9 research outputs found

    New applications for the Boris Spectral Deferred Correction algorithm for plasma simulations

    Get PDF
    The paper investigates two new use cases for the Boris Spectral Deferred Corrections (Boris-SDC) time integrator for plasma simulations. First, we show that using Boris-SDC as a particle pusher in an electrostatic particle-in-cell (PIC) code can, at least in the linear regime, improve simulation accuracy compared with the standard second order Boris method. In some instances, the higher order of Boris-SDC even allows a much larger time step, leading to modest computational gains. Second, we propose a modification of Boris-SDC for the relativistic regime. Based on an implementation of Boris-SDC in the RUNKO PIC code, we demonstrate for a relativistic Penning trap that Boris-SDC retains its high order of convergence for velocities ranging from 0.5c to >0.99c

    Nonlinear Evolution of Mirror Instability in the Earth\u27s Magnetosheath in PIC Simulations

    Get PDF
    Mirror modes are large amplitude non-propagating structures frequently observed in the magnetosheath and they are generated in space plasma environments with proton temperature anisotropy of larger than one. The proton temperature anisotropy also drives the proton cyclotron instability which has larger linear growth rate than that of the mirror instability. Linear dispersion theory predicts that electron temperature anisotropy can enhance the mirror instability growth rate while leaving the proton cyclotron instability largely unaffected. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Our results show that the electron whistler instability grows much faster than the mirror instability and quickly consumes the electron free energy, so that there is not enough electron temperature anisotropy left to significantly impact the evolution of the mirror instability. Observational studies have shown that the shape of mirror structures is related to local plasma parameters and distance to the mirror instability threshold. Mirror structures in the form of magnetic holes are observed when plasma is mirror stable or marginally mirror unstable and magnetic peaks are observed when plasma is mirror unstable. Mirror structures are created downstream of the quasi-perpendicular bow shock and they are convected toward the magnetopause. In the middle magnetosheath, where plasma is mirror unstable, mirror structures are dominated by magnetic peaks. Close to the magnetopause, plasma expansion makes the region mirror stable and magnetic peaks evolve to magnetic holes. We investigate the nonlinear evolution of mirror instability using expanding box Particle-in-Cell simulations. We change the plasma conditions by artificially enlarging the simulation box over time to make the plasma mirror stable and investigate the final nonlinear state of the mirror structures. We show that the direct nonlinear evolution of the mirror instability leads to magnetic peaks while in expanding box simulations, mirror structures evolve to deep magnetic holes
    corecore