4,037 research outputs found

    Distributed drone base station positioning for emergency cellular networks using reinforcement learning

    Get PDF
    Due to the unpredictability of natural disasters, whenever a catastrophe happens, it is vital that not only emergency rescue teams are prepared, but also that there is a functional communication network infrastructure. Hence, in order to prevent additional losses of human lives, it is crucial that network operators are able to deploy an emergency infrastructure as fast as possible. In this sense, the deployment of an intelligent, mobile, and adaptable network, through the usage of drones—unmanned aerial vehicles—is being considered as one possible alternative for emergency situations. In this paper, an intelligent solution based on reinforcement learning is proposed in order to find the best position of multiple drone small cells (DSCs) in an emergency scenario. The proposed solution’s main goal is to maximize the amount of users covered by the system, while drones are limited by both backhaul and radio access network constraints. Results show that the proposed Q-learning solution largely outperforms all other approaches with respect to all metrics considered. Hence, intelligent DSCs are considered a good alternative in order to enable the rapid and efficient deployment of an emergency communication network

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201

    RF characteristics of the hoop column antenna for the land mobile satellite system mission

    Get PDF
    A communication system using a satellite with a 118 meter diameter quad aperture antenna to provide telephone service to mobile users remotely located from the large metropolitan areas where the telephone companies are presently implementing their cellular system is described. In this system, which is compatible with the cellular system, the mobile user communicates with the satellite at UHF frequencies. The satellite connects him at S-Band, to the existing telephone network via a base station. The results of the RF definition work for the quad aperture antenna are presented. The elements of the study requirements for the LMSS are summarized, followed by a beam topology plan which satisfies the mission requirements with a practical and realiable configuration. The geometry of the UHF antenna and its radiation characteristics are defined. The various feed alternatives, and the S-band aperture are described

    Business models for deployment and operation of femtocell networks; - Are new cooperation strategies needed for mobile operators?

    Get PDF
    In this paper we discuss different business models for deployment and operation of femtocell networks intended for provisioning of public mobile broad band access services. In these types of business cases the operators use femtocells in order to reduce investments in "more costly" macro networks since the traffic can be "offloaded" to "less costly" femtocell networks. This is in contrast to the many business cases presented in Femtoforum where femtocells mainly are discussed as a solution to improve indoor coverage for voice services in homes and small offices, usually for closed user groups The main question discussed in this paper is if "operators need to consider new forms of cooperation strategies in order to enable large scale deployment of femtocells for public access?" By looking into existing solutions for indoor wireless access services we claim that the answer is both "Yes" and "No". No, since many types of cooperation are already in place for indoor deployment. Yes, because mobile operators need to re-think the femtocell specific business models, from approaches based on singe operator networks to different forms of cooperation involving multi-operator solutions, e.g. roaming and network sharing. --

    On the traffic offloading in Wi-Fi supported heterogeneous wireless networks

    Get PDF
    Heterogeneous small cell networks (HetSNet) comprise several low power, low cost (SBSa), (D2D) enabled links wireless-fidelity (Wi-Fi) access points (APs) to support the existing macrocell infrastructure, decrease over the air signaling and energy consumption, and increase network capacity, data rate and coverage. This paper presents an active user dependent path loss (PL) based traffic offloading (TO) strategy for HetSNets and a comparative study on two techniques to offload the traffic from macrocell to (SBSs) for indoor environments: PL and signal-to-interference ratio (SIR) based strategies. To quantify the improvements, the PL based strategy against the SIR based strategy is compared while considering various macrocell and (SBS) coverage areas and traffic–types. On the other hand, offloading in a dense urban setting may result in overcrowding the (SBSs). Therefore, hybrid traffic–type driven offloading technologies such as (WiFi) and (D2D) were proposed to en route the delay tolerant applications through (WiFi) (APs) and (D2D) links. It is necessary to illustrate the impact of daily user traffic profile, (SBSs) access schemes and traffic–type while deciding how much of the traffic should be offloaded to (SBSs). In this context, (AUPF) is introduced to account for the population of active small cells which depends on the variable traffic load due to the active users

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Implementation of relay-based systems in wireless cellular networks

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2010Includes bibliographical references (leaves: 69-72)Text in English; Abstract: Turkish and Englishxiii, 72 leavesThe wireless cellular networks are limited by interference and coverage issues where the users at the edge of the cell usually do not receive enough signal energy. To combat these problems and provide higher signal to interference noise ratio and capacity without increasing the transmit power, the idea of using relays in cellular networks was explored and evaluated in the literature. On the other hand, multiple input multiple output (MIMO) antenna systems have great potential to increase capacity and reliability of a wireless cellular network compared to single input single output systems. Hence, the integration of MIMO systems in the relay-based cellular networks has great potential to meet the growing demands of future communication. In this thesis, we explore the performances in conventional and relay-based wireless systems with single and multiple antennas by ad justing the frequency reuse factor as one and four. We consider wireless cellular based networks where six fixed relays are placed evenly in each cell in a hexagonal layout. A user chooses to receive the transmitted signal either directly from the base station or via one of the relays by employing selection algorithms. Throughout this thesis, we first determine the optimum relay locations considering different relay powers. Then, we investigate the system capacity for the cell with and without relays. Next, we examine the capacity performances by changing the cell diameter and the relay power. Finally, we explore the performances of relay based networks with multiple antennas

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure
    • …
    corecore