9,828 research outputs found

    Almost sure exponential stability of numerical solutions for stochastic delay differential equations

    Get PDF
    Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of SDDEs directly. This is significantly different from most traditional methods by which the almost sure exponential stability is derived from the moment stability by the Chebyshev inequality and the Borel–Cantelli lemma

    Discrete Razumikhin-type technique and stability of the Euler-Maruyama method to stochastic functional differential equations

    Get PDF
    A discrete stochastic Razumikhin-type theorem is established to investigate whether the Euler--Maruyama (EM) scheme can reproduce the moment exponential stability of exact solutions of stochastic functional differential equations (SFDEs). In addition, the Chebyshev inequality and the Borel-Cantelli lemma are applied to show the almost sure stability of the EM approximate solutions of SFDEs. To show our idea clearly, these results are used to discuss stability of numerical solutions of two classes of special SFDEs, including stochastic delay differential equations (SDDEs) with variable delay and stochastically perturbed equations

    Almost sure exponential stability of stochastic differential delay equations

    Get PDF
    This paper is concerned with the almost sure exponential stability of the multidimensional nonlinear stochastic differential delay equation (SDDE) with variable delays of the form dx(t) = f(x(t−δ1(t)), t)dt+g(x(t−δ2(t)), t)dB(t), where δ1, δ2 : R+ → [0, τ ] stand for variable delays. We show that if the corresponding (nondelay) stochastic differential equation (SDE) dy(t) = f(y(t), t)dt + g(y(t), t)dB(t) admits a Lyapunov function (which in particular implies the almost sure exponential stability of the SDE) then there exists a positive number τ ∗ such that the SDDE is also almost sure exponentially stable as long as the delay is bounded by τ ∗ . We provide an implicit lower bound for τ ∗ which can be computed numerically. Moreover, our new theory enables us to design stochastic delay feedback controls in order to stabilize unstable differential equation

    The Exponential Stability of Neutral Stochastic Delay Partial Differential Equations

    Get PDF
    In this paper we analyse the almost sure exponential stability and ultimate boundedness of the solutions to a class of neutral stochastic semilinear partial delay differential equations. This kind of equations arises in problems related to coupled oscillators in a noisy environment, or in viscoeslastic materials under random or stochastic influences

    On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations

    Get PDF
    In this paper, under a local Lipschitz condition and a monotonicity condition, the problems on the existence and uniqueness theorem as well as the almost surely asymptotic behavior for the global solution of highly nonlinear stochastic differential equations with time-varying delay and Markovian switching are discussed by using the Lyapunov function and some stochastic analysis techniques. Two integral lemmas are firstly established to overcome the difficulty stemming from the coexistence of the stochastic perturbation and the time-varying delay. Then, without any redundant restrictive condition on the time-varying delay, by utilizing the integral inequality, the exponential stability in pth(p ≥ 1)-moment for such equations is investigated. By employing the nonnegative semi-martingale convergence theorem, the almost sure exponential stability is analyzed. Finally, two examples are given to show the usefulness of the results obtained.National Natural Science Foundation of ChinaNatural Science Foundation of Jiangxi Province of ChinaFoundation of Jiangxi Provincial Educations of ChinaMinisterio de Economía y Competitividad (MINECO). EspañaJunta de Andalucí

    Impulsive stabilization of stochastic functional differential equations

    Get PDF
    AbstractThis paper investigates impulsive stabilization of stochastic delay differential equations. Both moment and almost sure exponential stability criteria are established using the Lyapunov–Razumikhin method. It is shown that an unstable stochastic delay system can be successfully stabilized by impulses. The results can be easily applied to stochastic systems with arbitrarily large delays. An example with its numerical simulation is presented to illustrate the main results

    Stability and Stabilization of Impulsive Stochastic Delay Differential Equations

    Get PDF
    We consider the stability and stabilization of impulsive stochastic delay differential equations (ISDDEs). Using the Lyapunov-Razumikhin method, we obtain the sufficient conditions to guarantee the pth moment exponential stability of ISDDEs. Then the almost sure exponential stability is considered and the sufficient conditions of the almost sure exponential stability are obtained. Moreover, the stabilization problem of ISDDEs is studied and the criterion on impulsive stabilization of ISDDEs is established. At last, examples are presented to illustrate the correctness of our results

    Sufficient Conditions on the Exponential Stability of Neutral Stochastic Differential Equations with Time-Varying Delays

    Get PDF
    The exponential stability is investigated for neutral stochastic differential equations with time-varying delays. Based on the Lyapunov stability theory and linear matrix inequalities (LMIs) technique, some delay-dependent criteria are established to guarantee the exponential stability in almost sure sense. Finally a numerical example is provided to illustrate the feasibility of the result

    On Asymptotic Stability of Stochastic Differential Equations with Delay in Infinite Dimensional Spaces

    Get PDF
    In most stochastic dynamical systems which describe process in engineering, physics and economics, stochastic components and random noise are often involved. Stochastic effects of these models are often used to capture the uncertainty about the operating systems. Motivated by the development of analysis and theory of stochastic processes, as well as the studies of natural sciences, the theory of stochastic differential equations in infinite dimensional spaces evolves gradually into a branch of modern analysis. In the analysis of such systems, we want to investigate their stabilities. This thesis is mainly concerned about the studies of the stability property of stochastic differential equations in infinite dimensional spaces, mainly in Hilbert spaces. Chapter 1 is an overview of the studies. In Chapter 2, we recall basic notations, definitions and preliminaries, especially those on stochastic integration and stochastic differential equations in infinite dimensional spaces. In this way, such notions as Q-Wiener processes, stochastic integrals, mild solutions will be reviewed. We also introduce the concepts of several types of stability. In Chapter 3, we are mainly concerned about the moment exponential stability of neutral impulsive stochastic delay partial differential equations with Poisson jumps. By employing the fixed point theorem, the p-th moment exponential stability of mild solutions to system is obtained. In Chapter 4, we firstly attempt to recall an impulsive-integral inequality by considering impulsive effects in stochastic systems. Then we define an attracting set and study the exponential stability of mild solutions to impulsive neutral stochastic delay partial differential equations with Poisson jumps by employing impulsive-integral inequality. Chapter 5 investigates p-th moment exponential stability and almost sure asymptotic stability of mild solutions to stochastic delay integro-differential equations. Finally in Chapter 6, we study the exponential stability of neutral impulsive stochastic delay partial differential equations driven by a fractional Brownian motion
    • …
    corecore