of some of the general-

ized singular values andcorrespondingvectors. Themethod is anaccelerated (inexact)Newtonmethod

with asymptotically quadratic convergence if the correction equations are solved exactly. To accelerate

the initial phase, we use subspace acceleration.While the convergence for the largest (exterior) values

is naturally favorable (monotonic behavior), the method may also be used to compute the smallest

generalized singular values. Preconditioners are relatively easy to obtain in the latter case, at least in

the case of a square and invertible A. As there are no experiments in [22] for the smallest generalized

singular values, it is not clear whether the Lanczos typemethod can be used for these values. Although

the GSVD of complex matrices does not seem to be discussed in the literature, the method could be

applied to these matrices with straightforward adaptations.

The described method may be seen as an adaptation of the JDSVD method for the singular value

problem [8,9], with a BTB-orthonormal basis W̃ . However, as the generalized singular value problem

is mathematically more involved than the singular value problem, this is also true for the numerical

solution in a number of aspects.

First, in JDGSVD we can choose between a BTB-orthogonal subspace expansion with cubic asymp-

totic convergence, and an orthogonal expansion with corresponding quadratic convergence. As the
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difference in asymptotic convergence rate may not be very important (both variants typically behave

linearly if used inexactly), we preferred the orthogonal expansion.

Second, for the GSVD, the refined extraction is less attractive since the important cases τ = 0

and τ = ∞ are no longer as natural as for the singular value problem [9]. Two of the three different

harmonic extractions in [9] also become more involved for the GSVD.

Third, per iteration, one needs fourmatrix vector products for the outer iteration, plus an additional

four for every inner step; this is twice the number of JDSVD.

Fourth, both in the correction equation (13) and the deflation (19) an oblique projection (12) is

present, which may affect the stability and efficiency. Although the cross-product matrix BTB is never

formed, it is applied. For ill-conditioned B, this may give numerical difficulties. The numerical experi-

ments suggest that the effect of ill-conditioned matrices is that it takes longer to compute the largest

generalized singular values, while for the smallest generalized singular values good preconditioners

and/or more modest tolerances are needed.

Finally, it is important to notice that we can interchange the role of A and B via the form BTBx =
(1/σ 2)ATAx if desired. This may be practical in the case that σmin(B, A) is easier to compute than

σmax(A, B) (see Experiment 7.2), or in the case that the condition numbers of A and B differ greatly.
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