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Alternative correction equations in

the Jacobi-Davidson method

Menno Genseberger* Gerard L. G. Sleijpent
June 1998, revised: March 1999

Abstract

The correction equation in the Jacobi-Davidson method is effective in a subspace orthogonal to
the current eigenvector approximation, whereas for the continuation of the process only vectors or-
thogonal to the search subspace are of importance. Such a vector is obtained by orthogonalizing the
(approximate) solution of the correction equation against the search subspace. As an alternative, a
variant of the correction equation can be formulated that is restricted to the subspace orthogonal to
the current search subspace. In this paper, we discuss the effectiveness of this variant.

Our investigation is al'so motivated by the fact that the restricted correction egquation can be used
for avoiding stagnation in case of defective eigenvalues. Moreover, thisequation plays akey rolein
theinexact TRQ method [18].

Keywords: Eigenvaluesand eigenvectors, Jacobi-Davidson method
AM S subject classification: 65F15, 65N25

1 Introduction

For the computation of afew eigenvalueswith associated ei genvectorsof large n-dimensional linear eigen-

value problems
Ax = Ax D

subspace methods have become very popular. The application of a subspace method is attractive when
the method is able to calculate accurate solutionsto (1) from relatively low dimensional subspaces, i.e.
m < n with m the dimension of the subspace. Keeping m small enables a reduction in computational

time and memory usage.
Thereare many waysto construct a subspace and different optionsare possiblefor a subspace method.
Glaobally three stages can be distinguished in such a method:

¢ Calculation of an approximation to the eigenpair inside the search subspace.
¢ Computation of new information about the behaviour of operator A.

¢ Expansion of the search subspace with vector(s) containing thisinformation.
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2 Alternativecorrection equationsinthe Jacobi-Davidson method

In the Jacobi-Davidson method [15], Sleijpen and Van der Vorst proposeto ook for new information
in the space orthogonal to the approximate eigenvector. A correction equation

(L, —upu) (A —0,1,)(1, — u,ul )t = —r,, 2

isdefined on thisspace. Here (6,,,, u,,, ) isthe current approximate eigenpair withresidual r.,,, = Au,, —
., u,,. A correctiont to the approximate eigenvector u,, isobtained by solving (2) approximately. Then
the search subspace V,, is expanded to V,,, 1 with the component of t orthogonal to V,,,. One of the
eigenvalueséd,, 11 of the projection of matrix A on the new search subspaceis selected. InsideV,,, 11 the
so-called Ritz pair (6,41, u,,+1) isconsidered to be an optimal approximation to the wanted eigenpair
(A, x).

Asthe residual of aRitz pair is orthogonal to the subspace this special choice of the approximation
introduces some freedom for the projection of the correction equation. Another possibility islooking for
a correction in the space orthogonal to the search subspace constructed so far. If the Ritz pair isindeed
the “best” approximation inside the search subspace, then we should expect that really new information
liesin the orthogonal complement of V,,,. This suggestsa more restrictive correction eguation

(L, = Vi, V(A - 6, 1)L, — V,, V)t = —r,, (3)

that will be investigated here. In equation (3), V,,, isan n by m matrix of which the columns form an
orthonormal basis of the current search subspace V,,, .

Althoughthe approach in (3) does not seem to be unnatural, it is not clear whether itismore effective
in practical computations. In general, the solutionsof (2) and (3) do not lead to the same expansion of the
search subspaces. Therefore, a different convergence behaviour of the Jacobi-Davidson process isto be
expected.

The projectionin (3) ismore expensive, but the method for solving the correction equation may profit
from projecting on asmaller subspace. To seethis, notethat A — 4,,1,, isnearly singularif 6,,, ~ A. Re-
stricting A —4,,,I,, tothe space orthogonal to the approximate eigenvector u,,, will giveawell-conditioned
operator incase A issimpleand fairly well i solated from the other eigenvalues. Projecting onthe space or-
thogonal to V,,, may further improvethe conditioning. If eigenvaluescluster around the target eigenvalue
A then the associated eigenvectors should be removed as well. The search subspace may be expected to
contain good approximations also of these eigenvectors[8, §3.4] and projecting on the space orthogonal
to V,, may lead to awell-conditioned operator also in case of clustering eigenvectors. A reduction may
be expected in the number of stepsthat are needed to solve the correction equation to a certain accuracy
if an iterative linear solver is used. It aso improves the stability of the linear solver. These effects may
compensate for the more expensive steps. For precisely these reasons, a strategy is followed in [6, 4]
where u,, in (2) isreplaced by the matrix of all Ritz vectorsthat could be associated with eigenvaluesin
acluster near the target eigenvalue.

GMRESR! [21] and GCRO? [3] are nested methods for solving linear systems Ax = b iteratively.
They bothuse GCR inthe* outer loop” to update the approximate solutionand GMRES inthe*“inner loop”
to compute a new search direction from a correction equation. As argued in [7], Jacobi-Davidson with
(2) can be viewed asthe eigenvalue version of GMRESR, while Jacobi-Davidsonwith (3) isthe analogue
of GCRO. GCRO employs the search subspace to improve the convergence of GMRES for the solution
of a correction equation (see aso [2]). Experimentsin [3, 1] for linear systems of equations show that
GCRO can be more effective than GMRESR: for linear problemsit appearsto be worthwhileto use more
expensiveprojections. Isthisalso the casefor eigenvalue problems? If, for alinear system, the correction
equationissolved exactly then both GMRESR and GCRO producethe exact solution of the linear system
in the next step. However, eigenvalue problems are not linear and even if all correction equations are

! Generalized Minimum Residual Recursive
2 Generalized Conjugate Residual with Orthogonalization in the inner iteration
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solved exactly still a number of steps may be needed to find accurate approximations of an eigenpair.
Replacing u,, in (2) by V,,, may lead to an increase in the number of iteration steps. Thelossin speed of
convergence may not be compensated by the advantage of a better conditioned correction equation (3).
In practical computations the situation is even more complicated since the correction equations will be
solved only with a modest accuracy.

Jacobi-Davidsonitself may also profit from projecting on asmaller subspace. If the Ritzvalueisade-
fectiveeigenvalueof theinteractionmatrix V), AV, then the correction equation (2) may have asolution
in the current search subspace. In such a case the search subspace is not expanded and Jacobi-Davidson
stagnates. Correction equation (3) will give a proper expansion vector and stagnation can be avoided
[16]. In practical computations, where the correction equations are not solved exactly, it is observed that
stagnation also can be avoided by a strategical and occasional use of (3).

Equation (3) also plays akey role in the inexact Truncated RQ iteration [18] of Sorensen and Yang
(see dlso §§2.3 and 4.1). This provides another motivation for studying the effect of using (3) in Jacobi-
Davidson.

This paper is organized as follows. First, in §2 we recall some facts about projecting the eigenvalue
problem. An aternative derivation of amore general correction equation is given to motivate the correc-
tion equation (3). It appearsthat (3) and the original correction equation (2) are the extremal casesof this
general correction equation. Next, in §3, an illustration is given in which the two correction equations
can produce different results. We will show that, if the processis started with a Krylov subspace then the
two exact solutions of the correction equations lead to mathematically equivalent results (§4). We will
also argue that in other situationsthe correction equation (3) will lead to dower convergence. In §5 we
conclude with some numerical experiments; partially as an illustration of the preceding, partially to ob-
serve what happensif things are not computed in high precision and whether round-off errors play arole
of importance.

2 Theframework: the Jacobi-Davidson method

We start with abrief summary of the Rayleigh-Ritz procedure. Thisprocedure, wherethelargeeigenvalue
problemis projected on asmall one, serves as a starting point for the derivation of amore general correc-
tionequation. Wewill consider thetwo extremal casesof thisequation. One correspondsto the correction
equation of the original Jacobi-Davidson method, the other one is employed in the inexact Truncated RQ
iteration.

2.1 Interpolation: Rayleigh-Ritz procedure

Suppose some m-dimensional subspaceV,, isavailable. Let V,,, bean n x m dimensional matrix such
that the column-vectorsof V,,, form an orthonormal basisof V,,,. The orthogonal projection of A onthe
subspace (the Rayleigh quotient or interaction matrix) will thenbe H,, = V AV,,.

Furthermore suppose that we selected aRitz pair (,,,, um, ) of A withrespecttoV,,,i.e. ascalar §,,
and avector u,, € V,, suchthat theresidua r(4,,, u,,) = r,, = Au,, — 6,,u,, isorthogonal to V,,,. A
Ritz pair can considered to be an optimal approximation inside the subspace to an eigenpair (A, x) of the
matrix A in somesense (in [12, §11.4] thisisargued for the real symmetric case).

The Ritz values are equal to the eigenvaluesof H,,,. Therefore they can be computed by solving the
m-dimensional linear eigenvalue problem H,,,s = #s. The Ritz vector associated with 8 isV,,, s.

2.2 Extrapolation: correction equation

How well does the Ritz pair (,,, u,,) approximate an eigenpair (A, x) of matrix A? With a view re-
stricted to the subspace there would be no better alternative. But outside V,,, aremainder r,,, isleft. The



4 Alternativecorrection equationsin the Jacobi-Davidson method

norm of thisresidua gives an indication about the quality of the approximation. Let us try to minimize
thisnorm.

For that purpose, consider u’ = u,, + t and ¢’ = 6,, + . Definetheresidua r’ = Au’ — §'v’ =
r, +At—6,t—cu, —ct. If weview ¢ and t asfirst order correctionsthen ¢t represents some second
order correction (cf. [11], [19]). Ignoring this contribution resultsin

v =1, +(A-0,I)t—-cu,. 4

Consider some subspace W such that u,,, €¢ W C V,,. With W, a matrix of which the column-
vectors form an orthonormal basisfor W, we decompose (4) (cf. [14]) in

WW ' = WW*(A - 6,,I,)t — cu,,,
the component of v’ in W, andin
(I, - WW*)r' = (I, - WW*)(A — 0,,1,)t +r,,, (5)

the component of ¢’ orthogonal to W.

Thenew directiont will beusedto expand thesubspaceV,,, to V,,, 1. Anapproximation(8,,,+1, Wnm41)
iscomputed with respectto V,,, 1. Because W C V,,, C V44 theresidud r,,, 1 of thisRitz pair isalso
orthogonal to V. This means that if we write (6,41, wny1) = (6, + €, u,, + t) thenonly (5) givesa
contribution to the norm of r,;, 1 :

[Pmtal] = [[(Tn = WWT)(A = L)t + v . (6)
So to get a smaller norm in the next step we should calculate t such that
(I, - WW*)(A — 0, I,)t = —r,,. 7)

Notethat if t = u,, then thereis no expansion of the search space. So it can be assumedthat t # u,,.
Aswe arefreeto scale u,, to any length, wecanrequirethatt L u,,. Fromthisitfollowsthatif t # u,,
then equation (7) and

(L, = WW*)(A - 0,,1,)(I, — u,u), )t = —r, (8)

can considered to be equivalent.

Drawback may be that the linear systems in (7) and (8) are underdetermined. The operators (I, —
WW*)(A-#0,1,)and (I, -WW*)(A-0,1,)(I, —u,u}, ) mapt onalower dimensional subspace
W. The operator (I, —- WW*)(A - 0,,1,)(I, — WW~) acts only inside the space orthogonal to V.
We expect thisoperator to have amore favourable distribution of eigenvaluesfor theiterative method. In
that case the correction equation reads

(I, - WW*)(A — 0,,1,)(I, - WW*)t = —r,,,. (9)

If the correction equation is solved (approximately) by a Krylov subspace method where theinitial guess
is 0, then no difference will be observed between (7) and (9). The reason why isthat (I, — WW*)? =
I, — WW*,

2.3 Extremal cases

After m steps of the subspace method, V,,, contains besides u,,,, m — 1 other independent directions.
Conseguence: different subspaces WV can be used in equation (7) provided that span(u,,,) C W C V,,.
Here we will consider the extremal cases W = span(u,,,) and W = V,,,.
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The first case corresponds with the original Jacobi-Davidson method [15]:
(L = ) )(A = 0, 1,)(L, — wpwl, )t =~y

The operator in this equation can be seen as a mapping in the orthogonal complement of u,,, .
Let us motivate the other case. Suppose WV is a subspace contained in, but not equal to V,,,. Then
(L, — WW*) projects still some components of (A — 6,,,1,,)t insideV,,,. These components will not
contribute to a smaller norm in (6). To avoid this overhead of already known information it istempting
totake W =V,,:
(L, =V, Vo)A = 60,1,)(1, —up,ul, )t = -1y (10)

Furthermore, if W = V,,, then equation (9) becomes
(I = Vo, VE)(A = 6, L) (1, — V,, Vi)t = -1,

In the following with JD and JDV we will denote the Jacobi-Davidson method which uses (2) and (3)
respectively as correction equation. The exactsolution of (2) will be denoted by t ,,, while t ., denotes
the exactsolution of (3). With an “exact processwe refer to a processin exact arithmetic in which all
correction equations are solved exactly. Note that both t ,, and t,, are solutions of (10). Aswe will
illustrate in an examplein §3, the solution set of (10) may consist of more than two vectors. In fact, this
set will be an affine space of dimensiondim(V,,, ), whilegenerally (2) and (3) will have unique solutions.
For this reason, we will refer to equation (10) asthe “in between” equation.

An equation similar to (3) appears in the truncated RQ-iteration of Sorensen and Yang [18]. In every
step of this method the solution of the so-called TRQ equations is required. For the application of an
iterative solver the authors recommend to use

(L, = Vo, VoY (A — L) (I-V,V )w =1, (12)

instead of the TRQ equations. Here u is some shift which may be chosen to be fixed for some TRQ-
iteration steps whereas in Jacobi-Davidson 6,,, is an optimal shift which differs from step to step. Also
here Sorensen and Yang expect (11) to give better results due to the fact that

(L, -V, V) (A — L) (I -V, 'V, ) hasamorefavourable eigenval uedistributionthan A — I when
u isnear an eigenvalue of A (see also the remark at the end of §4.1).

2.4 Convergencerate

Thederivationin §2.2 of the alternative correction equationsmay suggest that expansi on with an exact so-
lutiont of (10) would result in quadratic convergence (cf. [17]) likethe original Jacobi-Davidson method
([15, §4.1], [14, Th.3.2]). Let ustake acloser look.

Asin §2.2, consider theresidual r,,, 41 associated with (8,41, Wnt1) = (0, + €, 0 + t).
Ift L u,, isthe exact solution of (2) and ¢ is chosen such that r,, 4 is orthogonal to u,, then it can
be checked that r,,, 11 isequal to aquadratic term (r,,+1 = —et), which virtually proves quadratic con-
vergence. (Note: we are dealing not only with the directions u,,, and t but with a search subspace from
which the new approximation is computed, there could be an update for u,,, that is even better than t.)
If t solves (10) exactly then, by construction, the component of the residual orthogonal to V,,, consists
of asecond order term. However, generally the component of r,,, 1 in the space V,,, contains first order
terms (see §3) and updating u,,, with thisexact solutiont of (10) does not lead to quadratic convergence.
One may hope for better updates in the space spanned by V,,, and t, but, as we will see in our numeri-
cal experimentsin §5.1.1, equation (3), and therefore also (10), do not lead to quadratic convergence in
general.
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3 Two examples

The two following simple examples give some insight into the differences between the three correction
equations (2), (10), and (3).

3.1 Different expansion of the subspace

Consider the following matrix

0 B <
A= 0 a c3 |,
d d; B

with o and 5 scalars, ¢4, ¢2, dy and d, vectorsand B a non-singular matrix of appropriate size.
Suppose we aready constructed the subspace V, = span(e;, e;) and the selected Ritz vector u; is
e. Then the associated Ritz value #, equals 0,

while(I — eje])A(I — ere]), (I - Vo VIA(I —ejef), and (I — Vo V5)A(I — V5, V3) areequal to

0 0 o 0 0 o 0 0 or
0 a ¢ |, 0 0 o* |, and 0 0 o |,
0 d, B 0 d, B 0 0 B
respectively. From thisit is seen that JD computes its correction from
o cb T\ _ 0
d, B t ) d, /’
the “in between” from
(a8)( )=
and JDV from
Bt' = —d;.
Let t! bethe solution of Bt: = —d; (« = 1,2). Then the component of t, for JDV orthogonal to

V, isrepresented by t/ (to be more precise, ty, = (0,0,t,")T), while the orthogonal component for JD
is represented by a combination of t} and t}: tp = (0,7, (t] + vt5)")". Soingenera, when d; isnot
amultiple of d; and when v # 0, JD and JDV will not produce the same expansion of V,. Note that
(I— eje])A(I — ere}) isnon-singular on e if and only if o # —c3t,. The“in between” differs from
JD and DV inthat it hasno extraconstraint for . Tekingy = —c3t} /(a+ c5t}) givesdD, takingy = 0
givesJDV.

Finally, as an illustration of §2.4, we calculate the new residual associated with us = uy + t and
A3 = A + . Wetake 5 = 0. The new residual for the“in between” equals

it/ —¢
rs= | ay+cit —evy
—et/
If v = —c3t] /(o + c5t}) (asfor ID) then the choicee = cjt’ reducesthe termsin rs to second order

ones, while no clever choicefor ¢ can achievethisif vy isnot closeto —c3t] /(a + ¢5th).
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3.2 Stagnation

The examplein this section showsthat JD may stagnate where JDV expands.
Consider the matrix A of §3.1, butnowtake 3 = 1, = 0 andd, = d;.

Asinitial space, wetake V; = span{e;}. Thenu; = e; andry = (0,0,d])". Any of the three
approaches find —e, as expansion vector: Vo, = span{ey,ez}. Now u, isagain e; and JD stagnates:
tp = —eo belongsalready to V, and doesnot lead to an expansion of V,. The JDV correction vector t 5,
isequa to (0,0, (B~'d;)")" and expands V.

4 Exact solution of the correction equations

If, intheexamplein §3.1, d, and d, are in the same direction, or equivaently, if the residuals of the Ritz
vectors are in the same direction, then exact JD and exact JDV calculate effectively the same expansion
vector. One may wonder whether thisal so may happenin more genera situations. Before we discussthis
question, we characterize the situation in which all residuals are in the same direction.

All residuals of Ritz vectors with respect to some subspace V,,, are in the same direction if and only
if the components orthogona to V,,, of the vectors Av are in the same directionfor al v € V,,. Itis
easy to see and well known that V,,, has thislast property if it isaKrylov subspace generated by A (i.e.,
Vi = Kn(A,vo) = span({A’vy | i < m}) for some positiveinteger m and some vector v,). The
converseis aso true as stated in the following lemma. We will tacitly assume that all Krylov subspaces
that we will consider in the remainder of this paper, are generated by A.

LEMMA 1 For a subspac#’,,, the following properties are equivalent.
(@ V.. is a Krylov subspace,
(b) AV, C span(V,,,v) forsomev € AV,,.

Proof. We provethat (b) implies (a). Theimplication“(a) = (b)” is obvious.

If the columns of the n by m matrix V,,, form abasisof V,,, then (b) impliesthat AV,,, = [V,,,v]|H
for some m + 1 by m matrix H. Thereisan orthogonal m by m matrix Q such that H := Q"*HQ is
upper Hessenberg. Here ()’ isthe m + 1 by m + 1 orthogonal matrix with m by m left upper block @
and (m + 1, m+ 1) entry equal to 1. ) can be constructed as product of Househol der reflections.® Hence
AV,, = [V,,,v]H, where V,, = V,,Q. Since I upper Hessenberg, thisimpliesthat V,,, isaKrylov
subspace (of order m) generated by thefirst column of V,,,. O

We will seein Cor. 4 that exact JD and exact JDV coincide after restart with a set of Ritz vectors
taken from a Krylov subspace. The proof uses the fact, formulated in Cor. 1, that any collection of Ritz
vectorsof A with respect to a single Krylov subspace span a Krylov subspace themselves. Thisfact can
be foundin[9, §3] and is equivalent to the statement in [20, Th.3.4] that Implicit Restarted Arnoldi and
unpreconditioned Davidson (i.e., Davidson with the trivial preconditioner T,,) generate the same search
subspaces. However, the proof below is more elementary.

COROLLARY 1 If ), is a Krylov subspace and{’(@fé), u%)) | « € J} is asubset of Ritz pairs & with
respect to/,,, then the Ritz vector&(f) (¢ € J) span a Krylov subspace.

Proof. Assumethat V,, isaKrylov subspace. Then (b) of Lemma 1 holds and, in view of the Gram-
Schmidt process, we may assume that the vector v in (b) is orthogonal to V,,, .

?Here the refections are defined from their right action on the m + 1 by m matrix and work on the rows from bottom to top,
whereasin the standard reduction to Hessenberg form of a square matrix they are defined from their |eft action and work on the
columns from left to right.
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SinceAu!) — 00wl 1 Vo, (b) of Lemma 1 impliesthat Au%) IO span(v). Hence AulY €
span(l, v), wherel{ isthe space spanned by the Ritz vectors u%) (¢ € J), andthe corollary followsfrom
Lemma 1. a

4.1 ExpandingaKrylov subspace

In this section, V,,, isasubspace, V,,, amatrix of which the columns form an orthonormal basisof V,,,,
(6., u,,) aRitz pair of A withrespecttoV,,, andr,, istheassociated residual. Further, we assume that
(L, -V, V) )(A-6,1,)(1, -V, V) isnon-singular on V1L that is(3) hasaunique solution, and we
assumethat r,,, # 0, that isu,,, isnot converged yet.
The assumptionr,,, # 0 impliesthatt,,, # 0 and Au,, € V,,.

Notethat (cf. [15], [13])

ut u,,

tp = —u, A-6,1) ", f = m ) 12
» u, + &( )" u or ¢ (A6, 1) T, (12

THEOREM 1 Consider the following properties.
(@ V.. is a Krylov subspace.
(b) span(V,,,, t) C span(V,,, t v ) for all solutionst of (10).
(c) span(V,,, tp) is a Krylov subspace.

Then (a) < (b) = (c).

Proof. Consider asolutiont of (10). We first show the intermediate result that
span(V,,, t) = span(V, tov) &  YAu,, + AV, (Vit)eV, forsomey#1. (13)
If we decomposet in
t=t+V,s with t=(I,-V,V:)t and s=V.t (14)
then we see that (10) isequivalent to
(I, = Vi, V(A = 0L)(L, — V,, V)t = 1, — (I, — V,, V2 )(A — 01,,) V5. (15)

The vectorst and t lead to the same expansion of V,,,. A combination of (3) and (15) showsthat t ,,, and
t lead to the same expansion of V,,, if and only if

(1= 9"t + (L, — V,, V2 )(A — 01,)V,,s = 0 for some scalar ' # 0; (16)

use the non-singularity restriction for the “if-part”. Since (I,, — V,,, V) )V,, = 0, (16) is equivalent to
(1 =9"Au,, + AV,,s € V,,, which proves (13).

“(@ = (b)": Sincer,, # 0, weseethat Au,, € V,,. Therefore, if (a) holdsthen (see Lemma 1) we
havethat AV,,(V>t) € span(V,,, Au,,) and (13) showsthat (b) holds.

“(b) = (c)": Note that the kernel A of the operator in (10) consists of the vectorss = t — tyy
with t a solution of (10). Since (3) has a unique solution, we see that none of the non-trivial vectorsin
N is orthogonal to V,,,. Therefore, the space A and the space of al vectors Vs (s € N) have the
same dimension which is one less than the dimension of V,,,. From (13) we see that (b) implies that
AV, (Vys) € span(V,,, Au,,) fordls € N. Sinces = t — tpy L u,, weseethat u,, isinde-
pendent of AV,,(V;;s)forals € N. Therefore, in view of the dimensions of the spaces involved we
may concludethat AV, € span(V,,, Au,,), which, by Lemma 1, proves(a).



M. Genseberger and G. L. G. Sleijpen 9

“(@ = (0)": If V,, isaKrylov subspace of order m generated by v, that isif (a) holds, then, dsoin
view of (12), we have that

span(V,,, tp) = span(V,,, (A — 01,)) " u,,) € {q(A)[(A — 61,,) " vo] | ¢ pol. degree < k}.

The inclusion follows easily from the representation of V,,, asV,, = {p(A)vo|p pol. degree < k}. If
(A —01,)"tu,, ¢ V,, then adimension argument shows that the subspaces coincide which proves that
span(V,,,, t) isaKrylov subspace. If (A — 01,,)"'u,, € V,, thenthereisno expansion and the Krylov
structureistrivially preserved. O

Lemmalimpliesthat any n—1 dimensional subspaceisaKrylov subspace. Inparticular, span(V,,, ty)
isaKrylov subspaceif V,,, isn — 2-dimensional and it does not containt ;. From thisargument it can be
seen that (c) does not imply (a).

Since t, isalso asolution of (10), we have the following.

COROLLARY 2 If V,, is a Krylov subspace thespan(V,,,, ty) C span(V,,, toy ). a

If6,, issmplethent ,, ¢ V,,, and the expanded subspacesin Cor. 2 coincide. However, astheexample
in §3.2 shows, JD may not always expand the subspace. Note that, in accordance with (c) of Th. 1, the
subspace Vs, in thisexample isa Krylov subspace (generated by A and vy = e5 — ey).

Cor. 2 doesnot answer the question whether t , and t 1, lead to the same expansion of V,,, onlyif V,,
isaKrylov subspace. Theexamplein §3 showsthat theanswer can be negative, namely if t , 1 V,,: then
v =V tp = 0. Theanswer can also be negative in caseswherety, £ V,,, provided that the dimension
of the subspace V,, islarger than 2. The followingtheorem characterizes partially the situation where we
obtainthe same expansion. Notethat V,,, isaKrylov subspaceif and only if thedimensionof AV, NV,
isat most one lessthan the dimension of V,,, (see Lemma 1).

THEOREM 2 If span(V,,,,tp) C span( Vi, toy) thenAV,, NV, # {0} orty L V,,.

Proof. If t and ty, give the same expansion then (13) showsthat yAu,, + AV, (Vitp) € V.
Apparently, AV,, N V,, # {0} ory = 0and V; ;t, = 0. A similar argument appliesto the case where
tJD 6 VT)’L' \:‘

In practical situations, where V,,, is constructed from inexact solutions of the correction equationsit
will be unlikely that AV,,, will have a non-trivial intersection with V,,, (unless the dimension of V,, is
larger than n/2). Usualy typ £ V,,. Therefore, the exact expansion vectorsty, and t 5, will not lead to
same expansions, and we may not expect that inexact expansionvectorswill produce the same expansions.

The correction equation (11) in inexact TRQ is based on a Krylov subspace: the matrix V,,, inthis
algorithm is produced by the Arnoldi procedure whenever equation (11) hasto be solved.

4.2 Starting with one vector

As any one dimensional subspace is a Krylov subspace, one consequence of Theorem 1 isthe following
corollary. The proof follows by an inductive combination of Th. 1(c) and Cor. 2.

CoRroOLLARY 3 Exact JD and exact JDV started with the same veatoare mathematically equivalent
aslongas exact JD expands, i.e., they produce the same sequence of search subspacesin exact arithmetic.
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4.3 (Re-)Startingwith several Ritz vectors

Oncewe start JD and JDV with one vector the dimension of the search subspace startsincreasing. After a
number of stepsarestart strategy must be followed to keep the required storage limited and the amount of
work related to the search subspace low. The question iswhich information should be thrown away and
which shouldbe keptinmemory. A popular strategy isto select those Ritz pairsthat are closeto aspecified
shift/target. Cor. 1 and an inductive application of Theorem 1 imply that, with a one-dimensional initial
start and restarts with the selected Ritz vectors, restarted exact JD and restarted exact JDV are mathemat-
ically equivalent.

COROLLARY 4 Exact JD and exact JDV are mathematically equivalent as long as exact JD expands if
they are both started with the same set of Ritz vectors with respect to one Krylov subspace.

In practice, we haveto deal withround off errorsand the correction equationscan only be solvedwitha
modest accuracy. Therefore, evenif we start with one vector or aKrylov subspace, the subsequent search
subspaceswill not be Krylov and the results in the above corollaries do not apply. If a search subspaceis
not Krylov, then from Th. 1 welearn that the “in between” variant may lead to expansions different from
those of JDV. Th. 2 indicatesthat also JD will differ from JDV.

5 Numerical experiments

Hereafew numerical experimentswill be presented. We will seethat JDV and JD show comparabl e speed
of convergence aso in finite precision arithmetic as long as the correction equations are solved in high
precision (§5.1.1). JDV converges much slower than JD if the Krylov structure of the search subspaceis
serioudly perturbed. We will test this by starting with alow dimensional random space (§5.1.1). We will
also see thiseffect in our experiments where we solved the correction eguations only in modest accuracy
(§5.1.2). Moreover, we will be interested in the question whether the slower convergence of JDV in case
of inaccurate solutions of the correction equations can be compensated by a better performance of the
linear solver for the correction equation (§5.2.1). Further, some stability issueswill be addressed (§5.1.3).

51 Examplel

In the experimentsin thissection 5.1, we apply the Jacobi-Davidson method on atridiagonal matrix of or-
der 100with diagonal entries2.4 and off-diagonal entries 1 ([ 15, Ex. 1]). Our aimisthelargest eigenvalue
A =4.3990 . ... We start with a vector with all entriesequal to 0.1.

5.1.1 Exact solution of the correction equation

When solving the correction eguations exactly no difference between JD and JDV is observed (dash-
dotted line in left plot in Fig. 1) which is in accordance with Cor. 3. The plots show the log, of the
error |6, — A| inthe Ritz value 8,,, versustheiteration number m.

To see the effect of starting with an arbitrary subspace of dimension larger than 1 we added four ran-
dom vectorsto the start vector with all entriesequal to 0.1. Theright plotin Fig. 1 showsthe convergence
of exact JD (solid curve) and JDV (dashed curve). Heretheresultsof seed(253) inour MATLAB-code
are presented (other seeds showed similar convergence behaviour). The correction equations have been
solved “exactly”, that isto machine precision. Asanticipatedin §4.1 (see Th. 2) the convergence behav-
iour of JDV now clearly differs from that of JD. Moreover, the speed of convergence of JDV seemsto be
much lower than of JD (linear rather than cubic? See §2.4). Apparently, expanding with t 5, rather than
with t , may slow down the convergence of Jacobi-Davidson considerably in case theinitial subspaceis
not a Krylov subspace.
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—--JD and JDV, exact inversion starting with a 5 dimensional subspace
-2F —— JD, 5 steps of GMRES B =2F

— — JDV, 5 steps of GMRES

that contains besides start-vector from
left plot 4 additional random vectors
—— JD, exact inversion

S — — JDV, exact inversion

log10 of error
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log10 of error
®
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-14r ! -14r

-16
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FIGURE 1. Convergence plots for Example 1. Differences betwBesnd JDV when not solving the correction equation
exactly(left plot) and when starting with an unstructured 5-dimensional subsfrégiet plot). The plots show the log of the
error |6,,, — A| in the Ritz valud,,, versus the iteration numbes.

Note that JD performs slightly better with the five-dimensiona start than with the one-dimensional

start (compare the solid curve in the right plot with de dashed-dotted curve in theleft plot). Thismay be
caused by the extra (noisy) search directions.

5.1.2 Approximate solution of the correction equation

If the correction equations are not solved in high precision, we may not expect the constructed search
subspacesV,,, tobe Krylov subspaces, evenif the processis started with aKrylov subspace. Consequently
tp and tpy, and therefore their inexact approximations, will not lead to the same expansionsof V,,,. In
view of the experimental resultin §5.1.1, we expect theinexact JDV to converge slower than inexact JD.
Againwe start with one vector, but we use only 5 steps of GMRES to get an approximate sol ution of
the correction equation in each outer iteration. The solid line (JD) and the dashed line (JDV) in the | eft
plot of Fig. 1 show the results. JDV needs significantly more outer iterationsfor convergence than JD.

5.1.3 Lossof orthogonality

The (approximate) solution of (2) in JD will in general not be orthogona to V,,,. Therefore, thissolutionis
orthonormalizedagainst V,,, beforeitisused toexpandV,,, to'V,,, 11 . Werefer to thisstepin thealgorithm
as postorthogonalization (of the solution of the correction equation). In JDV, however, if the correction
equation (3) is solved with, for instance, GMRES, then the (approximate) solution should be orthogonal

to V,,, and post-orthogonalization, i.e., the explicit orthogonalization before expanding V.., should be
superfluous. This observation would offer a possibility of saving inner products. Here we investigate
what the effect is of omitting the post-orthogonalizationin JDV.

Again JDV is applied on the simple test matrix with the same starting vector as before and the cor-
rection eguations are solved approximately with 5 steps of GMRES. Asinitial approximate solution for
GMRES we take the zero vector.

From the experiment we learn that without post-orthogonalization the basis of the search subspace
in JDV losesits orthogonality. As a measure for the orthonormality of V,,, we took (see [12, §13.8])
Em = |[Im — V), Vi ||. Table 1 lists the values of the error |\ — 6,,,| and the quantity «,,, for the first
10 outer iterations. Column two and three (“with post-ortho.”) show the results for the implementation
of JDV where the approximate solution of the correction equation is explicitly orthogonalized against
V,,, beforeit is used to expand this matrix. In the columnsfour and five (“without post-ortho.”) we see
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with post-ortho.

|/\_0m|

K,

without post-ortho.

|/\_0m|

K,

with pre-ortho.

|/\_0m|

K,

@CD\JCD(ﬂ-bOOI\JHB

=
o

1.903e-02
3.611e-03
1.856e—-03
1.076e-03
7.480e—04
4.464e—04
3.454e-04
1.909e-04
1.317e-04
8.747e—-05

2.220e—-16
2.289%-15
2.314e-15
2.314e-15
2.316e—-15
2.316e—-15
2.317e-15
2.317e-15
2.317e-15
2.317e-15

1.903e-02
3.611e-03
1.856e—-03
1.076e-03
7.480e—04
4.423e—-04
4.135e—-04
3.135e+00
7.004e+00
1.094e+01

2.220e-16
3.690e-14
1.426e-11
2.649e-09
6.621e—-07
1.125e-04
2.710e—-02
9.732e-01
1.940e+00
2.920e+00

1.903e-02
3.611e-03
1.856e—-03
1.076e-03
7.480e—04
4.464e—04
3.454e-04
1.909e-04
1.317e-04
8.747e-05

2.220e-16
3.690e—-14
4.567e-14
4.866e—14
5.920e-14
6.534e-14
7.490e-14
9.546e-14
9.548e-14
1.232e-13

TABLE 1. The need of post-orthogonalization when usiby. For the simple test, thdDV correction equation(3) is
solved approximately with 5 steps®MRES. The table shows the errpk — 6 .| in the Ritz valué,,, and the “orthonormality”
of the basisV,,, of the search subspacés,. = ||I,» — V,, Vi:||) for the implementation with post-orthogonalization of the
solution of the correction equatidieolumn two and thréewithout post-orthogonalizatiofcolumn four and five and without
post-orthogonalization, but with pre-orthogonalization of the left-hand side vector of the correction eq@atiomn six and
seven.

that if the post-orthogonalization is omitted then the loss of orthonormality starts influencing the error
significantly after just 5 outer iterations. After 8 iterations the orthonormality is completely lost. This
phenomenon can be explained as follows.

Theresidual of the selected Ritz pair iscomputed asr,,, = Au,, — 0,,u,,. Therefore, infinite precision
arithmetic, theresidual will not be asorthogonal to the search subspaceasintended evenif V,,, wouldhave
been orthonormal. For instance, at the second iteration of our experiment, we have an error || Vir, || equal
to 1.639e—13. Withthenorm of theresidual equal to 0.02145 thisresultsinarelative error of 7.640e—12.
Note that, specifically at convergence, rounding errorsin r,, may be expected to lead to relatively big
errors. In each solve of the correction equation (3), GMRES is started with initial approximate 0 and the
vector r,, istaken astheinitial residual in the GMRES process.

Sincer,, issupposedto be orthogonal against V., thisvector is not explicitly orthogonalized against

V,,., and the normalized r,,, issimply taken as the first Arnoldi vector. In the subsequent GMRES steps
the Arnoldi vectors are obtained by orthogonalization against V,,, followed by orthogonalization against
the preceding Arnoldi vectors. However, sincethefirst Arnoldi vector will not be orthogonal against V ,,,
the approximate GMRES solution will not be orthogonal against V,,,. Adding this“skew” vector to the
basis of the search subspace will add to the non-orthogonality in the basis.
Columns six and seven (“with pre-ortho.”) of Table 1 show that post-orthogonalization can be omitted
as long as the residual r.,, is sufficiently orthogonal with respect to V., the post-orthogonalization is
omitted here, but the right-hand side vector of the correction equation, the residua r,,,, is orthogonal-
ized explicitly against V,,, before solving the correction equation (pre-orthogonalization). Since pre- and
post-orthogonalization are equally expensive and since pre-orthogonalization appears to be dlightly less
stable (compare the «,,,’sin column 3 with those in column 7 of Table 1), pre-orthogonalizationis not an
attractive alternative, but the experimental results confirm the correctness of the above arguments.

Note that our test matrix hereisonly of order 100 and the effect of losing orthogonality may become
even more important for matrices of higher order.

Alsoin JD thefinite precision residua r,,, of the Ritz pair will not be orthogonal to the search sub-
gpace. Since even in exact arithmetic you may not expect the solution of the JD correction equation (2)
to be orthogonal to V,,,, post-orthogonalization is essential in the JD variant. In our experiment, using
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finite precision arithmetic, we did not observe any significant loss of orthogonality in the column vectors
of V,,,. Nevertheless, we a so checked whether pre-orthogonalization of r,,, before solving the correction
equation would enhance the convergence of JD. Thiswas not the case: JD converged equally fast with
and without pre-orthogonalization.

In the remaining experiments we used post-orthogonalizationin JDV, too.

52 Example?2

In this section we consider a dightly more realistic eigenvalue problem. We are interested in the ques-
tion whether the projectionson the orthogonal complement of V,,, inthe JDV approach may significantly
improve the performance of the linear solver for the correction equation.

For A we take the SHERMAN1 matrix from the Harwell-Boeing collection [5]. The matrix isred
unsymmetric of order 1000. All eigenvaluesappear to bereal andintheinterval [-5.0449,-0.0003]. About
300 eigenvalues are equal to-1. We want to find a few eigenvalues with associated eigenvectorsthat are
closest to the target o. Our target o isset to -2.5. Note that the “target” eigenvaluesare in the “interior”
of the spectrum, which make them hard to find, no matter the numerical method employed.

In general, when started with a single vector, the Ritz valuesin theinitial stage of the processwill be
relatively inaccurate approximations of the target eigenvalue \, that is, if A isthe eigenvalue closest to o
then for thefirst few m wewill havethat |6,,, — A|/|c — A| > 1. Therefore, asarguedin[14, §9.4] (seeaso
[7,84.0.1]), itismore effectiveto replaceinitially 8,,, in thecorrection equation by o (similar observations
can befoundin [10, §6] and [19, §3.1]). Asthe search subspace will not contain significant components
of thetarget eigenvectorsinthisinitial stage, the projectionsin (2) and (3) are not expected to be effective.
Therefore, we expanded the search subspacein thefirst few stepsof our processby approximate solutions
of the equation

(A —ol,)t =—r,, (17)

which can be viewed as a generalized Davidson approach.

Inthe computationswe did not use any preconditioning. We started JD and JDV with the same vector,
the vector of norm one of which all entries are equal. The algorithmswere coded in C and run on a Sun
SPARCstation 4 using double precision.

5.2.1 Solving the correction equation in lower precision

Fig. 2 showsthe log;, of the residual norm for JD (the solid curve) and for JDV (the dashed curve). In
thisexample, al correction equations (including (17)) have been solved with 50 steps of GMRES except
where GMRES reached a residual accuracy of 10~ in an earlier stage. In thefirst 5 steps of the outer
iteration we took the approximate sol ution of the Davidson correction equation (17) asthe expansion vec-
tor. Asthe correction eguations are not solved exactly, we expect that JD will need less outer iterations
than JDV (see §§4.1 and 5.1.2), which is confirmed by the numerical resultsin the figure.

Asarguedin §1, the projections on the orthogonal complement of V,,, inthe JDV correction equation
(3) may improve the conditioning (or more general, the spectral properties) of the operator in the correc-
tion equation. Thismay allow amore efficient or amore accurate way of solving the correction equation.
Here we test numerically whether a better performance of the linear solver for the correction equations
can compensate for aloss of speed of convergence in the outer iteration. In thefiguresin Fig. 3 we show
how the performance of JD and JDV and the computational costsrelate. Asameasure for the costs we
take the number of matrix-vector multiplications. we plot the log, of the residual norm versus the num-
ber of matrix-vector multiplicationsby A (or by A — 6,,1,,). Note that thisway of measuring the costs
favours JDV, since the projectionsin JDV are more costly than in JD. Nevertheless, we will see that JD
outperforms JDV.
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FIGURE 2. The convergence history for the computation of eigenpairs with eigenvalue closesttof the matrixSHER-
MANZ1. The plot shows the lag of the subsequent residual norms 88 (solid curvg andJDV (dashed curveversus the it-
eration numbern. A search for a next eigenpair is started when a Ritz pair is accepted as eigénpaif |r || < 5107°%).
The correction equations are approximately solved with 50 ste@/RES.

method for the number of outer | number of matrix- | wallclock time
correction equation iterations vector multiplications | in seconds
JD JDV JD JDV JD JDV
GMRES,g @] 4 4 798 790 641 643
by | 7 7 1401 1393 114.7 1195
GMRES;q @ | 14 20 715 1021 215 51.2
(b) | 19 30 970 1531 350 1211
GMRES;5 (@ | 26 37 677 963 41.3 1430
(b) | 33 47 859 1223 832 3014

TABLE 2. Costs for the computation of two eigenpairSBfERMAN1 with JD andJDV. The costgb) for the computation
of the second eigenpaik = —2.51545 .. .) include the costé&) for the computation of the first eigenpél = —2.49457 .. ).

We solve all correction equationswith GMRES,, that iswith ¢ steps of GMRES, except where GM-

RES reaches aresidual accuracy of 10~!4 in an earlier stage. For ¢ we took 200 (top figure), 50 (middle
figure), and 25 (bottom figure). In thefirst few outer iterations the Davidson correction equation (17) is
solved approximately (2 outer iterationsfor ¢ = 200 and 5for £ = 50 andfor ¢ = 25). WhenaRitz pairis
accepted aseigenpair (i.e., if ||r,, || < 5107%), asearchisstarted for the next eigenpair. The accepted Ritz
pairs are kept in the search subspace. Explicit deflation is used only in the correction equation (see [8]).
Notethat the correction equations(3) in JDV need no modification to accommodate the defl ation, because
accepted Ritz vectors are kept in the search space.
If GMRESwould convergefaster on JDV correction equationsthan on JD correction equations, then GM-
RES would need less stepsfor solving (3) in case the residual accuracy of 10~!* would be reached inless
than { GMRES steps, whilein the other case it would produce more effective expansion vectorsin JDV.
With more effective expansi onvectorsthe number of outer iterationsmay be expected to decrease. In both
cases, there would be a positive effect on the number of matrix-vector multiplicationsneeded in JDV.

In Table 2 the number of outer iterations, the number of matrix-vector multiplicationsand the amount
of time needed for the computationfor thefirst two eigenpairs(A = —2.49457...and A = —2.51545...)
are presented.

When solving the correction equation with 200 stepsof GMRES no difference between JD and DV is
observed (upper plotin Fig. 3). Apparently with 200 stepsof GM RES the correction equationsare solved
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FIGURE 3. The effect of reducing the precision of the solution method for the correction equation. The figures display the
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in high precision and the resultsare in line with the theory and our previous experience. Thiscan also be
seen from Table 2. For the first eigenvalue JD uses 8 more matrix-vector multiplications than the 790
from JDV. On the other hand JDV takes a bit more time (about 0.2 seconds) than JD. From this we may
concludethat, compared with the costs of the matrix-vector multiplicationsand the QR-a gorithm for the
computation of the eigenval ues of the projected matrix, the extra vector-vector operationsinvolvedin the
correction equation of JDV are not very expensive.

Although JD and JDV need the same amount of time for convergence when using 200 steps of GMRES,
the same eigenpairs can be computed in much lesstime. If 50 steps of GMRES are used, JD takes only
21.45 secondsfor computing the first eigenpair whereas JDV takes 2.5 times that amount.

The differences between the two methods become more significant if we lower the precision of the solver
for the correction equation by using only 25 steps of GMRES. With the same amount of matrix-vector
multiplicationsthe number of eigenpairsfound by JD is much higher than JDV. Note, that the measured
time for both JD and JDV in the case of GMRES;; is more than in the case of GMRES;, whereas the
number of matrix-vector multiplicationsisless. Thereason for thiscan only be thefact that in the case of
GMRES;; more outer iterations are needed, every outer iteration the eigenvalues of the projected matrix
are computed with a QR-algorithm.

6 Conclusions

In GMRESR, an iterative method for solving linear systems of equations, it paysto restrict the correc-
tion equationsto the orthogonal complement of the space spanned by the search vectors. This approach,
called GCRO, leadsto new search directionsthat are automatically orthogonal with respect to the old ones.
Although the restricted correction equations require more complicated projectionswith higher computa-
tional costs per matrix-vector multiplication, the number of matrix-vector multiplicationsmay decrease
tremendously leading to a better overall performance [3, 1]. In this paper, we investigated the question
whether such an approach would be equally effective for the Jacobi-Davidson method for solving the
eigenvalue problem. Note that eigenvalue problems are weakly non-linear.

When starting with a Krylov subspace and solving the correction equations exactly the standard ap-
proach (JD) of Jacobi-Davidson and its variant JDV with the more restricted correction equations, are
mathematically equivalent (§4). However, in practical situations, wherethe correction equationsare solved
only in modest accuracy with finite precision arithmetic, the JDV variant appears to converge much more
slowly than JD. Although the restricted correction equationsin JDV may have spectral propertiesthat are
more favourable for linear solvers, a better performance of the linear solversfor the correction equation
in JDV may not compensate for the slower convergence.
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