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1. Introduction

The generalized singular value decomposition (GSVD) was introduced by Van Loan [21] and further
developed by Paige and Saunders [15]. Let A € R™*" and B € RP*" be given. The generalized singular
values of the pair (A, B) are [21, Definition 1]

Y(A,B) = {0 >0 : A"TA — 62B'B singular}.
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The (diagonal form of the) GSVD of A and B is given by [21, Theorem 2]; [15, p. 399]
U'AX = % = diag(ay), V'BX = X, = diag()), (n

where U € R™™ and V € RP*P are orthogonal, X € R"*" is nonsingular, ¥; € R™", ¥, € RP*",
ozj2 + /3]-2 = 1 and «;}, Bj > 0. We can assume that the «; and f; are ordered such that

> 2o Br<-e <Py

in this case the generalized singular values o; = o/ f; are nonincreasing. There is also a triangular
form of the GSVD; see [15].

If B is square and nonsingular, the GSVD of (A, B) gives the SVD of AB™! : AB™! = UX; 22_1VT.
In the special case B = I, the n x n identity matrix, we get the singular values of A. The GSVD has
many applications, such as the computation of the Kronecker form of the matrix pencil A — AB [14],
solving linear matrix equations [4], weighted least squares [21,3], constrained least squares [6, pp.
580ft.], the common null space of two matrices [6, pp. 602ff.], regularization of ill-posed problems [7],
information retrieval [12], and linear discriminant analysis [16] and is also useful for the method of
particular solutions [2]. For an elaborate and interesting review, with relations with the cosine-sine
decomposition, we refer the reader to work by Bai [1].

We denote the jth column of U, V, X by u;, vj, X;, respectively. The GSVD is closely connected to two
different generalized eigenvalue problems. In the first place, the pencil

(ATA, B'B) (2)

has eigenvectors x; with corresponding eigenvalues ajz / ,sz = ojz. In this paper, we will pursue the
second form: the generalized eigenvalue problem

(o o)-lo o)) G)

has eigenvalues A; = *«;/B; = %oj corresponding to eigenvectors

uj

[/ @
(see [1]). This form expresses the GSVD as a structured eigenvalue problem; in this paper we will
exploit this specific structure. An important issue in the computation of the GSVD is the question how
to cope with the cross-product matrices A’A and B'B. Of course we will never form these matrices
explicitly. One potential advantage of the form (3) over (2) is that the action of multiplication by ATA
is effectively split up in two separate actions. This may for instance be favorable when A has a large
condition number. When not A, but B has a problematic condition number, we may interchange the
roles of A and B in (3); see Section 8 for more comments on this matter.

In several applications, such as the generalized total least squares problem, the matrices A and B are
large and sparse, and one is interested in a partial GSVD: only a few of the generalized singular vectors
corresponding to the smallest or largest generalized singular values are needed; see [22] and the
references therein. There seems to be only one earlier paper concerning a partial GSVD for large sparse
matrices. Zha [22] proposed a method for finding generalized singular pairs using the cosine-sine
decomposition and Lanczos bidiagonalization. On the one hand, his method is attractive for working
with [AT BT]T, hence avoiding the cross-product matrices A7 and B'B. On the other hand, a difficulty
is that full-dimension orthogonal projections have to be computed in every step; inaccuracies in the
projections limit the accuracy of the computed generalized singular pairs.

In this paper, we examine a Jacobi-Davidson type subspace method, which is related to the Jacobi-
Davidson method for the singular value problem (JDSVD, [8,9]), which in turn is inspired by the Jacobi-
Davidson method for the eigenvalue problem [19]. We will discuss similarities and differences between
the proposed method and JDSVD in Section 8.

The generalized singular value problem may have special types of generalized singular values: zero
values (o/B = 0/1), infinite values (o/8 = 1/0), and undefined values («/f = 0/0); these values
are called trivial. Zero generalized singular values correspond to zero singular values of A, infinite
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generalized singular values to zero singular values of B, and undefined generalized singular values to
zero singular values of [AT BT]T. Because of these facts it is not very sensible to use the GSVD for the
computation of trivial values; we will therefore concentrate on the computation of nontrivial values.
Let p = rank([AT BT]7).If p > min{m, p} or n > p, then the presence of trivial values is guaranteed.
However, in most applications m > n,p > n, and p = n[1]. In this paper we assume that p > n and that
B is of full rank. If is not the case, but m > n and A is of full rank, we may interchange the role of A and
B (cf. comments in Sections 7 and 8). Although we need this assumption in several of the theoretical
results, we remark that the resulting method may still be tried if this assumption is not satisfied.

We will now introduce some notational conventions for later use. We will write || - || for the
Euclidean norm, and « (X) for the associated (two-norm) condition number of a matrix X. Since by
assumption B has full rank, (x,y) grg-1:=y" (B'B)~'x is an inner product. The corresponding norm

satisfies ||x||%BTB),1 = (x,X)(grp)-1. Inspired by the equality ||Z||12C = trace(Z'Z) for a real matrix Z, we
define the (B'B) ~!-Frobenius norm of Z by

1Z 115151 p = trace(Z'(8'B)~'2). (5)

The rest of the paper is organized as follows. In Sections 2 and 3, we focus on the subspace expansion
and subspace extraction of the new subspace method. Section 4 concentrates on the computation of
the smallest generalized singular pairs, while Section 5 examines the convergence of the method and
the relation with an inexact accelerated Newton method. We will discuss various properties of the
method in Section 6. After numerical experiments in Section 7, we will present our conclusions in
Section 8.

2. Subspace extraction

Our starting point is given by (3) and (4). Let
wj = X/ Bj;
we will come back to the ~relation between the w; and ; in Section 6.3. mspired by (4), we will work
with two search spaces, ¢/ for the generalized singular vectors uj, and W for the scaled generalized

singular vectors w;.
Suppose we have k-dimensional search spaces ¢/ and W, and look for an approximation

6,1,w) = (o,u,w), with>0,i € l,w e W.

As usual irl subsggce methods, U and W will be m x k and n x k search matrices whose columns form
bases for ¢/ and W, respectively.
First we define the residual of the triple (6, i1, w) by

Aw — 01l

r= [AT~ - GBTBW] : (6)
Since it € & and W € W, we can write il = Uc and w = W(d for (low-dimensional) k-vectors ¢ and d.
To derive approximate triples, we impose two Galerkin conditions

AWd —0Uc L1,

AUc — 6B'BWd L W.
This is equivalent to the low-dimensional, projected system

U'AWd = 00U, 7

WTATUc = oW'BBWd.
This suggests that it is convenient to let U have orthonormal columns and W have B'B-orthonormal

columns; that is, W'B'BW = I. Then the subspace extraction amounts to computing singular values
6 with corresponding right and left singular vectors d and c (of unit norm) of the projected matrix
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H = U'AW,
where the columns of U are orthonormal and the columns of W are B'B-orthonormal. In line with the
terminology for the standard eigenvalue problem, the names Ritz value for 6 and Ritz vectors for i and

w suggest themselves. Since ||c|| = ||d|| = 1, it follows that || 1] = ||Bw|| = 1. The Ritz value is equal
to the Rayleigh quotient

(8)

0. ) — iTAw iAW iAW
uw) =uAw = T = T
wIBTBw u'u

of the vectors 1 and w. This Rayleigh quotient has the property that it minimizes the first part of the
residual (6):

0 = argmin ||Aw — yii]|.
14

However, it does not minimize the second part of the residual ||ATi — ¥ B'BW||; in general, we cannot
choose a value that minimizes the norms of both parts of the residual simultaneously. Indeed, the
norm of the second part is minimized by y = W'B'BA"ii/||B'Bw||?, since for that y value we have
AT — yB™BW L B'BW. Given i and W, we can also choose the 6 that minimizes ||r||. By setting the
derivative of ||r||? with respect to @ to zero we get that the minimizing value is

i'A(W + B'Bw)
1+ ||BBw|2
We will not use this approximation in the method; it may, however, use it as a post-processing
(refinement) step. N _
The following result, a generalization of [8, Theorem 4.1], shows that given U and W, with orthonor-
mal and B'B-orthonormal columns, respectively, H minimizes the residual matrices

Ry(K):=AW — UK and Ry(L):=A"U — B'BWL'.
Theorem 2.1. For given m X k matrix U and n x k matrix W, let H = UTAW.

(a) If the columns of the given matrix U are orthonormal, then for all k x k matrices K we have
[[R1(H)|| < ||[R1(K)||. Moreover, H is the unique minimizer with respect to the Frobenius norm:
IR1(H)||F < IR (K) || with equality only when K = H.

(b) If the columns of the given matrix W are B'B-orthonormal, then H minimizes ||Rz(L)|| 'p)—1 overall

k x k matrices L, and H is the unique minimizer with respect to the (B'B) ~!-Frobenius norm (5).

Proof. Part (a) was proved in [8, Theorem 4.1]. For (b), suppose that the columns of W are B'B-
orthonormal; then

Ry(L)T(B'B) 'Ry (1) =U"ABB) 'ATU + 11T — IHT — HLT
=U0ABB) AU — HH" + (L — H)(L — H)T
=Ry(H)" (B'B) "Ry (H) + (L — H)(L — H)".

Since (L — H)(L — H)T is positive semidefinite, it follows that (see, e.g., [20, p. 42])
IR (L) 1 1)1 = Amax (Ro (1) (B'B) ™ Ra (L))
> hmax (Ra(H)" (B'B) 'Ry (H))
= [IR2 (H) 135151 -

For uniqueness, we realize, using (5), that for L #+ H

IR (D)1 3g15)-1 5 = trace(Ra(L)' (B'B)™'Ra (L))
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= trace(Ry(H)" (B'B) 'Ry (H)) + |IL — H||?
> R () I[gpy-1 - O

The following theorem, a generalization of [8, Theorem 4.3], ensures monotonic convergence to the
largest generalized singular values.

Theorem 2.2. Let Ug=[il1--- ikl k=1,2,..., bea sequence of m X k matrices with orthonormal
columns and let Wy, = [wq ---Wg],k = 1,2, ..., be a sequence of n x k matrices with B'B-orthonormal

columns. Let Q,Ek) SEEREN Ql(k) be the ordered singular values of Hk:=ﬁ,fAWk. Then, for all fixed j and

increasing k, the Gj(k) converge monotonically increasing to the o;.

(k+1)
0

Proof. Hy is a submatrix of Hy41, so according to [11, (3.1.4)] > Qj(k) for 1 <j < k. Because of the

orthogonality conditions on the columns of Uy and Wy, the Qj(k) converge to the oj.

This monotonicity is often of great value in practice: not only do we have alower bound on the largest
generalized singular value(s) during the process, but also a more rapid convergence. Similar to the
convergence for the smallest singular values in JDSVD [8], the convergence to the smallest generalized
singular values is not monotonic in general. The smallest generalized singular values correspond to
the interior eigenvalues of the augmented matrix formulation (3) and are often much harder to find
than the largest generalized singular values. Section 4 will be devoted to this subject.

For any approximation (6, w) we have the following generalization of the Bauer-Fike theorem (see,
e.g., [17, Theorem 3.6]).

Theorem 2.3. Let (6, W) be an approximate eigenpair of the pencil (A"A, B'B) with corresponding residual
ATAW — 02B"Bw. Then there is a generalized singular value o such that

Ta _ 02pTp\e
|92—(72|<K(X)”(A/2 6°B'B)w||
Oin(B)

min

where the columns of X are the generalized singular vectors satisfying A’7AX = B'BX X?.

Proof. We have

7]l > omin(ATA — 62B'B)
> omin (ATAX — 02B'BX) 0min (X 1)
> Omin (2% — 0%1)0min (B'B)0min (X)Omin (X ™)
>min |02 — 6%|0min(B'B)0min (X) 0 X),

from which the conclusion follows. [J

As is not unusual in this type of result, the columns of X in the proposition above can still be scaled
to tighten the upper bound; the problem of finding the scaling of X that minimizes this upper bound
is highly nontrivial.

3. Subspace expansion

We now come to the genuine Jacobi-Davidson part of the method: the subspace expansion. Suppose
we have an approximate triple (6, ii, W), ||| = ||[BW|| = 1, and we would like to enlarge the search
spaces i and W to further improve the approximation. Then we look for orthogonal updates s L @i
and t | w such that the updated vectors are generalized singular vectors in the sense that
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AW +1t) = ur(u+s), 9)
Al 4 5) = paBBGW + 1),

for certain 141 and iy. We note that we choose t | winstead oft L B'BW to get an orthogonal subspace
expansion which we hope will lead to fast convergence. Rewriting these equations to an equation
involving the residual (6) gives

—01 A s _ (u1 —0)u (11 —0)s
L —om) L) = Lo S o] Lo - oyen)- (10)
Since we are not interested in approximating trivial generalized singular values, we assume that B(W +
t) # 0. We have

w1 = AW + t) =6+ o(|tlD),

Uz = @ + O+ 5)/1BGY + 012 = 6 + o] + [1t]). (1)

SO

o’ = U1y = 6% + o(lIsll + £l

Therefore, the last term on the right-hand side in (10) is of second order, that is, O((||s|| + [It]D)?);
we will neglect this term in the following. The idea is not to discard the (first-order) second term on
the right-hand side, but to project the equation such that this term cancels. This forms the essence of
asymptotically quadratic convergence; see also Section 5.' Apart for projecting out the last term on
the right-hand side in (10), we want to fix the residual r to preserve the available information. Since
the first component of the residual is orthogonal to i, and the second to w, this suggests using the
projection

I—au’ 0
PZ[ 0 I—BTBWWT:|' (12)

which combines an orthogonal projection with an oblique projection and satisfies our two require-
ments. The resulting correction equation is

—01 A s ~ -
p [ AT —QBTB] |:t] =-r, slutlw (13)

As usual in Jacobi-Davidson type methods, in practice we will often solve this equation approximately.
Since the operator in (12) is not symmetric in general, GMRES is a reasonable solver. One of the
advantages of Jacobi-Davidson type methods is that we may use a preconditioner, if available, to
speed up the linear solve; see also Section 6.4.

Since the projected operatorin (13) maps span(ft)L X span(\ﬁ/)L ontoitself, it can easily be repeated
in the context of a Krylov subspace method. As an alternative correction equation, we may consider

I — i’ 0 -0 A J|r—a” 0 s]_ _,
0 I—BBww! || AT —6B"B 0 I—wwBB|[t] ™

fors L fiand t L B'Bw. This formulation has the advantage that the operator is symmetric, but on the
other hand, since it maps span(@i)L x span(B’Bw)* to span(ii)+ x span(#)~, we need a projected
preconditioner of the form

[—au’ 0 vli— au’ 0
0 I — B'lBww? 0 1 — ww'B'B

to solve these equations by a Krylov subspace method; see also the remarks in [18,10].

! In the context of subspace methods, asymptotic convergence means the convergence behavior of the approximate quantities
when they are sufficiently close to the true quantities.
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4. Alternative extraction methods

In this section, we develop alternative extraction methods that are often more suitable for small
generalized singular values than the standard extraction from Section 2. The alternatives, harmonic
and refined extraction processes, are generalizations of those proposed in [9] for small singular triples.
It turns out that some of these extractions can also be used for large generalized singular values and
for generalized singular values close to a target T + 0.

4.1. Refined extractions

A refined Rayleigh-Ritz extraction for the standard eigenvalue problem was advocated in [13], see
also [20], and was proposed for the singular value problem in [9]. A refined extraction process is possible
for the generalized singular value problem for a target 0 < T < 0o. To minimize the residual (6), we

solve
—10 AW e
AU —tBBW||d

and take i = U¢ and W = Wd.2 Here 7 can be either a fixed target, or a varying approximate general-
ized singular value, for instance, the Rayleigh quotient.

When we are interested in the smallest generalized singular value(s), we may focus on target T = 0
giving

¢ .
|:ai| = argmin
c,derk
lell=ldl=1

d= argmin |AWd|, ¢= argmin ||A"Uc].
deRk ||d|=1 ceRK |lcl=1

This approach amounts to computing a small SVD of the thin tall matrices AW € R™**andATU e R™*K,
However, since B does not play a role in this extraction process, we may not expect good results unless
the minimal generalized singular value is very small.

When trying to find (very) large generalized singular values, with T — o0, the refined approach
reduces to

d = argmin |BWd||, W= wd,
deRK,||d||=1

after which we can take

i = UHd/||UHd||
as in the standard extraction. After the vector extraction, we can take a Rayleigh quotient (8) to get
a (new) approximation to the generalized singular value. Although, because of the properties of the
SVD, the smallest and largest singular values of AW and BW converge monotonically (decreasing and
increasing, respectively), in general they will not converge to a generalized singular value, since the
extraction only involves A (for T = 0) or B (for T = 00). To ensure convergence in practice, we may
have to let the target converge to the wanted eigenvalue, for instance by setting t equal to the current

Rayleigh quotient every now and then. (We note that this is also necessary in the refined approach for
the standard eigenvalue problem.) See also the numerical experiments in Section 7.

4.2. Harmonic extractions

The largest generalized singular values are exterior eigenvalues of (3), the smallest are interior
eigenvalues. Galerkin conditions usually work favorably for exterior values; in addition, we were able

2 In the literature, results of standard extraction are usually denoted with plain letters, those of harmonic extraction with a
tilde, and those of refined extraction with a hat. Here, we have used a tilde to denote both the standard and harmonic extraction,
but will still use a hat for the refined extraction.
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Table 1

Possible Galerkin conditions to obtain harmonic extractions.
First condition Second condition
(1a)Aw — 011 L U (2a)ATii — B™BW L W
(1b)AW — 61 L AW (2b)ATii — 6B™BW L ATiA

to show monotonic convergence for large generalized singular values in Section 2. This motivates us
to look at the inverted problem.

Assume for the moment that A € R™" is square and nonsingular; as before B € RP*" with full
rank. The smallest generalized singular value(s) are the largest generalized singular value(s) of the
problem involving o~

A”u:a*lw,

AfT(BTB)w:aflu.
If we write B'B = GG (for instance, a Cholesky decomposition), then we get

GTA lu =a*1y,
A_TGyza_]u,

with y = G"w. Therefore, this problem is also symmetric, and we expect monotonic convergence to
the smallest generalized singular values for suitable Galerkin conditions, which is indeed the case; see
Theorem 4.1.

This suggests to consider Petrov-Galerkin conditions on the residuals:

Ali—67"WwlxX,
ATBEBW—6"1aLl3,

for certain test spaces X’ and Y. To avoid working with the inverse of large sparse matrices, we want to
make a suitable choice for these test spaces. For the first equation, we may choose ¥ = AT/ leading to
the standard Galerkin condition AW — 61 L &7, or ¥ = ATAW vyielding the requirement AW — 6 L
AW. For the second condition, we may choose Y = AW, leading to the standard Galerkin condi-
tion AT — 6B"Bw L W, or Y = AA™ giving ATii — B'BW L ATVW. We summarize possible Galerkin
conditions in Table 4.2.

Note that the combination (1a) and (Za) gives the standard extraction of Section 2. The combination
(1a)and (2b)is a generalization of the Z/-harmonic approach in [9]; a good way to implement constraint
(2b) would be using a QR-decomposition of ATU. Here, we will focus on the combination of (1b) and
(2a), which we will call the harmonic approach for T = 0. An important reason for this choice is that
the resulting extraction method converges monotonically to the smallest generalized singular values;
see Theorem 4.1.

This harmonic approach is characterized by the equations

WATAWd = WAUE,
WATUe =6 W'BBWd.

In particular, d solves a projected GSVD equation:

WIATAWd = 9°W'B'BWd, ¢ = 60(W'AD) " 'W'B'BWd.
This is a generalization of what was called the V-harmonic approach in [9]. Although our derivation
assumed that A is square and invertible, for the resulting equations this is no longer needed. It seems
necessary that H = UTAW is in\LertiblgL but this is not important in practice: if H is not invertible, we
may expand the search spaces ¢/ and W by random vectors, or restart the method. Also, we may take
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the pseudoinverse, setting ¢ = 6 (WTATJ)+WTBTBW3. Note that this harmonic approach resembles
an approach based on (2) in the extraction phase. However, it determines an extra vector i, and
splits up the action of A’A in the expansion phase. In a practical implementation, we may again take
B'B-orthonormal W.

The approximations 6 to the generalized singular values have the property of monotonic convergence—
also for the smallest values, as is shown in the following theorem. Denote the approximate generalized
singular values in step k of the harmonic approach by

)

Theorem 4.1. In the harmonic approach, the approximate generalized singular values G}(k) converge mono-
tonically to both the largest and the smallest generalized singular values:

Ak A(k—1 A(k—1 ~(k
Umin<9]5)<9]§:1 )' 6’1(< )<91()<0ma)(~

Proof. With W a B'B-orthonormal basis for W, the éj(k) are the singular values of AW,. Since AW, is a
submatrix ofAWk+1, the result now follows from [11, (3.1.4)]. O

A harmonic approach is also possible for a target 0 < 7 < 0o. Denote

w=[2 5=l A 2[5 9

The (usual) harmonic approach on the pgncil (A, B) for the target t and search space span(Z) consists
of determining the eigenpair(s) (£, [¢T dT]7) of the generalized eigenvalue problem

Z'A — B)'(A — tB)Z [g} = ¢Z'(A — tB)'BZ [2}
with the smallest |&| [20, p. 296] (see also [5]). With the QR-decomposition

—z0 AW
(A—TB)Z = [ATU —rBTBW} =&

this amounts to solving the generalized eigenvalue problem

o wim] 2] =¢ (3]

for which |€ ~1| is maximal. In this approach, convergence is not monotonic, which is not surprising
since interior generalized singular values are approximated. It may be checked that for 7 = 0 this
approach amounts to a combination of (1b) and (2b) in Table 4.2.

5. Convergence
We will now prove that the method has asymptotically quadratic convergence to generalized sin-
gular values when the correction equations are solved exactly, and linear convergence when they are

solved with a sufficiently small residual reduction.

Definition 5.1. We call a generalized singular value oj simple if o; # oj, foralli # j.

Lemma 5.2. Let (o, u, w) be a generalized singular triple: Aw = ou and ATu = o B'Bw, where o is a
simple nontrivial generalized singular value, and ||u|| = ||Bw|| = 1. Write

I—uu’ 0
Poo = [ 0 I—BTBWWT:| ) (15)
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Then the map

P —ol A
| AT _oB'B

L

is a bijection from u— x wt onto itself.

Proof. Suppose

—ol A S
Poo [ AT —UBTB} H =0
fors L u,t L w.We will show that s = t = 0; this proves that the operator in the lemma is injective

and therefore also a bijection from u x w= onto itself. Omitting the projector, there must be scalars
o, B such that

[_A(T” —;‘BTB] m = [,Bg%w] : (16)

Multiplying the first equation by A gives
oATs = ATAt — aATu = ATAt — aoBBw.
Substituting this in o times the second equation in (16),
oATs — o*B'Bt = BoB'Bw,
we get
(ATA — 62BB)t = o (o + B)B'Bw.

Left-multiplying this last equation by w’ gives 0 = w'(A"A — 62B'B)t = o (« + B), hence ATAt =
o?B'Bt. But since t L wand o is a simple generalized singular value, we must have t = 0. In that case
we get from the first equation in (16) that ou + o's = 0. Since s L u, left-multiplication by s” renders
o |Is||> = 0.Because of the assumption that o is a nontrivial generalized singular value we have o = 0
hence s = 0 completing the proof. [J

Theorem 5.3. With the assumptions of Lemma 5.2, assume that the correction equations (13) are solved ex-
actly in every step. Ifthe initial vectors (i, W) are close enough to (u, w), then the sequence of approximations
(i1, w) converges quadratically to (u, w).

Proof. Let P, A, and Bbe asin (12) and (14). Let [s] ¢]]" withs; L fiand t; L W be the exact solution
to the correction equation

P(A — 6B) [iﬂ = (17)
Moreover, letou = i +5, s L #,and Bw = w + t, t L w, for certain scalars « and 8, satisfy (9); note

that these decompositions are possible since u'ii % 0 and w' W = 0 because of the assumption that
the vectors (i1, w) are close to (u, w). Projecting (10) yields

S (11— 0)s
P(A — 0B) [t] =—r+4P [(m b Q)BTBt] ) (18)
Subtracting (17) from (18) gives
s—s1] _ (1 —0)s
P(A — 6B) [t - t]} =P [(Mz - Q)BTBf] '
Lemma 5.2 implies that for (ii, W) close enough to (1, w), P(A — 6B) is a bijection from it x W= onto

itself. Together with (11) this implies asymptotic quadratic convergence:
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=2ll=e () o

Remark. If we solve the correction equation exactly for the expansion t L B'Bw (instead of t L. w),
we even get cubic asymptotic convergence. The reason for this is that in this case (cf. (11))

A=)l -

1 =AW +t) =0 + @@+ 9)'At + o(lsllitl) = 6 + o(lslIElD,
pa = WA G +5) =0 + W+ O'A’s + o(Isll It = 6 + odls|t]),

since, with the notation of the previous proof,

(@i+35)"A=aowBB and W+ t)'AT = Bou.

This reduces the discarded term in the correction equation by an extra order of magnitude. However,
since in practice we do not solve the correction equations exactly, this faster asymptotic convergence
rate may not be very relevant. Instead, we choose an orthogonal subspace expansiont . w which may
be more important for fast overall convergence.

Theorem 5.4. With the assumptions of Lemma 5.2, assume that the correction (13) are solved inexactly
in every step with residual reduction

n < (k (Ps(A —0oB))) "},

where Pso, A, and B are as in (15) and (14), and the operator is seen as bijection from u x w+ onto itself
asinLemma5.2. Ifthe initial vectors (ii, w) are close enough to (u, w), then the sequence of approximations
(1, w) converges linearly to (u, w).

€L

Proof. It follows from Lemma 5.2 that the condition number in the statement is finite. We employ the
same notations as in Theorem 5.3, but here we are satisfied with approximate solutionss, L i, to 1 w

. . s -
to the correction equation such that ||[P(A — 6B) [é] 4+ r|| <nlr||. Then thereare 0 < ny <, f L @,

andg L w, ||[IfT g"17|| =1, such that
s2| _ f
pa—68) 2] = —r+ i [f].
Subtracting this equation from (18) gives
s—s]|_ f (1 —6)s
P —o8) [~ 3] = —mird [1] 4P| 0 ]

where the second term on the right-hand side is of second order as we have seen in the proof of
Theorem 5.3. Furthermore,

=L owna] = [0 o[+ [ o ona o]

=[] [+ [ o o)

e[l
;

I+ (IEI)

SO

This means that

Irl < lIP(A —6B)]|
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and hence

2
s—5 s s
-2 [+ (IE)-
We conclude that we get asymptotic linear convergence if the initial approximations are close enough
to (u,w) and if 5 is as indicated in the theorem. []

<nk(P(A —0B))

Finally, without giving further details, we mention that, similarly to [8], we can show that the new
method can be interpreted as an inexact accelerated Newton scheme for the generalized singular value
problem.

6. The algorithm

We now discuss various practical properties of the method. We first give pseudocode for the JDGSVD
method in the following algorithm after which we discuss deflation and preconditioning.

6.1. Pseudocode

Algorithm: A Jacobi-Davidson type method for the GSVD

Input: Starting vectors u; and wy, a target t, and a tolerance &
Output: An approximate triple (6, u, w) for the generalized singular triple

P Aw — 6u
closest to the target 7 satisfying <¢g

Alu — 6B"Bw
1: s=u, t=w,Ug=1[], Wo=1]
fork=1,2,...do
2: Ux = RGS(Ug—1,5)
Wy = RGSprg(Wk—1,t)
3:  Compute kth column of AW}, AU, and B'BW,
Compute kth row and column of Hy = U] AWy
4: Compute approximate generalized singular triple(s) (6, ¢, d),
with 6 closest to T, of the projected system
using standard, harmonic, or refined extraction techniques
u = Ukc, w = Wid
Aw — Ou
ATy — 6BTBw
Stop if ||| < e
Solve (approximately)ans L u, t 1L w from

T —uul 0 —01 A [s] - _r
0 I—BBuwwT || AT —6BTB||t] =

In Step 2 of the algorithm, RGS and RGSgrp stand for repeated Gram-Schmidt, a numerically stable
way to form orthonormal, respectively B'B-orthonormal bases. In Step 4, we can choose between the
different extraction techniques described in Sections 2 and 4, depending on the generalized singular
values of interest. Every outer iteration costs four matrix vector products (MVs) with A, AT, B,and B (see
Step 3). In addition, j steps of the inner iteration cost 4 MVs (the vector B'Bw will be precomputed) and,
ifapplicable,j + 2 applications of the preconditioner; see Section 6.4. Not included in this pseudocode,
but included in our implementation for the experiments in Section 7, are deflation (see Section 6.2)
and restarts. Also, we remark that in Step 8 of the JDGSVD algorithm, we may replace the shift 6 by
a given target 7, if applicable. This may be sensible in the beginning of the process if the Rayleigh
quotient is not yet very accurate. This and other practical options are further discussed in Section 7.

r=

o N o u
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6.2. Deflation

Deflation is the name of a technique that ensures that once we have detected a generalized singular
value, we do not spend valuable effort to find it once again. We will need the following lemma.

Lemma 6.1. If Bis of full rank, then the wj can be chosen to form an ATA-orthogonal and a B'B-orthonormal
system. The u; can be chosen to form an orthonormal system.

Proof. Since B is assumed to be of full rank, B'B allows for a Cholesky decomposition B'B = GG'. With
yj = Gwj, the equation A"Aw; = aszTBwj becomes

G_lATAG_Tyj = szyj.
Since the matrix on the left-hand side is symmetric, the eigenvectors y; are orthogonal. Hence for i #
.0 = yly; = w/ B'Bw;. Moreover, w/ATAw; = ajzwiT B'Bw; = 0. We remark that in the case of multiple
generalized singular values, the y; can be chosen to be orthogonal, and likewise the w; can also be

chosen to be B'B-orthogonal. Moreover, since for i # j
UiojuiTuj = w,-TATij =0,
we see that the u; form an orthogonal system: for o;0; # 0 we deduce uiTuj = 0, while for oj0; = 0

the corresponding u-vectors can be chosen orthogonal. With the scaling ||Bw;|| = 1 for all j, we have
that the w; are ATA-orthogonal and B'B-orthonormal, while the uj are orthonormal. [J

Suppose we have already computed the generalized singular vectors U; = [ug ---u] and W) =
[wq - - - wy], where BW; has orthonormal columns. Using the preceding lemma, it can be checked that
the pair of deflated matrices

A= — UUHAI — wW/B'B) and B:=B(I — W,W/B'B) (19)

has the same generalized singular values and vectors as the pair (A, B), except that the computed values
have been replaced by undefined ones (0/0).

6.3. A partial GSVD

If we compute [ generalized singular values in combination with the deflation technique of the pre-
vious subsection, the result, in terms of the original undeflated A and B, is AW; = UjR;, A'U; = B'BW|R,,
for upper triangular Ry and R,. But we know even more. Since U; has orthonormal columns, Ry = U,TAW,,
and since W, has B'B-orthonormal columns, Ry = WITATUI. Therefore, Ry = RI, and because both ma-
trices are upper triangular we deduce that Ry and R, are both diagonal and hence equal. Therefore, the
JDGSVD method determines

AW, = US;, AU = BlBWS;, (20)

where S; = diag(oy, . . ., 07) contains the computed generalized singular values.
Ifit is of interest to compute the full GSVD data: the ¢zj and f;, as well as the vectors V = [vy - - - v/]
and X = [xq - - - x;] (see Section 1), it is straightforward to compute a partial GSVD from (20).

Definition 6.2. (X', X,, U, V, X) is a partial GSVD of the pair (A, B) if, for k < min{m,n,p}, ¥1, X, €
R¥*k are diagonal, U € R™¥ and V € RP*¥ have orthonormal columns, X € R™ ¥ is of full rank,
AX =UX,BX = VX),and ¥? + 27 = |.

Since W has B’B-orthonormal columns, BW; has orthonormal columns, and W/A'AW; + W/BBW; =

S,2 + I. Therefore, we can cheaply compute the information X, X, U, V, and X from the computed
triples (oj, uj, wj) as indicated in the following algorithm.
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Algorithm: Computing a partial GSVD from the JDGSVD data

Input: AW, = U,S;, ATU; = B'BW,S;, with S; = diag(o1, . . .,0));

U; with orthonormal columns and W, with B'B-orthonormal columns.
Output: A partial GSVD (X, 35, U, V, X).
1: V = BW, (already computed in the JDGSVD algorithm)

2: Sy =(1+sH7"?
3: X1 =82,
4: X =W,

6.4. Preconditioning

Given a target t, we may try to use a preconditioner

—7l A
M~ [AT —tBTB}

to more efficiently solve the correction equations. For T = 0, which means that we are interested in the

. . L .o A
smallest generalized singular values, M could be an approximation to the augmented matrix [ AT 0].

In the case that A is square, we may take

0 N 1 0 NTT
M_[NT 0]' M- [N_ 0}’
where N & A is a (relatively) cheaply invertible preconditioner for A.
Preconditioning the correction equation (13) means solving s L t1and t L w from

[—au’ 0 s
[ 0 I— BTBVNVVVT} M [t] =b

for a right-hand side b. This means that

(] =0+ o)

for certain o and 8 which are determined by the orthogonality conditions for s and t. From

(=t o alf5] e [5 3] []=o

it can be verified that we have

~ U

= (- el Tl aiel) B 2w

1%

-

(21)

Since at the beginning of the inner iteration M~ [ ] and M— [BTB } may be precomputed, we need

Jj + 2 actions with our preconditioner for j inner iterations.

7. Numerical experiments

We start with similar experiments as Zha [22], but we take the dimension of the matrices ten times
aslarge (n = 1000 instead of n = 100). These test cases include matrices with high condition numbers
and are therefore numerically challenging. In all experiments, we first initialize the Matlab’s random

generator by the command rand (’state’,0).
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Table 2 Results for experiments (1)-(4) (cf. [22]) for n = 1000. We give the number of outer iterations of the new method
for computing the three largest and three smallest generalized singular values for different extraction techniques. Note the
condition numbers in the two rightmost columns. For the cases indicated by an asterisk we used an inexact LU preconditioner
with drop tolerance 1073,

# Omax Omin Kk (A) K (B)
Standard Harmonic Standard Harmonic Refined
(1) 81 157 784 334 280 4.4e2 5.7e0
(2) 93 153 703 393 277 4.4e2 5.7e0
3) 662 597 16* 19* - 1.9e6 4.3e6
(4) 577 517 59% 20* = 1.9¢9 4.3e9
Experiment 7.1. We choose two diagonal matrices: forj = 1,..., 1000,

C =diag(q), ¢=m—j+1)/2n, S=I1—-C?
D = diag(d;), dj = [j/2501 +7rj,

where the r; are random numbers chosen from a uniform distribution on the interval (0, 1) and [-]
denotes the ceil function. With A = CD and B = SD, the condition numbers of A and B are modest. In
separate runs of the algorithm, we look for the three largest and smallest generalized singular values,
using the following default options of the proposed method:

Parameter Meaning Default value
tol Absolute tolerance for the outer iteration 1076

maxit Maximum number of outer iterations 1000

mindim Dimension of search spaces after restart 10

maxdim Maximum dimension of search spaces 30
maxit_inner Maximum iterations to solve correction equation 10

inner_tol Relative tolerance inner iteration 0

fix Fix target until ||r|| < £ix (see below) 0.01

ul, wi Initial search spaces Random
krylov Start-up with Krylov spaces True

M1, M2 Preconditioner M = MM, M =My =1
Mtype Left or right preconditioning Left

The inner iterations are stopped once the inner tolerance inner_tol is met or if maxit_inner inner
iterations have been carried out. The default choices for these parameters mean that the correction
equations (13) are solved approximately by exactly ten steps of the GMRES method. If the krylov
parameter is set, then the method first generates Krylov spaces of dimension maxdim; generated by A’A
if we look for the largest generalized singular values, and by BB if we look for the smallest generalized
singular values. The only other parameter that may need some explanation is fix. On the left-hand
side of the correction equation (13), we take 6 equal to the target T as long as the residual norm is
larger than fix. If ||r|| drops under this value, we assume that convergence has set in, and we take 6
equal to the Rayleigh quotient in every step. We take the same starting vector for each of the extraction
methods. This forms experiment (1) in Table 7.1.

For experiments (2), (3), and (4), we take

A= Q(DQ, B=Qi5DQ,

where Qq and Q, are two random orthogonal matrices. For experiment (2), we take D as in experiment
(1). For experiments (3) and (4) we adjust D using

dj=di— min_di+107 j=1,..,1000,

1<i<100
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where we take e = 6,9 for experiments (3) and (4), respectively. As can also be seen in Table 7.1, this
choice affects the condition numbers of both A and B. In [22] it is noted that ill-conditioning of the
matrices limits the final attainable accuracy for Zha's method. For JDGSVD, high condition numbers
will generally also imply that the correction equations are harder to solve.

The results for the computation of oy, are in line with the theory: the standard extraction is fine for
the largest generalized singular values; the harmonic extraction ((1b) and (2a) in Table 4.2) is primarily
meant for the smallest generalized singular values but also usable for the largest values. We remark
that for experiments (3) and (4), computing opax did not take much longer than for experiments (1)
and (2); but computing the next two values did. The refined extraction (not in the table) with T = co
failed in all cases. This is natural in view of opax = 0.577 - - - << 00. A suitable target might be helpful
in this situation; how to cheaply find a first rough approximation to oy is an interesting research
question.

For omin, the harmonic extraction indeed does a better job than the standard extraction for most
experiments. The refined extraction shows a good performance for modest-conditioned A and B thanks
to the fact that the target T = 0 is rather accurate for o, =~ 5.0 - 10~ If we do not use a precon-
ditioner in experiments (3) and (4), we have difficulties in computing the smallest singular value for
ill-conditioned matrices A and B to the prescribed tolerance 10~6. Only with a good preconditioner
(inexact LU decomposition with drop tolerance 10~3) we get a rapid convergence to the prescribed
tolerance in various cases. The refined approach with the same preconditioner fails for more difficult
test cases. We note that in experiments (3) and (4), due to the ill-conditioning of B, it turned out to be
advantageous to turn off the krylov option.

Experiment 7.2. Next, we illustrate the use of interchanging the roles of A and B. We generate random
sparse 1000 x 1000 A and B with a density of about 10% by the commands

n = 1000; A = sprand(n, n,le — 1, 1); B = spra.nd(n, n,le —1,1e — 2).

It turns out that x (A) &~ 9.4 - 104,k (B) &~ 6.0 - 10'. Suppose we are interested in the largest gen-
eralized singular value. The convergence for omax is slow; after 2000 outer iterations none of the
three extraction processes has succeeded in finding this value. However, to find omax (A, B) we can
also compute oy (B, A) instead. With target 0 and an ILU preconditioner with drop tolerance 0.001,
both the standard and harmonic extraction find o, (B, A) in just five iterations. So in this case, since
we have a good target and an appropriate preconditioner, the smallest generalized singular value is
actually easier to detect than the largest, so that it is useful to interchange A and B.

8. Conclusions

We have proposed a new Jacobi-Davidson type method for the computation of some of the general-
ized singular values and corresponding vectors. The method is an accelerated (inexact) Newton method
with asymptotically quadratic convergence if the correction equations are solved exactly. To accelerate
the initial phase, we use subspace acceleration. While the convergence for the largest (exterior) values
is naturally favorable (monotonic behavior), the method may also be used to compute the smallest
generalized singular values. Preconditioners are relatively easy to obtain in the latter case, at least in
the case of a square and invertible A. As there are no experiments in [22] for the smallest generalized
singular values, it is not clear whether the Lanczos type method can be used for these values. Although
the GSVD of complex matrices does not seem to be discussed in the literature, the method could be
applied to these matrices with straightforward adaptations.

The described method may be seen as an adaptation of the JDSVD method for the singular value
problem [8,9], with a B'B-orthonormal basis W. However, as the generalized singular value problem
is mathematically more involved than the singular value problem, this is also true for the numerical
solution in a number of aspects.

First, in JDGSVD we can choose between a B'B-orthogonal subspace expansion with cubic asymp-
totic convergence, and an orthogonal expansion with corresponding quadratic convergence. As the
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difference in asymptotic convergence rate may not be very important (both variants typically behave
linearly if used inexactly), we preferred the orthogonal expansion.

Second, for the GSVD, the refined extraction is less attractive since the important cases T = 0
and T = oo are no longer as natural as for the singular value problem [9]. Two of the three different
harmonic extractions in [9] also become more involved for the GSVD.

Third, per iteration, one needs four matrix vector products for the outer iteration, plus an additional
four for every inner step; this is twice the number of J]DSVD.

Fourth, both in the correction equation (13) and the deflation (19) an oblique projection (12) is
present, which may affect the stability and efficiency. Although the cross-product matrix B'B is never
formed, it is applied. For ill-conditioned B, this may give numerical difficulties. The numerical experi-
ments suggest that the effect of ill-conditioned matrices is that it takes longer to compute the largest
generalized singular values, while for the smallest generalized singular values good preconditioners
and/or more modest tolerances are needed.

Finally, it is important to notice that we can interchange the role of A and B via the form B'Bx =
(1/0%)A'Ax if desired. This may be practical in the case that omin(B,A) is easier to compute than
omax (A, B) (see Experiment 7.2), or in the case that the condition numbers of A and B differ greatly.

Acknowledgments

This paper is dedicated with pleasure to Henk van der Vorst. The author thanks Gerard Sleijpen for
helpful discussions and comments. The excellent comments of the referees are greatly appreciated. In
particular, one referee went far beyond the call of duty, which is very thankfully acknowledged.

References

[1] Z. Bai, The CSD, GSVD, their applications and computations, Preprint Series 958, Institute for Mathematics and its
Applications, University of Minnesota, April 1992.
[2] T. Betcke, The generalized singular value decomposition and the method of particular solutions, SIAM ]. Sci. Comput., 30
(2008) 1278-1295.
[3] A. Bjorck, Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1996.
[4] K.-w.E. Chu, Singular value and generalized singular value decompositions and the solution of linear matrix equations,
Linear Algebra Appl. 88/89 (1987) 83-98.
[5] D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix
pencils, SIAM ]. Sci. Comput. 20 (1998) 94-125.
[6] G.H. Golub, C.E. Van Loan, Matrix Computations, third ed., The John Hopkins University Press, Baltimore, London, 1996.
[7] P.C. Hansen, Rank-deficient and Discrete Ill-posed Problems, SIAM Monographs on Mathematical Modeling and
Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998.
[8] M.E. Hochstenbach, A Jacobi-Davidson type SVD method, SIAM ]. Sci. Comput. 23 (2001) 606-628.
[9] M.E. Hochstenbach, Harmonic and refined extraction methods for the singular value problem, with applications in least
squares problems, BIT 44 (2004) 721-754.
[10] M.E. Hochstenbach, G.L.G. Sleijpen, Two-sided and alternating Jacobi-Davidson, Linear Algebra Appl. 358 (1-3) (2003)
145-172.
[11] RA. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[12] P. Howland, M. Jeon, H. Park, Structure preserving dimension reduction for clustered text data based on the generalized
singular value decomposition, SIAM ]. Matrix Anal. Appl. 25 (2003) 165-179.
[13] Z.Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl.
259(1997) 1-23.
[14] B. Kagstrom, The generalized singular value decomposition and the general (A — AB)-problem, BIT 24 (1984) 568-583.
[15] C.C. Paige, M.A. Saunders, Towards a generalized singular value decomposition, SIAM J. Numer. Anal. 18 (1981) 398-405.
[16] C.H.Park, H. Park, A relationship between linear discriminant analysis and the generalized minimum squared error solution,
SIAM ]. Matrix Anal. Appl. 27 (2005) 474-492.
[17] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, Manchester, UK, 1992.
[18] G.L.G. Sleijpen, A.G.L. Booten, D.R. Fokkema, H.A. van der Vorst, Jacobi-Davidson type methods for generalized eigenprob-
lems and polynomial eigenproblems, BIT 36 (1996) 595-633.
[19] G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM ]. Matrix
Anal. Appl. 17 (1996) 401-425.
[20] G.W. Stewart, Matrix Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
[21] CF. Van Loan, Generalizing the singular value decomposition, SIAM ]J. Numer. Anal. 13 (1976) 76-83.
[22] H. Zha, Computing the generalized singular values/vectors of large sparse or structured matrix pairs, Numer. Math. 72
(1996) 391-417.



	Introduction
	Subspace extraction
	Subspace expansion
	Alternative extraction methods
	Refined extractions
	Harmonic extractions

	Convergence
	The algorithm
	Pseudocode
	Deflation
	A partial GSVD
	Preconditioning

	Numerical experiments
	Conclusions
	Acknowledgments
	References

