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Abstract Using techniques based on the continuous and discrete semimartingale
convergence theorems, this paper investigates if numerical methods may reproduce
the almost sure exponential stability of the exact solutions to stochastic delay differen-
tial equations (SDDEs). The important feature of this technique is that it enables us to
study the almost sure exponential stability of numerical solutions of SDDEs directly.
This is significantly different from most traditional methods by which the almost sure
exponential stability is derived from the moment stability by the Chebyshev inequality
and the Borel–Cantelli lemma.

Mathematics Subject Classification (2000) 60H10 · 65L20

1 Introduction

Stability theory of numerical solutions is one of central problems in numerical analysis.
Stability analysis of numerical methods for stochastic differential equations (SDEs)
as well as SDDEs has recently received a great deal of attention. Due to the sto-
chastic nature, the stability concepts of numerical schemes for SDEs and SDDEs
include, for example, moment stability (M-stability) and almost sure stability (or
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682 F. Wu et al.

the trajectory stability (T-stability)). There is an extensive literature concerned with
moment stability (for example, [3,4,6–8,21,25] for SDEs and [2,18] for SDDEs).
Regarding the almost sure stability of numerical methods for SDEs, it was shown,
by the Chebyshev inequality and the Borel–Cantelli lemma, that the moment expo-
nential stability implies almost sure exponential stability under certain conditions (for
example, see [7,21]). Higham and his coauthors ([6,7]) directly studied the numerical
sequence and obtained almost sure stability by the strong law of large numbers.

Using the technique based on the continuous semimartingale convergence theorem
(cf. [9,12]), Mao developed in a series of papers (see e.g. [13–16]) the stochastic ver-
sions of the LaSalle theorem, from which follows the almost sure asymptotic stability
of SDEs and SDDEs. On the other hand, by the discrete semimartingale convergence
theorem (cf. [23,26]), the stability of stochastic difference equations has been exam-
ined, for example, by [22]. Noting that there are similar expressions for the continuous
and discrete semimartingale convergence theorems, [23] obtained the sufficient con-
ditions for almost sure asymptotic stability of both exact and numerical solutions of
linear SDEs. To the best knowledge of authors, there is no similar result using martin-
gale techniques for numerical solutions of nonlinear SDEs or SDDEs. This is the first
paper that uses the martingale techniques to investigate whether numerical methods
may reproduce the almost sure exponential ability of the exact solutions to nonlinear
SDDEs.

Consider the following n-dimensional nonlinear SDDE

dx(t) = f (x(t), x(t − τ), t)dt + g(x(t), x(t − τ), t)dw(t), t ≥ 0 (1.1)

with initial data x0 = ξ ∈ Cb
F0

([−τ, 0]; R
n), where x0 = {x(θ) : −τ ≤ θ ≤ 0},

f, g : C(Rn × R
n × R+; R

n) and w(t) is a scalar Brownian motion. For the purpose
of stability, we assume that f (0, 0, t) = g(0, 0, t) = 0. As a standing hypothesis, we
shall impose the following local Lipschitz condition (cf. [11,12]) on the coefficients
f and g.

Assumption 1 Both f and g satisfy the local Lipschitz condition, that is, for each
integer j ≥ 0, there exists a positive constant c j such that

| f (x, y, t) − f (x̄, ȳ, t)| ∨ |g(x, y, t) − g(x̄, ȳ, t)| ≤ c j (|x − x̄ | + |y − ȳ|) (1.2)

for all t ≥ 0 and those x, y, x̄, ȳ ∈ R
n with |x | ∨ |y| ∨ |x̄ | ∨ |ȳ| ≤ j .

In this paper, we will address the following question:

– If the SDDE (1.1) is almost surely exponentially stable, will a numerical method
be able to reproduce this stability property?

We shall show that the Euler–Maruyama (EM) method (cf. [8,10,12]) will work under
an additional linear growth condition but we will demonstrate by a counterexample
that it may not work without the linear growth condition. Replacing the linear growth
condition with the one-sided Lipschitz condition, we will show that the backward EM
method is able to reproduce the stability property.
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Exponential stability of numerical solutions for differential equations 683

In the next section, we will give some necessary notations and state the continuous
and discrete semimartingale convergence theorems as lemmas for the use of this paper.
We will then discuss the almost sure exponential stability of the exact solution to Eq.
(1.1) and the almost sure exponential stability of the EM approximations in Sect. 3. In
Sect. 4, we will give a counterexample to show that the EM method may not be able
to reproduce the almost sure stability property without the linear growth condition.
In Sect. 5, we will discuss the almost sure exponential stability of the backward EM
approximations under the one-sided Lipschitz condition.

2 Notations and lemmas

Throughout this paper, unless otherwise specified, we use the following notations. Let
| · | be the Euclidean norm in R

n . If A is a vector or matrix, its transpose is denoted by
AT . If A is a matrix, its trace norm is denoted by |A| = √

trace(AT A) while its opera-
tor norm is defined by ‖A‖. If A is a symmetric matrix, its largest eigenvalue is defined
by λmax(A). Let R+ = [0,∞), and let τ > 0. Denoted by C([−τ, 0], R

n) the family
of continuous functions from [−τ, 0] to R

n with the norm ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|.
Let Cb

F0
([−τ, 0], R

n) be the family of all F0-measurable bounded C([−τ, 0], R
n)-

valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. The inner product of X, Y ∈ R
n

is denoted by 〈X, Y 〉 or X T Y .
Let (�,F , P) be a complete probability space with a filtration {Ft }t≥0 satisfying

the usual conditions, that is, it is right continuous and increasing while F0 contains all
P-null sets. Let w(t) be a scalar Brownian motion defined on this probability space.

The following two lemmas will play important roles in this paper. The first one is
the continuous semimartingale convergence theorem (cf. [9,12]). The second one is
the corresponding discrete version (cf. [23,26]).

Lemma 1 Let A(t), U (t) be two Ft -adapted increasing processes on t ≥ 0 with
A(0) = U (0) = 0 a.s. Let M(t) be a real-valued local martingale with M(0) = 0
a.s. Let ζ be a nonnegative F0-measurable random variable. Assume that X (t) is
nonnegative and

X (t) = ζ + A(t) − U (t) + M(t) for t ≥ 0.

If limt→∞ A(t) < ∞ a.s. then for almost all ω ∈ �,

lim
t→∞ X (t) < ∞ and lim

t→∞ U (t) < ∞,

that is, both X (t) and U (t) converge to finite random variables.

Lemma 2 Let {Ai }, {Ui } be two sequences of nonnegative random variables such
that both Ai and Ui are Fi−1-measurable for i = 1, 2, . . . , and A0 = U0 = 0 a.s.
Let Mi be a real-value local martingale with M0 = 0 a.s. Let ζ be a nonnegative
F0-measurable random variable. Assume that {Xi } is a nonnegative semimartingale
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684 F. Wu et al.

with the Doob–Mayer decomposition

Xi = ζ + Ai − Ui + Mi .

If limi→∞ Ai < ∞ a.s. then for almost all ω ∈ �,

lim
i→∞ Xi < ∞ and lim

i→∞ Ui < ∞,

that is, both Xi and Ui converge to finite random variables.

In the following sections, we will employ these lemmas to establish the almost sure
asymptotic stability theorems for both exact and numerical solutions to Eq. (1.1).

3 Stability of the exact solution and the EM approximation

Applying the EM method (see [1,17]) to Eq. (1.1) yields the following approximation

⎧
⎨

⎩

xk = ξ(k�) k = −m,−m + 1, . . . , 0,

xk+1 = xk + f (xk, xk−m, k�)�
+ g(xk, xk−m, k�)�wk, k = 0, 1, 2, . . . ,

(3.1)

where � = τ/m (m is an integer) is the stepsize and �wk := w((k + 1)�) − w(k�)

is the Brownian increment.
To be precise, let us give the definitions on the almost sure exponential stability of

SDDEs and their numerical approximations.

Definition 1 The solution x(t, ξ) to Eq. (1.1) is said to be almost surely exponentially
stable if there exists a constant η > 0 such that

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ −η a.s. (3.2)

for any initial data ξ ∈ Cb
F0

([−τ, 0]; R
n).

Definition 2 The approximate solution xk to Eq. (3.1) is said to be almost surely
exponentially stable if there exists a constant η̄ > 0 such that

lim sup
k→∞

1

k� log |xk | ≤ −η̄ a.s. (3.3)

for any bounded variables ξ(k�), k = −m,−m + 1, . . . , 0.

In this section, our aim is to examine if the EM method can reproduce the almost
sure exponential stability of the exact solution of Eq. (1.1). Let us state a theorem
which does not only give the existence-and-uniqueness result of the solution but also
provides us with a criterion on the almost sure exponential stability of the exact solu-
tion (please see [19] for the existence-and-uniqueness result and [14,16] for the almost
sure exponential stability).
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Exponential stability of numerical solutions for differential equations 685

Theorem 1 Let Assumption1 hold. Assume that there are four nonnegative constants
λ1–λ4 such that

2xT f (x, 0, t) ≤ −λ1|x |2, (3.4)

| f (x, y, t) − f (x, 0, t)| ≤ λ2|y|, (3.5)

|g(x, y, t)|2 ≤ λ3|x |2 + λ4|y|2 (3.6)

for all x, y ∈ R
n and t ≥ 0. If

λ1 > 2λ2 + λ3 + λ4, (3.7)

then for any given initial data ξ ∈ Cb
F0

([−τ, 0]; R
n), there exists a unique global

solution to Eq. (1.1) and this solution, denoted by x(t; ξ), has property that

lim sup
t→∞

1

t
log(|x(t; ξ)|) ≤ −γ

2
a.s. (3.8)

where γ > 0 is the unique positive root of

λ1 − λ2 − λ3 − γ = (λ2 + λ4)e
γ τ . (3.9)

This theorem gives a criterion on the robustness of stability. In fact, condition (3.4)
guarantees the exponential stability of the ODE

dx(t)

dt
= f (x(t), 0, t). (3.10)

Rewriting Eq. (1.1) as

dx(t) = f (x(t), 0, t)dt + ([ f (x(t), x(t − τ), t) − f (x(t), 0, t)]dt

+g(x(t), x(t − τ), t)dw(t)) , (3.11)

we see that it is a stochastically perturbed system of Eq. (3.10). Theorem 1 gives a
criterion on how large the stochastic perturbation which Eq. (3.10) could tolerate so
that the perturbed system (3.11), namely Eq. (1.1) remains exponentially stable. One
simple example is the linear SDDE

dx(t) = [Ax(t) + Bx(t − τ)]dt + [Cx(t) + Dx(t − τ)]dw(t),

where A, B, C, D ∈ R
n×n . By Theorem 1, it is easy to show that this linear SDDE is

almost surely exponentially stable if

−λmax(A + AT ) > 2(‖B‖ + ‖C‖2 + ‖D‖2).

Let us now discuss the stability of the EM approximate solution (3.1).
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686 F. Wu et al.

Theorem 2 Let conditions (3.4)–(3.6) and (3.7) hold. Assume also that f satisfies the
linear growth condition, namely, there exists a constant K > 0 such that

| f (x, y, t)|2 ≤ K (|x |2 + |y|2). (3.12)

Let γ > 0 be the number defined by (3.9) and ε ∈ (0, γ /2) be arbitrary. Then there
exists a �∗ > 0 such that if � < �∗, then for any given finite-valued F0-measurable
random variables ξ(k�), k = −m,−m + 1, . . . , 0, the EM approximate solution
(3.1) obeys

lim sup
k→∞

1

k� log(|xk |) ≤ −γ

2
+ ε a.s. (3.13)

Proof For any positive constant C > 1, we have

C (k+1)�|xk+1|2 − Ck�|xk |2 = C (k+1)�(|xk+1|2 − |xk |2) + (C (k+1)� − Ck�)|xk |2.

Note that

|xk+1|2 = 〈xk + f (xk, xk−m, k�)� + g(xk, xk−m, k�)�wk, xk

+ f (xk, xk−m, k�)� + g(xk, xk−m, k�)�wk〉
= |xk |2 + 2xT

k f (xk, xk−m, k�)� + | f (xk, xk−m, k�)�|2
+ |g(xk, xk−m, k�)�wk |2
+ 2〈xk + f (xk, xk−m, k�)�, g(xk, xk−m, k�)�wk〉.

By conditions (3.4)–(3.6), (3.7) and (3.12), we have

C (k+1)�|xk+1|2 − Ck�|xk |2
≤ C (k+1)�[−λ1�|xk |2 + 2λ2xT

k xk−m� + K (|xk |2 + |xk−m |2|)�2

+(λ3|xk |2 + λ4|xk−m |2)|�wk |2]
+2C (k+1)�〈xk + f (xk, xk−m, k�)�, g(xk, xk−m, k�)�wk〉
+(C (k+1)� − Ck�)|xk |2

≤ C (k+1)�[−λ1� + λ2� + (1 − C−�) + K�2 + λ3|�wk |2]|xk |2
+C (k+1)�(λ2� + K�2 + λ4|�wk |2)|xk−m |2
+2C (k+1)�〈xk + f (xk, xk−m, k�)�, g(xk, xk−m, k�)�wk〉,
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Exponential stability of numerical solutions for differential equations 687

which implies that

Ck�|xk |2 ≤ |x0|2 + [−λ1� + λ2� + (1 − C−�) + K�2]
k−1∑

i=0

C (i+1)�|xi |2

+λ3

k−1∑

i=0

C (i+1)�|xi |2|�wi |2 + (λ2� + K�2)

k−1∑

i=0

C (i+1)�|xi−m |2

+λ4

k−1∑

i=0

C (i+1)�|xi−m |2|�wi |2

+2
k−1∑

i=0

C (i+1)�〈xk + f (xi , xi−m, i�)�, g(xi , xi−m,�)�wi 〉.

Let mk = ∑k−1
i=0 C (i+1)�|xi |2(|�wi |2 − �). Noting that E[(|�wk |2 − �)|Fk�] = 0

and xk is Fk�-measurable, then we have

E[mk |F(k−1)�] = mk−1 + E[Ck�|xk−1|2(|�wk−1|2 − �)|F(k−1)�]
= mk−1 + Ck�|xk−1|2E[(|�wk−1|2 − �)|F(k−1)�]
= mk−1,

which implies that mk is a martingale. Similarly, m̂k = ∑k−1
i=0 C (i+1)�|xi−m |2

(|�wi |2 − �) is also a martingale. Clearly,

m̄k = 2
k−1∑

i=0

C (i+1)�〈xi + f (xi , xi−m, i�)�, g(xi , xi−m, i�)�wi 〉

is a martingale. These imply that Mk = λ3mk + λ4m̂k + m̄k is a martingale with
M0 = 0. We therefore have that

Ck�|xk |2 ≤ |x0|2 + [−λ1� + λ2� + λ3� + (1 − C−�) + K�2]
k−1∑

i=0

C (i+1)�|xi |2

+(λ2� + λ4� + K�2)

k−1∑

i=0

C (i+1)�|xi−m |2 + Mk .

Since

k−1∑

i=0

C (i+1)�|xi−m |2 =
−1∑

i=−m

C (i+m+1)�|xi |2 +
k−1∑

k=0

C (i+m+1)�|xi |2

−
k−1∑

i=k−m

C (i+m+1)�|xi |2,
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688 F. Wu et al.

we have

Ck�|xk |2 + (λ2� + λ4� + K�2)

k−1∑

i=k−m

C (i+m+1)�|xi |2 ≤ Xk, (3.14)

where

Xk := |x0|2 + (λ2� + λ4� + K�2)

−1∑

i=−m

C (i+m+1)�|xi |2 + [−λ1� + λ2�

+λ3� + (1 − C−�) + K�2 + (λ2� + λ4� + K�2)Cm�]

×
k−1∑

i=0

C (i+1)�|xi |2 + Mk .

Let us now introduce the function

h(C) = (λ2 + λ4 + K�)�C (m+1)� + (1 − λ1� + λ2� + λ3� + K�2)C� − 1.

(3.15)

Choose �∗
1 > 0 such that for any � < �∗

1, 1 − λ1� + λ2� + λ3� + K�2 > 0. We
therefore have h′(C) > 0 for any C ≥ 1. Clearly,

h(1) = −(λ1 − 2λ2 − λ3 − λ4 − 2K�)�.

Hence, for any � < �∗
2 := (λ1 − 2λ2 −λ3 −λ4)/(2K ), h(1) < 0, which implies that

for any � < �∗
1 ∧ �∗

2, there exists a unique C∗� > 1 such that h(C∗�) = 0. Choosing
C = C∗�, we therefore have

Xk = |x0|2 + (λ2� + λ4� + K�2)

−1∑

i=−m

C∗�
(i+m+1)�|xi |2 + Mk .

Noting that the initial sequence xi < ∞ for all i = −m, . . . , 0, by Lemma 2, for
C = C∗�, limk→∞ Xk < ∞ a.s. By (3.14), we therefore have

lim sup
k→∞

C∗�
k�|xk |2

≤ lim sup
k→∞

[

C∗�
k�|xk |2 + (λ2� + λ4� + K�2)

k−1∑

i=k−m

C∗�
(i+m+1)�|xi |2

]

≤ lim
k→∞ Xk < ∞ a.s. (3.16)
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Exponential stability of numerical solutions for differential equations 689

Noting that m� = τ , by (3.15),

(λ2 + λ4 + K�)C∗�
τ + 1

� (1 − C∗�
−�

) − λ1 + λ2 + λ3 + K� = 0. (3.17)

Choose the constant μ such that C = eμ and hence 1 − C−� = 1 − e−μ�. Define

h̄�(μ) = (λ2 + λ4 + K�)eμτ + 1

� (1 − e−μ�) − λ1 + λ2 + λ3 + K�.

Letting μ∗� = log C∗�, by (3.17), for any � < �∗
1 ∧ �∗

2, we have

h̄�(μ∗�) = 0. (3.18)

Noting that lim�→0(1 − e−μ�)/� = μ, we have

lim�→0
h̄�(μ) = (λ2 + λ4)e

μτ + μ − λ1 + λ2 + λ3. (3.19)

By the definition of γ , (3.18) and (3.19) yield

lim�→0
μ∗� = γ,

which implies that for any positive ε ∈ (0, γ /2), there exists a �∗
3 > 0 such that for

any � < �∗
3, we have

μ∗� > γ − 2ε.

Note that (3.16), together with the definition of μ∗� shows that

lim sup
k→∞

eμ∗�k�|xk |2 < ∞.

We therefore obtain that for any � < �∗
1 ∧ �∗

2 ∧ �∗
3,

lim sup
k→∞

log |xk | ≤ −γ

2
+ ε, a.s.

as required. ��
Remark 1 There are many results on moment stability for nonlinear SDDEs (see
Mao’s book [12] and references therein). Using the Halanay inequality, Baker and
Buckwar [2] examined the exponential stability in pth (p ≥ 2) moment of the EM
method for the SDDEs. Their results could imply the almost sure exponential stability
by the technique using the Chebyshev inequality and the Borel–Cantelli lemma as
demonstrated in [6] and [7]. However, we here use martingale techniques to study the
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690 F. Wu et al.

almost sure exponential stability of the EM scheme for the SDDEs directly. A further
advantage of the martingale techniques is that they will enable us to investigate other
types of stochastic stability of the EM scheme e.g. the LaSalle-type stability as Mao
did for the true solutions in his series of papers (see e.g. [13–16]), but we will report
these results elsewhere due to the page limit here.

Theorem 2 shows that if the coefficient f obeys the linear growth condition, in
addition to the conditions imposed in Theorem 1, then the EM approximate solution
(3.1) reproduces the almost sure exponential stability of exact solutions of Eq. (1.1) for
sufficiently small stepsize �. The question is: will the EM method still work without
the linear growth condition?

4 A counterexample

To answer the question stated above, let us consider the following scalar stochastic
delay differential equation

dx(t) = [−3x(t) − x3(t) + x(t) sin(x(t − 1))]dt + x(t) sin3(x(t − 1))dw(t) (4.1)

for any initial data ξ ∈ Cb
F0

([−1, 0]; R). Define f (x, y, t) = −3x − x3 + x sin y and

g(x, y, t) = x sin3 y. Clearly,

2x f (x, 0, t) = 2x(−3x − x3) ≤ −6|x |2,
| f (x, y, t) − f (x, 0, t)| = |x sin y| ≤ |x |,
|g(x, y, t)|2 ≤ |x sin3 y|2 ≤ |x |2.

That is, the coefficients of Eq. (4.1) satisfy conditions (3.4)–(3.6) with λ1 = 6, λ2 = 1,
λ3 = 1, λ4 = 0 and τ = 1. It is also easy to compute γ = 1.0737 by (3.9). It follows
from Theorem 1 that the solution of Eq. (4.1) obeys

lim sup
t→∞

1

t
log |x(t, ξ)| ≤ −0.5, a.s.

On the other hands, we observe that the coefficient f does not obey the linear growth
condition. We therefore wonder if the EM method will reproduce the almost sure
exponential stability of the exact solution?

The EM method (3.1) applied to (4.1) produces

xk+1 = xk[1 − 3� − x2
k � + sin(xk−m)� + sin3(xk−m)�wk], (4.2)

where � = 1/m.

Lemma 3 Assume that � ∈ (0, 1). If |x0| ≥ 8/
√� in (4.2), then

P

(
|xk | ≥ 2k+3

√� ∀k ≥ 1

)
≥ exp

(
−4e

− 2√�
)

. (4.3)

123



Exponential stability of numerical solutions for differential equations 691

Proof This proof is motivated by Higham et al. (see Lemma 3.1 in [7]). First, we show
that

|xk | ≥ 2k+3

√� and |�wk | ≤ 2k

implies that

|xk+1| ≥ 2k+4

√� . (4.4)

To see this, assume that |xk | ≥ 2k+3/
√�. Then for any � ∈ (0, 1),

|xk+1| =
∣
∣
∣xk

(
1 − 3� − x2

k � + sin(xk−m)� + sin3(xk−m)�wk

)∣
∣
∣

≥
∣
∣
∣xk |||xk |2� − 1 − 3� − � − |�wk |

∣
∣
∣

≥ 2k+3

√�
(

22k+6 − 1 − 4 − 2k
)

≥ 2k+4

√�
(

22k+5 − 3 − 2k−1
)

≥ 2k+4

√�

for all k ≥ 0.
From (4.4), given that |x0| ≥ 8/

√�, for any integer K ≥ 0, the event that {|xk | ≥
2k+3/

√�, ∀1 ≤ k ≤ K } contains the event that {|�wk | ≤ 2k, ∀1 ≤ k ≤ K }. Since
{�wk} are independent, we have

P

(
|xk | ≥ 2k+3

√� , ∀1 ≤ k ≤ K

)
≥

K∏

k=1

P

(
|�wk | ≤ 2k

)
. (4.5)

From here we can repeat the proof of Lemma 3.1 in [7] to get the desired result (4.3).
��

It should be pointed out that Euler’s method for the ODE dx = (−x − x3)dt is
already unstable. Hence it must remain unstable for some nonlinear SDDEs and our
counterexample used an SDDE is just to make this more clear.

Now that the EM method may not reproduce the almost sure exponential stability
of the exact solution without the linear growth condition, we may ask: are there any
other numerical methods that may reproduce the almost sure exponential stability of
the exact solution without the linear growth condition? The answer is of course yes.
We shall show in the next section that the backward EM method will work.
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5 Stability of the backward EM approximations

Applying the backward EM method (cf. [7,8,20]) to Eq. (1.1) yields the approximate
solution

⎧
⎨

⎩

xk = ξ(k�), k = −m,−m + 1, . . . , 0,

xk+1 = xk + f (xk+1, xk−m+1, (k + 1)�)�
+g(xk, xk−m, k�)�wk, k ≥ 0.

(5.1)

Since the backward EM (5.1) is semi-implicit, we have to ensure that this scheme is
well defined. For this purpose, we impose the following one-sided Lipschitz condition
on f in x : There exists a positive constant λ such that for any x1, x2, y ∈ R

n and
t ≥ 0,

〈x1 − x2, f (x1, y, t) − f (x2, y, t)〉 ≤ λ|x1 − x2|2. (5.2)

Under this condition, if λ� < 1, then the backward EM scheme (5.1) is well defined
(see e.g. [5,20]). The following theorem shows the almost sure exponential stability
of the backward EM numerical solutions.

Theorem 3 Let conditions (5.2), (3.4)–(3.6) and (3.7) hold. Let γ > 0 be the number
defined by (3.9) and ε ∈ (0, γ /2) be arbitrary. Then there exists a �∗ ∈ (0, 1/λ) such
that if � < �∗, then for any given finite-valued F0-measurable random variables
ξ(k�), k = −m,−m + 1, . . . , 0, the approximate solution {xk} defined by (5.1) has
property that

lim sup
k→∞

1

k� log(|xk |) ≤ −γ

2
+ ε a.s. (5.3)

This theorem shows clearly that the backward EM approximations may reproduce
the almost sure exponential stability of Eq. (1.1) without the linear growth condition
on f . To highlight this, let us return to the SDDE (4.1) used in the section above. In
this case, for any x1, x2 and y ∈ R

n , we have

f (x1, y, t) − f (x2, y, t) = (x2 − x1)(3 + x2
1 + x1x2 + x2

2 − sin y),

which implies that

(x1 − x2)[ f (x1, y, t) − f (x2, y, t)]
= −(x1 − x2)

2(3 + x2
1 + x1x2 + x2

2 − sin y)

≤ −2|x1 − x2|2
≤ |x1 − x2|2.

Hence, f satisfies the one-sided Lipschitz condition. By Theorem 3, for any given
ε ∈ (0, 0.5), there must exist a �∗ > 0 such that if � < �∗, the backward EM
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approximate solution of the SDDE (4.1) obeys

lim sup
k→∞

1

k� log(|xk |) ≤ −0.5 + ε a.s.

Let us now begin to prove Theorem 3.

Proof By conditions (3.4) and (3.5), we have

|xk+1|2 = 〈xk+1, xk + f (xk+1, xk−m+1, (k + 1)�)� + g(xk, xk−m, k�)�wk〉
= xT

k+1 f (xk+1, xk−m+1, (k + 1)�)� + 〈xk+1, xk + g(xk, xk−m, k�)�wk〉
≤ −λ1�

2
|xk+1|2 + |xk+1|| f (xk+1, xk−m+1, (k + 1)�)

− f (xk+1, 0, (k + 1)�)|� + |xk+1||xk + g(xk, xk−m, k�)�wk |
≤−λ1�

2
|xk+1|2+λ2|xk+1||xk−m+1|� + 1

2
|xk+1|2

+1

2
|xk + g(xk, xk−m, k�)�wk |2

≤ −λ1�
2

|xk+1|2 + λ2�
2

[|xk+1|2 + |xk−m+1|2] + 1

2
|xk+1|2

+1

2
[|xk |2 + |g(xk, xk−m, k�)�wk |2 + 2〈xk, g(xk, xk−m, k�)�wk〉]

= −1

2
(λ1� − λ2� − 1)|xk+1|2 + λ2�

2
|xk−m+1|2 + 1

2
|xk |2

+1

2
|g(xk, xk−m, k�)|2� + 1

2
m�

k ,

where

m�
k = |g(xk, xk−m, k�)|2(|�wk |2 − �) + 2〈xk, g(xk, xk−m, k�)�wk〉.

Note that

|g(xk, xk−m, k�)|2 ≤ λ3|xk |2 + λ4|xk−m |2.

It therefore follows that

(λ1� − λ2� + 1)|xk+1|2 ≤ (1 + λ3�)|xk |2 + λ2�|xk−m+1|2 + λ4�|xk−m |2 + m�
k .

For any C > 1, we therefore have

(λ1� − λ2� + 1)[C (k+1)�|xk+1|2 − Ck�|xk |2]
≤ [1 − (1 + λ1� − λ2�)C−� + λ3�]C (k+1)�|xk |2 + λ2�C (k+1)�|xk−m+1|2

+λ4�C (k+1)�|xk−m |2 + C (k+1)�m�
k ,
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which implies that

(λ1� − λ2� + 1)Ck�|xk |2

≤ (λ1� − λ2� + 1)|x0|2 + [1 − (1 + λ1� − λ2�)C−� + λ3�]
k−1∑

i=0

C (i+1)�|xi |2

+λ2�
k−1∑

i=0

C (i+1)�|xi−m+1|2 + λ4�
k−1∑

i=0

C (i+1)�|xi−m |2 + Mk,

where Mk = ∑k−1
i=0 C (i+1)�m�

k . It is obvious that Mk is a martingale with M0 = 0.
Note that

k−1∑

i=0

C (i+1)�|xi−m+1|2 =
k−m∑

i=−m+1

C (i+m)�|xi |2

= C (m−1)�
−1∑

i=−m+1

C (i+1)�|xi |2 + C (m−1)�
k−1∑

i=0

C (i+1)�|xi |2

−C (m−1)�
k−1∑

i=k−m+1

C (i+1)�|xi |2

and

k−1∑

i=0

C (i+1)�|xi−m |2 =
k−m−1∑

i=−m

C (i+m+1)�|xi |2

= Cm�
−1∑

i=−m

C (i+1)�|xi |2 + Cm�
k−1∑

i=0

C (i+1)�|xi |2

−Cm�
k−1∑

i=k−m

C (i+1)�|xi |2.

We therefore have

(λ1� − λ2� + 1)Ck�|xk |2 + λ2�C (m−1)�
k−1∑

i=k−m+1

C (i+1)�|xi |2

+λ4�Cm�
k−1∑

i=k−m

C (i+1)�|xi |2 ≤ Yk, (5.4)
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where

Yk := (λ1� − λ2� + 1)|x0|2 + λ2�C (m−1)�
−1∑

i=−m+1

C (i+1)�|xi |2

+λ4�Cm�
−1∑

i=−m

C (i+1)�|xi |2 + [1 − (1 + λ1� − λ2�)C−� + λ3�

+λ2�C (m−1)� + λ4�Cm�]
k−1∑

i=0

C (i+1)�|xi |2 + Mk .

We now introduce the function

ϕ(C) = λ4�C (m+1)� + λ2�Cm� + (1 + λ3�)C� − 1 − λ1� + λ2�. (5.5)

Clearly, ϕ′(C) > 0 for any C > 1 and

ϕ(1) = −(λ1 − 2λ2 − λ3 − λ4)� < 0,

which implies that there exists a unique Ĉ� > 1 such that ϕ(Ĉ�) = 0. Choosing
C = Ĉ�,

Yk = (λ1� − λ2� + 1)|x0|2 + λ2�Ĉ (m−1)�
�

−1∑

i=−m+1

Ĉ (i+1)�
� |xi |2

+λ4�Ĉm�
�

−1∑

i=−m

Ĉ (i+1)�
� |xi |2 + Mk .

Noting that for all i = −m, . . . , 0, the initial data xi < ∞, by Lemma 2, we see that
limk→∞ Yk < ∞ a.s. Hence, by (5.4), we have

lim sup
k→∞

(λ1� − λ2� + 1)Ĉk�|xk |2 ≤ lim sup
k→∞

[
(λ1� − λ2� + 1)Ĉk�|xk |2

+λ2�Ĉ (m−1)�
k−1∑

i=k−m+1

Ĉ (i+1)�|xi |2

+λ4�Ĉm�
k−1∑

i=k−m

Ĉ (i+1)�|xi |2
]

≤ lim
k→∞ Yk < ∞ a.s. (5.6)

Noting that m� = τ , by (5.5),

λ4Ĉτ + λ2Ĉτ Ĉ−� + 1

�
[
1 − (1 + λ1� − λ2�)Ĉ−�]

+ λ3 = 0. (5.7)

123



696 F. Wu et al.

Introduce a constant η such that C = eη and hence 1 − Ĉ−� = 1 − e−η�. Define

ϕ̄�(η) = λ4eητ + λ2eητ e−η� + 1

�
[
1 − (1 + λ1� − λ2�)e−η�]

+ λ3. (5.8)

Letting η∗� = log Ĉ�, by (5.7), for any � < �∗
1 ∧ �∗

2, we have

ϕ̄�(η∗�) = 0. (5.9)

Noting that lim�→0(1 − e−η�)/� = η, we have

lim�→0
ϕ̄�(η) = (λ2 + λ4)e

ητ + η − λ1 + λ2 + λ3. (5.10)

By the definition of γ , (5.9) and (5.10) yield that

lim�→0
η∗� = γ, (5.11)

which implies that for any positive ε ∈ (0, γ /2), there exists a 0 < �∗ < 1/λ such
that for any � < �∗, we have

η∗� > γ − 2ε.

Note that (5.6), together with the definition of η∗� shows that

lim sup
k→∞

(λ1� − λ2� + 1)eη∗�k�|xk |2 < ∞.

We therefore obtain that for any � < �∗,

lim sup
k→∞

1

k� log(|xk |) ≤ −γ

2
+ ε a.s.

as required. ��
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