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A Jacobi–Davidson type method for the product

eigenvalue problem

Michiel E. Hochstenbach∗

Abstract. We propose a Jacobi–Davidson type method to compute selected
eigenpairs of the product eigenvalue problem Am · · · A1x = λx, where the matrices
may be large and sparse. To avoid difficulties caused by a high condition number
of the product matrix, we split up the action of the product matrix and work with
several search spaces. We generalize the Jacobi–Davidson correction equation and
the harmonic and refined extraction for the product eigenvalue problem. Numer-
ical experiments indicate that the method can be used to compute eigenvalues of
product matrices with extremely high condition numbers.

Key words: Product eigenvalue problem, product SVD (PSVD), subspace
method, Jacobi–Davidson, correction equation, cyclic matrix, cyclic eigenvalue
problem, harmonic extraction, refined extraction.

1 Introduction

We are interested in a partial solution to the product eigenvalue problem, that is, we
would like to compute some eigenpairs (λ, x) of a product of matrices

Ax = λx, A = Am · · ·A1, (1.1)

where A1, . . . , Am−1, Am are complex, possibly nonsquare, n2×n1, . . . , nm×nm−1, n1×
nm matrices, respectively.

Well-known special cases are the products A∗A and AA∗, for a possibly nonsquare
matrix A, which may be of interest for a partial singular value decomposition (par-
tial SVD). Other applications that may lead to a product eigenvalue problem include
the eigenvalue problem for totally nonnegative or pseudosymmetric matrices, queueing
models, periodic systems, and Floquet multipliers. Moreover, the SVD of a product
of matrices Am · · ·A1, called the product SVD (PSVD), which arises for instance in
Lyapunov exponents for differential or difference equations [15, 22], is closely related
to the eigenproblem of a product of the form A∗1 · · ·A∗mAm · · ·A1. See [14, 25] and the
references therein for a more extensive list of applications.

Three decades ago, Van Loan considered a product/quotient eigenvalue problem
of the form A4A3(A1A2)−1 in his Ph.D. thesis (see [24]). The eigenvalue problem,
generalized eigenvalue problem, singular value problem and generalized singular value
problem are, with some regularity requirements, mathematically all of this form; in
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general however, it may not be a good idea to numerically treat these problems in the
mentioned form.

Several methods have been proposed to accurately compute the SVD of products
of (small) matrices Aj [4, 5, 7, 15,22]; Watkins [25] studied GR algorithms to determine
the eigenvalue decomposition of products of small matrices. Recently, Kressner [14]
proposed an Arnoldi type method, which is suitable for a product eigenvalue problem
where the factor matrices are large. One of the crucial techniques involved here is a
Krylov–Schur type restart. Although the methods in [13, 14] are for square matrices,
they could be adapted for nonsquare products.

The present paper focuses on a Jacobi–Davidson type method to compute some
of the eigenpairs of the product of (possibly large sparse) matrices Aj . The method
may be seen as a generalization of the Jacobi–Davidson method for the singular value
problem [9, 10], which in turn is inspired by the original method by Sleijpen and Van
der Vorst [19] for the (standard) eigenvalue problem.

In our method we do not form the product matrix A explicitly. This is standard
practice to avoid loss of efficiency and accuracy; moreover, in some applications the
matrices Aj may not be explicitly available, but instead given as functions. In addition,
what is special about many applications leading to this problem is that the (sometimes
many, say 100–1000) factors each may have condition number of (say) O(104), so that
the condition number of A may well exceed O(10100) or even O(101000). A huge A-
norm means that a matrix-vector multiplication with A may cause a large error (see,
e.g., Higham [6, Ch. 3]). In fact, we may even experience overflow.

These difficulties may hinder any eigenvalue method (such as Arnoldi or Jacobi–
Davidson) which acts on the product matrix A, even if we carefully leave A in a factored
form. Moreover, an unacceptably high condition number may affect the speed of con-
vergence as well as the final accuracy. For example, it is well possible that the residual
will not get small, even if the eigenpair would already have been correctly identified.
An Arnoldi type method may have great difficulties finding small eigenvalues due to the
tiny relative gap (although it may profit from a large relative gap for large eigenvalues).
Moreover, in the Jacobi–Davidson method solving the correction equation may be very
hard due to a high A-condition number.

By splitting up the action of A in several parts and working with several correspond-
ing search spaces, we hope, at the cost of more memory usage and more computational
effort, to gain several advantages:

• by intermediate orthogonalizations the rounding errors are generally reduced (some-
what similar to the superiority of modified Gram-Schmidt over its standard ver-
sion);

• for an Arnoldi type method the relative gap for the smallest eigenvalues is more
favorable;

• for the Jacobi–Davidson type method, as proposed in this paper, the correction
equation is of higher dimension but much more well conditioned.

The rest of this paper is organized as follows. In the next section we will recall the
close connection between the product eigenproblem and the cyclic eigenvalue problem.
Sections 3 and 4 focus on the two main stages for the Jacobi–Davidson type subspace
method: the subspace extraction and the subspace expansion. Section 5 will be de-
voted to various sides of the algorithm such as deflation, preconditioning, restarts, and
convergence. After some numerical experiments in Section 6, we will summarize our
conclusions in Section 7.
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2 The cyclic eigenvalue problem

To start with, let us split up the action of A in (1.1) into m parts: for an eigenvector
x = x1 we have

A1x1 = ν2x2,

. . .
(2.1)

Am−1xm−1 = νmxm,

Amxm = ν1x1,

for some associated vectors x2, . . . , xm and values ν1, . . . , νm, such that λ = ν1 · · · νm.
Let ‖ · ‖ denote the two-norm. There are two natural scaling options for the vectors xj :

(a) ‖x1‖ = · · · = ‖xm‖ = 1; the νj satisfy ν1 · · · νm = λ but are different in general;
or

(b) ‖x1‖ = 1 and ν := ν1 = ν2 = · · · = νm = λ1/m, for any mth root of λ, while
x2, . . . , xm generally do not have unit norm.

Although we will come across these two possibilities throughout the paper, we will
mainly use the latter.

The associated vectors x2, . . . , xm are uniquely defined (up to multiplication by a
nonzero scalar) if λ 6= 0, or equivalently, if all νj 6= 0. As we will also see below, the case
of a zero eigenvalue is an exception in many aspects; several of the theoretical results
will exclude this case. However, it may occur that we are interested in eigenvalues of A
near zero, for instance if we want to compute the smallest singular values of A, related
to the smallest eigenvalues of A∗A. We will see further on that computing eigenvalues
near zero may in fact be one of the strengths of the proposed method.

Inspired by (2.1), we will employ m search spaces V1, . . . ,Vm of increasing dimension
k for the vectors x1 through xm, respectively. The corresponding search matrices

V1 = [v(1)
1 · · · v

(1)
k ], . . . , Vm = [v(m)

1 · · · v
(m)
k ]

contain columns that form orthonormal bases for each of the spaces: for j = 1, . . . ,m

we have Vj = span(v(j)
1 , . . . , v

(j)
k ). For n := n1 + · · ·+nm, define the n×n cyclic matrix

C =


Am

A1

. . .
Am−1

 . (2.2)

Then we can rewrite (2.1) as C [x1, . . . , xm]T = [ν1x1, . . . , νmxm]T . Using scaling option
(b) this becomes

C x = ν x, (2.3)

where we denote x := [x1, . . . , xm]T ; hence we are interested in eigenpairs of C. A basic
property of the eigendata of C is the following.

Proposition 2.1 (cf. [25, Th. 1]) The nonzero λ is an eigenvalue of A if and only if
ωjλ (j = 0, . . . ,m − 1) are all eigenvalues of C, where ω = e2πi/m is an mth root of
unity. And if x = [x1, . . . , xm]T is an eigenvector corresponding to eigenvalue λ, then

[ωm−1x1, ωm−2x2, · · · , ωxm−1, xm]T

is an eigenvector corresponding to ωλ.

3



This result is not necessarily true for zero eigenvalues. The simplest example of this is
“SVD case” with m = 2: if A = A∗A, where A = [1 0]T , then 0 is an eigenvalue of the
cyclic matrix C without being an eigenvalue of A. These “ghost” zero eigenvalues are
a difficulty of working with the cyclic matrix; cf. also [10].

Motivated by the cyclic matrix, in this paper we will use the index j modulo m, that
is, we identify j with m + j.

3 Subspace extraction

In the subspace extraction phase, we attempt to get good approximate eigendata from
given search spaces. Suppose we have k-dimensional search spaces V1, . . . ,Vm for the
vectors x1, . . . , xm, respectively, at our disposal. Inspired by (2.1), we would like to
determine approximate vectors Vj 3 vj ≈ xj , j = 1, . . . ,m, and approximate values
µ1, . . . , µm such that θ := µ1 · · ·µm ≈ λ. In practice we may often be interested in
eigenvalues near a specified target τ , which may amongst others be a complex num-
ber, “+∞” (for eigenvalues with the largest real part), or “the line on infinity” (for
eigenvalues with the largest magnitude).

3.1 Standard extraction

One way to extract approximate eigenpairs is to impose m Galerkin conditions on the
m different components:

A1v1 − µ2v2 ⊥ Ṽ2,

. . .
(3.1)

Am−1vm−1 − µmvm ⊥ Ṽm,

Amvm − µ1v1 ⊥ Ṽ1,

where the Ṽj are the test spaces. The standard extraction consist of taking the search
spaces as test spaces: Ṽj = Vj for j = 1, . . . ,m. Since we require vj ∈ Vj , we can write
vj = Vjdj for dj ∈ Ck, j = 1, . . . ,m. Rearranging the equations gives the projected
cyclic eigenvalue problem

V ∗
1 AmVm

V ∗
2 A1V1

. . .
V ∗

mAm−1Vm−1




d1

...

...
dm

 =


µ1d1

...

...
µmdm

 . (3.2)

To get a standard cyclic eigenvalue problem, we may take a scaling choice similar to (b)
from the previous section: we require that ‖d1‖ = 1 and µ1 = · · · = µm =: µ; the norm
of the other vectors dj (and hence the vj) is generally not equal to one. If we write

diag(Vj) =

 V1

. . .
Vm

 ,

a block diagonal matrix, then (3.2) is the projected cyclic eigenproblem

diag(Vj)∗Cdiag(Vj)d = µd, (3.3)
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with d = [d1, . . . , dm]T . In this case the m different Galerkin conditions (3.1) in fact
reduce to one Galerkin condition on the cyclic matrix

(C − µI) diag(Vj)d ⊥ span(diag(Vj)).

From Proposition 2.1, we know that the nonzero eigenvalues of (3.3) actually come in
series of m of the form µ, ωµ, . . . , ωm−1µ, where ω = e2πi/m and θ = µm is an eigenvalue
of the product matrix

(V ∗
1 AmVm)(V ∗

mAm−1Vm−1) · · · (V ∗
2 A1V1) =: HmHm−1 · · ·H1. (3.4)

Therefore, since we are interested in the eigenvalues of A projected as in (3.4), we may
identify all the eigenvalues µ, ωµ, . . . , ωm−1µ of (3.3) and consider only the eigenvalues
µ with phase angle ϕ in the complex plane for which −π/m < ϕ ≤ π/m. In fact,
solving one of the projected problems (3.3) or (3.4) may also be challenging. Although
the dimension of the problem has been reduced, the projected factors may still have high
condition numbers. Moreover, by the finite precision arithmetic the m-pairing of the
eigenvalues of the projected cyclic matrix may be lost by “ordinary” methods such as
the (standard) QR method applied to (3.3). Instead, we can use a periodic QR method
as introduced by Bojanczyk, Golub, and Van Dooren [2] and Hench and Laub [8] (see
also Kressner [14]) for (3.4) to perform this extraction in a numerically reliable and
structure-respecting way.

Summarizing, an eigenvalue θ of (3.4) corresponds to a class of m eigenvalues µ of
(3.3) (with θ = µm for each of these µ) and a class of m tuples (µ1, . . . , µm) of (3.2)
(with θ = µ1 · · ·µm for each of these tuples). A value θ, which we call a Ritz value of
A with respect to the search spaces V1, . . . ,Vm, is an approximate eigenvalue of A.

A corresponding eigenvector of (3.4), which is a scalar multiple of the d1 component
of (3.2) and (3.3), is called a primitive Ritz vector; it determines a Ritz vector v1 =
V1d1 which is an approximate eigenvector for A. The vectors d2, . . . , dm in (3.2) and
(3.3), which are multiples of H1d1, . . . ,Hm−1dm−1, respectively, determine the vectors
v2, . . . , vm associated with an approximate eigenvector v1 by v2 = V2d2, . . . , vm = Vmdm.
Note that in (3.2) and (3.3), the vectors d2, . . . , dm (and hence v2, . . . , vm) are scaled
in the two different ways explained in the previous section. (We remark that given d1,
there is an alternative to determine the vectors d2, . . . , dm which may be suitable in
particular for small eigenvalues, see the next section.)

The values µ1, . . . , µm are given in terms of the associated vectors by (cf. (3.1))

µ1 =
v∗1Amvm

v∗1v1
, µ2 =

v∗2A1v1

v∗2v2
, . . . , µm =

v∗mAm−1vm−1

v∗mvm
; (3.5)

these values are determined either during the extraction or as a post-processing step
without any extra matrix-vector products involving the Aj . These values have the
orthogonality properties A1v1 − µ2v2 ⊥ v2, . . . , Am−1vm−1 − µmvm ⊥ vm, Amvm −
µ1v1 ⊥ v1. This implies that this choice for the µj also minimizes the norm of the
residual

r =


A1v1 − µ2v2

...
Am−1vm−1 − µmvm

Amvm − µ1v1

 (3.6)

over all possible values.
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The standard extraction has the following justification. Given the nj × k search
matrices Vj , define the nj+1 × k residual matrices Rj(Kj), where Kj ∈ Ck×k, by

R1(K1) = A1V1 − V2K1,

. . .

Rm−1(Km−1) = Am−1Vm−1 − VmKm−1,

Rm(Km) = AmVm − V1Km.

One may check that if all of these residual matrices are 0, then the span of the columns of
V1 forms an invariant subspace of A. This implies that every eigenpair of the projected
matrix is an eigenpair of the original matrix A. Therefore, for general search spaces
Vj , an idea is to take the Kj such that the norms ‖Rj(Kj)‖ are minimized. The next
proposition states that this is done by the Hj = V ∗

j+1AjVj ; therefore, in this sense the
Hj are the best projections of the Aj .

Proposition 3.1 For given nj × k matrices Vj with orthonormal columns, let Hj =
V ∗

j+1AjVj (with the “mod m” convention of the index j). Then for all k × k matrices
Kj we have

‖Rj(Hj)‖ ≤ ‖Rj(Kj)‖.

Moreover, the Hj are unique with respect to the Frobenius norm: ‖Rj(Hj)‖F ≤ ‖Rj(K)‖F

with equality only when Kj = Hj.

Proof: The proof is identical to that of [9, Thm. 4.1]; cf. also [16, Thm. 11.4.2] and
Proposition 3.3. 2

As a generalization of [10, Thm. 2.5], which is on its turn a generalization of Saad’s
theorem [17, p. 136], we have the following result. Let and PVj and Pvj denote the
orthogonal projection onto Vj and span(vj), respectively. Note that since vj ∈ Vj the
projections satisfy

PVj
Pvj

= Pvj
PVj

= Pvj
;

moreover, the standard extraction implies PVj
Aj−1vj−1 = µjvj . The next theorem

expresses the quality of the Ritz vectors in terms of the quality of the search spaces.
We take the scaling choice (b) from Section 2 so that µ1 = · · · = µm =: µ.

Theorem 3.2 Let (θ, v1, . . . , vm) be a Ritz tuple and µ = θ1/m any m-th root of θ, and
let (λ, x1, . . . , xm) an eigentuple with ν = λ1/m any m-th root of λ. Then

max
j

sin(vj , xj) ≤
√

1 + m ξ2
γ2

δ2
max

j
sin(Vj , xj),

where

γ = maxj ‖PVj+1Aj(Inj
− PVj

)‖,
ξ = maxj ‖xj‖ / minj ‖xj‖,
δ = σmin(diag(PVj − Pvj )(C − νIn)diag(PVj − Pvj )) ≤ mineµ |µ̃− ν|,

where σmin denotes the minimal singular value, µ̃ ranges over values such that µ̃m is a
Ritz value other than µm = θ.
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Proof: Again with x = [x1, . . . , xm]T , we start with the splitting

x = diag(Pvj
)x + diag(PVj

− Pvj
)x + diag(Inj

− PVj
)x,

multiply both sides on the left by diag(PVj )(C − νIn), and use (C − νIn)x = 0 to get

0 = vct((µv∗j−1xj−1 − νv∗j xj) vj) + diag(PVj
)(C − νIn)diag(PVj

− Pvj
)x

+ diag(PVj
)(C − νIn)diag(In − PVj

)x,

where vct(aj) stands for [aT
1 · · · aT

n ]T . Splitting diag(PVj
) in the second term on the

right-hand side into diag(PVj
− Pvj

) and diag(Pvj
) and using Pythagoras’ Theorem we

get

‖diag(PVj )(C − νIn)diag(Inj − PVj )x‖ ≥ (3.7)
‖diag(PVj

− Pvj
)(C − νIn)diag(PVj

− Pvj
)x‖

The left-hand side is the norm of266664
PV1Am(Inm − PVm )

PV2A1(In1 − PV1 )

. . .

PVm Am−1(Inm−1 − PVm−1 )

377775
2664

(In1 − PV1 ) x1

.

.

.
(Inm − PVm ) xm

3775

hence it is bounded from above by γ
√

m maxj ‖(Inj − PVj ) xj‖. The right-hand side of
(3.7) is bounded from below by

δ max
j
‖(PVj

− Pvj
)xj‖.

Since ‖(Inj − PVj ) xj‖ = sin(Vj , xj) ‖xj‖ and ‖(Inj − Pvj )xj‖ = sin(vj , xj) ‖xj‖, the
result now follows from

‖(Inj
− Pvj

) xj‖2

‖xj‖2
=
‖(Inj − PVj ) xj‖2

‖xj‖2
+
‖(PVj − Pvj ) xj‖2

‖xj‖2
.

2

This result means that if the search spaces contain an eigenvector and its associated
vectors, then they are also detected as a Ritz vector with associated vectors—unless the
δ in the previous theorem is zero. This may happen if θ is a multiple Ritz value (“other
than” in the statement of the theorem does not necessarily mean “different from”); then
the extraction “does not know which Ritz vector to take”.

If we have a target τ , we would be inclined to select the approximate eigenpair for
which θ is closest to τ . However, as is usual for the standard eigenvalue problem (see
for instance [23, p. 282]) and also for the singular value problem [9, 10], the standard
extraction may be more suitable for exterior eigenvalues (for instance the ones with
maximal magnitude or maximal real part) than for interior ones (closest to a complex
number τ in the interior of the spectrum). The main point here is that the Galerkin
orthogonality conditions (3.1) do not imply that the norm of the residual (3.6) is small.
This motivates the following two alternative extraction processes.

3.2 Refined extraction

The refined extraction for the standard eigenvalue problem was advocated in the Arnoldi
context by Jia [11]; the process that will be proposed in this subsection is a generalization
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of the refined extraction for the singular value problem as proposed in [10]. The idea
behind the refined subspace extraction is the following. Suppose that µ1 · · ·µm is a
Rayleigh quotient as in Section 3.1 (the µj may be equal or not depending on the scaling
choice (a) or (b), see Section 2) or equal to a target τ (which may be a prudent choice
in case the Rayleigh quotient is still an inaccurate approximation to the eigenvalue, as
is quite common in the beginning of the process).

If µ1 · · ·µm is equal to an eigenvalue of A, then C−diag(µjInj
) is singular (cf. (2.3)).

Therefore, if µ1 · · ·µm is a Ritz value or a target, and we have search spaces V1, . . . ,Vm,
we may be interested in the vector [d1, . . . , dm]T ∈ Cmk of unit length such that

‖(C − diag(µjI))diag(Vj)d‖ =

∥∥∥∥∥∥∥∥∥∥


−µ1V1 AmVm

A1V1 −µ2V2

. . . . . .
Am−1Vm−1 −µmVk




d1

...

...
dm


∥∥∥∥∥∥∥∥∥∥

is minimal: the smallest right singular vector of (C−diag(µjI))diag(Vj). As before, the
dj determine approximations to the associated vectors xj : xj ≈ vj := Vjdj . If desired,
we can normalize the dj and consequently also the vj .

When one of the vectors dj is zero, the refined extraction does not lead to an ap-
proximate vector xj . This happens in particular in the special and important case that
the µjs are zero, if the eigenvalues of A closest to the origin are sought (that is, τ = 0).
In general, the solution will have only one nonzero dj component: the component cor-
responding to the AjVj whose minimal singular value is the smallest. For the sake of
presentation, we will assume that d1 6= 0. We now can form appropriate approximate
d2, . . . , dm in the following two ways.

• Inspired by

λv1 ≈ Am · · ·A2A1V1d1

≈ AmVmV ∗
m · · ·V3V

∗
3 A2V2V

∗
2 A1V1d1 = AmVmHm−1 · · ·H2H1d1

we can take d2 = H1d1, . . . , dm = Hm−1dm−1, as in the standard extraction.

• Suppose that the factors A1, . . . , Am are square and invertible, then in view of

λ−1v1 ≈ A−1
1 · · ·A−1

m V1d1

≈ A−1
1 V2V

∗
2 · · ·VmV ∗

mA−1
m V1d1 ≈ A−1

1 V2H
−1
2 · · ·H−1

m d1

we can define dm = H−1
m d1, . . . , d2 = H−1

2 d3. Note that we can take these approx-
imations for the dj also in the case that we do not have regularity assumptions
on the factors Aj ; the only requirement is that the factors Hj be nonsingular.
(In the case that this is not met, we can expand the spaces, for instance by the
coordinates of the residual (3.6), and perform a new extraction.)

Since in this context we look for the small eigenvalues, multiplying by the Aj and Hj

will generally damp out the eigenvector component of interest, while an action with A−1
j

and H−1
j will magnify it; therefore, we choose for the second alternative (cf. also [10]).

Finally, from the refined Ritz vectors we may take the Rayleigh quotients as derived
approximate values, see Section 3.1 and (3.5).

However, as we will also see from the numerical experiments, in the context of the
product eigenvalue problem the refined extraction often does not work as well as as
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for the standard eigenproblem, which can be explained heuristically as follows. Since
the eigenvalue λ of A corresponds with λ1/m of the cyclic matrix, the minimal singular
value of the shifted matrix C − τ1/mI may differ significantly from zero if the target
τ is not a very accurate approximation to the wanted eigenvalue (the derivative of the
function α 7→ α1/m in α = 0 is infinite for m > 1).

3.3 Harmonic extraction

For interior eigenvalues of the standard eigenvalue problem an alternative for the refined
extraction is formed by the harmonic Rayleigh–Ritz extraction. This extraction process
determines a set of different approximate vectors, the so-called harmonic Ritz vectors.
For a matrix C, a search space V, and a target σ, the harmonic Ritz pairs (θ̃, ṽ) are
determined by the Galerkin condition (see, for instance, [23, p. 292])

(C − θ̃I) ṽ ⊥ (C − σI)V, (3.8)

If the columns of V form an orthonormal basis for V, and if we write ṽ = V d̃, this leads
to the projected generalized eigenproblem

V ∗(C − σI)∗(C − σI)V d̃ = (θ̃ − σ) V ∗(C − σI)∗V d̃.

Since harmonic Ritz pairs satisfy ‖(C − σI) ṽ‖ ≤ |θ̃− σ| [23], we are interested in those
pairs of which the harmonic Ritz value θ̃ is closest to σ, thus ensuring a small residual.
With the QR-decomposition (C − σI)V = QU , this projected eigenproblem can be
written elegantly as

Ud̃ = (θ̃ − σ)Q∗V d̃. (3.9)

We now apply (3.8) to the product/cyclic eigenvalue problem by taking the cyclic matrix
(2.2) for C and the “decoupled search matrix” diag(Vj) for V , substituting the QR-
decomposition

(C − µI)diag(Vj) =


−µV1 AmVm

A1V1 −µV2

. . . . . .
Am−1Vm−1 −µVm

 = QU

into (3.9). The components d̃j of d̃ = [d1, . . . , dm]T can be used to determine approxi-
mate vectors ṽj = Vj d̃j ≈ xj . For the shift σ we take µ, where µm is equal to the target
τ or a Rayleigh quotient θ.

If we are interested in the eigenvalues near zero, we can also decouple the m equations
as follows. Suppose for the moment that all Aj are square and invertible. Galerkin con-
ditions, as for instance the one in Section 3.1, are generally favorable for exterior eigen-
values. The (interior) eigenvalues near 0 are exterior eigenvalues of A−1 = A−1

1 · · ·A−1
m .

Therefore the idea is to impose Galerkin conditions on modified equations involving the
A−1

j .
First, we note that we can write the standard Galerkin conditions ((3.1) with Ṽj =

Vj) as

A−1
1 v2 − µ−1

2 v1 ⊥ A∗1V2,

. . .

A−1
m−1vm − µ−1

m vm−1 ⊥ A∗m−1Vm,

A−1
m v1 − µ−1

1 vm ⊥ A∗mV1.

9



Instead, we now take different test spaces:

A−1
1 v2 − µ−1

2 v1 ⊥ A∗1A1V1,

. . .

A−1
m−1vm − µ−1

m vm−1 ⊥ A∗m−1Am−1Vm−1,

A−1
m v1 − µ−1

1 vm ⊥ A∗mAmVm.

This is equivalent to requiring

A−1
1 v2 − µ−1

2 v1 ⊥A∗1A1 V1,

. . .

A−1
m−1vm − µ−1

m vm−1 ⊥A∗m−1Am−1 Vm−1,

A−1
m v1 − µ−1

1 vm ⊥A∗mAm
Vm,

where x ⊥B y means y∗Bx = 0. Therefore, we have Galerkin conditions on the A−1
j in a

different inner product to avoid working with inverses and thus making the computation
attractive. The m conditions are equivalent to

V ∗
1 A∗1A1V1d1 = µ2V

∗
1 A∗1V2d2,

. . .

V ∗
m−1A

∗
m−1Am−1Vm−1dm−1 = µmV ∗

m−1A
∗
m−1Vmdm,

V ∗
mA∗mAmVmdm = µ1V

∗
mA∗mV1d1.

When all V ∗
j AVj+1 are invertible, the µ1 · · ·µm are eigenvalues of the product/quotient

eigenvalue problem

H̃m · · · H̃1, H̃j := (V ∗
j A∗jVj+1)−1V ∗

j A∗jAjVj .

After an appropriate scaling of the dj we can again assume that µ1 = · · · = µm =: µ.
The numerical solution can be done efficiently and stably by incrementally computing
the QR-decompositions AjVj = Qj+1Uj (i.e., in every step the Qjs and Ujs are enlarged
by one extra column). Then the generalized cyclic eigenvalue problem reads

Q∗
1V1

Q∗
2V2

. . .
Q∗

mVm




d1

...

...
dm

 = µ−1


Um

U1

. . .
Um−1




d1

...

...
dm

 ,

where one matrix is cyclic with the other block diagonal; our interest is in the vec-
tors corresponding to the smallest |µ|. The corresponding product/quotient eigenvalue
problem is

(Q∗
1V1)−1Um · · · (Q∗

3V3)−1U2(Q∗
2V2)−1U1.

The periodic QZ algorithm [2,8,12] is an appropriate way to deal with this problem. As
for the refined Ritz vectors, we may take the Rayleigh quotients of the harmonic Ritz
vectors as approximate values.

The harmonic extraction for zero target has a justification analogous to Proposi-
tion 3.1. Given the nj × k search matrices Vj , define the nj × k residual matrices
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R̃j(Kj), where Kj ∈ Ck×k, by

R̃1(K1) = A−1
1 V2 − V1K

−1
1 ,

. . .

R̃m−1(Km−1) = A−1
m−1Vm − Vm−1K

−1
m−1,

R̃m(Km) = A−1
m V1 − VmK−1

m .

Denote by ‖ · ‖A∗j Aj
the norm derived from the inner product defined by (x, y)A∗j Aj

=
y∗A∗jAjx. Moreover, we define the A∗jAj-Frobenius norm of a matrix Z by

‖Z‖2A∗j Aj , F = trace(Z∗A∗jAjZ). (3.10)

The next result states that ‖R̃j(Kj)‖A∗j Aj
are minimized by the H̃j ; therefore, in this

sense the H̃−1
j are the best projections of the A−1

j , which is appropriate for eigenvalues
near the origin.

Proposition 3.3 For given nj×k matrices Vj such that the Vj have A∗jAj-orthonormal
columns (that is, V ∗

j A∗jAjVj = I), let

H̃j = (V ∗
j A∗jVj+1)−1V ∗

j A∗jAjVj (= (V ∗
j A∗jVj+1)−1).

Then for all k × k matrices Kj we have

‖R̃j(H̃j)‖A∗j Aj
≤ ‖R̃j(Kj)‖A∗j Aj

.

Moreover, the H̃j are unique with respect to the A∗jAj-Frobenius norm (3.10).

Proof:

R̃j(Kj)∗A∗jAjR̃j(Kj) = V ∗
j+1Vj+1 + K−∗

j K−1
j − V ∗

j+1AjVjK
−1
j −K−∗

j V ∗
j A∗jVj+1

= V ∗
j+1Vj+1 − H̃−∗

j H̃−1
j + (K−1

j − H̃−1
j )∗(K−1

j − H̃−1
j )

= R̃j(H̃j)∗A∗jAjR̃j(H̃j) + (K−1
j − H̃−1

j )∗(K−1
j − H̃−1

j ).

Since (K−1
j − H̃−1

j )∗(K−1
j − H̃−1

j ) is positive semidefinite, it follows that (see, e.g., [23,
p. 42])

‖R̃j(Kj)‖2A∗j Aj
= λmax(R̃j(Kj)∗A∗jAjR̃j(Kj))

≥ λmax(R̃j(H̃j)∗A∗jAjR̃j(H̃j))
= ‖R̃j(H̃j)‖2A∗j Aj

.

For uniqueness, we realize, using (3.10), that for Kj 6= H̃j

‖R̃j(Kj)‖2A∗j Aj , F = trace(R̃j(Kj)∗A∗jAjR̃j(Kj))

= trace(R̃j(H̃j)∗A∗jAjR̃j(H̃j)) + ‖K−1
j − H̃−1

j ‖2A∗j Aj , F

> ‖R̃j(H̃j)‖2A∗j Aj , F .

2

Note that the condition in the proposition that the AjVj should be orthonormal bases
expresses the fact that we work with respect to A∗jAj-inner products.
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4 Subspace expansion

In this section we will suppose that we currently have an approximate tuple

(θ, v1, . . . , vm), θ = µ1 · · ·µm,

where v1 ∈ V(k)
1 , . . . , vm ∈ V(k)

m , with vj ≈ xj for j = 1, . . . ,m (with one of the two
scaling options from Section 2), for instance derived by any of the methods in the
previous section. We would like to expand each of the m search spaces by one extra
direction. Our goal is to find orthogonal updates tj ⊥ vj , for j = 1, . . . ,m such that

Am(vm + tm) = ν1(v1 + t1),
A1(v1 + t1) = ν2(v2 + t2),

(4.1)
. . .

Am−1(vm−1 + tm−1) = νm(vm + tm),

with λ = ν1 · · · νm. Since the νj are unknown during the process, we will work with the
known quantities µ1, . . . , µm. We can rewrite (4.1) as

(C − diag(µjInj ))

 t1
...

tm

 = −r +

 (ν1 − µ1) v1

...
(νm − µm) vm

+

 (ν1 − µ1) t1
...

(νm − µm) tm

 . (4.2)

We will neglect the last term on the right-hand side, which is O(‖[t1, . . . , tm]T ‖2) as
shown by the following lemma.

Lemma 4.1 Let ν1 · · · νm be an eigenvalue, v1, . . . , vm approximate vectors and µ1 · · ·µm

an approximate eigenvalue satisfying (3.5), and t1, . . . , tm updates as defined in (4.1).
For j = 1, . . . ,m we have |µj − νj | = O(‖[t1, . . . , tm]T ‖).

Proof: From (4.1) and (3.5) it follows that

νj = v∗j Aj−1(vj−1 + tj−1) / v∗j vj = µj +O(‖[t1, . . . , tm]T ‖).

2

This forms the foundation of asymptotically quadratic convergence, see Section 5.1.
Moreover, we would like to project (4.2) such that the second term on the right-hand
side vanishes while the residual is fixed. This is done by the orthogonal projection

P = diag

(
Inj

−
vjv

∗
j

v∗j vj

)
; (4.3)

with t := [t1, . . . , tm]T , the correction equation becomes

diag

(
Inj −

vjv
∗
j

v∗j vj

)
(C − diag(µjInj

))diag

(
Inj

−
vjv

∗
j

v∗j vj

)
t = −r, (4.4)

where it is our goal to solve for the tj ⊥ vj . This equation forms a generalization of
the JDSVD correction equation for the singular value problem [10]. We may solve this
equation inexactly, for instance by a few steps of the (preconditioned) GMRES method,
see also Section 5.5.
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5 Various issues

5.1 An inexact Newton process

We now generalize a result by Sleijpen and Van der Vorst [20] by showing that this
Jacobi–Davidson type method can be seen as an inexact Newton procedure. Define the
function

F (v1, . . . , vm) =


Amvm − µ1v1

A1v1 − µ2v2

...
Am−1vm−1 − µmvm

 ,

with
µ1 =

w∗1Amvm

w∗1v1
, µ2 =

w∗2A1v1

w∗2v2
, . . . , µm =

w∗mAm−1vm−1

w∗mvm−1
,

for certain test vectors w1, . . . , wm. Moreover, in the definition of F the eigenvectors and
associated vectors can still be scaled. Choosing the vectors v1, . . . , vm such that a∗1v1 =
· · · = a∗mvm = 1, for certain “scaling vectors” a1, . . . , am, implies that the Newton
updates tj for vj should satisfy tj ⊥ aj for j = 1, . . . ,m. By a few straightforward
calculations, it can be shown that if w∗j vj 6= 0 and a∗jvj 6= 0 for j = 1, . . . ,m, the
equation for the Newton updates [t1, . . . , tm]T is given by

diag

(
I −

vjw
∗
j

w∗j vj

)
−µ1I Am

A1 −µ2I
. . . . . .

Am−1 −µmI

diag

(
I −

vja
∗
j

a∗jvj

) t1
...

tm

 = −r.

We get the correction equation (4.4) if we choose the “acceleration” aj = wj = vj in
every step.

Since the method can be seen as a Newton process, we know that the asymptotic
convergence (that is, the convergence close to an eigenpair) is quadratic if the Jacobian
is asymptotically nonsingular. This is confirmed by the following lemma.

Lemma 5.1 Let µ1 · · ·µm = λ 6= 0 be a simple eigenvalue of A with associated vectors
x1(= x), . . . , xm, then

J := diag
(

I − xix
∗
i

x∗i xi

)
−µ1I Am

A1 −µ2I
. . . . . .

Am−1 −µmI

 diag
(

I − xix
∗
i

x∗i xi

)

is invertible from span(x1)⊥ × · · · × span(xm)⊥ to itself.

Proof: Suppose J [t1, . . . , tm]T = 0, where tj ⊥ xj . Then there are αj such that

Amtm = µ1t1 + α1x1,

A1t1 = µ2t2 + α2x2,

. . .

Am−1tm−1 = µmtm + αmxm.
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From these equations it follows that At1 = λt1 + βx1 for a β ∈ C. Therefore(
I − x1x

∗
1

x∗1x1

)
A
(

I − x1x
∗
1

x∗1x1

)
t1 = λt1.

Since λ 6= 0 is assumed to be simple, we must have t1 = 0. Then, from 0 = µ2t2 +α2x2,
µ2 6= 0, and t2 ⊥ x2 it follows that t2 = 0. With similar arguments it now follows that
all the tj (j = 1, . . . ,m) are zero. So J is injective and hence a bijection. 2

In practice we often solve the correction equation (4.4) inexactly; the resulting process is
sometimes called an inexact accelerated Newton process. This method typically displays
asymptotically linear convergence.

5.2 Startup

Since Jacobi–Davidson type methods can be seen as inexact accelerated Newton pro-
cesses, they often have favorable asymptotic convergence qualities. However, the con-
vergence behavior far away from the solution may be less attractive. In practice it is
sometimes favorable to start with sensible initial search spaces, to avoid spending nu-
merical effort (many matrix-vector products) on solving the correction equation for a
poor approximation.

For instance, we can perform a startup of the method by an Arnoldi approach for
the product eigenvalue problem, cf. [14]. This method starts with a normalized vector
V1 = v

(1)
1 and incrementally computes m−1 QR-decompositions and one Hessenberg

relation:

A1V
(k)
1 = V

(k)
2 R

(k)
1 ,

. . .

Am−1V
(k)
m−1 = V (k)

m R
(k)
m−1,

AmV (k)
m = V

(k+1)
1 H(k)

m .

Here the k × k matrices R
(k)
j are right upper triangular while the (k + 1) × k matrix

H
(k)
1 is upper Hessenberg. This implies that

AV
(k)
1 = V

(k+1)
1 H(k)

m R
(k)
m−1 · · ·R

(k)
1 .

One can easily see that

V
(k)
1 = Kk(Am · · ·A1, v1),

V
(k)
2 = Kk(A1Am · · ·A2, A1v1),

. . .

V (k)
m = Kk(Am−1 · · ·A1Am, Am−1 · · ·A1v1),

where Kk(B, v) denotes the Krylov space span{v,Bv, . . . , Bk−1v}. After a certain num-
ber of steps of Arnoldi expansion, we may perform a standard, harmonic, or refined
subspace extraction as discussed in Section 3, and proceed with the Jacobi–Davidson
type method.
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5.3 Deflation

Suppose we have computed an eigenpair λ with eigenvector x = x1, and associated
vectors x2, . . . , xm. Then we may continue with the deflated product eigenvalue problem

Ãx = λx, Ã = Ãm · · · Ã1,

where

Ã1 =
(

I − x2x
∗
2

x∗2x2

)
A1

(
I − x1x

∗
1

x∗1x1

)
,

. . .

Ãm−1 =
(

I − xmx∗m
x∗mxm

)
Am−1

(
I −

xm−1x
∗
m−1

x∗m−1xm−1

)
,

Ãm =
(

I − x1x
∗
1

x∗1x1

)
Am

(
I − xmx∗m

x∗mxm

)
.

This problem has the same eigenvalues as the original problem involving A, except
for the fact that the eigenvalue λ has been replaced by the eigenvalue 0. Indeed, if
(λ̃, ỹ1, . . . , ỹm) is another eigentuple of Ã, then we first define yj :=

(
I − xjx∗j

x∗j xj

)
ỹj . One

can check that [x1 y1], . . . , [xm ym] are orthogonal bases with the projected matrices
[x2 y2]∗A1[x1 y1], . . . , [x1 y1]∗Am[xm ym] upper triangular. We see that this deflation
gives rise to a partial periodic Schur decomposition of A, cf. [14] and the references
therein. Eigentuples for A are easily determined from the product of the (small) upper
triangular matrices.

5.4 Restarts

In practice we often need restarts to make the algorithm computationally attractive. If
the search spaces V1, . . . ,Vm have dimension maxdim, we restart with orthonormal bases
for the best mindim approximate vectors. What “the best” vectors are depends on the
extraction technique employed. Another option that is built in our code is to use a
thick restart technique similar to the one for the standard eigenvalue problem described
in [21].

5.5 Preconditioning

To precondition the correction equation (4.4), we have to solve, for a b ∈ Cn, t =
[t1, . . . , tm]T , and tj ⊥ vj ,

diag

(
I −

vjv
∗
j

v∗j vj

)
·M · diag

(
I −

vjv
∗
j

v∗j vj

)
t = b,

where M is a relatively cheaply invertible approximation to the shifted cyclic matrix
C − diag(µjI). One may check that the solution is given by

t =
(
I −M−1diag(vj)

(
diag(vj)∗M−1diag(vj)

)−1
diag(vj)∗

)
M−1b;

therefore, the main computational effort amounts to applying the preconditioner m
times on the vj per outer iteration, and in addition once per inner iteration.

In general it may not be a trivial task to come up with a sensible M , although
for instance an inexact LU-decomposition of the shifted cyclic matrix could be tried;
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cf. also [1]. In the special case that we are interested in eigenvalues with minimal
magnitude (that is, target τ = µ1 = · · · = µm = 0), and all the matrices A1, . . . , Am are
square and invertible and have preconditioners Mj ≈ Aj for j = 1, . . . ,m, then

M−1 =


M−1

1

. . .
M−1

m−1

M−1
m

 (5.1)

is a natural preconditioner for C. In this case the action of the preconditioner decouples,
making it computationally more attractive.

5.6 The product SVD

If we are interested in the (partial) product SVD of A = Am · · ·A1, we can apply the
proposed method to A∗A = A∗1 · · ·A∗mAm · · ·A1. We compute one or more eigentuples
of the form (λ, x1, . . . , x2m); then (

√
λ, x1, xm+1) are singular triples. Only in the case

that the condition number of A is modest, an alternative for this approach is to use the
JDSVD method [9,10] on A, which employs a two-sided projection technique on A and
works with the augmented matrix[

0 Am · · ·A1

A∗1 · · ·A∗m 0

]
in the subspace expansion phase.

5.7 Pseudocode

Pseudocode for the Jacobi–Davidson type method for the product eigenvalue problem,
which we will abbreviate by JDPROD for use in the next section, is given in Algorithm 1.

In line 3, RGS stands for repeated Gram–Schmidt or any other numerically stable
method to add a vector to an already orthonormal set of vectors. For simplicity we
omit a possible startup procedure (Section 5.2), deflation (Section 5.3), and restarts
(Section 5.4) . Note that if we use the Arnoldi type startup procedure, we only need
one initial vector v1 instead of m vectors v1, . . . , vm. The computation of the residual in
line 8 involves no extra matrix-vector products. In line 10, the shift µ on the left-hand
side relates to the Rayleigh quotients (3.5) in the sense that µm = µ1 . . . µm.

6 Numerical experiments

For the numerical experiments, we take the following parameters, unless mentioned
otherwise. The maximum dimension of the search spaces is 20, after which we restart
with dimension 10. We solve the correction equations with 10 steps of unpreconditioned
GMRES, and solve the projected problems with the standard extraction. We take the
target as the shift in the left-hand side of the correction equation, unless the residual
norm is less than 0.01, then we take the Rayleigh quotient. The tolerance for the
outer iteration is 10−6 with maximally 200 steps. The m starting vectors v1, . . . , vm are
random.
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Algorithm 1 A Jacobi–Davidson type method for the product eigenproblem
Input: A device to compute Ajx for x ∈ Cnj , starting vectors vj

(j = 1, . . . ,m), a target τ , a tolerance ε
Output: An approximate eigenpair (θ, u) of A = Am · · ·A1 with a prescribed tolerance

ε on the corresponding cyclic matrix C, and θ ≈ τ

1: tj = vj , V
(0)
j = [ ] (j = 1, . . . ,m)

2: for k = 1, 2, . . . do
3: RGS(V (k−1)

j , tj) → V
(k)
j (j = 1, . . . ,m)

4: Compute kth columns of W
(k)
j = AjV

(k)
j (j = 1, . . . ,m)

5: Compute kth rows and columns of H
(k)
j = (V (k)

j+1)
∗AjV

(k)
j = (V (k)

j+1)
∗W

(k)
j

6: Extract a Ritz tuple (µ1, . . . , µm, d1, . . . , dm) with θ = µ1 · · ·µm ≈ τ
(standard, refined, harmonic extraction), normalize the dj if desired

7: vj = V
(k)
j dj (j = 1, . . . ,m)

8: r = (C − diag(µjInj
))[v1, . . . , vm]T

9: Stop if ‖r‖ ≤ ε
10: Solve (approximately) tj ⊥ vj from:(

Inj
− vjv∗j

v∗j vj

)
(C − µI)

(
Inj

− vjv∗j
v∗j vj

)
[t1, . . . , tm]T = −r

11: end for

Experiment 6.1 For the first experiment we take a typical challenge for a product
eigenvalue method:

D = diag( 4
√

1,
4
√

2, . . . ,
4
√

1000), A1 = A3 = 1010D, A2 = A4 = 10−10D.

JDPROD finds the largest eigenvalue (λ = 1000) quickly, but due to the enormous
(difference in) condition numbers, the residual does not get smaller than O(10−4).

Experiment 6.2 Next, we take an example similar to one from [14], but of size 1000×
1000:

A1 = A2 = A3 = diag(1, 10−1, 10−2, . . . , 10−999).

Within 9 outer iterations, JDPROD with a tolerance of 10−8 finds the 7 largest eigen-
values with at least 14 correct digits.

Experiment 6.3 The following experiment is also similar to one from [14]. To compute
the Hankel singular values of the discretized model of a clamped beam we may compute
the positive square roots of the eigenvalues of a matrix product of the form A = SR∗RS∗.
The Cholesky factors R and S (size 348 × 348) can be obtained from the model reduction
benchmark collection [3]. JDPROD finds the 10 largest eigenvalues of A:
λ1 ≈ 5.7 e 6, λ2 ≈ 4.7 e 6, λ3 ≈ 7.4 e 4, λ4 ≈ 7.1 e 4, λ5 ≈ 2.0 e 3,
λ6 ≈ 1.9 e 3, λ7 ≈ 1.1 e 2, λ8 ≈ 1.0 e 2, λ9 ≈ 12.94, λ10 ≈ 9.7.

in 24 outer iterations. If we just look for the eigenvalue closest to τ = 13 (that is, λ9),
the standard extraction needs 23 iterations, and the refined extraction 80 iterations.
Also other (unreported) experiments indicate that for the product eigenvalue problem
the performance of the refined extraction is generally weaker than that of the standard
and harmonic extractions; for an explanation see the remarks at the end of Section 3.2.

Experiment 6.4 Another challenge is formed by a huge condition number of A; there-
fore we take A1 = · · · = A30 = diag(1:100), such that κ(A) = 1060. Note that the corre-
sponding cyclic eigenproblem has dimension 3000. JDPROD has no difficulties finding
the 5 largest eigenvalues (respectively after 20, 30, 39, 48, and 56 outer iterations).
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Experiment 6.5 For the following experiment, we take nonsquare matrices. Let A1, A2,
and A3 be matrices with uniformly random elements from [− 1

2 , 1
2 ] of size 1001 × 1000,

1002 × 1001, and 1000 × 1002, respectively. JDPROD finds the largest eigenvalue (in
absolute value sense) λ ≈ 588 + 493i in 71 outer iterations. With target τ = 600 + 500i
(taking the closest Ritz value to the target with the standard extraction in every itera-
tion), it finds the same value in 56 iterations.

Experiment 6.6 Finally, we take three random 1000 × 1000 matrices and aim at the
eigenvalue closest to the origin (target τ = 0). JDPROD with the standard extraction
without preconditioning fails to converge in 200 outer iterations. If we take an inexact
LU decomposition (drop tolerance δ = 10−3) of the different factors as in (5.1), we
find λ ≈ −0.0013 − 0.014i in 11 iterations. For δ = 10−4 convergence takes one fewer
iteration, while for drop tolerance δ = 10−2 there is no convergence. However, when we
use the harmonic extraction instead of the standard extraction with a preconditioner
with δ = 10−2, we get convergence in 37 steps; this is an example where the harmonic
extraction is indeed better suited for interior eigenvalues.

7 Conclusions

The product eigenvalue problem is a numerical challenge. The condition number of
A is often enormous, effectively forcing the use of “intermediate” search spaces and
accordingly more memory usage. The standard extraction is sometimes not favorable
for interior eigenvalues, while for nonzero target the harmonic and refined extraction
need a decomposition of the projected cyclic matrix, of which the size may still be
considerable if the number of factors m is large. Another aspect of the cyclic form in
comparison with the product form is that the large eigenvalues of the cyclic form are
relatively more clustered, while the small eigenvalues are relatively more separated.

We proposed a Jacobi–Davidson type method for the product eigenvalue problem.
The method is designed for product matrices with a large condition number. There are
three main advantages of the presented techniques. First, in particular the harmonic ex-
traction method tends to give better approximations for interior eigenvalues; the method
decouples for a zero target, making its computation more attractive. Second, the correc-
tion equation can be seen as an inexact Rayleigh quotient or inexact inverse iteration,
which in practice is often needed to compute interior eigenvalues. Third, we can use
preconditioning in the correction equation. A zero target is also practical here, since in
that case the preconditioner may decouple. Working with a sensible preconditioner for
the shifted cyclic matrix with nonzero shift may become computationally less attractive
for a nonzero target. On the other hand, preconditioning A directly seems even less
attractive. We note that if one looks for the largest eigenvalues and if these are relatively
well-separated, an Arnoldi type method for the product eigenvalue problem [14] may be
the method of choice.

The method proposed here reduces to the Jacobi–Davidson method for the standard
eigenvalue problem [19] in the case A = A (the product of just one matrix), and to
the Jacobi–Davidson type method for the singular value problem (JDSVD, [9, 10]) in
the case A = A∗A (the product of A and its conjugate transpose). Matlab code is
available from the author upon request.
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