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Abstract

In most stochastic dynamical systems which describe process in engineering,

physics and economics, stochastic components and random noise are often in-

volved. Stochastic effects of these models are often used to capture the uncer-

tainty about the operating systems. Motivated by the development of analysis

and theory of stochastic processes, as well as the studies of natural sciences, the

theory of stochastic differential equations in infinite dimensional spaces evolves

gradually into a branch of modern analysis. In the analysis of such systems, we

want to investigate their stabilities.

This thesis is mainly concerned about the studies of the stability property of

stochastic differential equations in infinite dimensional spaces, mainly in Hilbert

spaces. Chapter 1 is an overview of the studies. In Chapter 2, we recall basic

notations, definitions and preliminaries, especially those on stochastic integration

and stochastic differential equations in infinite dimensional spaces. In this way,

such notions as Q-Wiener processes, stochastic integrals, mild solutions will be

reviewed. We also introduce the concepts of several types of stability. In Chapter

3, we are mainly concerned about the moment exponential stability of neutral

impulsive stochastic delay partial differential equations with Poisson jumps. By

employing the fixed point theorem, the p-th moment exponential stability of

mild solutions to system is obtained. In Chapter 4, we firstly attempt to recall

an impulsive-integral inequality by considering impulsive effects in stochastic sys-

tems. Then we define an attracting set and study the exponential stability of mild

solutions to impulsive neutral stochastic delay partial differential equations with
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Poisson jumps by employing impulsive-integral inequality. Chapter 5 investigates

p-th moment exponential stability and almost sure asymptotic behaviours of mild

solutions to stochastic delay integro-differential equations. Finally in Chapter 6,

we study the exponential stability of neutral impulsive stochastic delay partial

differential equations driven by a fractional Brownian motion.
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Notations

� end of proof

:= equality of definition

X{·} the indictor function

R real field of real numbers

C complex field of complex numbers

R+ nonnegative real numbers

Reλ real part of λ ∈ C

A linear operator

D(A) domain of A

R(A) range of A

B(X) Borel σ-filed of X

L(X) the set of all bounded linear operators on X

L(X, Y ) the set of all bounded linear operators from X into Y

L1(X, Y ) the set of all nuclear operators from X into Y

L2(X, Y ) the set of all Hilbert-Schmidt operators from X into Y

C(X, Y ) the set of all continuous functions from X to Y

D(X, Y ) the set of all càdlàg functions from X to Y
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Chapter 1

Introduction

This thesis mainly works on the stability of stochastic differential equations in

infinite dimensional spaces. We attempt to investigate stability properties such as

asymptotic stability, mean square exponential stability, p-th moment exponential

stability and almost sure exponential stability. We concentrate on various types

of stochastic differential equations such as neutral stochastic functional partial

equations with Poisson point processes and delays, stochastic integro-differential

equations and impulsive delay neutral stochastic partial differential equations

driven by a fractional Brownian motion.

In Chapter 2, we recall some standard concepts of the theory of stochas-

tic differential equations in infinite dimensional spaces. In this chapter, we

firstly introduce some basic definitions and preliminaries in functional analysis

and Hilbert spaces valued stochastic differential equations, such as Q-Wiener

processes, stochastic integral with respect to Wiener processes, jump processes,

stochastic integral with respect to Poisson random measures. We also introduce

mild solutions of stochastic differential equations and various types of stabilities.

The required knowledge of this chapter is necessarily presented in order to help

readers to understand the following chapters. Moreover, some of important math-

ematical tools are given in this chapter. The main source of reference of this thesis

are based on the books Da Prato and Zabczyk [42], Kreyszig [67], Liu [80] and
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Pazy [109]. As for applications of semigroup approaches to infinite dimensional

stochastic systems, the variational method can be found in many literatures such

as Chow [33], Métivier [100].

Stochastic partial differential equations driven by Wiener processes have been

studied by many researchers. To the best of my knowledge, there have not been

much studies of stochastic delayed partial differential equations with Jump pro-

cesses and impulsive effects. The classical technique applied in the studies of

stability of stochastic differential equations is based on a stochastic version of

Lyapunov’s method. However, it may be difficult to apply Lyapunov’s direct

method to specific issues on exponential stability of mild solutions of delayed

stochastic differential equations. It is worth pointing out that Luo [?] employed

the fixed point theory to study the exponential stability of mild solutions in

stochastic systems, where the conditions do not require the boundedness of de-

lays. Cui, Yan and Sun [36] proved the existence and exponential stability in

mean square of mild solutions for a class of neutral partial differential equations

with delays and Poisson jump. In Chapter 3, we are concerned about the sta-

bility of mild solutions to impulsive neutral stochastic partial delay differential

equations driven by Poisson point process. In this class of equations, we do not

only consider delay effects, but also the impulsive effects will be investigated.

When one talks about stability, or stability in the sense of Lyapunov, it is

enough to investigate the stability problem for the null solution of some rele-

vant systems. In Chapter 4, we firstly recall an impulsive-integral inequality

which takes impulsive effects into account in our system. By using the impulsive-

integral inequality, we obtain an attracting set of neutral stochastic partial dif-

ferential equations with delays driven by Poisson point process. Moreover, we

investigate the sufficient conditions for the p-th moment exponential stability of

mild solutions of systems under investigation.

Caraballo and Liu [26] established the exponential stability of mild solutions
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of stochastic partial differential equations with delays by using the Gronwall in-

equality. Mao [96] discussed the stability of solutions of finite dimensional spaces

valued stochastic differential equations by employing the same method in his

book. We refer the reader to [96] for more details. In many applications, due to

the complex random nature of situation, the stochastic problems could be for-

mulated as some integro-differential systems. Recently, the existence, uniqueness

and stability of integro-differential equations have been considered by some in-

vestigators, such as Diop and his cooperators [48], [49], [47], [50]. In Chapter 5,

we are interested in the moment and almost sure stability properties of stochas-

tic integro-differential equations with delays. We assume that the linear part of

the system under consideration has a resolvent operator which has been given by

Grimmer[54]. For more details on resolvent operators, we refer readers to [54]

and [55]. In order to obtain sufficient conditions for the exponential stability

of solutions of stochastic differential equations with delays, we shall employ a

technique which has been developed by Caraballo [20].

We would like to mention that the theory for stochastic differential equations

driven by a fractional Brownian motion (fBm) has recently been discussed inten-

sively. The case of finite-dimensional equations driven by a fBm has been studied

by many researchers such as Neuenkirch (2008), Boufoussi and Hajji (2011), Leon

and Tindel (2012) and many others. The case of Hilbert spaces valued stochastic

equalitions driven by a fBm has been studied by Caraballo and his cooperators

[21]. They investigated the existence and uniqueness of mild solutions to stochas-

tic differential equations driven by a fBm by using Lyapunov’s method. Shortly,

Boufoussi and Hajji [12] studied neutral stochastic functional differential equa-

tions with finite delay driven by a fBm in a Hilbert space. In Chapter 6, we shall

study the stability of neutral stochastic functional differential equations driven

by a fBm. In most of the work, finite delay is considered. This work is based on

the one of Boufoussi and Hajji [12]. The difficulty in our work is the inclusion of
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impulsive effects and infinite delay in our system.

Finally, a conclusion chapter of this thesis is presented in Chapter 7.
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Chapter 2

Stochastic Differential Equations

in Infinite Dimensions

This thesis deals with stochastic differential equations with delay in infinite di-

mensional spaces. More specifically, we study solutions of stochastic differential

equations, in which we are especially interested in stability of stochastic systems.

This chapter is devoted to the background knowledge in regard to the con-

cepts of stochastic integrals and stochastic differential equations. We shall study

stochastic differential equations driven by Wiener processes or Poisson processes.

Firstly, we introduce some basic definitions and preliminaries from stochastic

analysis in Section 2.1. In Section 2.2, we define Hilbert space valued Wiener

processes and stochastic integrals with respect to them. The aim of Section 2.3 is

to introduce jump processes and stochastic integrals with respect to compensated

Poisson random measures. We shall deal with these equations which are driven

by jump processes. In Section 2.4, we start from the definitions of strong and

mild solutions of stochastic differential equations and establish their properties.

At the end, we give some concepts of different stabilities of stochastic systems in

Section 2.5. The material of this chapter is standard. The book, Liu [80] con-

tributes to the development of this thesis as the main source of reference and we

refer the reader to the books: Da Prato and Zabzcyk [42], Mao [96], Pazy [109]
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for more details. Proofs of the results presented in this chapter will not be given

as they are available in the existing literature (c.f. Section 2.6).

2.1 Notations, Definitions and Preliminaries

Let H and K be two real separable Hilbert spaces with norms and their inner

products denoted by (H, ‖ · ‖H), (K, ‖ · ‖K) and 〈·, ·〉K , 〈·, ·〉H respectively. We

denote by L(K,H) the set of all linear bounded operators from K → H, equipped

with the usual operator norm ‖·‖. In this thesis, we use the symbol ‖·‖ to denote

norms of operators regardless of the spaces potentially involved when no confusion

possibly arises. The set L(K,H) is a linear space and equipped with the operator

norm. It becomes a Banach space. Unfortunately, if both the spaces K and H

are infinite dimensional, the space L(K,H) is not generally separable. A direct

consequence of this inseparability is that the usual Bochner’s integral definition

cannot be applied to L(K,H)-valued random variables. We denote by K∗ and

H∗ the dual space of K and H respectively.

Definition 2.1.1. (Nuclear operator or compact operator) An element

A ∈ L(K,H) is said to be a nuclear operator (or compact operator) if there exist

two sequences {aj} ⊂ H, {bj} ⊂ K∗ such that

∞∑
j=1

‖aj‖ · ‖bj‖ < +∞, (2.1.1)

and A has the representation

Ax =
∞∑
j=1

ajbj(x), x ∈ K. (2.1.2)

The space of all nuclear operators from K into H, endowed with the norm

‖A‖L1(K,H) = inf

{ ∞∑
j=1

‖aj‖ · ‖bj‖ : Ax =
∞∑
j=1

ajbj(x)

}
, (2.1.3)

is a Banach space, and will be denoted by L1(K,H).
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Let H be a separable Hilbert space and {ek} be a complete orthonormal

system in H. If A ∈ L1(H,H), then we define trace of A by

TrA =
∞∑
j=1

〈Aej, ej〉 (2.1.4)

(c.f. Da Prato and Zabczyk (1992), Appendix C).

Definition 2.1.2. (Hilbert-Schmidt operator) Let K and H be two separable

Hilbert spaces with complete orhonormal bases {ek} ⊂ K, {fi} ⊂ H. A linear

bounded operator A : K → H is called Hilbert-Schmidt if

∞∑
k=1

‖Aek‖2 <∞. (2.1.5)

It may be shown the sum (2.1.5) is independent of the basis {ej}. We define a

Hilbert-Schmidt operator norm by

‖A‖L2 =

( ∞∑
k=1

‖Aek‖2

)1/2

. (2.1.6)

Since

∞∑
k=1

‖Aek‖2 =
∞∑
k=1

∞∑
j=1

‖〈Aek, fj〉‖2 =
∞∑
k=1

‖A∗fj‖2, (2.1.7)

thus, ‖A‖L2 = ‖A∗‖L2

(c.f. Da Prato and Zabczyk (1992), Appendix C).

One checks easily that the set L2(K,H) of all Hilbert-Schmidt operators from

K into H, equipped with the norm (2.1.6), is a separable Hilbert space, with the

inner product

〈S, T 〉L2 =
∞∑
k=1

〈Sek, Aek〉, S, T ∈ L2(K,H), {ei} ⊂ K. (2.1.8)

Let A : D(A) ⊆ X → X be a linear operator on a Banach space X. The

resolvent set ρ(A) of A is a set of all complex numbers λ ∈ C such that (λI−A)−1

exists and (λI−A)−1 ∈ L(X) where I is the identity operator onX. For λ ∈ ρ(A),

we write R(λ,A) = (λI − A)−1 and it is called the resolvent operator of A. The
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spectrum of A is defined to be σ(A) = C \ ρ(A). It may be shown that the

resolvent set ρ(A) is open in C.

Definition 2.1.3. Let A be a linear operator on Banach space X. Define

(i) σp(A) = {λ ∈ C : λI − A is not injective}, and σp(A) is called the point

spectrum of A. Moreover, each λ ∈ σp(A) is called the eigenvalue, and each

nonzero x ∈ D(A) satisfying (λI − A)x = 0 is called the eigenvector of A

corresponding to λ.

(ii) σc(A) = {λ ∈ C : λI − A is injective, R(λI − A) 6= X and R(λI − A) =

X}, and σc(A) is called the continuous spectrum of A.

(iii) σr(A) = {λ ∈ C : λI − A is injective and R(λI − A) 6= X}, and σr(A) is

called the residual spectrum of A.

From this definition, it is immediate that σp(A), σc(A) and σr(A) are mutually

exclusive and their union is σ(A). If A is self-adjoint, we have σr(A) = Ø. Note

that if dim X <∞, all the linear operators A on X are compact and in this case

σ(A) = σp(A), a fact which is extendable to any compact operators in infinite

dimensional spaces.

Theorem 2.1.1. Let X be a Banach space. If A ∈ L(X) is compact, then

(i) 0 ∈ σ(A);

(ii) σ(A)\{0} = {λ : λ 6= 0, λ is eigenvalue of A};

(iii) one of the following cases holds:

(a) σ(A) = {0},

(b) σ(A)\{0} is a finite set,

(c) σ(A)\{0} is a sequence with the only possible point of accumulation 0.
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In this thesis, we shall employ the theory of linear semigroups which usually

allows a uniform treatment of many systems such as some parabolic, hyperbolic

and delay equations.

Definition 2.1.4. A strongly continuous or C0-semigroup S(t) ∈ L(X), t ≥ 0,

on a Banach space X is a family of bounded linear operators S(t) : X → X, t ≥ 0,

satisfying:

(i) S(0)x = x for all x ∈ X;

(ii) S(t+ s) = S(t)S(s) for all t, s ≥ 0;

(iii) S(t) is strongly continuous, i.e., for any x ∈ X, S(·)x : [0,∞) → X is

continuous.

For any C0-semigroup S(t) on X, there exist constants M ≥ 1 and µ ∈ R

such that

‖S(t)‖ ≤Meµt, t ≥ 0. (2.1.9)

In particular, the semigroup S(t) is called (uniformly) bounded if ‖S(t)‖ ≤ M

for all t ≥ 0. The semigroup S(t), t ≥ 0, is called norm continuous if the map

t→ S(t) is continuous from (0,∞) to L(X). If M = 1 in (2.1.9), the semigroup

S(t), t ≥ 0, is called a pseudo-contraction C0-semigroup, and if further µ = 0, it

is called a contraction C0-semigroup.

In association with the C0-semigroup S(t), we may define a linear operator

A : D(A) ⊆ X → X by

D(A) =

{
x ∈ X : lim

t↓0

S(t)x− S(0)x

t
exists in X

}
,

Ax = lim
t↓0

S(t)x− S(0)x

t
, x ∈ D(A).

The operator A is called the infinitesimal generator, or simply generator, of

the semigroup {S(t)}t≥0 which is frequently written as etA, t ≥ 0, in this thesis.

It may be shown that A is densely defined and closed.
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Theorem 2.1.2. (Hille-Yosida Theorem) Let X be a Banach space and A :

D(A) ⊆ X → X be a linear operator. Then the following are equivalent:

(i) A generates a C0-semigroup etA, t ≥ 0, on X such that (2.1.9) holds for

some M ≥ 1 and µ ∈ R.

(ii) A is densely defined, closed and there exist constants µ ∈ R, M ≥ 1 such

that ρ(A) ⊃ {λ ∈ C : Reλ > µ} and

‖R(λ,A)n‖ ≤ M

(Reλ− µ)n
(2.1.10)

for any n ∈ N+, Reλ > µ.

Furthermore, we review some specific types of C0-semigroups with delicate

properties.

Definition 2.1.5. Let etA, t ≥ 0, be a C0-semigroup on a Banach space X with

the generator A : D(A) ⊂ X → X.

(i) The semigroup etA, t ≥ 0, is called (eventually) compact if there exists

r ≥ 0 such that etA ∈ L(X) is compact for any t ∈ (r,∞).

(ii) The semigroup etA, t ≥ 0, is called analytic if it admits an extension ezA

on z ∈ ∆θ := {z ∈ C : |argz| < θ} for some θ ∈ (0, π], such that z → ezA is

analytic on ∆θ and satisfies:

(a) e(z1+z2)A = ez1Aez2A for any z1, z2 ∈ ∆θ;

(b) lim∆θ̄3z→0 ‖ezAx− x‖X = 0 for all x ∈ X and 0 < θ̄ < θ.

Moreover, we define fractional powers of certain unbounded linear operators

and study some of their properties which will play an important role in this thesis.

We concentrate mainly on fractional powers if operators A for which −A is the

infinitesimal generator of an exponentially stable analytic semigroup. The results

of this section will be used on the study of solutions of semilinear initial value

problems.
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Theorem 2.1.3. Let S(t) = etA, t ≥ 0, be a C0-semigroup with generator A on

X. The semigroup etA, t ≥ 0, is analytic if there exists M > 0 and µ ∈ R such

that

ρ(A) ⊃ {λ : Reλ ≥ µ} and ‖R(λ,A)‖ ≤ M

1 + |λ|
for all Reλ ≥ µ.

Assume that A generates an exponentially stable analytic semigroup and the

spectrum of A lies entirely in the (open) left half-plane. For any β ∈ (0, 1), we

define

(−A)−β = − 1

2πi

∫
Γ

λ−β(λ+ A)−1dλ, (2.1.11)

where Γ is a curve from ∞e−iθ to ∞eiθ, θ ∈ (π/2, π/2 + δ) for some δ > 0, such

that the spectrum of −A lies to the right and the origin lies to the left of Γ. It

can be shown that (−A)−β is bounded and one-to-one. The inverse (−A)β of

(−A)−β is called fractional power of −A with domain D((−A)β).

Lemma 2.1.1. There exists a constant C such that

‖(−A)−β‖ ≤ C for 0 ≤ β ≤ 1. (2.1.12)

Proof. The proof can be found in Lemma 6.3, Pazy [109].

Theorem 2.1.4. Let A be the infinitesimal generator of an exponentially stable

analytic semigroup S(t). For any 0 < β < 1, the following equality holds:

(a) S(t) : X → D((−A)β) for every t > 0 and α ≥ 0.

(b) For every x ∈ D((−A)β) we have

S(t)(−A)βx = (−A)βS(t)x. (2.1.13)

(c) For every t > 0 the operator (−A)βS(t) is bounded. There exist numbers

Mβ > 0 such that

‖(−A)βS(t)‖ ≤Mβt
−βe−γt (2.1.14)
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(d) Let 0 < β ≤ 1, and x ∈ D((−A)β) then

‖S(t)x− x‖ ≤ Cβt
n‖(−A)βx‖, t > 0, (2.1.15)

where Cβ > 0 is a constant dependent on β.

Proof. The proof can be found in Theorem 6.13, Pazy [109].

A fixed point of a mapping T : X → X of a complete space X into itself is an

x ∈ X which is mapped onto itself, that is

Tx = x.

The Banach fixed point theorem plays an important role as a source of exis-

tence and uniqueness theorems in different branches of analysis. In this way the

theorem provides an impressive illustration of the unifying power of functional

analytic methods and usefulness of fixed point theorems in analysis.

The Banach fixed point theorem, sometimes, called contraction theorem, con-

cerns certain contraction mappings from a complete metric space into itself. It

gives sufficient conditions for the existence and uniqueness of a fixed point. The

theorem also gives an iterative process by which we can obtain approximations

to the fixed point.

Definition 2.1.6. (Contraction) Let X = (X, d) be a complete metric space.

A mapping T : X → X is called a contraction on X if there is a positive real

number α < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ αd(x, y), α < 1. (2.1.16)

Geometrically, this means that any points x and y have images that are closer

together that those points x and y. More precisely, the ratio d(Tx, Ty)/d(x, y)

does not exceed a constant α which is strictly less than 1.

Theorem 2.1.5. (Banach Fixed Point Theorem) Consider a metric space

X = (X, d), where X 6= ∅. Suppose that X is complete and let T : X → X be a
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contraction on X. Then T has a unique fixed point.

Let (X,S,m) be a measurable space and 1 < p < ∞. The collection of

all measurable functions f(·) for which ‖f(·)‖p is integrable will be denoted by

Lp(X), that is

Lp(X) :=

{
f :

∫
X

‖f(x)‖pm(dx) <∞
}
.

Then L1(X) is the space of all Lebesgue integrable functions on X. The space

Lp(X) is a Banach space. If 1 ≤ p <∞, f, g ∈ Lp(X) and α, β ∈ R then

(a). αf + βg ∈ Lp(X);

(b). ‖f‖p ≥ 0;

(c). ‖αf‖p = |α|‖f‖p.

Theorem 2.1.6. (Hölder’s Inequality) Let 1 < p < ∞ and 1 < q < ∞

be real values, such that 1
p

+ 1
q

= 1. If f(·) ∈ Lp(X) and g(·) ∈ Lq(X) then

f(·)g(·) ∈ L1(X) and

∫
X

‖f(x)g(x)‖m(dx) ≤
(∫

X

‖f(x)‖pm(dx)

)1/p

·
(∫

X

‖g(x)‖qm(dx)

)1/q

= ‖f(x)‖p‖g(x)‖q.
(2.1.17)

In particular, if p = q = 2, Hölder’s inequality is the so-called Schwarz’s inequal-

ity.

Theorem 2.1.7. (Minikowski’s Inequality) Let 1 < p < ∞. Then for every

pair f, g ∈ Lp,

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (2.1.18)

A measurable space is a pair (Ω,F) where Ω is a set and F is a σ-field, also

called a σ-algebra, of subsets of Ω. This means that the family F contains the set

Ω and is closed under the operation of taking complements and countable unions
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of its elements. If (Ω,F) and (S,S) are two measurable spaces, then a mapping

ξ from Ω into S such that the set {ω ∈ Ω : ξ(ω) ∈ A} = {ξ ∈ A} belongs to F for

arbitrary A ∈ S is called a random variable from (Ω,F) into (S,S). A random

variable is called simple if it takes on only a finite number of values. In this

thesis, we shall only be concerned with the case where S is a complete, separable

metric space. Then we always take S = B(S), the Borel σ-field of S which is the

smallest σ-field containing all closed (or open) subsets of S. If S is a separable

Banach, we shall denote its norm by ‖ · ‖S and its topological dual by S∗.

A probability measure on a measurable space (Ω,F) is a σ-additive function P

from F into [0, 1] such that P(Ω) = 1. The triplet (Ω,F ,P) is called a probability

space. If (Ω,F ,P) is a probability space, we set

F̄ = {A ⊂ Ω : ∃B,C ∈ F , B ⊂ A ⊂ C, P(B) = P(C)}.

Then F̄ is a σ-field, called the completion of F . If F = F̄ , the probability space

(Ω,F ,P) is said to be complete.

Let (Ω,F ,P) denote a complete probability space. A family {Ft}, t ≥ 0, for

which all the Ft are sub-σ-fields of F and form an increasing family of σ-fields, is

called a filtration if Fs ⊂ Ft ⊂ F for s ≤ t. With {Ft}t≥0, one can associate two

other filtration by setting: Ft− =
∨
s<tFs if t > 0, Ft+ =

⋂
s>tFs if t ≥ 0, where∨

s<tFs is the smallest σ-filed containing
⋃
s<tFs. The σ-field F0− is not defined

and, by convention, we put F0− = F0, and also F∞ =
∨
t≥0Ft. An increasing

family {Ft}t≥0 is right-continuous if for each t ≥ 0, Ft+ = Ft.

For many purposes we need to assume that F0 contains all P-null sets in F .

Unless otherwise stated, completeness of (Ω,F ,P) and the above assumptions

will always be assumed to hold in this thesis. Sometimes, we also call a filtration

{Ft}t≥0 satisfying usual conditions if

(i) for each t ≥ 0, {Ft}t≥0 is a right-continuous and increasing family.

(ii) F0 contains all P−null sets in F .
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If ξ is a random variable from (Ω,F) into (S,S) and P a probability measure on

Ω, then by Q(ξ)(·) we will denote the image of P under the mapping ξ:

Q(ξ)(A) = P{ω ∈ Ω : ξ(ω) ∈ A}, ∀A ∈ S.

We say that the measure Q is the distribution or the law of ξ.

A mapping Φ(·) from Ω into L(K,H) is said to be strongly measurable if for

arbitrary k ∈ K, Φ(·)k is measurable as a mapping from (Ω,F) into (H,B(H)).

Let F(L(K,H)) be the smallest σ-field of subsets of L(K,H) containing all sets

of the form

{Φ ∈ L(K,H) : Φk ∈ A}, k ∈ K, A ∈ B(H).

Elements of (F(L(K,H))) are called strongly measurable. Then Φ : Ω→ L(K,H)

is a strongly measurable mapping from (Ω,F) into the space (L(K,H),F(L(K,H))).

Mapping Φ is said to be Bochner integrable with respect to the measure P if for

arbitrary k, the mapping Φ(·)k is Bochner integrable and there exists a bounded

linear operator Ψ ∈ L(K,H) such that∫
Ω

Φ(ω)kP(dω) = Ψk, k ∈ K.

The operator Ψ is then denoted as

Ψ =

∫
Ω

Φ(ω)P(dω)

and called the strong Bochner integral of Φ. This integral has many of the prop-

erties of the Lebesgue integral. For instance, it is easy to show that if K and H

are both separable, then ‖Φ(·)‖ is a measurable function and

‖Ψ‖ ≤
∫

Ω

‖Φ(ω)‖P(dω).

Assume that E is a Banach space with norm ‖·‖E and let B(E) be the σ-field of

its Borel subsets. Let (Ω,F ,P) be a probability space. A family X = {X(t)}t≥0

of E-valued random variables X(t), t ≥ 0, defined on Ω is called a E-valued
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stochastic process. Sometimes, we also write X(t, ω) = X(t) for all t ≥ 0 and

ω ∈ Ω. The functions X(·, ω) are called the trajectories of X. We now introduce

several definitions of regularity for a process X on I = [0, T ), where T could be

finite or infinite.

(a). X is measurable if the mapping X(·, ·) : I×Ω→ E is B(I)×F -measurable;

(b). Let {Ft}, t ∈ I, be an increasing family of σ-fields. The process X is

{Ft}t∈I-adapted if each X(t) is measurable with respect to Ft for every

t ∈ I;

(c). X is stochastically continuous at t0 ∈ I if ∀ε > 0, ∀δ > 0 ∃ρ > 0 such that

P{‖X(t)−X(t0)‖E ≥ ε} ≤ δ, ∀t ∈ [t0 − ρ, t0 + ρ] ∩ [0, T );

(d). X is stochastically continuous in I if it is stochastically continuous at every

point of I;

(e). X is continuous with probability one if its trajectories X(·, ω) are continuous

almost surely;

(f). X is càdlàg (right-continuous and left limit) if it is right-continuous and for

almost all ω ∈ Ω the left limit X(t−, ω) = lims↑tX(s, ω) exists for all t > 0.

Let E be a separable Banach space with norm ‖·‖E and M = M(t), t ∈ [0, T ],

an E-valued stochastic process defined on (Ω,F , {Ft}t∈[0,T ],P). If E‖M(t)‖E <∞

for all t ∈ [0, T ], then the process is called integrable. An integrable and adapted

E-valued process M(t), t ∈ [0, T ), is said to be a martingale with respect to

{Ft}t∈[0,T ] if

E(M(t) | Fs) = M(s) P− a.s. (2.1.19)

for arbitrary t ≥ s, t, s ∈ [0, T ]. If E‖M(t)‖2
E < ∞, for all t ∈ [0, T ] then Mt

is called square integrable. By the definition of conditional expectations, the
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equality (2.1.19) is equivalent to the following statement∫
F

M(t)dP =

∫
F

M(s)dP, ∀F ∈ Fs, s ≤ t, s, t ∈ [0, T ]. (2.1.20)

A real-valued integrable and adapted process M(t), t ∈ [0, T ], is said to be a

submartingale with respect to {Ft}t∈[0,T ] if

E(M(t) | Fs) ≥M(s), P− a.s. (2.1.21)

for any s ≤ t, s, t ∈ [0, T ]. The process M(t), t ∈ [0, T ], is said to be a super-

martingale with respect to {Ft}t∈[0,T ] if

E(M(t) | Fs) ≤M(s), P− a.s. (2.1.22)

for any s ≤ t, s, t ∈ [0, T ].

Let [0, T ], 0 ≤ T < ∞, be a subinterval of [0,∞). A continuous E-valued

stochastic process M(t), t ∈ [0, T ], defined on (Ω,F , {Ft}t∈[0,T ],P), is a continu-

ous square integrable with respect to {Ft}t∈[0,T ] if it is a martingale with almost

surely continuous trajectories and satisfies, in addition, supt∈[0,T ] E‖M(t)‖2
E <∞.

Let us denote byM2
T (E) the space of all E-valued continuous, square integrable

martingales M .

Theorem 2.1.8. The space M2
T (E), equipped with the norm

‖M‖M2
T (E) =

(
E sup
t∈[0,T ]

‖M(t)‖2
E

)1/2

, (2.1.23)

is a Banach space.

Proof. The proof can be found in Theorem 1.1.8 Liu [80] or Proposition 3.9 Da

Prato and Zabczyk [42].

An L1-valued process V (·) is said to be increasing if the operators V (t), t ∈

[0, T ], are nonnegative, denoted by Vt ≥ 0, i.e., for any k ∈ K, 〈V (t)k, k〉K ≥

0, t ∈ [0, T ], and 0 ≤ V (s) − V (t) if 0 ≤ t ≤ s ≤ T. An L1-valued continuous,

adapted and increasing process V (t) such that V0 = 0 is said to be a tensor
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quadratic variation process of the martingale M(t) ∈ M2
T (K) if and only if for

arbitrary a, b ∈ K, the process

〈M(t), a〉K〈M(t), b〉K − 〈V (t)a, b〉K , t ∈ [0, T ],

is a continuous Ft-martingale, or equivalently, if and only if the process

M(t)⊗M(t)− V (t), t ∈ [0, T ],

is a continuous Ft-martingale, where (a ⊗ b)k := a〈b, k〉K for any k ∈ K and

a, b ∈ K. One can show that the process Vt is uniquely determined and can be

denoted therefore by �M(t)�, t ∈ [0, T ].

On the other hand, one can also show that there exists a real-valued, in-

creasing, continuous process which is uniquely determined up to probability one,

denoted by [M(t)] with [M0] = 0, called the quadratic variation of M(t), such

that

‖M(t)‖2
K − [M(t)]

is an Ft-martingale.

With regard to the relation between � Mt � and [Mt] of Mt, we have the

following theorem:

Theorem 2.1.9. For arbitrary M(t) ∈M2
T (K), there exists a unique predictable,

positive symmetric element QM(ω, t), or simply Q(ω, t) of L1(K) such that

�M(t)� =

∫ t

0

QM(ω, s)d[M(s)], (2.1.24)

for all t ∈ [0, T ]. In particular, we also call the K-valued stochastic process

M(t), t ≥ 0, a QM(ω, t)-martingale process.

Proof. The proof can be found in Theorem 21.6 Mètivier [99].
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2.2 Hilbert Space Valued Wiener Processes and

Stochastic Integration

Let K be a real separable Hilbert space with norm ‖ · ‖K and inner product

〈·, ·〉K , respectively. A probability measure N on (K,B(K)) is called Gaussian if

for arbitrary u ∈ K, there exist numbers µ ∈ R, σ ≥ 0, such that

N{x ∈ K : 〈u, x〉K ∈ A} = N(µ, σ2)(A), A ∈ B(R1),

where N(µ, σ2) is the usual one dimensional normal distribution with mean µ and

variance σ2. It can be proved that if N is Gaussian, then there exist an element

m ∈ K and a symmetric nonnegative trace class operator Q ∈ L1(K) such that∫
K

〈k, x〉KN (dx) = 〈m, k〉K , ∀k ∈ K, (2.2.1)

∫
K

〈k1, x〉K〈k2, x〉KN (dx)− 〈m, k1〉K〈m, k2〉K

= 〈Qk1, k2〉K , ∀k1, k2 ∈ K,
(2.2.2)

and the characteristic function of N takes the form:

N̂ (λ) =

∫
K

ei〈λ,x〉KN (dx) = ei〈λ,m〉K−
1
2
〈Qλ,λ〉K , λ ∈ K. (2.2.3)

Therefore, the measure N is uniquely determined by m and Q and denoted also

by N (m,Q). In particular, in this case we call m the mean and Q the covariance

operator of N .

We assume that the probability space (Ω,F ,P) is equipped with a right con-

tinuous filtration {Ft}t≥0 such that F0 contains all sets of P-measure zero. We

consider two Hilbert spaces K and H, and a symmetric nonnegative operator

Q ∈ L1(K). We will firstly consider the case that TrQ < +∞. Then there exists

a complete orthonormal system {ek}k≥1 in space K, and a bounded sequence of
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positive real numbers {λk}k≥1 such that

Qek = λkek, k = 1, 2, · · ·

Definition 2.2.1. (K-valued Q-Wiener process) A K-valued stochastic pro-

cess W (t), t ≥ 0, is called a Q-Wiener process if

(a). W (0) = 0;

(b). W (t) has continuous trajectories;

(c). W (t) has independent increments;

(d). E(W (t)) = 0 and Cov(W (t) −W (s)) = (t − s)Q for all t ≥ s ≥ 0, where

Cov(X) denotes the covariance operator of X ∈ H (cf. Da Prato and

Zabczyk [42]).

If the covariance Q is the identity operator I, then the Wiener process W (t)

is called a cylindrical Wiener process in K.

Proposition 2.2.1. Assume that W (t) is a Q-Wiener process with TrQ < +∞.

Then the following statements hold:

(a) W (t) is a Gaussian process on K and

E(W (t)) = 0, Cov(W (t)) = tQ, t ≥ 0. (2.2.4)

(b) For arbitrary t ≥ 0, W (t) has the expansion

W (t) =
∞∑
j=1

√
λjβj(t)ej (2.2.5)

where

βj(t) =
1√
λj
〈W (t), ej〉, j = 1, 2, · · · , (2.2.6)

are real valued Brownian motions mutually independent on (Ω,F ,P) and the se-

ries in (2.2.5) is convergent in L2(Ω,F ,P).
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Proposition 2.2.2. For an arbitrary trace class symmetric nonnegative operator

Q on the separable Hilbert space K, there exists a Q-Wiener process W (t), t ≥ 0.

Proof. The proof can be found in Proposition 4.1 Da Prato and Zabczyk [42].

Theorem 2.2.1. Let W (t) be a Q-Wiener process such that (2.2.4) holds. Then

the series (2.2.5) is uniformly convergent on [0, T ] P-a.s., for arbitrary T > 0.

Proof. The proof can be found in Theorem 4.3 Da Prato and Zabczyk [42].

We may also derive the following direct generalization of Lévy’s celebrated

characterization result.

Theorem 2.2.2. A continuous martingale M ∈ M2
T (K), M(0) = 0, is a Q-

Wiener process on [0, T ] adapted to the filtration {Ft}t≥0 and with increments

M(t)−M(s), 0 ≤ t ≤ s ≤ T, independent of Fs, for s ∈ [0, T ], if and only if

�M(t)� = tQ, t ∈ [0, T ].

Proof. The proof can be found in Theorem 4.4 Da Prato and Zabczyk (1992).

Let (Ω,F , {Ft}t≥0,P) be a complete probability space, with a normal filtra-

tion {Ft}t≥0 satisfying the usual conditions. Let W (t), t ≥ 0 denote a K-valued

Wiener process defined on the probability space (Ω,F , {Ft}t≥0,P), with covari-

ance operator Q, that is

E〈W (t), x〉K〈W (s), y〉K = (t ∧ s)〈Qx, y〉K , for all x, y ∈ K,

where t ∧ s = min{t, s} and Q is a positive, self-adjoint, trace class operator on

K. To define stochastic integrals with respect to the Q-Wiener process W (t),

we introduce the subspace K0 = Q
1
2K of K endowed with the inner product

〈u, v〉K0
= 〈Q− 1

2u,Q−
1
2v〉K which is a Hilbert space. We assume that there ex-

ist a complete orthonormal system {ei}i≥1 in K, a bounded sequence of positive
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numbers λi such that Qei = λiei, i = 1, 2, . . . , and sequence {βi(t)}i≥1 of inde-

pendent standard real Brownian motions such that

W (t) =
+∞∑
i=1

√
λiβi(t)ei for t ≥ 0

and

Ft = FWt ,

where FWt is the σ-algebra generated by {W (t) : t ∈ [0,∞)}.

Roughly speaking, the stochastic integral
∫ t

0
Φ(s, ω)dW (s) may be defined

in the following way. Let L0
2(K0, H) denote the sapce of all Hilbert-Schmidt

operators from K0 into H. Then L0
2(K0, H) turns out to be a separable Hilbert

space under the inner product

〈L, P 〉L0
2(K0,H) = Tr

[
LQ

1
2

(
PQ

1
2

)∗]
,

for any L, P ∈ L0
2(K0, H). For arbitrarily given T ≥ 0, let Φ(t, ω), t ∈ [0, T ],

be an Ft-adapted, L0
2(K0, H)-valued process. We define the following norm for

arbitrary t ∈ [0, T ],

|Φ|t :=

{
E
∫ t

0

‖Φ(s, ω)‖2
L0

2
ds

} 1
2

=

{
E
∫ t

0

Tr

[(
Φ(s, ω) ·Q

1
2

)(
Φ(s, ω) ·Q

1
2

)∗]
ds

} 1
2

.

(2.2.7)

In general, we denote all L0
2(K0, H)-valued predictable process Φ such that |Φ|T <

∞ by W2([0, T ];L0
2). In particular, if Φ(t, ω) ∈ L0

2(K0, H), t ∈ [0, T ], is an Ft-

adapted, L(K,H)-valued process, (2.2.7) turns out to be

|Φ|t =

{
E
∫ t

0

Tr

(
Φ(s, ω)QΦ(s, ω)∗

)
ds

} 1
2

, t ∈ [0, T ] (2.2.8)

Proposition 2.2.3. For arbitrary T > 0 and Φ ∈ W2([0, T ];L0
2), the stochastic

integral
∫ t

0
Φ(s, ω)dW (s) is a continuous, square integrable H-valued martingale
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on [0, T ] and

E
∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥2

H

= |Φ|2t , t ∈ [0, T ]. (2.2.9)

As a matter of fact, the stochastic integral∫ t

0

Φ(s, ω)dW (s), t ≥ 0, (2.2.10)

may be generalized for any L0
2(K0, H)-valued adapted process Φ(·, ω) satisfying

P
{∫ t

0

‖Φ(s, ω)‖2
L0

2
ds <∞, 0 ≤ t ≤ T

}
= 1. (2.2.11)

Moreover, we may deduce the following generalized relation of (2.2.9)

E
∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥2

H

≤ E
∫ t

0

‖Φ(s, ω)‖2
L0

2
ds, 0 ≤ t ≤ T. (2.2.12)

with the equality holding in (2.2.12) if the right hand side is finite.

Proposition 2.2.4. Let Φ ∈ W2([0, T ];L0
2), then

∫ t
0

Φ(s, ω)dW (s) is a continu-

ous square integrable martingale, and its tensor quadratic variance is of the form

�
∫ t

0

Φ(s, ω)dW (s)� =

∫ t

0

QΦ(s, ω)ds, (2.2.13)

where

QΦ(t, ω) =

(
Φ(t, ω)Q

1
2

)(
Φ(t, ω)Q

1
2

)∗
, t ∈ [0, T ]. (2.2.14)

Theorem 2.2.3. (Fubini Theorem) Let (Z,Ω,m) be a measurable space and

(Φ(t, z)(t,z)∈[0,T ]×Z) be a L0
2-valued stochastic process. Assume that∫

Z

∫ T

0

‖Φ(s, z)‖2
L0

2
dsm(dz) < +∞, (2.2.15)

then with probability one∫
Z

(∫ T

0

Φ(s, z)dW (s)

)
m(dz) =

∫ T

0

(∫
Z

Φ(s, z)µ(dz)

)
dW (s). (2.2.16)
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Theorem 2.2.4. (Doob’s inequalities) Assume T ≥ 0 and

E
∫ T

0

‖Φ(s, ω)‖pL0
2
ds <∞.

(i) For arbitrary p > 1 and λ > 0,

P

{
sup

0≤t≤T

∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

≥ λ

}
≤ 1

λp
E
∥∥∥∥∫ T

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

.

(ii) For arbitrary p > 1,

E
(

sup
0≤t≤T

∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

)
≤ p

p− 1
E
∥∥∥∥∫ T

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

.

Proof. The proof can be found in Theorem 7.1 Da Prato and Zabczyk [42].

Theorem 2.2.5. (Burkholder-Davis-Gundy) For arbitrary p > 0, and let Φ

be a L0
2−valued process such that

E
(∫ T

0

‖Φ(s)‖pL0
2
ds

)
< +∞.

Then there exists a constant Cp > 0, dependent only on p, such that for any

T ≥ 0,

E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

}
≤ CpE

{∫ T

0

‖Φ(s, ω)‖2
L0

2
ds

}p/2
. (2.2.17)

Proof. The proof can be found in Theorem 7.2 Da Prato and Zabczyk [42].

Assume A is a linear operator, generally unbounded, on H and S(t), t ≥ 0,

is a strongly continuous semigroup of bounded linear operator with infinitesimal

generator A. Suppose Φ(t, ω) ∈ W2([0, T ];L0
2), t ∈ [0, T ], is an L0

2(K0, H)-valued

process such that the stochastic integral∫ t

0

S(t− s)Φ(s, ω)dW (s) = WΦ
A (t, ω), t ∈ [0, T ],

is well defined. Then the process WΦ
A (t, ω) is called the stochastic convolution

of Φ. In general, the stochastic convolution is no longer a martingale. However,

we have the following result which could be regarded as an infinite dimensional
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version of Burkholder-Davis-Gundy type of inequality for stochastic convolutions.

Proposition 2.2.5. [42] Let p > 2, T > 0 and Φ be a L0
2-valued process such

that

E
(∫ T

0

‖Φ(s)‖pL0
2
ds

)
< +∞.

There exists a value CT > 0 such that

E
(

sup
t∈[0,T ]

‖S(t− s)Φ(s)dW (s)‖pH
)
≤ CTE

(∫ T

0

‖Φ(s)‖pL0
2
ds

)
. (2.2.18)

Moreover, if TrQ <∞, then

lim
n→∞

E sup
t∈[0,T ]

‖WΦ
A (t)−WΦ

A,n(t)‖p = 0, (2.2.19)

where WΦ
A (t) and WΦ

A,n(t) are defined as

WΦ
A (t) =

∫ t

0

S(t− s)Φ(s)dW (s), (2.2.20)

WΦ
A,n(t) =

∫ t

0

Sn(t− s)Φ(s)dW (s) t ∈ [0, T ], (2.2.21)

where Sn(t − s) is the C0-semigroup generated by An which are the Yosida ap-

proximation of A.

Proof. The proof can be found in Proposition 7.3 Da Prato and Zabczyk [42].

Theorem 2.2.6. Let p ≥ 2 and assume that A generates a contraction semigroup

S(t), t ≥ 0, and Φ(t, ω) ∈ W2([0, T ];L0
2), t ∈ [0, T ], is an L0

2(K0, H)-valued

process. Then the stochastic convolution WΦ
A (t, ω) has a continuous modification

and there exists a constant Cp,T > 0, dependent of p and T, such that

E
{

sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)Φ(s, ω)dW (s)

∥∥∥∥p
H

}
≤ CT,p ·E

{∫ T

0

‖Φ(s, ω)‖2
L0

2
ds

}p/2
.

(2.2.22)

Proof. The proof can be found in Theorem 7.4 Da Prato and Zabczyk [42].

Moreover, if A generates a contraction C0-semigroup the number CT,p > 0 may
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be chosen to depend on p ≥ 2 only.

Note that in Proposition 2.2.5, there is a restriction on the condition p > 2 to

secure the validness of (2.2.18) for any C0-semigroup S(t), t ≥ 0, on H. A version

of Theorem 2.2.6 is possible to cover the case p = 2. However, we have to restrict

in this case the C0-semigroup S(t), t ≥ 0, to a pseudo-contraction one.

Lemma 2.2.1. For any p ≥ 2, let Φ ∈ W([0, T ],L0
2(K0, H), t ∈ [0, T ], is an

L0
2(K0, H)-valued process, then

sup
s∈[0,T ]

E
∥∥∥∥∫ t

0

Φ(s, ω)dW (s)

∥∥∥∥p
H

≤ Cp

(∫ T

0

(E‖Φ(s, ω)‖pL0
2
)2/pds

)p/2
, (2.2.23)

where Cp =

(
p(p−1)

2

)p
, t ∈ [0, T ].

Proof. The proof can be found in Lemma 7.7 Da Prato and Zabczyk [42].

As another important tool, we mention the following infinite dimensional ver-

sion of the classic Itô’s formula which plays an essential role in stochastic pro-

cesses studies. Suppose that V (t, x) : I ×H → R is a continuous function with

properties:

(i). V (t, x) is differentiable in t and V
′
t (t, x) is continuous on I ×H;

(ii). V (t, x) is twice Fréchet differentiable in x, V
′
t (t, x) ∈ H and V

′′
t (t, x) ∈ L(H)

are continuous on I ×H, where I = [0, T ], T > 0.

Assume that Φ(t, ω) ∈ W2([0, T ];L0
2) is an L0

2(K0, H)-valued process, φ(t, ω)

is an H-valued continuous, Bochner integrable process on [0, T ], and x0 is an

F0-measurable, H-valued random variable. Then the following H-valued process

X(t) = x0 +

∫ t

0

φ(s, ω)ds+

∫ t

0

Φ(s, ω)dW (s), t ∈ [0, T ], (2.2.24)

can be well defined.

Theorem 2.2.7. (Itô’s formula) Suppose the above condition (i) and (ii) hold,
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then for all t ∈ [0, T ], Z(t) = V (t,X(t)) has the stochastic differential

dZ(t) =

{
V
′

t (t, x) + 〈V ′x(t,X(t)), φ(t)〉H

+
1

2
Tr

[
V
′′

xx(t,X(t))
(
Φ(t)Q1/2

)(
Φ(t)Q1/2

)∗]}
dt

+ 〈V ′x(t,X(t)),Φ(t)dW (t)〉H .

(2.2.25)

2.3 Jump Process

Let U be a Hilbert space with its norm ‖ · ‖U and inner product 〈·, ·〉U . Suppose

that Z = {Z(t)}, t ≥ 0, is an U -valued Lévy process so that Z has stationary

and independent increments, is stochastically continuous and satisfies Z(0) = 0

almost surely. Let pt be the law of Z(t) for each t ≥ 0, then (pt, t ≥ 0) is a weakly

continuous convolution semigroup of probability measures on U . Associated with

the Lévy process Z, we have the following Lévy-Khintchine formula or infinitely

divisible distribution: for any t ≥ 0 and h ∈ U,

E
(
ei〈h,Z(t)〉U

)
= etηb,Q,ν(h), (2.3.1)

with the exponent

ηb,Q,ν(h) =i〈b, h〉U −
1

2
〈h,Qh〉U

+

∫
U

[
ei〈h,x〉U − 1− i〈h, x〉U · X{‖x‖U≤1}(x)

]
ν(dx),

(2.3.2)

where b ∈ U, Q is a positive, self-adjoint and trace class operator on U . And ν

is the so-called Lévy measure on U , satisfying the relations that

ν({0}) = 0 and

∫
U

(‖x‖2
U ∧ 1)ν(dx) <∞. (2.3.3)

Here we use the symbol XE(x) to denote the characteristic function on set E ⊂ U,

i.e., XE(x) = 1 if x ∈ E and XE(x) = 0 if x /∈ E. We call the triple (b,Q, ν) the

characteristics of the process Z, and mapping ηb,Q,ν the characteristic exponent of

Z. It can be shown that Lévy process has a càdlàg version which, unless otherwise
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specified, will be always assumed to be the case in this thesis. We also strengthen

the independent increment requirement on Z by assuming that Z(t) − Z(s) is

independent of Fs for all 0 ≤ s < t <∞.

If Z is a Lévy process on U , we write ∆Z(t) = Z(t) − Z(t−) for all t ≥ 0

where Z(t−) := lims↑t Z(s). We obtain then a counting Poisson random measure

N on U\{0} by

N(t, E) = #{0 ≤ s ≤ t : ∆Z(s) ∈ E} <∞, t ≥ 0, (2.3.4)

almost surely for any E ∈ B(U\{0}) with 0 /∈ Ē, the closure of E in U . Here the

symbol # means the counting and B(U\{0}) is the Borel σ-field on U\{0}. The

associated compensated Poisson random measure Ñ is defined by

Ñ(t, dx) = N(t, dx)− tν(dx). (2.3.5)

Let O ∈ B(U\{0}) with 0 6∈ Ō and νO denote the restriction of measure ν to

O, still denote it by ν, so that ν is finite on O. Let V([0, T ]×O;H) denote the

spaces of all predictable mappings L : [0, T ]×O × Ω→ H with∫ T

0

∫
O
E‖L(t, x)‖2

Hν(dx)dt <∞.

We may then define the following stochastic integral∫ T

0

∫
O
L(t, x)N(dt, dx) =

∑
0≤t≤T

L(t,∆Z(t))1O(∆Z(t)),

which enables us to define further the stochastic integral∫ T

0

∫
O
L(t, x)Ñ(dt, dx) :=

∫ T

0

∫
O
L(t, x)N(dt, dx)−

∫ T

0

∫
O
L(t, x)ν(dx)dt.

By standard arguments, it is known that

M(t) =

∫ t

0

∫
O
L(s, x)Ñ(ds, dx), t ≥ 0,
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is actually an H-valued square-integrable martingale, for each T ≥ 0, satisfying

E
(∥∥∥∥∫ T

0

∫
O
L(t, x)Ñ(dt, dx)

∥∥∥∥2

H

)
≤
∫ T

0

∫
O
E‖L(t, x)‖2

Hν(dx)dt.

Theorem 2.3.1. (Lévy-Itô decomposition) Suppose that Z(t), t ≥ 0, is a

càdlàg U-valued Lévy process with characteristic exponent given by (2.3.2), then

for each t ≥ 0,

Z(t) = bt+WQ(t) +

∫
‖x‖U<1

xÑ(t, dx) +

∫
‖x‖U≥1

xN(t, dx), (2.3.6)

where WQ(t) is a Q-Wiener process, independent of N .

Proof. The proof can be found in Theorem 4.1 Albeverio and Rüdiger (2005).

In many situations, the term in equation (2.3.6) involving large jumps maybe

handled by using an interlacing technique (c.f. Applebaum (2004)). In the rest

of this thesis, for the sake of simplicity, we proceed by omitting this term and

concentrate on the study of the equation with small jumps.

2.4 Semigroup Approach and Mild Solutions of

Stochastic Differential Equations

In this section, we consider the following semilinear stochastic differential equa-

tion on I = [0, T ], T ≥ 0,
dX(t) = (AX(t) + F (t,X(t)))dt+G(t,X(t))dW (t),

X0 = x0 ∈ H,
(2.4.1)

where A is the infinitesimal generator of a C0-semigroup S(t), t ≥ 0, of bounded

linear operators on the Hilbert space H. The coefficients F and G are two non-

linear measurable mappings from [0, T ] × H → H and [0, T ] × H → L(K,H),
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respectively, satisfying the following Lipschitz continuity conditions:

‖F (t, y)− F (t, z)‖H ≤ α(T )‖y − z‖H , α(T ) > 0, y, z ∈ H, t ∈ [0, T ],

‖G(t, y)−G(t, z)‖L0
2
≤ β(T )‖y − z‖H , β(T ) > 0, y, z ∈ H, t ∈ [0, T ].

(2.4.2)

Definition 2.4.1. A stochastic processX(t), t ∈ I, defined on (Ω,F , {Ft}t≥0,P),

is called a strong solution of equation (2.4.1) if

(i) X(t) ∈ D(A), 0 ≤ t ≤ T, almost surely and is adapted to Ft, t ∈ I;

(ii) X(t) is continuous in t ∈ I almost surely. For arbitrary 0 ≤ t ≤ T,

P
{
ω :

∫ t

0

‖X(s, ω)‖2
Hds <∞

}
= 1

and

X(t) = x0 +

∫ t

0

(AX(s) + F (s,X(s)) +

∫ t

0

G(s,X(s))dW (s), (2.4.3)

for any x0 ∈ D(A) almost surely.

In most situations, one finds that the concept of strong solution is too limited

to include important examples. There is a weaker concept, mild solution, which

is found to be more appropriate for practical purposes.

Definition 2.4.2. A stochastic process X(t), t ∈ I, define on (Ω,F , {Ft}t≥0,P)

is called a mild solution of equation (2.4.1) if

(i) X(t) is adapted to Ft, t ≥ 0;

(ii) For arbitrary 0 ≤ t ≤ T,

P
{
ω :

∫ t

0

‖X(s, ω)‖2
Hds <∞

}
= 1,

and

X(t) = S(t)x0 +

∫ t

0

S(t−s)F (s,X(s))ds+

∫ t

0

S(t−s)G(s,X(s))dW (s), (2.4.4)

for any x0 ∈ H almost surely.

As a direct application of the properties of semigroup theory, it may be proved
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that:

Proposition 2.4.1. For arbitrary x0 ∈ D(A), the domain of A, assume X(t) ∈

D(A), t ∈ I, is a solution of equation (2.4.1) in the sense of satisfying

X(t) = x0 +

∫ t

0

(AX(s) + F (s,X(s)))ds+

∫ t

0

G(s,X(s))dW (s), (2.4.5)

then it is also a mild solution.

By a straightforward argument, it is possible to establish the following result.

Proposition 2.4.2. Assume that the Lipschitz condition (2.4.2) holds, then there

exists at most one mild solution of equation (2.4.1). In other words, under the

condition (2.4.2) the mild solution of (2.4.1) is unique.

The following stochastic version of the classic Fubini theorem will be fre-

quently used in the thesis and its proof can be found in Da Prato and Zabczyk

[42].

Proposition 2.4.3. Let I = [0, T ], T ≥ 0, and

G : I × I × Ω→ (L(K,H),F(L(K,H))),

be strongly measurable in the sense of Section 2.1. such that G(s, t) is {Ft}-

measurable for each s ≥ 0 with∫ T

0

∫ T

0

‖G(s, t)‖2
L0

2
dsdt <∞ a.s. (2.4.6)

Then ∫ T

0

∫ T

0

G(s, t)dW (t)ds =

∫ T

0

∫ T

0

G(s, t)dsdW (t) a.s. (2.4.7)

The following result gives sufficient conditions for a mild solution to be also

a strong solution.

Proposition 2.4.4. Suppose that the following conditions hold:
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(a) x0 ∈ D(A), S(t − s)F (s, t) ∈ D(A), S(t − s)G(s, t)k ∈ D(A) for each

x ∈ H, k ∈ K, and t ≥ s;

(b) ‖AS(t− s)F (s, x)‖H ≤ f(t− s)‖x‖H , f(·) ∈ L1(0, T ;R+);

(c) ‖AS(t− s)G(s, x)‖L0
2
≤ g(t− s)‖x‖H , g(·) ∈ L2(0, T ;R+).

Then a mild solution X(t), t ∈ I, of equation (2.4.1) is also a strong solution

with X(t) ∈ D(A), t ∈ I, in the sense of Definition 2.2.3.

Proof. The proof can be in Proposition 1.3.5 Liu [80].

Theorem 2.4.1. [80] Assume that the conditions (2.4.2) hold. Suppose that

x0 ∈ H is an arbitrarily given F0-measurable random variable with E‖x0‖pH <∞

for some integer p ≥ 2. Then there exists a unique mild solution of (2.4.1) in the

space C(0, T ;Lp(Ω,F ,P;H)).

As we pointed out in Section 2.2, the stochastic convolution in (2.4.4) is

no longer a martingale. A remarkable consequence of this fact is that we cannot

employ Itô’s formula for mild solutions directly in most of our arguments. We can

deal with this problem, however, by introducing approximating systems of strong

solutions to which Itô’s formula can be well applied. In particular, by virtue of

Proportion 2.4.4, we may obtain an approximation result of mild solutions. To

this end, we introduce an approximating system of (2.4.1) as follows:
dX(t) = AX(t)dt+R(l)F (t,X(t))dt+R(l)G(t,X(t))dW (t),

X0 = R(l)x0, x0 ∈ H,
(2.4.8)

where l ∈ ρ(A), the resolvent set of A and R(l) := lR(l, A), R(l, A) is the resol-

vent of A.

Proposition 2.4.5. Let x0 be an arbitrarily given random variable in H with

E‖x0‖pH < ∞ for some integer p > 2. Suppose the nonlinear terms F (·, ·),

G(·, ·) in (2.4.1) satisfy the Lipschitz condition (2.4.2). Then, for each l ∈
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ρ(A), the stochastic differential equation (2.4.8) has a unique strong solution

X(t, l) ∈ D(A), which lies in Lp(Ω,F ,P;C(0, T ;H)) for all T > 0 and p > 2.

Moreover, there exist a subsequence, denoted by Xn(t), such that for arbitrary

T > 0, Xn(t)→ X(t) almost surely as n→∞, uniformly with respect to [0, T ].

Proof. The proof can be in Proposition 1.3.6 Liu [80].

2.5 Definitions and Methods of Stability

In 1892, A.M. Lyapunov introduced the concept of stability of a dynamic system.

Roughly speaking, stability means insensitivity of the state of the system to small

changes in the initial state or the parameters of the system. Indeed, an individual

predictable process can be physically realized only when it is stable in a natural

sense. If a system can be solved explicitly, it would be rather easy to determine

whether the trivial solution is stable. But only in very special cases, the equations

can be solved explicitly. However, Lyapunov introduced a method to determine

stability without necessarily solving the equation. This method is now well-known

as the Lyapunov direct method.

Let us study the following system to motivate the stability ideas. We now

consider the solutions of Y (t, y0), t ≥ 0, of a deterministic differential equation

on the Hilbert space H,
dY (t) = g(t, Y (t)))dt, t ≥ 0,

Y0 = y0 ∈ H,
(2.5.1)

where g(·, ·) is some given function. Let Ỹ (t), t ≥ 0, be a particular solution of

system (2.5.1). The system associated with other solutions Y (t, y0) are regarded

as perturbed ones. When one talks about stability of the solution Ỹ (t), t ≥ 0,

it means that the norm ‖Y (t)− Ỹ (t)‖H could be made small enough under some

suitable assumptions, for instance, that the initial perturbation scale ‖Y0− Ỹ0‖H
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is small enough or t is very large. Let X(t) = Y (t) − Ỹ (t), then the equation

(2.5.1) can be written as:

dX(t) = dY (t)− dỸ (t) = (g(t, Y (t))− g(t, Ỹ (t)))dt

= (g(t,X(t) + Ỹ (t))− g(t, Ỹ (t)))dt := G(t,X(t))dt,

(2.5.2)

where G(t, 0) = 0, t ≥ 0. Therefore, we could content ourselves with defining and

studying stability for the null solution of (2.5.2).

Definition 2.5.1. (Stability) The null solution of (2.5.2) is said to be stable, if

for arbitrarily given ε > 0, there exists δ = δ(ε) > 0 such that if ‖x0‖H < δ, then

‖X(t, x0)‖H < ε

for all t ≥ 0.

Definition 2.5.2. (Asymptotic Stability) The null solution of (2.5.2) is said to be

asymptotically stable if it is stable and there exists δ > 0 such that if ‖x0‖H < δ,

then

lim
t→∞
‖X(t, x0)‖H = 0.

Definition 2.5.3. (Exponential Stability) The null solution of (2.5.2) is said

to be exponentially stable if it is asymptotically stable and there exists some

numbers α > 0 and β > 0 such that

‖X(t, x0)‖H < β‖x0‖He−αt,

for all t ≥ 0.

When we try to carry over the principles of the Lyapunov stability theory

from deterministic systems to stochastic ones, we may need to consider what is

the proper definition of stochastic stability. There are at least three basic types

of stochastic stabilities: stability in probability, moment stability and almost sure
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stability. Stochastic stability has been one of the most active areas in stochastic

analysis and many researchers have contributed a lot in this field. We here men-

tion Arnold [4], Chow [33], Curtain [39], Da Prato and Zabczyk [42], Khas’minskii

[62], Liu [80], Mao [96], Mohammed [101], Truman [117] among others.

Consider the following semilinear stochastic differential equation in H:
dX(t) = (AX(t) + F (t,X(t)))dt+G(t,X(t))dW (t),

X0 = x0 ∈ H,
(2.5.3)

where A is the infinitesimal generator of a C0−semigroup S(t), t ≥ 0, of bounded

linear operators on the Hilbert space H. The coefficients F,G are two nonlinear

measurable mappings from [0, T ]×H → H and [0, T ]×H → L0
2(K0, H), respec-

tively, satisfying the following Lipschitz condition:

(H1) ‖F (t, x)− F (t, y)‖H ≤ α(T )‖x− y‖H , α(T ) > 0, x, y ∈ H,

(H2) ‖G(t, x)−G(t, y)‖L0
2
≤ β(T )‖x− y‖H , β(T ) > 0, x, y ∈ H,

for all t ∈ [0, T ].

Definition 2.5.4. A stochastic processX(t), t ∈ [0, T ], defined on (Ω,F , {F}t≥0,P)

is called a mild solution of (2.5.3) if (a) Xt is adapted to Ft, t ≥ 0;

(b) For arbitrary t ∈ [0, T ],

P
{
ω :

∫ t

0

‖X(s, ω)‖2
Hds <∞

}
= 1

and

X(t) = S(t)x0 +

∫ t

0

S(t−s)F (s,X(s))ds+

∫ t

0

S(t−s)G(s,X(s))dW (s), (2.5.4)

for any x0 ∈ H almost surely.

Definition 2.5.5. (Stable in Probability) The null solution of (2.5.4) is said to

be stable in probability, if for arbitrarily given ε, ε
′
> 0, there exists δ(ε, ε

′
) > 0
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such that if ‖x0‖H < δ, then

P

{
‖X(t, x0)‖H > ε

′
}
< ε

for all t ≥ 0.

Definition 2.5.6. (Stability in p-th Moment) The null solution of (2.5.4) is said

to be stable in p-th moment, p > 0, if for arbitrarily given ε > 0, there exists

δ(ε) > 0 such that if ‖x0‖H < δ, then

E‖X(t, x0)‖pH < ε

for all t ≥ 0.

Definition 2.5.7. (Almost Sure Stability) The null solution of (2.5.4) is said to

be almost sure stable, if for each ε > 0, there exists δ(ε) > 0 such that ‖x0‖H < δ,

then

P
{
‖X(t, x0)‖pH < ε

}
= 1

for all t ≥ 0.

We now define the asymptotic stability and exponential stability.

Definition 2.5.8. (Asymptotic Stability in Probability) The null solution of

(2.5.4) is said to be asymptotically stable in probability, if it is stable in probabil-

ity and for each ε > 0, there exists δ = δ(ε) > 0 such that ‖x0‖H < δ guarantees

lim
t→∞

P
{
‖X(t, x0)‖H > ε

}
= 0.

Definition 2.5.9. (Asymptotic Stability in p-th Moment) The null solution of

(2.5.4) is said to be asymptotically stable in p-th moment, p > 0, if it is stable in

p-th moment and there exists δ > 0 such that ‖x0‖H < δ guarantees

lim
t→∞

E‖X(t, x0)‖pH = 0.
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Definition 2.5.10. (Asymptotic Almost Sure Stability) The null solution of

(2.5.4) is said to be asymptotic almost sure stable if it is stable in probability and

there exists δ > 0 such that ‖x0‖H < δ guarantees

P
{

lim
t→∞
‖X(t, x0)‖pH = 0

}
= 1.

Definition 2.5.11. (p-th Moment Exponential Stability) The null solution of

(2.5.4) is said to be p-th moment exponentially stable, p > 0, if there exist

positive numbers α > 0 and β > 0 such that

E‖X(t, x0)‖pH ≤ β‖x0‖pHe
−αt.

for all t ≥ 0.

Definition 2.5.12. (Almost Sure Exponential Stability) The null solution of

(2.5.4) is said to be almost sure exponentially stable, if there exist positive num-

bers α > 0 and β > 0 such that

P
{
‖X(t, x0)‖H ≤ β‖x0‖He−αt

}
= 1.

for all t ≥ 0.

2.6 Notes and Remarks

The material of this chapter is classical and standard. The concepts in Section

2.1 are adapted from Kreszig [67] and Pazy [109]. The result in Section 2.2, 2.4

and 2.5 are taken mainly from Liu [79]. For the material of Section 2.3, we refer

the reader for Da Prato and Zabczyk [42]. For more details of this chapter, see

also Kallianpur [62], Kozin [66], Rozovskii [63], Teman [117], Wu [120], Yosida

[125]. For finite dimensional stochastic differential equations, see also Arnold [5],

Mao [96].
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Chapter 3

Moment Exponential Stability of

Neutral Impulsive Stochastic

Delay Partial Differential

Equations with Poisson Jumps

3.1 Introduction

In recent years, studies on stochastic partial differential equations (SPDEs) have

been widely noticed in the literature. Stochastic partial differential equations

have received much attention, since many real world issues can be modelled by

SPDEs. SPDEs can be used in many applications, such as finance, engineering,

and science.

Mao [96] has given some results for the stability of solutions to stochastic

differential equations in finite dimensional spaces, as well as among others. Cara-

ballo and Liu [26] have studied the exponential stability of mild solutions of

SPDEs with delays by stochastic analysis technique. As we known, the Lya-

punov’s direct method is a classic and powerful tool to investigate the existence,
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uniqueness and asymptotic behaviour of solutions of the stochastic systems. But

it is not useful to discuss those problems such as delay systems. However, many

dynamical systems not only depend on present and past states, but also involve

derivatives with delays. The neutral SPDEs with delays are more often used to

describe such systems. Luo [87] has applied the Banach fixed point theorem to

deal with the asymptotical stability in mean square of SPDEs with delays. This

valuable method has also been employed by Burton and his co-authors ([13],

[14], [15], [16]) to investigate the stability of both deterministic and stochastic

differential equations.

In practical applications, impulsive differential equations have been used to

model interesting problems. Sakthivel and Luo [110] [111] have discussed asymp-

totic stability of nonlinear impulsive stochastic differential equations and asymp-

totic stability of impulsive SPDEs with infinite delays. Zhang and his co-authors

[129] have investigated moment exponential stability of neutral impulsive nonlin-

ear SPDEs with delays. Maheswari and Karunanithi [92] have studied asymptotic

stability of stochastic impulsive neutral partial functional differential equations.

The study of SPDEs with impulsive effects is a new area of research, which can

be found in the literature.

Recently, SPDEs driven by jump processes have received attentions. Cui [35]

has discussed exponential stability for neutral SPDEs with delays and Poisson

jumps. Some results on SDEs or SPDEs with Poisson jumps have been noticed

in the literature. To the best of my knowledge, there are only a few papers on

stability analysis for impulsive neutral SPDEs with delays and Poisson jumps. We

study in this chapter the moment exponential stability of mild solution of neutral

impulsive stochastic delay partial differential equations with Poisson jumps under

natural conditions. Here we shall apply the so-called fixed point theorem to

investigate the existence and uniqueness moment exponential stability of mild

solutions of this class of systems.
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3.2 Problem Formulation and Assumptions

Let H and K be two real separable Hilbert spaces with norms (H, ‖ · ‖H) and

(K, ‖ · ‖K), and their inner products denoted by 〈·, ·〉K , 〈·, ·〉H . We denote by

L(K,H) the set of all linear bounded operators from K → H, equipped with

the usual operator norm ‖ · ‖. In this chapter, we use the symbol ‖ · ‖ to denote

norms of operators regardless of the spaces potentially involved when no confusion

possibly arises.

Let (Ω,F , {Ft}t≥0,P) be a filtered complete probability space, with a normal

filtration {Ft}t≥0 satisfying the usual conditions ( i.e. The filtration is a right

continuous increasing family and F0 contains all P-null sets). Let r > 0 and

D := D([−r, 0];H) be the space of all bounded, càdlàg (i.e, is right continuous

and has left limits) functions from [−r, 0] into H, equipped with the norm ‖φ‖D =

supt∈[−r,0] ‖φ(t)‖H , φ ∈ D. It can be shown that the space D, under the norm

‖φ‖D = sup
t∈[−r,0]

‖φ(t)‖H , φ ∈ D,

is a Banach space.

Let W (t), t ≥ 0 denote a K-valued Wiener process defined on the probability

space (Ω,F , {Ft}t≥0,P), with covariance operator Q, that is

E〈W (t), x〉K〈W (s), y〉K = (t ∧ s)〈Qx, y〉K , ∀x, y ∈ K,

where t ∧ s = min{t, s} and Q is a positive, self-adjoint, trace class operator on

K. We assume that there exists a complete orthonormal system {ei}i≥1 in K, a

bounded sequence of positive numbers λi such that Qei = λiei, i = 1, 2, . . . , and

sequence {βi(t)}i≥1 of independent standard real Brownian motions such that

W (t) =
+∞∑
i=1

√
λiβi(t)ei, t ≥ 0

and

Ft = FWt ,
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where FWt is the σ-algebra generated by {W (t) : t ∈ [0,∞)}. We introduce

the subspace K0 = Q
1
2K of K endowed with the inner product 〈u, v〉K0 =

〈Q1 1
2u,Q−

1
2v〉 which is a Hilbert space. Furthermore, let L0

2(K0, H) denotes the

space of all Hilbert-Schmidt operators from K0 to H with the norm

|ξ|2L0
2

:= tr(ξQ1/2(ξQ1/2)
∗
) <∞, ξ ∈ L0

2(K0, H).

For the construction of stochastic integral in Hilbert space, see Da. Prato and

Zabczyk [42].

Let A be a linear operator from H to H. Assume that {S(t), t ≥ 0} is

an exponentially stable analytic semigroup with its infinitesimal generator A.

Then it is possible (see[109]), under some circumstances, to define the fractional

power (−A)α for any α ∈ (0, 1] which is a closed linear operator with its domain

D((−A)α), furthermore, the subspace D((−A)α) is dense in H and the expression

‖x‖α = |(−A)αx|H , x ∈ D((−A)α),

defines a norm on D((−A)α).

Let U be a Hilbert space with norm ‖ · ‖U and inner product 〈·, ·〉U . For a

Borel set O ∈ B(U −{0}), we consider the following impulsive neutral stochastic

delay partial differential equation with both Poisson point process and Brownian

motions in the form:

d[x(t) + u(t, x(t− r))] = [Ax(t) + f(t, x(t− r))]dt+ g(t, x(t− r))dW (t)

+

∫
O
h(t, x(t− r), z)Ñ(dt, dz), t ≥ 0, t 6= tk

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, . . . ,

x0(t) = φ(t) ∈ D([−r, 0];H).

(3.2.1)

where D := D([−r, 0];H) is the space of all càdlàg functions from [−r, 0] into

H, equipped with the supremum norm ‖φ‖D = supt∈[−r,0] ‖φ(t)‖H . Here u, f :
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[0,+∞) × H → H, g : [0,+∞) × H → L0
2(K0, H), h : [0,+∞) × H × U → H

are measurable functions and Ik : H → H is measurable and 0 < t1 < . . . < tk <

. . . , limk→∞ tk =∞, x(t+k ) and x(t−k ) represent the right and left limits of x(t) at

t = tk, k = 1, 2, . . . , respectively. The mapping Ik represents the size of the jump

at tk, k = 1, 2, . . ..

Definition 3.2.1. A stochastic process {x(t), t ∈ [0, T ]}, 0 ≤ T , is called a mild

solution of equation (3.2.1) if:

(i). x(t) is adapted to Ft, for each t ≥ 0, and

P
{
ω :

∫ T

0

‖x(t, ω)‖pHdt <∞
}

= 1, T ≥ 0;

(ii). x(t) ∈ H has càdlàg path on t ∈ [0, T ] a.s and for each t ∈ [0, T ], x(t)

satisfies the following integral equation.

x(t) =S(t)[φ(0) + u(0, φ)]− u(t, x(t− r))−
∫ t

0

AS(t− s)u(s, x(s− r))ds

+

∫ t

0

S(t− s)f(s, x(s− r))ds+

∫ t

0

S(t− s)g(s, x(s− r))dW (s)

+

∫ t

0

∫
O
S(t− s)h(t, x(s− r), z)Ñ(ds, dz)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )),

x(0) =φ ∈ D([−r, 0];H).

(3.2.2)

We are mainly concerned about the p-th moment exponentially stable of mild

solutions to stochastic systems in this chapter. We shall recall the following

stability notation which is the definition of exponential stability in p-th moment.

Definition 3.2.2. The mild solution of equation (3.2.1) is said to be exponentially

stable in the p-th moment, if for any initial φ ∈ D, there exist a pair of numbers
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M0 > 0 and γ > 0 such that

E‖x(t)‖pH < M0(‖φ‖pD)e−γt, t ≥ 0.

In order to obtain the main result, we impose the following reasonable as-

sumptions:

(H1) A is the infinitesimal generater of an exponentially stable analytic semigroup

of bounded linear operators {S(t), t ≥ 0} in H such that the following

inequality holds

‖S(t)‖ ≤Me−γt, t ≥ 0,

for γ > 0.

(H2) The coefficients f , g, h satisfy the Lipschitz conditions, i.e. there exist some

positive constants p > 2, K1 > 0, K2 > 0 and K3 > 0 such that for any

x, y ∈ H and t ≥ 0,

‖f(t, x)− f(t, y)‖H ≤ K1‖x− y‖H ,

‖g(t, x)− g(t, y)‖L0
2
≤ K2‖x− y‖H ,∫

O
‖h(t, x, z)− h(t, y, z)‖pHν(dz) ≤ Kp

3‖x− y‖
p
H ,

Moreover, we assume that f(t, 0) = g(t, 0) = h(t, 0, z) = 0.

(H3) There exist constants α ∈ (0, 1] and K4 > 0 such that for any x ∈ H and

t ≥ 0, u(t, x) ∈ D((−A)α)

‖(−A)αu(t, x)− (−A)αu(t, y)‖H ≤ K4‖x− y‖H , x, y ∈ H,

with u(t, 0) = 0 for t ≥ 0.

(H4) There exist a series {qk}, qk > 0, k ∈ {1, 2, 3, . . .}, such that
∑∞

k=1 qk = κ <

∞ and

‖Ik(x)− Ik(y)‖ ≤ qk‖x− y‖, x, y ∈ H,
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and I(0) = 0, k = 1, 2, · · · .

Theorem 3.2.1. Suppose that the assumptions (H2)-(H4) are satisfied. Let

φ(t, ω) : [−r, 0] × Ω → H and r > 0 is some given initial datum such that φ(t)

is F0-measurable for any t ∈ [−r, 0] and sup−r≤s≤0 E‖φ(s)‖pH < ∞. Then, there

exists a unique mild solution to equation (3.2.1) on [0, T ] for all T ≥ 0.

Proof. As t− r for all t ≥ 0, so we have that t− r ≤ 0 for t ∈ [0, r] and therefore

the problem on [0, r] can be rewritten as

x(t) =S(t)[φ(0) + u(0, φ)]− u(t, φ(t− r))−
∫ t

0

AS(t− s)u(s, φ(s− r))ds

+

∫ t

0

S(t− s)f(s, φ(s− r))ds+

∫ t

0

S(t− s)g(s, φ(s− r))dW (s)

+

∫ t

0

∫
O
S(t− s)h(t, φ(s− r), z)Ñ(ds, dz)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )),

(3.2.3)

which is a nondelay problem. We then obtain the existence of a unique mild

solution on [0, r]. By induction, the problem can be solved on [r, 2r], [2r, 3r], · · · ,

[nr, (n + 1)r] for all natural numbers n ≥ 0 and therefore on [0,∞). Then there

exist a unique mild solution to equation (3.2.1).

In the deterministic framework, there exist a large literature on the existence

of solutions to stochastic differential equations (see [37], [112], [116], [108], [108]).

Caraballo, Liu and Truman [29] established conditions to ensure existence and

uniqueness of solutions of general stochastic functional differential equations. The

theorem of an infinite-dimensional Bichteler-Jacod inequality for stochastic inte-

gral with respect to Poisson random measures has been established in Marineli,

Prévôt, Röckner [97]. We shall recall the following theorem.

Lemma 3.2.1. (Marineli [97]) Let p ≥ 2. Assume that h : [0, T ]→ H is a mea-
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surable process such that the expectation on the right-hand side of (3.2.4) below

is finite. Then for all p ∈ [2,∞) there exists a constant Cp > 0 such that

sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

∫
O
h(s, z)Ñ(ds, dz)

∥∥∥∥p
H

≤ CpE
∫ T

0

[ ∫
O
‖h(s, z)‖pHν(dz) +

(∫
O
‖h(s, z)‖2

Hν(dz)

)p/2]
ds,

(3.2.4)

where Cp =

(
p(p−1)

2

)p/2
.

Proof. The proof can be found in Lemma 3.1. Marineli et al. [97].

The inequality (3.2.4) can be extended also to stochastic convolutions, even

though in general that the stochastic convolutions are not martingales. Recalled

that an operator A on H is called dissipative if Re〈Ax, x〉H ≤ 0 for all x ∈

D(A) ⊂ H. An operator A on H is called m-dissipative if A is dissipative and

(I − A) is surjective.

Proposition 3.2.1. (Marineli [97]) Let A be m-dissipative on H and h satisfies

the hypotheses of Lemma 3.2.1. Then for all p ∈ [2,∞), there exists a constant

Cp > 0 such that

sup
t∈[0,T ]

E
∥∥∥∥∫ t

0

∫
O
e(t−s)Ah(s, z)Ñ(ds, dz)

∥∥∥∥p
H

≤ CpE
∫ T

0

[ ∫
O
‖h(s, z)‖pHν(dz) +

(∫
O
‖h(s, z)‖2

Hν(dz)

)p/2]
ds,

(3.2.5)

where Cp =

(
p(p−1)

2

)p/2
.

Proof. The proof can be found in Proposition 3.3 Marineli et al. [97].

Lemma 3.2.2. (Pazy [109]) Suppose that the assumption (H1) holds. Then for

any 0 < β ≤ 1, the following equality holds:

S(t)(−A)βx = (−A)βS(t)x, x ∈ D((−A)β), (3.2.6)

45



and there exists a positive value Mβ such that

‖(−A)βS(t)‖ ≤Mβt
−βe−γt, t > 0. (3.2.7)

Proof. The proof can be found in Theorem 6.13 Pazy [109].

3.3 Exponential Stability in p-th Moment of Mild

Solutions

In this section, the exponential stability in p-th moment of mild solutions of equa-

tion (3.2.1) will be considered by employing the contraction mapping theorem.

Theorem 3.3.1. Suppose that the assumptions (H1)-(H4) hold for some α ∈

(0, 1), p > 2. Assume further that

6(p−1)

[
K4

p‖(− A)−α‖p +Mp
1−αK4

pγ−pα
(
Γ(1 + p(α− 1)/(p− 1))

)p−1

+MpKp
1γ
−p + CpM

pKp
2

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2γ−1

+ CpM
pKp

3

(
γ−p + γp/2

(
p− 2

2(p− 1)

)(p−2)/2)
+Mpκpγ−p

]
< 1,

(3.3.1)

where Γ(·) is the standard Gamma function, M1−α is the corresponding number in

Lemma 3.2.2, and Cp = (p(p−1)
2

)
p
2 , 1

p
+ 1

q
= 1. Then the mild solution of equation

(3.2.1) is exponentially stable in the p-th moment. In other words, there exist

some numbers M0(φ) > 0 and µ > 0 such that

E‖y(t)‖pH ≤M0(φ)e−µt, t ≥ 0.

Proof. Firstly, we define a space S as the family of all stochastic process x(t),

t ∈ [−r,∞), such that

E‖x(t)‖pH ≤ M̃E‖φ‖pDe
−ηt, t ≥ 0, (3.3.2)
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for some constants M̃ > 0 and γ > η > 0, where γ is the constant in condition

(H1). It can be shown that S, under this norm

‖x‖S := sup
t∈[0,∞)

E‖x(t)‖pH , x ∈ S,

is a Banach space.

Now, we define a nonlinear operator π on S by π(x)(t) = φ(t) for t ∈ [−r, 0]

and for t ≥ 0,

π(x)(t) =S(t)[φ(0) + u(0, φ)]− u(t, x(t− r))

−
∫ t

0

AS(t− s)u(s, x(s− r))ds

+

∫ t

0

S(t− s)f(s, x(s− r))ds

+

∫ t

0

S(t− s)g(s, x(s− r))dW (s)

+

∫ t

0

∫
O
S(t− s)h(t, x(s− r), z)Ñ(ds, dz)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )).

(3.3.3)

To prove the p-th moment stability of mild solutions, it is enough to prove that

the operator π has a fixed point in space S. In order to show this result, we are

going to use the usual contraction mapping theorem.

We first show that π is a mapping from S into S. Let x(t) ∈ S, then from the
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definition of π, we have for t ≥ r that

E‖π(x)(t)‖pH ≤ 7p−1E‖S(t)[φ(0) + u(0, φ)]‖pH + 7p−1E‖u(t, x(t− r))‖pH

+ 7p−1E
∥∥∥∥∫ t

0

AS(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− r))dW (s)

∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

∫
O
S(t− s)h(s, x(s− r), z)Ñ(ds, dz)

∥∥∥∥p
H

+ 7p−1E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥p
H

:= 7p−1

7∑
i=1

Ii(t).

(3.3.4)

By the definition of S and assumption (H3) it follows that for each t ≥ r,

I1(t) = E‖S(t)[φ(0) + u(0,−r)]‖pH

≤ ‖S(t)‖pE‖φ(0) + u(0,−r)‖pH

≤Mpe−pγtE‖φ(0) + u(0,−r)‖pH .

(3.3.5)

Moreover, by taking (3.3.2), assumptions (H2) and (H3) into account, for each

t ≥ r, we have that

I2(t) = E‖u(t, x(t− r))‖pH

= E‖(−A)−α(−A)αu(t, x(t− r))‖pH

≤ ‖(−A)−α‖pE‖(−A)αu(t, x(t− r))‖pH

≤ Kp
4‖(−A)−α‖pE‖x(t− r)‖pH .

(3.3.6)

Since x ∈ S, x satisfies the relation

E‖x(t− r)‖pH ≤ M̃eηrE‖φ‖pDe
−ηt, t ≥ r. (3.3.7)

Substituting (3.3.7) into (3.3.6), we get that

I2(t) ≤ Kp
4‖(−A)−α‖pM̃eηrE‖φ‖pDe

−ηt, t ≥ r. (3.3.8)
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Under assumption (H3), and α ∈ (0, 1), we have that, for each t ≥ r,

I3(t) = E
∥∥∥∥∫ t

0

(−A)S(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

≤ E
∥∥∥∥∫ t

0

(−A)1−α(−A)αS(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

≤ E
(∫ t

0

‖(−A)1−α(−A)αS(t− s)u(s, x(s− r))‖Hds
)p

≤ E
(∫ t

0

‖(−A)(1−α)S(t− s)‖‖(−A)αu(s, x(s,−r))‖Hds
)p
.

(3.3.9)

Thus, in view of Lemma 3.2.2 and Hölder inequality, for each t ≥ r, we get

I3(t) ≤ E
(∫ t

0

‖M1−α(t− s)−(1−α)e−γ(t−s)‖‖(−A)αu(s, x(s− r))‖Hds
)p

≤Mp
1−αE

(∫ t

0

(t− s)α−1e−γ(t−s)‖(−A)αu(s, x(s− r))‖Hds
)p
.

(3.3.10)

On the other hand, by using Lipschitz condition (H3), we have the following

inequality for t ≥ r

I3(t) ≤Mp
1−α

(∫ t

0

(t− s)
p(α−1)
p−1 e−γ(t−s)ds

)p−1

K4
p

∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤Mp
1−αK4

pγ1−pα
(

Γ

(
1 +

p(α− 1)

p− 1

))p−1 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds.

(3.3.11)

Since x ∈ S, x satisfies that

E‖x(t− r)‖pH ≤ M̃eηrE‖φ‖pDe
−ηt, t ≥ r. (3.3.12)

Substituting inequality (3.3.12) into (3.3.11), for each t ≥ r, we get that

I3(t) ≤Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1

·
∫ t

0

e−γ(t−s)M̃eηrE‖φ‖pDe
−ηsds

= Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1

· M̃E‖φ‖pDe
ηγe−γt

∫ t

0

e(γ−η)sds.

(3.3.13)
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The inequality (3.3.13) turns to be

I3(t) = Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1

· M̃E‖φ‖pDe
ηγe−γt

1

γ − η
(
e(γ−η)t − 1

)
≤Mp

1−αK4
pγ1−pα(Γ(1 + p(α− 1)/(p− 1))

)p−1

· M̃E‖φ‖pDe
ηγe−γt

1

γ − η
eγte−ηt

= Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1M̃E‖φ‖pDeηγ

γ − η
e−ηt.

(3.3.14)

Now employing assumption (H1), similarly we have that for each t ≥ r,

I4(t) = E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥∥p
H

≤ E
(∫ t

0

‖S(t− s)‖ · ‖f(s, x(s− r))‖ds
)p

≤ E
(∫ t

0

Me−γ(t−s)K1‖x(s− r)‖Hds
)p
.

(3.3.15)

On the other hand, by using Lipschitz condition (H2) and Hölder inequality, for

each t ≥ r, we obtain

I4(t) ≤MpKp
1

(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤MpKp
1γ

1−p
∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤MpKp
1γ

1−pM̃E‖φ‖pDeηr

γ − η
e−ηt.

(3.3.16)

On the other hand, by taking (H1) into account, we have for each t ≥ r,

I5(t) = E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− r))dW (s)

∥∥∥∥p
H

≤ ECp
(∫ t

0

(
‖S(t− s)g(s, x(s− r))‖pH

)2/p
ds

)p/2
≤ ECp

(∫ t

0

‖S(t− s)‖2
(
‖g(s, x(s− r))‖pL0

2

)2/p
ds

)p/2
≤MpCp

(∫ t

0

(
e−2γ(t−s)E‖g(s, x(s− r))‖pL0

2

)2/p
ds

)p/2
.

(3.3.17)

Under the Lipschitz condition (H2), Lemma 2.2.1 and Hölder inequality, for
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t ≥ r, the inequality (3.3.17) turns to be

I5(t) ≤ CpM
pKp

2

(∫ t

0

(
e−2γ(t−s)E‖x(s− r)‖pH

)2/p
ds

)p/2
≤ CpM

pKp
2

(∫ t

0

e−
2(p−1)
p−2

γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤ CpM
pKp

2

(
p− 2

2γ(p− 1)

)p/2−1 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤ CpM
pKp

2

(
p− 2

2γ(p− 1)

)p/2−1
M̃E‖φ‖pDeηr

γ − η
e−ηt.

(3.3.18)

Further, taking into account Lemma 3.2.1, for t ≥ r, we obtain that

I6(t) = E
∥∥∥∥∫ t

0

∫
O
S(t− s)h(s, x(s− r), z)Ñ(ds, dz)

∥∥∥∥p
H

≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
.

(3.3.19)

Under the assumption (H1) and Hölder inequality, for t ≥ r, one can have

I6(t) ≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)‖p‖h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)‖2‖h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
≤MpCp

[ ∫ t

0

∫
O
e−pγ(t−s)E‖h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
e−2γ(t−s)E‖h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
.

(3.3.20)

By using Lipschitz condition (H2), for t ≥ r, we further have that,

I6(t) ≤MpCp

[
Kp

3γ
(1−p)

∫ t

0

e−γ(t−s)E‖x(s− r)‖pds

+Kp
3

(
p− 2

2(p− 1)γ

)(p−2)/2 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pds
]

≤MpCpK
p
3

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)∫ t

0

e−γ(t−s)E‖x(s− r)‖pds

≤MpCpK
p
3

(
γ−p +

(
p− 2

2(p− 1)γ

)(p−2)/2)
M̃E‖φ‖pDeηr

γ − η
e−ηt.

(3.3.21)
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Now, we estimate the impulsive term, from assumption (H1), we get for t ≥ r

that,

I7(t) = E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥p
H

≤ E
( ∑

0<tk<t

Me−γ(t−tk)qk‖x(t−k )‖H
)p
.

(3.3.22)

On the other hand, by employing assumption (H4) for each t ≥ r, we obtain

I7(t) ≤ E
(
κ

∫ t

0

Me−γ(t−s)‖x(s)‖Hds
)p

≤Mpκp
(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s)‖pHds

≤Mpκpγ(1−p)
∫ t

0

e−γ(t−s)E‖x(s)‖pHds.

(3.3.23)

Since x ∈ S, x satisfies that for s ≥ 0,

E‖x(s)‖pH ≤ M̃E‖φ‖pDe
−ηs. (3.3.24)

Substituting (3.3.24) into (3.3.23), we get that for t ≥ r,

I7(t) ≤Mpκpγ(1−p)M̃E‖φ‖pDeηr

γ − η
e−ηt. (3.3.25)

Recalling inequality (3.3.4), from inequalities (3.3.5) to (3.3.25), one can see that

there exists numbers M1 > 0 and η1 > 0 such that,

E‖(πx)(t)‖pH ≤M1E‖φ‖pDe
−η1t. (3.3.26)

Thus, we conclude that π(S) ⊂ S.
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Next, we show the mapping π is contractive. For any x, y ∈ S, we have,

E‖(πx)(t)− (πy)(t)‖pH

≤ 6p−1E‖u(t, x(t− r))− u(t, y(t− r))‖pH

+ 6p−1E
∥∥∥∥∫ t

0

AS(t− s)
(
u(s, x(s− r))− u(s, y(s− r))

)
ds

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t

0

S(t− s)
(
f(s, x(s− r))− f(s, y(s− r))

)
ds

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t

0

S(t− s)
(
g(s, x(s− r))− g(s, y(s− r))

)
dWs

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥∫ t

0

∫
O
S(t− s)

(
h(s, x(s− r), z)− h(s, y(s− r), z)

)
Ñ(ds, dz)

∥∥∥∥p
H

+ 6p−1E
∥∥∥∥ ∑

0<tk<t

S(t− tk)(Ik)(x(t−k )− y(t−k ))

∥∥∥∥p
H

:= 6p−1

6∑
i=1

Ji(t).

(3.3.27)

Noting that x(s) = y(s) = φ(s) for s ∈ [−r, 0], then from assumption (H3), we

have

J1(t) = E‖u(t, x(t− r))− u(t, y(t− r))‖pH

≤ Kp
4‖(−A)−α‖pE‖x(t− r)− y(t− r)‖pH .

(3.3.28)

By using Lemma 3.2.2 and assumption (H4), for t ≥ r, one can be

J2(t) = E
∥∥∥∥∫ t

0

(−A)S(t− s)
(
u(s, x(s− r))− u(s, y(s− r))

)
ds

∥∥∥∥p
H

= E
∥∥∥∥∫ t

0

(−A)1−α(−A)αS(t− s)
(
u(s, x(s− r))− u(s, y(s− r))

)
ds

∥∥∥∥p
H

≤ E
(∫ t

0

‖(−A)1−αS(t− s)‖‖(−A)αu(s, x(s− r))− u(s, y(s− r))‖Hds
)p

≤ E
(∫ t

0

M1−α(t− s)−(1−α)e−γ(t−s)

·
∥∥(−A)α

(
u(s, x(s− r))− u(s, y(s− r))

)∥∥
H
ds

)p
.

(3.3.29)
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Under assumption (H3) and by using Hölder’s inequality, for t ≥ r, inequality

(3.3.29) turns out to be

J2(t) ≤Mp
1−α

(∫ t

0

(t− s)p/(p−1)(α−1)e−γ(t−s)ds

)p−1

·
∫ t

0

e−γ(t−s)E‖u(s, x(s− r))− u(s, y(s− r))‖pHds.
(3.3.30)

By the definition of Gamma function Γ(x) =
∫∞

0
xt−1e−xdx, for t ≥ r, we get

J2(t) ≤Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))
)p−1

·
∫ t

0

e−γ(t−s)E‖x(s− r))− y(s− r)‖pHds

≤Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))
)p−1

·
∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r))− y(s− r)‖pHds

= Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1)))
)p−1

· sup
−r≤s<∞

E‖x(s− r))− y(s− r)‖pH
∫ t

0

e−γ(t−s)ds

≤Mp
1−αK4

pγ−pα
(
Γ(1 + p(α− 1)/(p− 1)))

)p−1

· sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pHds.

(3.3.31)

By employing assumption (H1), for t ≥ r, we have that

J3(t) = E
∥∥∥∥∫ t

0

S(t− s)
(
f(s, x(s− r))− f(s, y(s− r))

)
ds

∥∥∥∥p
H

≤ E
(∫ t

0

‖S(t− s)‖‖f(s, x(s− r))− f(s, y(s− r))‖Hds
)p

≤ E
(∫ t

0

Me−γ(t−s)‖f(s, x(s− r))− f(s, y(s− r))‖Hds
)p
.

(3.3.32)

On the other hand, using the Lipschitz condition (H2) and Hölder’s inequality,
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for t ≥ r, we get

J3(t) ≤MpKp
1

(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s− r)− y(s− r)‖pHds

≤MpKp
1γ

1−p
∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pHds

= MpKp
1γ

1−p sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pH
∫ t

0

e−γ(t−s)ds

≤MpKp
1γ
−p sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pH .

(3.3.33)

By taking Lemma 2.2.1 and condition (H2) into account, for t > r, we have that

J4(t) = E
∥∥∥∥∫ t

0

S(t− s)
(
g(s, x(s− r))− g(s, y(s− r))

)
dW (s)

∥∥∥∥p
H

≤ ECp
(∫ t

0

(
‖S(t− s)

(
g(s, x(s− r))− g(s, y(s− r))

)
‖pH
)2/p

ds

)p/2
≤ ECp

(∫ t

0

‖S(t− s)‖2
(
‖g(s, x(s− r))− g(s, y(s− r))‖pL0

2

)2/p
ds

)p/2
.

(3.3.34)

Under condition (H1), for t > r, we get that

J4(t) ≤MpCp

(∫ t

0

(
e−2γ(t−s)E‖g(s, x(s− r))− g(s, y(s− r))‖pL0

2

)2/p
ds

)p/2
≤ CpM

pKp
2

(∫ t

0

(
e−2γ(t−s)E‖x(s− r)− y(s− r)‖pH

)2/p
ds

)p/2
.

(3.3.35)

Now employing Hölder inequality, we have that

J4(t) ≤ CpM
pKp

2

(∫ t

0

e−
2(p−1)
p−2

γ(t−s)ds

)p−1

·
∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pHds

= CpM
pKp

2

(
p− 2

2γ(p− 1)

) p
2
−1

sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pH
∫ t

0

e−γ(t−s)ds

≤ CpM
pKp

2

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2γ−1 sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pH .
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(3.3.36)

Further, by employing the Lemma 3.2.1, for t ≥ r, we get

J5(t) = E
∥∥∥∥∫ t

0

∫
O
S(t− s)(h(s, x(s− r), z)− h(s, y(s− r), z))Ñ(ds, dz)

∥∥∥∥p
H

≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)(h(s, x(s− r), z)− h(s, y(s− r), z))‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)(h(s, x(s− r), z)− h(s, y(s− r), z))‖2ν(dz)ds

)p/2]
.

(3.3.37)

Thus, under the assumption (H1) and using Hölder inequality, for t ≥ r, we have

that

J5(t) ≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)‖p‖h(s, x(s− r), z)− h(s, y(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)‖2‖h(s, x(s− r), z)− h(s, y(s− r), z)‖2ν(dz)ds

)p/2]
≤MpCp

[ ∫ t

0

∫
O
e−pγ(t−s)E‖h(s, x(s− r), z)− h(s, y(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
e−2γ(t−s)E‖h(s, x(s− r), z)− h(s, y(s− r), z)‖2ν(dz)ds

)p/2]
.

(3.3.38)

On the other hand, by using the Lipschitz condition (H2), for t ≥ r, we also have

J5(t) ≤MpCp

[
Kp

3γ
(1−p)

∫ t

0

e−γ(t−s)E‖x(s− r)− y(s− r)‖pds

+Kp
3

(
p− 2

2(p− 1)γ

)(p−2)/2 ∫ t

0

e−γ(t−s)E‖x(s− r)− y(s− r)‖pds
]

≤MpCp

[
Kp

3γ
(1−p)

∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pds

+Kp
3

(
p− 2

2(p− 1)γ

)(p−2)/2 ∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pds
]
.

(3.3.39)
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By combining the coefficient, for t ≥ r, inequality (3.3.39) turns to be

J5(t) = MpCpK
p
3

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
·
∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖pds

= MpCpK
p
3

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
· sup
−r≤s<∞

E‖x(s− r)− y(s− r)‖p
∫ t

0

e−γ(t−s)ds

≤MpCpK
p
3

(
γ−p +

(
p− 2

2(p− 1)γ

)(p−2)/2)
sup

−r≤s<∞
E‖x(s− r)− y(s− r)‖p.

(3.3.40)

Now, from the assumption (H1) and (H4), for t ≥ r, we have

J6(t) = E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k )− y(t−k ))

∥∥∥∥p
H

≤ E
( ∑

0<tk<t

Me−γ(t−tk)qk‖(x(t−k )− y(t−k ))‖H
)p

≤ E
(
Mκ

∫ t

0

e−γ(t−s)‖x(s)− y(s)‖Hds
)p
.

(3.3.41)

By using Hölder inequality and inequality (3.3.2) for each t ≥ 0, we get

J6(t) ≤Mpκp
(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s)− y(s)‖pHds

≤Mpκp
(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s)− y(s)‖pHds

= Mpκp
(∫ t

0

e−γ(t−s)ds

)p−1

sup
−r≤s<∞

E‖x(s)− y(s)‖pH
∫ t

0

e−γ(t−s)ds

≤Mpκpγ(−p) sup
−r≤s<∞

E‖x(s)− y(s)‖pHds.

(3.3.42)
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Now we are in a position to show that π is a contraction mapping.

‖(πx)− (πy)‖pS

≤ 6(p−1)

[
K4

p‖(−A)−α‖p +Mp
1−αK4

pγ−pα
(
Γ(1 + p(α− 1)/(p− 1)))

)p−1

+MpKp
1γ
−p +MpCpK

p
2

(
p− 2

(p− 1)

)p/2−1

(2γ)1−p/2γ−1

+MpCpK
p
3

(
γ−p + γp/2

(
p− 2

2(p− 1)

)(p−2)/2)
+Mpκpγ(−p)

]
‖x− y‖pS ,

(3.3.43)

where Cp = (p(p−1)
2

)
p
2 , for p > 2, is a constant. Therefore, π is a contraction

mapping and hence there exists a unique fixed point x(·) in S which is the mild

solution of the equation (3.2.1) with x(0) = 0 and E‖x(t)‖pH → 0, as t → ∞.

This completes the proof.

3.4 Illustrative Example

Let us consider the following neutral stochastic impulsive partial functional dif-

ferential equation with delays and Poisson jumps of the form:

d

[
x(t) + α0

(
− ∂2

∂x2

)−α
x(t− r)

]
=

[
∂2

∂x2x(t) + α1x(t− r)
]
dt+ α2x(t− r)dβ(t)

+

∫
O
α3zx(t− r)Ñ(dz, dt), t ≥ 0, t 6= tk;

∆x(tk) = x(t+k )− x(t−k ) = α4x(t−k ), t = tk, k = 1, 2, . . . ,m

x0(s) = φ(s) ∈ D([−r, 0];H),

(3.4.1)

where αi > 0, i = 0, 1, 2, 3, 4, α ∈ (0, 1), β(t) denotes the one-dimensional Brow-

nian motion and O = {z ∈ R, 0 < |z| ≤ c, c > 0}

We rewrite equation (3.4.1) into the abstract form of (3.2.1). Let H =
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L2(0, π). We shall define A : H −→ H by A = ∂2

∂x2 with domain

D(A) = {x ∈ H : x, x
′

are absolutely continous, x
′′ ∈ H and x(0) = x(π) = 0},

(3.4.2)

then

Ax =
∞∑
n=1

−n2〈x, en〉Hen, x ∈ D(A), (3.4.3)

where en(ξ) =
√

2
n

sinnξ, n = 1, 2, . . . is the set of eigenvector of −A. It is well

known that A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0,

in H and

S(t)x =
∞∑
n=1

e−n
2t〈x, en〉Hen, x ∈ H.

Moreover, ‖S(t)‖ ≤Me−γt, t ≥ 0.

For t ≥ r, let

u(t, x(t− r)) = α0(−A)−αx(t− r), f(t, x(t− r)) = α1x(t− r),

g(t, x(t− r)) = α2x(t− r), h(t, x(t− r), y) = α3yx(t− r),

x(tk) = α4x(t−k ).

(3.4.4)

It is obvious that all the assumptions (H1)-(H6) are satisfied with

M = 1, γ = 1, K1 = α1, K2 = α2, K3 = α3

∫
O
z2ν(dz),

K4 = α0‖(−A)−α‖, κ = α4.

Thus, by Theorem 3.3.1, for t ∈ [−r, 0], if

E‖y(t)‖pH ≤M0(φ)e−µt,
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where M0(φ) > 0, 1 > µ > 0 are some constants. If p > 2, then[
αp0‖(−A)−α‖2p +Mp

1−αα
p
0‖(−A)−α‖p

(
Γ(1 + p(α− 1)/(p− 1)))

)p−1

+ αp1 +

(
p(p− 1)

2

)p
αp2

(
p− 2

(p− 1)

)p/2−1

21−p/2

+

(
p(p− 1)

2

)p
αp3

(
1 +

(
p− 2

2(p− 1)

)(p−2)/2)
+ αp3

]
<

1

6(p−1)
,

(3.4.5)

so the mild solution of equation (3.4.1) is exponentially stable in p-th moment.
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Chapter 4

Attracting Set of Neutral

Impulsive Stochastic Delay

Partial Differential Equations

with Poisson Jumps

4.1 Introduction

A stochastic dynamical system can be frequently described by some stochastic

differential equations. The equation of a given system specifies its behaviour over

any given short period of time. To determine the system’s behaviour for a long

period, we often study the integration of the equations. When we investigate

real world systems, we are interested in settling the system into its typical be-

haviour. The subset of the phase space of the dynamical system corresponding

to the typical behaviour is the attractor, also known as the attracting set. In

the mathematical field of dynamical systems, an attractor is a set of numerical

values toward which a system tends to evolve, for a wide variety of starting con-

ditions of the system. System values that get close enough to the attractor values
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remain close even if slightly disturbed. The attracting set of a stochastic dynam-

ical system has been extensively studied over the past several years. Although,

some results have been given in finite dimensional space valued systems in Li and

Xu [69], Liao, Luo and Zeng [72], Xu [121] and among others . However, not

many investigations of attracting set of stochastic systems in infinite dimensional

spaces. Chen [30] has studied the exponential stability for stochastic partial dif-

ferential equations with delays by establishing an impulsive-integral inequality in

the following form
dx(t) = [Ax(t) + f(t, x(t− r(s)))]dt+ g(t, x(t− r(s)))dW (t), t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, . . . ,

x0(t) = φ(t), t ∈ [−r, 0].

(4.1.1)

Recently, Long and his co-authors [85] studied a class of stochastic neural partial

differential equations with impulsive. The impulsive effects also have been consid-

ered in this chapter. Motivated by the above discussions and based on the result

in Chen [30] and Long [85]. We firstly recall an impulsive-integral inequality to

deal with impulsive effects. Next, by employing the impulsive-integral inequality,

we shall study the existence, uniqueness and stability of mild solutions of neutral

stochastic impulsive partial differential equations with delay and jumps.

4.2 Problem Formulation and Assumptions

Let P (I, H) = {ψ : I → H is continuous for all but at accountable number of

points t ∈ I and at these points t ∈ I, ψ(t+) and ψ(t−) exist, ψ(t+) = ψ(t)},

where I ⊂ H is a bounded interval, ψ(t+) and ψ(t−) denote the right-hand and

left-hand limits of the function ψ(t), respectively.

Let D := Db
F0

([−r, 0], H) denotes the space of all bounded F0-measurable
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càdlàg functions from [−r, 0] into H, equipped with the supremum norm

‖φ‖D = sup
t∈[−r,0]

E‖φ(t)‖H <∞.

Let P := P b
F0

([−r, 0], H) denotes the family of all bounded F0-measurable, P ([−r,

0], H)-valued random variables φ, equipped with the supremum norm

‖φ‖pLp = sup
θ∈[−r,0]

E‖φ(θ)‖pH <∞, for p > 0.

We consider a class of neutral stochastic partial differential delay equation

with impulsive and Poisson jumps in following form:

d[x(t) + u(t, x(t− r))] = [Ax(t) + f(t, x(t− r))]dt+ g(t, x(t− r))dW (t)

+

∫
O
h(t, x(t− r), z)Ñ(dt, dz), t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, . . . ,

x0(t) = φ(t) ∈ Db
F0

([−r, 0];H).

(4.2.1)

where A : D(A) ⊂ H → H is the infinitesimal generator of an analytic semigroup

of linear operator (S(t))t≥0 on a Hilbert space H. Here u, f : [0,+∞) × H →

H, g : [0,+∞)×H → L0
2(K0, H), h : [0,+∞)×H×U → H are measurable func-

tions and Ik : H → H is measurable and 0 < t1 < . . . < tk < . . . , limk→∞ tk =∞,

x(t+k ) and x(t−k ) represent the right and left limits of x(t) at t = tk, k = 1, 2, . . . ,

respectively. The mapping Ik represents the size of the jump at tk, k = 1, 2, . . ..

Definition 4.2.1. A stochastic process {x(t), t ∈ [0, T ]}, 0 ≤ T , is called a mild

solution of the equation (4.2.1) if:

(i) x(t) is adapted to Ft, for each t ≥ 0, and

P
{
ω :

∫ T

0

‖x(t, ω)‖pHdt <∞
}

= 1, T ≥ 0;

(ii) x(t) ∈ H has càdlàg path on t ∈ [0, T ] almost surely.
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(iii) For each t ∈ [0, T ], x(t) satisfies the following integral equation,

x(t) =S(t)[φ(0) + u(0, φ)]− u(t, x(t− r))

−
∫ t

0

AS(t− s)u(s, x(s− r))ds

+

∫ t

0

S(t− s)f(s, x(s− r))ds

+

∫ t

0

S(t− s)g(s, x(s− r))dW (s)

+

∫ t

0

∫
O
S(t− s)h(t, x(s− r), z)Ñ(ds, dz)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )),

x(0) =φ ∈ Db
F0

([−r, 0], H).

(4.2.2)

We shall introduce two classes of notations: one is the definition of the at-

tracting set and other is the definition of exponentially stable in p-th moment.

Definition 4.2.2. A set A ⊂ H is called an attracting set of equation (4.2.1),

if for any initial value φ ∈ Db
F0

([−r, 0], H), the solution x(t, φ) converges to the

attracting set A as t is large enough. That is,

d(x(t, φ),A)→ 0, as t→ +∞,

where

d(x,A) = inf
y∈A

E
(
‖x(t, φ)− y‖pH

)
.

Definition 4.2.3. For any p ≥ 2, the mild solution of equation (4.2.1) is said to

be exponentially stable in p-th moment if there exists a pair of positive constants

γ > 0 and M0 > 1 such that for any solution x(t, φ) with the initial condition

φ ∈ Db
F0

([−r, 0], H),

E
(
‖x(t, φ)‖pH

)
≤M0(‖φ‖pD)e−γt, t ≥ 0. (4.2.3)
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In particular, when p = 2, the equation (4.2.3) is said to be exponentially stable

in mean square.

In order to obtain the main result, for system (4.2.1), we impose the following

assumptions:

(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear

operator {S(t) t ≥ 0} in H such that the following inequality holds

‖S(t)‖ ≤Me−γt, t ≥ 0,

for some constants M > 0 and γ > 0.

(H2) The coefficients f, g, h satisfy Lipschitz conditions, i.e. there exist some

positive constants p > 2, K1 > 0, K2 > 0, K3 > 0 such that for any

x, y ∈ H and t ≥ 0,

‖f(t, x)− f(t, y)‖H ≤ K1‖x− y‖H , ‖f(t, 0)‖ ≤ bf ,

‖g(t, x)− g(t, y)‖L0
2
≤ K2‖x− y‖H , ‖g(t, 0)‖L0

2
≤ bg,∫

O
‖h(t, x, z)− h(t, y, z)‖pHν(dz) ≤ Kp

3‖x− y‖
p
H , ‖h(t, 0, z)‖ ≤ bh,

where bf > 0, bg > 0 and bh > 0 are some constants.

(H3) There exist a positive series {qk} for each k ∈ {1, 2, 3, . . .}, such that∑∞
k=1 qk = κ <∞ and

‖Ik(x)− Ik(y)‖ ≤ qk‖x− y‖, x, y ∈ H,

and Ik(0) = 0, k = 1, 2, . . . .

(H4) There exist some constants α ∈ (0, 1] and K4 > 0 such that for any x ∈ H,

t ≥ 0, u(t, x) ∈ D((−A)α) and

‖(−A)αu(t, x)− (−A)αu(t, y)‖H ≤ K4‖x− y‖H , x, y ∈ H,
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with u(t, 0) = 0 for t ≥ 0.

4.3 Impulsive-integral Inequality

In this section, in order to get an attracting set and exponential stability in p-

th moment for mild solutions of system (4.2.1). We shall recall the following

impulsive-integral inequality [85] to overcome the difficulty when the impulsive

effects are presented.

Lemma 4.3.1. [85] Suppose y : [−r,+∞) → [0,+∞) is a measurable function

satisfying the following impulsive-integral inequality:

y(t) ≤



‖ψ‖re−µ(t−t0) + a1‖yt‖r + a2

∫ t

t0

e−µ(t−s)‖ys‖rds

+
∑

tk∈(0,t)

cke
−µ(t−tk)y(t−k ) + J, t ≥ t0,

ψ(t), t ∈ [t0 − r, t0],

(4.3.1)

where ψ(t) ∈ P ([t0− r, t0],R+) and some nonnegative constants a1, a2, ck, (k =

1, 2, . . .), µ and J satisfying,

σ , a1 +
a2

µ
+

+∞∑
k=1

ck < 1. (4.3.2)

Then there exist some positive constants λ ∈ (0, µ) and K ≤ N such that

y(t) ≤ Ne−λ(t−t0) +
J

1− σ
, t ≥ t0, (4.3.3)

where λ and N satisfy that

σλ , a1e
λr +

a2e
λr

µ− λ
+

+∞∑
k=1

ck < 1 and N ≥ K

1− σλ
, (4.3.4)

or a2 6= 0 and

σλ ≤ 1 and N ≥
(µ− λ)

[
K − a2J

µ(1−σ)

]
a2eλr

. (4.3.5)
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Proof. From (4.3.2) to (4.3.5), for any N̂ > N , we shall prove that,

y(t) ≤ N̂e−λ(t−t0) +
J

1− σ
≡ v(t), t ≥ t0. (4.3.6)

Now we prove the above inequality (4.3.6) by contradiction. If the inequality

(4.3.16) is not true, from our condition N ≥ K ≥ ‖ψ‖r, there must exist a t̂ > t0

such that

y(t̂) ≤ v(t̂), y(t) ≥ v(t), ∀t ∈ [t0 − r, t̂). (4.3.7)

From inequality (4.3.1), we obtain the following inequality,

(1) For y(t̂) < ‖yt̂‖r := sup−r≤t≤0 ‖y(t̂ + t)‖, by using (4.3.2), (4.3.1), (4.3.3),

(4.3.4) and (4.3.5), we have that,

y(t̂) ≤ Ke−µ(t−t0) + a1

[
N̂e−λ(t̂−t0)eλr +

J

1− σ

]
+ a2

∫ t̂

t0

e−µ(t−s)
[
N̂e−λ(s−t0)eλr +

J

1− σ

]
ds

+
∑
t∈(t0,t̂)

cke
−µ(t̂−tk)

[
N̂e−λ(tk−t0) +

J

1− σ

]
+ J

≤
(
K − a2J

µ(1− σ)
− a2e

λr

µ− λ
N̂

)
e−λ(t̂−t0)

+

(
a1e

λr +
a2e

λr

µ− λ
+

+∞∑
k=1

ck

)
N̂e−λ(t̂−t0)

+

(
a1 +

a2

µ
+

+∞∑
k=1

ck

)
J

1− σ
+ J.

(4.3.8)

Under the condition (4.3.4), by substituting σλ and σ into the inequality (4.3.8),

we have that,

y(t̂) <

(
K − a2J

µ(1− σ)
− a2e

λr

µ− λ
N̂

)
e−λ(t̂−t0) + σλN̂e

−λ(t̂−t0) +
σJ

1− σ
+ J

≤ Ke−λ(t̂−t0) + σλN̂e
−λ(t̂−t0) +

σJ

1− σ
+
J − Jσ
1− σ

≤ Ke−λ(t̂−t0) + σλN̂e
−λ(t̂−t0) +

J

1− σ
.

(4.3.9)
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Supposing that the condition (4.3.5) is satisfied. Similarly, we obtain that

y(t̂) <

(
a2e

λr

µ− λ
N − a2e

λr

µ− λ
N̂

)
e−λ(t̂−t0) + σλN̂e

−λ(t̂−t0) +
σJ

1− σ
+ J

≤ σλN̂e
−λ(t̂−t0) +

J

1− σ
.

(4.3.10)

Thus, under the conditions (4.3.4) and (4.3.5), one can have,

y(t̂) ≤ N̂e−λ(t̂−t0) +
J

1− σ
= v(t̂), (4.3.11)

which contradicts with assumption (4.3.7).

(2) For y(t̂) = ‖yt̂‖r, by using (4.3.2), (4.3.1), (4.3.3), (4.3.4) and (4.3.5), we have

that,

y(t̂) ≤ Ke−µ(t−t0) + a1y(t̂) + a2

∫ t̂

t0

e−µ(t−s)
[
N̂e−λ(s−t0)eλr +

J

1− σ

]
ds

+
∑

tk∈(t0,t̂)

cke
−µ(t̂−tk)

[
N̂e−λ(tk−t0) +

J

1− σ

]
+ J

≤ a1y(t̂) +

(
K − a2J

µ(1− σ)
− a2e

λr

µ− λ
N̂

)
e−λ(t̂−t0)

+

(
a2e

λr

µ− λ
+

+∞∑
k=1

ck

)
N̂e−λ(t̂−t0) +

(
a2

µ
+

+∞∑
k=1

ck

)
J

1− σ
+ J

(4.3.12)

Under condition (4.3.4), by substituting σλ and σ into the inequality (4.3.8), we

have that,

y(t̂) < a1y(t̂) +Ke−λ(t̂−t0) + (σλ − a1e
λr)N̂e−λ(t̂−t0) + (σ − a1)

J

1− σ
+ J

≤ a1y(t̂) +
(
K + (σλ − a1e

λr)
)
N̂e−λ(t̂−t0) + (σ − a1)

J

1− σ
+ J.

(4.3.13)

Next, supposing that condition (4.3.5) is satisfied. Similarly, we have

y(t̂) < a1y(t̂) +
(
1− a1e

λr
)
N̂e−λ(t̂−t0) + (σ − a1)

J

1− σ
+ J. (4.3.14)

Since under condition (4.3.4), we have that K < (1− σλ)N̂ . And for any λ > 0,
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we have that 1− a1 ≥ 1− a1e
λr, then inequality (4.3.12) implies that

y(t̂) ≤ N̂e−λ(t̂−t0) +
J

1− σ
= v(t̂), t̂ ≥ t0, (4.3.15)

which contradicts with inequality (4.3.7). Therefore, the following inequality

y(t) ≤ N̂e−λ(t−t0) +
J

1− σ
≡ v(t̂), t ≥ t0, (4.3.16)

is true. Letting N̂ → N , we complete the proof to get inequality (4.3.3).

4.4 Attracting Set of the System

Theorem 4.4.1. Assume that (H1)− (H4) hold and the following inequality

σ̂ ,7p−1Kp
4‖(−A)−α‖p + 7p−1Mpκpγ(−p) + 7p−1γ−1(C1 + C3 + C5)

+ 7p−1Mp
1−αK4

pγ−pα
(
Γ(1 + p(α− 1)/(p− 1))

)p−1
< 1,

(4.4.1)

holds for α ∈ (0, 1] and p > 2, then the attracting set of system (4.2.1) is

S =

{
x ∈ H : ‖x‖ ≤ p

√
(1− σ̂)−1Ĵ

}
, (4.4.2)

where Ĵ , 7p−1(C2 + C4 + C6), Cp = (p(p−1)
2

)
p
2 and when bf > 0, bg > 0, bh > 0,

C1 = 2p−1MpKp
1γ

1−p, C4 = 2p−1MpCp

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2γ−1bpg,

C2 = 2p−1Mpγ−pbpf , C3 = 2p−1MpKp
2Cp

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2,

C5 = 2p−1MpKp
3Cp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
,

C6 = 2p−1MpCp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
γ−1bph.

(4.4.3)
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Proof. From the definition (4.2.1), we have the following inequality,

E‖π(x)(t)‖pH ≤7p−1E‖S(t)[φ(0) + u(0, φ)]‖pH + 7p−1E‖u(t, x(t− r))‖pH

+ 7p−1E
∥∥∥∥∫ t

0

AS(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− r))dW (s)

∥∥∥∥p
H

+ 7p−1E
∥∥∥∥∫ t

0

∫
O
S(t− s)h(s, x(s− r), z)Ñ(ds, dz)

∥∥∥∥p
H

+ 7p−1E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥p
H

:= 7p−1

7∑
i=1

Ii(t).

(4.4.4)

By assumption (H3) it follows that for each t ≥ r,

I1(t) = E‖S(t)[φ(0) + u(0,−r)]‖pH

≤ ‖S(t)‖pE‖φ(0) + u(0,−r)‖pH

≤Mpe−pγtE‖φ(0) + u(0,−r)‖pH .

(4.4.5)

Moreover, under assumption (H3), for each t ≥ r, we have

I2(t) = E‖u(t, x(t− r))‖pH

= E‖(−A)−α(−A)αu(t, x(t− r))‖pH

≤ ‖(−A)−α‖pE‖(−A)αu(t, x(t− r))‖pH

≤ Kp
4‖(−A)−α‖p sup

−r≤s≤∞
E‖x(t− r)‖pH .

(4.4.6)

Under assumption (H3), and α ∈ (0, 1), we have that for each t ≥ r,

I3(t) = E
∥∥∥∥∫ t

0

(−A)S(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

≤ E
∥∥∥∥∫ t

0

(−A)1−α(−A)αS(t− s)u(s, x(s− r))ds
∥∥∥∥p
H

≤ E
(∫ t

0

‖(−A)1−α(−A)αS(t− s)u(s, x(s− r))‖Hds
)p

≤ E
(∫ t

0

‖(−A)(1−α)S(t− s)‖‖(−A)αu(s, x(s,−r))‖Hds
)p
.

(4.4.7)
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On the other hand, by using Lemma (2.1.4), we get that, for each t ≥ r

I3(t) ≤ E
(∫ t

0

‖M1−α(t− s)−(1−α)e−γ(t−s)‖‖(−A)αu(s, x(s− r))‖Hds
)p

≤Mp
1−αE

(∫ t

0

(t− s)α−1e−γ(t−s)‖(−A)αu(s, x(s− r))‖Hds
)p
.

(4.4.8)

Moreover, by employing Hölder inequality, for each t ≥ r, inequality (4.4.8) turns

to be

I3(t) ≤Mp
1−α

(∫ t

0

(t− s)p/(p−1)(α−1)e−γ(t−s)ds

)p−1

Kp
4

∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

≤Mp
1−αK

p
4γ

1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1

∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds.

(4.4.9)

Now employing assumption (H2) and Hölder inequality, we similarly have that

for each t ≥ r,

I4(t) = E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− r))ds
∥∥∥∥p
H

≤ E
(∫ t

0

‖S(t− s)‖ · ‖f(s, x(s− r))‖ds
)p

≤ E
(∫ t

0

Me−γ(t−s)(K1‖x(s− r)‖H + ‖f(s, 0)‖)ds
)p
.

(4.4.10)

Since ‖f(t, 0)‖ ≤ bf by the condition (H2), for bf > 0 and t ≥ r, inequality

(4.4.10) implies that

I4(t) ≤ 2p−1MpKp
1γ

1−p
∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds+ 2p−1Mpγ−pbpf

≤ C1

∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds+ C2,

(4.4.11)

where

C1 = 2(p−1)MpKp
1γ

1−p, C2 = 2p−1Mpγ−pbpf . (4.4.12)

On the other hand, by taking into account (H1), Lemma (2.2.1), for t ≥ r, we
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have that

I5(t) = E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− r))dW (s)

∥∥∥∥p
H

≤ Cp

(
E
∫ t

0

(
‖S(t− s)g(s, x(s− r))‖pH

)2/p
ds

)p/2
≤ Cp

(
E
∫ t

0

‖S(t− s)‖2
(
‖g(s, x(s− r))‖pL0

2

)2/p
ds

)p/2
.

(4.4.13)

Moreover, by the definition of stability and Hölder inequality, for t ≥ r, we obtain

I5(t) ≤ Cp

(∫ t

0

(
Mpe−pγ(t−s)E‖g(s, x(s− r))‖pL0

2

)2/p
ds

)p/2
≤ CpM

p

(∫ t

0

(
e−pγ(t−s)E‖g(s, x(s− r))‖pL0

2

)2/p
ds

)p/2
≤ CpM

p

(∫ t

0

e−
2(p−1)
p−2

γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖g(s, x(s− r))‖pL0
2
ds.

(4.4.14)

Since ‖g(t, 0)‖ ≤ bg by the condition (H2), for bg > 0 and t ≥ r, then inequality

(4.4.14) implies that

I5(t) ≤ 2p−1MpKp
2Cp

(
p− 2

2γ(p− 1)

)p/2−1 ∫ t

0

e−γ(t−s)E‖x(s− r)‖pHds

+ 2p−1MpCp

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2γ−1bpg

≤ C3

∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds+ C4,

(4.4.15)

where

C3 = 2p−1MpKp
2Cp

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2,

C4 = 2p−1MpCp

(
p− 2

p− 1

)p/2−1

(2γ)1−p/2γ−1bpg.

(4.4.16)
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By employing Lemma (3.2.1), for t ≥ r, we obtain

I6(t) = E
∥∥∥∥∫ t

0

∫
O
S(t− s)h(s, x(s− r), z)Ñ(ds, dz)

∥∥∥∥p
H

≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
.

(4.4.17)

Further, by Hölder inequality, for t ≥ r, we have that

I6(t) ≤ ECp
[ ∫ t

0

∫
O
‖S(t− s)‖p‖h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
‖S(t− s)‖2‖h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
≤ Cp

[ ∫ t

0

∫
O
Mpe−pγ(t−s)E‖h(s, x(s− r), z)‖pν(dz)ds

+

(∫ t

0

∫
O
Mpe−2γ(t−s)E‖h(s, x(s− r), z)‖2ν(dz)ds

)p/2]
.

(4.4.18)

By using assumption (H2) and ‖h(t, 0, z)‖ ≤ bh, for bh > 0 and t ≥ r, we have

I6(t) ≤ 2p−1MpKp
3Cp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

) p−2
2
)∫ t

0

e−γ(t−s)E‖x(s− r)‖pds

+ 2p−1MpCp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

) p−2
2
)
γ−1bph

≤ C5

∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds+ C6,

(4.4.19)

where

C5 = 2(p−1)MpKp
3Cp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
,

C6 = 2p−1MpCp

(
γ(1−p) +

(
p− 2

2(p− 1)γ

)(p−2)/2)
γ−1bph.

(4.4.20)
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Now, we estimate the impulsive term, for each t ≥ r, we obtain

I7(t) = E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥p
H

≤ E
( ∑

0<tk<t

e−γ(t−tk)qk‖x(t−k )‖H
)p
.

(4.4.21)

Thus, by using condition(H2) and Hölder inequality, for t ≥ r, we get

I7(t) ≤ E
(
κ

∫ t

0

e−γ(t−s)‖x(s)‖Hds
)p

≤ κp
(∫ t

0

e−γ(t−s)ds

)p−1 ∫ t

0

e−γ(t−s)E‖x(s)‖pHds

≤ κpγ(1−p)
∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s)‖pHds.

(4.4.22)

Finally, by substituting (4.4.5)-(4.4.22) into (4.4.4), we have that,

E‖x(t)‖p ≤ 7p−1M̃‖φ‖pe−γt + 7p−1Kp
4‖(−A)−α‖p sup

−r≤s≤∞
E‖x(t− r)‖pH

+ 7p−1κpγ(1−p)
∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s)‖pHds

+ 7p−1Mp
1−αK4

pγ1−pα
(

Γ

(
1 +

p(α− 1)

p− 1

))p−1

·
∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds

+ 7p−1(C1 + C3 + C5)

∫ t

0

e−γ(t−s) sup
−r≤s≤∞

E‖x(s− r)‖pHds+ Ĵ ,

(4.4.23)

where Ĵ = 7p−1(C2 + C4 + C6). Let

a0 , 7p−1M̃, â1 , 7p−1Kp
4‖(−A)−α‖p, ĉk , 7p−1κpγ(1−p),

â2 , 7p−1Mp
1−αK4

pγ1−pα(Γ(1 + p(α− 1)/(p− 1))
)p−1

+ 7p−1(C1 + C3 + C5) + Ĵ .

(4.4.24)

From (4.4.1), we know

σ̂ , â1 +
â2

γ
+

+∞∑
k=1

ĉk < 1. (4.4.25)
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We can choose such φ ∈ Db
F0

([−r, 0], H), so that there exist K̂ ≥ 0, N̂ > 0, λ ∈

(0, µ) such that

a0‖φ‖pLp ≤ K̂, σ̂λ , â1e
λr +

â2e
λr

µ− λ
+

+∞∑
k=1

ĉk ≤ 1 (4.4.26)

and

(µ− λ)

[
K̂ − â2Ĵ

µ(1−σ̂)

]
â2eλr

≤ N̂ . (4.4.27)

We are combining above results with Lemma (4.3.1), from inequality (4.3.3),

there exist constant λ ∈ (0, µ) such that for any t ≥ t0,

E‖x(t)‖p ≤ N̂e−λ(t−t0) +
K̂

1− σ̂
,

as t→∞, E‖x(t)‖p ≤ K̂
1−σ̂ , then we have that the set

A =

{
x(t) ∈ H, E‖x(t)‖p ≤ (1− σ̂)−1Ĵ

}
is an attracting set of system (4.2.1). Now, we know the conclusion of Theorem

(4.4.1) is true.

4.5 Illustrative Example

Let us consider a class of neutral stochastic impulsive partial functional differen-

tial equation with delays and Poisson jumps in the following form:
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

d

[
x(t) + α0

(
− ∂2

∂x2

)−α
x(t− r))

]
=

[
∂2

∂x2x(t) + α1x(t− r)) + β1

]
dt

+(α2x(t− r) + β2)dβ(t)

+

∫
O

(α3zx(t− r) + β3)Ñ(dz, dt),

t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = α4x(t−k ), t = tk, k = 1, 2, . . . ,m

x0(t) = φ(t) ∈ Db
F0

([−r, 0], L2[0, π]), x(t, 0) = x(t, π) = 0, −r ≤ t ≤ 0,

(4.5.1)

where αi > 0, i = 0, 1, 2, 3, 4, βj ≥ 0, j = 1, 2, 3, are constants, β(t) denotes the

one-dimensional Brownian motion and O = {z ∈ R : 0 < |z| ≤ c, c > 0}.

We rewrite (4.5.1) into the abstract form of (4.2.1). Let H = L2(0, π). Define

bounded linear operator A : D(A) ⊂ H → H by Ax = ∂2

∂x2 ∀x ∈ D(A). Then

we get

Ax =
+∞∑
n=1

−n2〈x, en〉Hen, x ∈ D(A),

where en(π) =
√

2
π

sinnz, n = 1, 2, . . . is the set of eigenvector of −A. It is well

known that A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0,

in H and

S(t)x =
∞∑
n=1

e−n
2t〈x, en〉Hen, x ∈ H.

Moreover, ‖S(t)‖ ≤ e−t, t ≥ 0, the unbounded linear operator (−A)
3
4 is given by

(−A)
3
4x =

+∞∑
n=1

n
3
2 〈x, en〉Hen,

with domain

D((−A)
3
4 ) =

{
x ∈ H,

+∞∑
n=1

n
3
2 〈x, en〉Hen ∈ H

}
.
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Let

u(t, x(t− r)) = α0(−A)−αx(t− r), f(t, x(t− r)) = α1x(t− r) + β1,

g(t, x(t− r)) = α2x(t− r) + β2, h(t, x(t− r), y) = α3yx(t− r) + β3.
(4.5.2)

It is obvious that all the assumptions are satisfied with

M = γ = 1, K4 = α0‖(−A)−α‖, K1 = α1, K2 = α2, K3 = α3

∫
O
z2ν(dz),

κ = α4, bf = β1, bg = β2, bh = β3.

Thus, let p > 2,

σ̂ ,7p−1αp0‖(−A)−α‖2p
+ 7p−1αp4 + 14p−1αp1

+ 14p−1αp2

(
p(p− 1)

2

) p
2
(

p− 2

2(p− 1)

) p
2
−1

+ 14p−1αp3

(
p(p− 1)

2

) p
2
(

1 +

(
p− 2

2(p− 1)

) p
2
−1)

+ 7p−1Mp
1−αα

p
0‖(−A)−α‖p

(
Γ(1 + p(α− 1)/(p− 1))

)p−1
< 1,

Ĵ ,14p−1βp1 + 14p−1

(
p(p− 1)

2

) p
2
(

p− 2

2(p− 1)

) p
2
−1

βp2

+ 14p−1

(
p(p− 1)

2

) p
2
(

1 +

(
p− 2

2(p− 1)

) p
2
−1)

βp3

(4.5.3)

From employing Theorem 4.4.1, for α ∈ (1
2
, 1], the attracting set of system (4.5.1)

is

S =

{
x ∈ H : ‖x‖ ≤ p

√
(1− σ̂)−1Ĵ

}
. (4.5.4)

In addition, let bf , bg, bh → 0, by Theorem 4.4.1, we know that the mild
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solution of system (4.5.1) is exponential stability in p-th moment provided that:

σ̂ ,7p−1αp0‖(−A)−α‖2p
+ 7p−1αp4 + 14p−1αp1

+ 14p−1αp2

(
p(p− 1)

2

) p
2
(

p− 2

2(p− 1)

) p
2
−1

+ 14p−1αp3

(
p(p− 1)

2

) p
2
(

1 +

(
p− 2

2(p− 1)

) p
2
−1)

+ 7p−1Mp
1−αα

p
0‖(−A)−α‖p

(
Γ(1 + p(α− 1)/(p− 1))

)p−1
< 1,

Ĵ =0

(4.5.5)
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Chapter 5

Exponential Stability of

Stochastic Partial

Integro-differential Equations

with Delays

5.1 Introduction

Stochastic partial differential equations find their applications in a various ar-

eas. In the past several years, existence, uniqueness and stability of solutions of

stochastic differential equations with delays have been investigated by many re-

searchers. Taniguchi [116] has investigated the almost sure exponential stability

of mild solutions of a class of stochastic partial differential equations. Shortly, Liu

and Truman [83] have improved their result by using some analytic techniques.

Stochastic integro-differential equations are more general. Stochastic delay

integro-differential equations can model many real world problems, such as pop-

ulation dynamics, optional control, biotechnology, biological and many others

in science and engineering. More recently, existence, uniqueness and stability
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of mild solutions of stochastic integro-differential equations with delays seem to

be receiving more attention by many investigators. In particular, Diop, Ezzinbi

and Lo [47] studied the existence and exponential stability for some stochastic

partial functional integro-differential equations. The exponential and asymptotic

stability of mild solutions of stochastic integro-differential equations with delays

have been considered by Diop [48]. Diop, Ezzinbi and Lo [49] have employed

the Banach fixed point approach for the existence of mild solutions of stochastic

integro-differential equations with delays to achieve the required result.

In this chapter, we consider the following stochastic integro-differential equa-

tion with delays

dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s) + F (x(σ1(t)))

]
dt+G(x(σ2(t)))dW (t),

t ≥ 0,

x0(t) = φ(t), t ∈ [−r, 0].

(5.1.1)

where r > 0, A : D(A) ⊂ H → H is a generator of some C0-semigroup etA,

B(t) is a closed linear operator with domain D(B(t)) ⊃ D(A), for each t ≥ 0.

The process W (t) is a Wiener process on the separable Hilbert space K with

covariance operator Q ∈ L1(K). The mappings F : [0,+∞) × H → H, G :

[0,+∞)×H → L0
2(K0, H) are measurable, σ1, σ2 : [0,+∞]→ [−r, T ) are suitable

delay functions, and φ : [−r,+∞)× Ω→ H is the initial value.

The theory of integro-differential equations with resolvent operators is an

important branch of differential equations, which has an extensive physical back-

ground. The resolvent operator is similar to the semigroup operator for abstract

differential equations in Banach spaces. Caraballo and Liu [26] studied the ex-

ponential stability of mild solution of the following stochastic partial differential
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equation with delays:
dx(t) = Ax(t)dt+ F (x(σ1(t)))dt+G(x(σ2(t)))dW (t), t ≥ 0,

x0(t) = φ(t), t ∈ [−r, 0],

(5.1.2)

by employing Gronwall inequality. The main purpose of this chapter is to obtain

the sufficient condition for p-th moment exponential stability of mild solutions to

integro-differential delay equations.

5.2 Stochastic Integro-differential Equations in

Banach Spaces

Throughout this chapter, let K and H be two real separable Hilbert spaces. And

L(K,H) denotes the space of all bounded linear operators from K into H. We

denote by 〈·, ·〉K , 〈·, ·〉H their inner products and by ‖ · ‖K , ‖ · ‖H their norms

respectively. We shall assume that (Ω,F , {Ft}t≥0,P) is a complete probability

space with a normal filtration {Ft}t≥0. Let {W (t), t ≥ 0} denote a K-valued

Wiener process defined on the probability spaces (Ω,F , {Ft}t≥0,P), and Q ∈

L1(K) is the incremental covariance operator of W (t) which is a positive, self-

adjoint, trace class operator on K.

Now for the question of existence and uniqueness of mild solution of the

integro-differential equation (5.1.1), we recall some fundamental results needed.

Regarding the theory of resolvent operators, we refer the reader to Grimmer [54].

At the moment, let X be a Banach space, A and B(t), t ≥ 0, are closed linear

operators on X. Let D(A) denotes the domain of A, equipped with the graph

norm defined by

‖y‖D(A) := ‖Ay‖X + ‖y‖X , for y ∈ D(A).

The notations C([0, T ]; D(A)) and L(D(A), X) stand for the spaces of all con-
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tinuous functions from [0, T ] intoD(A), and the set of all bounded linear operators

from D(A) into X.

We consider the following Cauchy problem,
v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds, t ≥ 0,

v(0) = v0 ∈ H.
(5.2.1)

Definition 5.2.1. [55] A resolvent operator for equation (5.2.1) is a bounded lin-

ear operator valued function R(t) ∈ L(X) for t ≥ 0 with the following properties:

(a) R(0) = I and ‖R(t)‖ ≤ Neµt for some constants N > 0, µ ∈ R and all

t ≥ 0.

(b) For each x ∈ X, R(t)x is strongly continuous for t ≥ 0.

(c) For x ∈ D(A), R(·)x ∈ C1([0, T ];X) ∩ C([0, T ];D(A)) and

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds.

(5.2.2)

The resolvent operator R(·) plays an important role in the study of the exis-

tence and uniqueness of solutions and establishes a variation of constants formula

for many systems. For additional details on resolvent operators, we refer the read

to [54] and [55]. We need to know when the linear system (5.1.1) has a resolvent

operator. Theorem 5.2.1 below provides a satisfactory answer to this problem.

In what follows, we impose the following assumptions:

(H1) A is the infinitesimal generater of a C0-semigroup S(t)t≥0 on X.

(H2) For each 0 ≤ t ≤ T,B(t) is a continuous linear operator from (D(A), ‖ ·

‖D(A)) into (X, ‖ ·‖X). Moreover, there is an integrable function c : [0, T ]→

R+ such that for any y ∈ D(A), t 7→ B(t)y belongs to W 1,1([0, T ], X) and∥∥∥∥ ddtB(t)y

∥∥∥∥
X

≤ c(t)‖y‖D(A), t ∈ [0, T ]. (5.2.3)
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Theorem 5.2.1. Assume that the assumptions (H1) and (H2) hold. Then

(5.2.1) admits a unique resolvent operator R(t)t≥0.

Proof. The proof can be found in Theorem 2.5. Grimmer [55].

In the following, we give some results on the existence of solutions for the

following integro-differential equation:
v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ f(t), t ≥ 0,

v(0) = v0 ∈ X,
(5.2.4)

where f : [0, T )→ X is a continuous function.

Definition 5.2.2. [55] A continuous function v : [0, T )→ X is said to be a strict

solution of (5.2.4) if

(a) v ∈ C1([0, T ];X) ∩ C([0, T ];D(A)),

(b) v satisfies (5.2.4) for t ≥ 0.

Theorem 5.2.2. Assume that (H1) and (H2) hold. If v(t) is a strict solution

of equation (5.2.4), then the following variation of constants formula holds

v(t) = R(t)v0 +

∫ t

0

R(t− s)f(s)ds, t ≥ 0. (5.2.5)

Proof. The proof can be found in Theorem 2.7. Grimmer [55].

Accordingly, we introduce the following definitions.

Definition 5.2.3. [55] For v0 ∈ X. A function v : [0,+∞) → X is called a

mild solution of equation (5.2.4), if v satisfies the variation of constants formula

(5.2.5).

The next theorem provides sufficient conditions for the regularity of solutions

of equation (5.2.4).
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Theorem 5.2.3. Let f ∈ C1([0, T ];X) and v be defined by (5.2.4). If v0 ∈ D(A),

then v is a strict solution of equation (5.2.4).

Proof. The proof can be found in Theorem 5.4. Grimmer [55].

In the sequel, we suppose that X is a Hilbert space H and (H1)-(H2) hold.

Moreover, we suppose the following assumptions:

(H3) There exist some constants M > 0 and γ > 0, such that for t ≥ 0,

‖R(t)‖ ≤Me−γt.

(H4) There exist some constants K1, K2, C > 0 such that for any t ≥ 0, the

coefficients F,G satisfy the following conditions:

‖F (t, x)− F (t, y)‖H ≤ K1‖x− y‖H , x, y ∈ H,

‖G(t, x)−G(t, y)‖L0
2
≤ K2‖x− y‖H , x, y ∈ H,

‖F (t, x)‖2
H + ‖G(t, x)‖2

L0
2
≤ C(1 + ‖x‖2

H), x, y ∈ H.

(H5) The initial value φ : [−r, 0] × Ω → H satisfies that φ(t) is F0-measurable

for all t ∈ [−r, 0] and

sup
−r≤t≤0

E‖φ(t)‖2
H < +∞.

(H6) The delays functions σ1(t) = t − ρ1(t) and σ2(t) = t − ρ2(t): [0,+∞) →

[−r, T ), r > 0 are continuously differentiable and satisfy that for any t ≥ 0

ρ
′

1(t) ≤ 0, ρ
′

2(t) ≤ 0 and − r ≤ σ1(t) ≤ t − r ≤ σ2(t) ≤ t.

Note that the functions σ1 = t− r1, σ2 = t− r2 with r1, r2 > 0 satisfy the

precedent hypotheses by setting r = max{r1, r2}.

Remark 5.2.1. From (H6), we observe that there exist a constant k ≥ 0 for any
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t ≥ −r such that

σ
′

1(t) ≥ 1, σ
′

2(t) ≥ 1, and σ−1
1 (t) ≤ t+ k, σ−1

2 (t) ≤ t+ k (5.2.6)

5.3 Existence Uniqueness and Exponential Sta-

bility in p-th Mean of Mild Solutions

Definition 5.3.1. Let (R(t))t≥0 be a resolvent operator for equation (5.2.1). An

H-valued stochastic process {x(t), t ≥ 0} is called a mild solution of stochastic

integro-differential equation (5.1.1) for T > 0 such that

(i) x(t) is adapted to Ft and

P
{
ω :

∫ T

0

‖x(t, ω)‖2
Hdt < +∞

}
= 1, T ≥ 0,

(ii) x(t) ∈ H and for each t ∈ [0, T ], x(t) satisfies the following integral equation
x(t) = R(t)φ(0) +

∫ t

0

R(t− s)F (x(σ1(s)))ds+

∫ t

0

R(t− s)f(x(σ2(s)))dW (s),

x0(t) = φ(t) t ∈ [−r, 0].

(5.3.1)

Theorem 5.3.1. Suppose that the assumptions (H1)-(H4) are satisfied. Then

there exist a unique mild solution to stochastic partial integro-differential equation

(5.1.1).

Proof. The proof can be find in Theorem 3.3 Diop et al. [48].

Caraballo and Liu [26] established the exponentially stable of mild solutions

of stochastic partial differential equations with delays by using the Gronwall in-

equality. In this section, we shall discuss the exponential stability in p-th moment

of mild solutions of stochastic partial integro-differential equation (5.1.1).

Definition 5.3.2. Let p ≥ 2, the mild solution xφ(t) of equation (5.1.1) is said to
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be exponentially stable in the p-th moment if there exist η > 0 and M0 ≥ 1 such

that, for any mild solution of equation (5.1.1) xϕ(t) corresponding to an initial

value ϕ with E‖ϕ(0)‖pH +

∫ 0

−r
E‖ϕ(s)‖pHds <∞, the following inequality holds:

E‖xφ(t)− xϕ(t)‖pH ≤M0‖φ− ϕ‖p1e−ηt, t ≥ 0, (5.3.2)

where

‖φ− ϕ‖p1 = max

{
E‖φ(0)− ϕ(0)‖pH ,

∫ 0

−r
E‖φ(s)− ϕ(s)‖pHds

}
. (5.3.3)

Theorem 5.3.2. Let p ≥ 2 be an integer and x(t) ≡ xφ(t) and y(t) ≡ yϕ(t) be

solutions of equation (5.3.1) with initial values φ and ϕ respectively. Assume that

conditions (H3)-(H6) are satisfied. Then, the following inequality holds:

E‖x(t)− y(t)‖pH ≤ α‖φ− ϕ‖p1e−(γ−β)t, t ≥ 0, (5.3.4)

where

Cp =

(
p(p− 1)

p

)p/2
, α = 3p−1Mp

(
1 + γ1−pKp

1e
γk + CpK

p
2

(
p− 2

2γ(p− 1)

) 2−p
2
)
,

β = 3p−1Mp

(
γ1−pKp

1e
γk + CpK

p
2

(
p− 2

2γ(p− 1)

) 2−p
2
)
.

Proof. Since x(t) and y(t) are two solutions of equation (5.3.1). We have that for

t ≥ 0,

x(t) = R(t)φ(0) +

∫ t

0

R(t− s)F (x(σ1(s)))ds+

∫ t

0

R(t− s)G(x(σ2(s)))dW (s),

(5.3.5)

y(t) = R(t)ϕ(0) +

∫ t

0

R(t− s)F (y(σ1(s)))ds+

∫ t

0

R(t− s)G(y(σ2(s)))dW (s).

(5.3.6)
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Thus, it follows that for any x, y ∈ S,

E‖x(t)− y(t)‖pH ≤ 3p−1E‖R(t)(φ(0)− ϕ(0))‖pH

+ 3p−1E
∥∥∥∥∫ t

0

R(t− s)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

+ 3p−1E
∥∥∥∥∫ t

0

R(t− s)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

= 3p−1

3∑
i=1

Ii.

(5.3.7)

By the assumption (H3), it follows that for each t ≥ r,

I1(t) = E‖R(t)(φ(0)− ϕ(0))‖pH

≤Mpe−pγt‖φ(0)− ϕ(0)‖pH .
(5.3.8)

By employing the assumption (H3), we have that, for t ≥ r,

I2(t) = E
∥∥∥∥∫ t

0

R(t− s)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

≤ E
(∫ t

0

‖R(t− s)‖‖F (x(s− σ1(s)))− F (y(s− σ1(s)))‖Hds
)p

≤ E
(∫ t

0

Me−γ(t−s)‖F (x(σ1(s)))− F (y(σ1(s)))‖Hds
)p
.

(5.3.9)

One the other hand, by using Hölder’s inequality, we have for t ≥ r,

I2(t) ≤MpE
(∫ t

0

e−γ(p−1)(t−s)/pe−γ(t−s)/p‖F (x(σ1(s)))− F (y(σ1(s)))‖Hds
)p

≤MpE

([∫ t

0

(
e−γ(p−1)(t−s)/p) p

p−1ds

] p−1
p

·
[ ∫ t

0

(
e−γ(t−s)/p‖F (x(σ1(s)))− F (y(σ1(s)))‖H

)p
ds

] 1
p

)p

.

(5.3.10)
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Moreover, under the Lipschitz condition (H4), we get for t ≥ r,

I2(t) ≤ Kp
1M

p

(∫ t

0

e−γ(t−s)ds

)p−1

E
∫ t

0

e−γ(t−s)‖x(σ1(s))− y(σ1(s))‖pHds

≤ Kp
1M

pγ1−pE
∫ t

0

e−γ(t−s)‖x(σ1(s))− y(σ1(s))‖pHds.

(5.3.11)

Let u = σ1(s) in (5.3.9), from Remark 5.2.1, for t ≥ r, we have that

s = σ−1
1 (u) ≤ u+ k and σ−1

1 (u) =
du

σ
′
1(σ−1

1 (u))
. (5.3.12)

By substituting (5.3.12) into (5.3.11) and using assumption (H5), for t ≥ r, we

have that

I2(t) ≤ Kp
1M

pγ1−pE
∫ σ1(t)

σ1(0)

e−γ(t−σ−1
1 (u))‖x(u)− y(u)‖pH

du

σ
′
1(σ−1

1 (u))

≤ Kp
1M

pγ1−pE
∫ σ1(t)

σ1(0)

e−γ(t−u−k)‖x(u)− y(u)‖pHdu

≤ Kp
1M

pγ1−pe−γkE
∫ t

−r
e−γ(t−u)‖x(u)− y(u)‖pHdu.

(5.3.13)

The equation (5.3.13) can be re-written in the following form

I2(t) ≤ Kp
1M

pγ1−peγkE
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+Kp
1M

pγ1−peγkE
∫ 0

−r
e−γ(t−u)‖x(u)− y(u)‖pHdu.

(5.3.14)

Since x(u) = φ(u), y(u) = ϕ(u) for any u ∈ [−r, 0], we have that,

I2(t) ≤ Kp
1M

pγ1−peγkE
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+Kp
1M

pγ1−peγkE
∫ 0

−r
e−γ(t−u)‖φ(u)− ϕ(u)‖pHdu.

(5.3.15)
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As e−γu ≤ 1 for any u ∈ [−r, 0], then we get,

I2(t) ≤ Kp
1M

pγ1−peγkE
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+Kp
1M

pγ1−peγke−γtE
∫ 0

−r
‖φ(u)− ϕ(u)‖pHdu

≤ Kp
1M

pγ1−peγkE
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+Kp
1M

pγ1−peγke−γt‖φ− ϕ‖p1.

(5.3.16)

By taking Lemma 2.2.1 and assumption (H3) into account, we have for t ≥ r

that

I3(t) = E
∥∥∥∥∫ t

0

R(t− s)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

≤ CpE
(∫ t

0

(∥∥R(t− s)
[
G(x(σ2(s)))−G(y(σ2(s)))

]∥∥p
H

)2/p
ds

)p/2
≤ CpE

(∫ t

0

(
‖R(t− s)‖p‖G(x(σ2(s)))−G(y(σ2(s)))‖pL0

2

)2/p
ds

)p/2
.

(5.3.17)

On the other hand, by using assumptions (H3) and (H4), for t ≥ r, we get

I3(t) ≤ CpM
p

(∫ t

0

(
e−pγ(t−s)E‖G(x(σ2(s)))−G(y(σ2(s)))‖pL0

2

)2/p
ds

)p/2
≤ CpK

p
2M

p

(∫ t

0

(
e−pγ(t−s)E‖x(σ2(s))− y(−σ2(s))‖pH

)2/p
ds

)p/2
.

(5.3.18)

Now employing Hölder inequality, one can have that, for t ≥ r,

I3(t) ≤ CpK
p
2M

p

([∫ t

0

e−(p−1)γ(t−s)e−γ(t−s)E‖x(σ2(s))− y(σ2(s))‖pH
]2/p

ds

)p/2

≤ CpK
p
2M

p

([∫ t

0

e−(p−1) 2
p

p
p−2

γ(t−s)ds

] p−2
p
[ ∫ t

0

([
e−γ(t−s)E‖x(σ2(s))

− y(σ2(s))‖pH
]2/p)p/2

ds

]2/p
)p/2

≤ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1 ∫ t

0

e−γ(t−s)E‖x(σ2(s))− y(σ2(s))‖pHds.

(5.3.19)
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Let u = σ2(s) in (5.3.19), from Remak 5.2.1, for t ≥ r, we have that

s = σ−1
2 (u) ≤ u+ k and σ−1

2 (u) =
du

σ
′
1(σ−1

2 (u))
. (5.3.20)

Similarly by using the method which we employ in (5.3.11), we have that, for

t ≥ r,

I3(t) ≤ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1 ∫ t

0

e−γ(t−s)E‖x(σ2(s))− y(σ2(s))‖pHds

≤ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1

eγk
∫ t

−r
e−γ(t−u)E‖x(u)− y(u)‖pHdu.

(5.3.21)

As e−γu ≤ 1, for all u ∈ [−r, 0], we get,

I3(t) ≤ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1

E
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1

e−γtE
∫ 0

−r
‖φ(u)− ϕ(u)‖pHdu

≤ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1

E
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

+ CpK
p
2

(
p− 2

2γ(p− 1)

)p/2−1

e−γt‖φ− ϕ‖p1,

(5.3.22)

where ‖φ− ϕ‖p1 is given in (5.3.3).

Recalling inequality (5.3.7) and (5.3.8)-(5.3.22) we can have that

E‖x(t)− y(t)‖pH

≤ 3p−1

(
Mpe−pγt +Kp

1M
pγ1−peγke−γt + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
e−γt‖φ− ϕ‖p1

+ 3p−1

(
Kp

1M
pγ1−peγk + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
· E
∫ t

0

e−γ(t−u)‖x(u)− y(u)‖pHdu

≤ 3p−1Mp

(
1 +Kp

1γ
1−peγke−γt + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
e−γt‖φ− ϕ‖p1

+ 3p−1Mp

(
Kp

1γ
1−peγk + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
e−γt

· E
∫ t

0

eγu‖x(u)− y(u)‖pHdu.
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(5.3.23)

Then for any t ≥ 0, we have that,

eγtE‖x(t)− y(t)‖pH

≤ 3p−1Mp

(
1 +Kp

1γ
1−peγke−γt + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
‖φ− ϕ‖p1

+ 3p−1Mp

(
Kp

1γ
1−peγk + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
· E
∫ t

0

eγu‖x(u)− y(u)‖pHdu.

(5.3.24)

Now employing Gronwall’s inequality, one can have

eγtE‖x(t)− y(t)‖pH

≤ 3p−1Mp

(
1 +Kp

1γ
1−peγke−γt + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
‖φ− ϕ‖p1

· exp

{
3p−1Mp

(
Kp

1γ
1−peγk + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
t

} (5.3.25)

Hence we have that

E‖x(t)− y(t)‖pH ≤ α‖φ− ϕ‖p1e−(γ−β)t, t ≥ 0. (5.3.26)

where

α = 3p−1Mp

(
1 +Kp

1γ
1−peγke−γt + CpK

p
2

(
p− 2

2γ(p− 1)

)p/2−1)
,

and

β = 3p−1Mp

(
Kp

1γ
1−peγk + CpK

p
2

)
.

This completes the proof.

Remark 5.3.1. Observe that the constant β in Theorem 5.3.2 depends on values

M, γ, K1, K2, and k. Therefore, if the problem we are dealing with is such that

γ > β, then we can assure that all mild solutions to this problem are exponentially

stable in p-th mean.
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5.4 Almost Sure Asymptotic Stability

In this section, we study the almost sure asymptotic stability for the mild solution

of equation (5.1.1) by using the technique close to Haussmann’s [58]. Firstly, we

recall two useful lemmas which were proved by Da Prato and Zabczyk[42].

Lemma 5.4.1. [42] Let ‖S(t)‖ ≤ M for all t ≥ 0, p > 2 be an integer and

Φ : [0,+∞) → L0
2 be an Ft-adapted process with

∫ t

0

E‖Φ(s)‖pL0
2
ds < +∞, for all

t ≥ 0. There exists a constant c1 > 0 such that for any natural number n, we

have

E
(

sup
t∈[n,n+1]

∥∥∥∥∫ t

n

S(t− s)Φ(s)dW (s)

∥∥∥∥p
H

)
≤ c1

∫ n+1

n

E‖Φ(s)‖pL0
2
ds. (5.4.1)

Proof. The proof can be found in Da Prato and Zabczyk [42], p.144.

Lemma 5.4.2. [42] Assume that operator A generates a strongly continuous

constraction semigroup. Let Ψ : [0,+∞) → L0
2 be an Ft-adapted process with∫ t

0

E‖Φ(s)‖2
L0

2
ds < +∞, for any t ≥ 0. There exists a constant c2 > 0 such that

for any natural number n, we have

E
(

sup
t∈[n,n+1]

∥∥∥∥∫ t

n

S(t− s)Φ(s)dW (s)

∥∥∥∥2

H

)
≤ c2

∫ n+1

n

E‖Φ(s)‖2
L0

2
ds. (5.4.2)

Proof. The proof can be found in Da Prato and Zabczyk [42], p.160.

Now, we prove the following new version of Lemma 5.4.1 by using the resolvent

operator R(t) instead of the semigroup S(t). Let p > 2, Ψ : [0,+∞) → L0
2 be a

Ft-adapted process. The stochastic convolution is defined by

WΨ
A,B(t) =

∫ t

0

R(t− s)Ψ(s)dW (s), t ≥ 0. (5.4.3)

Lemma 5.4.3. Let ‖R(t)‖ ≤ M for all t ≥ 0 and let Ψ : [0,+∞) → L0
2 be an

Ft-adapted process with

∫ t

0

E‖Ψ(s)‖pL0
2
ds < +∞, for some integer p > 2. Then

there exists a constant CT > 0 such that for any natural number n, we have

E
(

sup
t∈[n,n+1]

∥∥∥∥∫ t

n

R(t− s)Ψ(s)dW (s)

∥∥∥∥p
H

)
≤ CT

∫ n+1

n

E‖Ψ(s)‖pL0
2
ds. (5.4.4)

92



Proof. We shall use the factorization method. Let θ ∈ (1
p
, 1

2
) and 1

p
+ 1

q
= 1, we

suppose that

E
(∫ n+1

n

‖Ψ(s)‖pL0
2
ds

)
< +∞.

And for any n ≤ h < t ≤ n+ 1, we have∫ t

h

(t− s)θ−1(s− h)−θds =
π

sin πθ
. (5.4.5)

By substituting (5.4.5) into (5.4.3), we give the following stochastic convolution

WΨ
A,B

WΨ
A,B(t) =

sin πθ

π

∫ t

n

R(t−h)Ψ(h)

[ ∫ t

h

(t− s)θ−1(s−h)−θds

]
dW (h) t ≥ 0.

(5.4.6)

Taking stochastic Fubini Theorem 2.2.3 into account, we have that

WΨ
A,B(t) =

sin πθ

π

∫ t

h

(t− s)θ−1Z(s)ds t ≥ 0, (5.4.7)

where

Z(s) =

∫ s

n

R(s− h)(s− h)−θΨ(h)dW (h) 0 ≤ s ≤ T. (5.4.8)

Since θ ∈ (1
p
, 1

2
), applying Hölder’s inequality, we can obtain that there exists a

constant CT1 > 0 such that

‖WΨ
A,B(t)‖ ≤ sin πθ

π

∫ t

h

(t− s)θ−1‖Z(s)‖pHds

≤ sin πθ

π

[ ∫ t

h

(t− s)q(θ−1)ds

]1/q[ ∫ t

n

‖Z(s)‖pHds
]1/p

≤ sin πθ

π

tθ−
1
p

(q(θ − 1) + 1)
1
q

[ ∫ t

n

‖Z(s)‖pHds
]1/p

.

(5.4.9)

Thus,

sup
t∈[n,n+1]

‖WΨ
A,B(t)‖pH ≤ CT1

∫ n+1

n

‖Z(s)‖pHds. (5.4.10)
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Moreover, by Lemma 2.2.1, there exist a constant CT2 > 0 such that

E‖Z(s)‖p ≤ CT2E
(∫ s

n

(s− h)−2θ‖Ψ(h)‖2
L0

2
dh

)p/2
. (5.4.11)

Substituting (5.4.11) into (5.4.10), we obtain the following inequality

E
(

sup
t∈[n,n+1]

‖WΨ
A,B(t)‖pH

)
≤ CT2

(
sinπθ

π

)p
T pθ−1

(q(θ − 1) + 1)
p
q

E
∫ n+1

n

(∫ s

n

(s− h)−2θ‖Ψ(h)‖2
L0

2
dh

)p/2
ds.

(5.4.12)

From which, using the classic Young inequality, there exist a constant CT3 > 0

such that∫ n+1

n

(∫ s

n

(s− h)−2θ‖Ψ(h)‖2
L0

2
dh

)p/2
ds

≤
(∫ n+1

n

(s− h)−2θds

)p/2 ∫ n+1

n

‖Ψ(s)‖p/2L0
2
ds

≤ CT3

∫ n+1

n

‖Ψ(s)‖pL0
2
ds.

(5.4.13)

Replacing the above expression in (5.4.12), there exists a constant CT > 0, we

have that

E
(

sup
t∈[0,T ]

‖WΨ
A,B(t)‖pH

)
≤ CT2CT3

(
sin πθ

π

)p
T pθ−1

(q(θ − 1) + 1)
p
q

E
∫ n+1

n

‖Ψ(s)‖pL0
2
ds

≤ CTE
∫ n+1

n

‖Ψ(s)‖pL0
2
ds.

(5.4.14)

This finishes the proof of Lemma 5.4.3.

We shall recall the Borel-Cantelli’s Lemma which plays important role in our

argument.

Lemma 5.4.4. (Borel-Cantelli’s Lemma) Let (Ω,F ,P) be a probability space

and A1, A2, · · · , are a group of events. Let A = ∩n ∪∞m=n Am be the event that

infinitely many of the An occur. Then:
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(a). P(A) = 0 if
∑

n P(An) <∞,

(b). P(A) = 1 if
∑

n P(An) =∞ and A1, A2, · · · are independent events.

If the assumption of independence is dropped, the statement (b) could be

false. For example, consider some event E with 0 < P(E) < 1 and let An = E

for all n. Then A = E and P(A) = P(E).

Theorem 5.4.1. Suppose that all assumptions (H1)-(H6) of Theorem 5.3.2 are

hold with p > 2. Let x(t) and y(t) are solutions of equation (5.1.1) with initial

values φ and ϕ respectively. If γ > β, then there exists a random variable τ(ω) ≥ 0

such that for all t ≥ τ(ω)

‖x(t)− y(t)‖pH ≤ ‖φ− ϕ‖
p
1e
−(γ−β)t/2 P a.s. (5.4.15)

Proof. Let n0 be an integer such that σ1(n0) ≥ 0, σ2(n0) ≥ 0. Since the

assumption (H5) is satisfied, we have that σ1(n) > 0 and σ2(n) > 0. Let n > n0,

we denote In the interval [n, n+ 1]. For any t ∈ [n, n+ 1], we have

x(t) = R(t−n)x(n)+

∫ t

n

R(t−s)F (x(σ1(s)))ds+

∫ t

n

R(t−s)G(x(σ2(s)))dW (s),

(5.4.16)

y(t) = R(t−n)y(n)+

∫ t

n

R(t−s)F (y(σ1(s)))ds+

∫ t

n

R(t−s)G(y(σ2(s)))dW (s).

(5.4.17)

It follows that

‖x(t)− y(t)‖pH

≤ ‖R(t− n)[x(n)− y(n)]‖pH

+

∥∥∥∥∫ t

n

R(t− n)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

+

∥∥∥∥∫ t

n

R(t− n)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

(5.4.18)
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For any constant ε > 0, we have

P
(

sup
n≤t≤n+1

‖x(t)− y(t)‖pH > ε

)
≤ P

[
sup

n≤t≤n+1
‖R(t− n)[x(n)− y(n)]‖pH >

ε

3

]
+ P

[
sup

n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

>
ε

3

]
+ P

[
sup

n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

>
ε

3

]
(5.4.19)

By using Markov inequality in the above inequality (5.4.19), one follows that

P
(

sup
n≤t≤n+1

‖x(t)− y(t)‖pH > ε

)
≤
(

3

ε

)p
E
[

sup
n≤t≤n+1

‖R(t− n)[x(n)− y(n)]‖pH
]

+

(
3

ε

)p
E
[

sup
n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

]
+

(
3

ε

)p
E
[

sup
n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

]
=

(
3

ε

)p
(Π1 + Π2 + Π3).

(5.4.20)

By employing Theorem 5.4.1, assumption (H3) and Hölder inequality, we have

that

Π1 = E
[

sup
n≤t≤n+1

‖R(t− n)[x(n)− y(n)]‖pH
]

≤ E
[

sup
n≤t≤n+1

Mpe−pγ(t−n)‖x(n)− y(n)‖pH
]

≤MpE‖x(n)− y(n)‖pH

≤Mpα‖φ− ϕ‖p1e−(γ−β)n.

(5.4.21)
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Applying assumptions (H3), we can see that

Π2 = E

[
sup

n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
ds

∥∥∥∥p
H

]

≤ E

[
sup

n≤t≤n+1

(∫ t

n

‖R(t− n)
[
F (x(σ1(s)))− F (y(σ1(s)))

]
‖Hds

)p]
.

(5.4.22)

Under the Lipschitz condition (H4) and by using Hölder inequality, we have,

Π2 ≤ (MK1)pE

[
sup

n≤t≤n+1

(∫ t

0

e−pγ(t−n)‖x(σ1(s))− y(σ1(s))‖Hds
)p]

≤ (MK1)pE

[
sup

n≤t≤n+1

(∫ t

n

1× ‖x(σ1(s))− y(σ1(s))‖Hds
)p]

≤ (MK1)pE

[
sup

n≤t≤n+1
(t− n)(p−1)/p

∫ t

n

‖x(σ1(s))− y(σ1(s))‖pHds

]

≤ (MK1)p
∫ n+1

n

E‖x(σ1(s))− y(σ1(s))‖pHds.

(5.4.23)

Let u = σ1(s), then the above expression (5.4.23) implies

Π2 ≤ (MK1)p
∫ σ1(n+1)

σ1(n)

E‖x(u)− y(u)‖pHd(σ−1
1 (u))

≤ (MK1)p
∫ σ1(n+1)

σ1(n)

E‖x(u)− y(u)‖pHdu

≤ (MK1)p
∫ σ1(n+1)

σ1(n)

α‖φ− ϕ‖p1e−(γ−β)udu

≤ (MK1)pα‖φ− ϕ‖p1
∫ σ1(n+1)

σ1(n)

e−(γ−β)udu.

(5.4.24)

Since γ > β, we have

Π2 ≤ (MK1)p
(

α

γ − β

)
‖φ− ϕ‖p1

(
e−(γ−β)σ(n) − e−(γ−β)σ(n+1)

)
≤ (MK1)p

(
α

γ − β

)
‖φ− ϕ‖p1e−(γ−β)σ(n)

≤ (MK1)p
(

α

γ − β

)
‖φ− ϕ‖p1e−(γ−β)(n−r)

≤ (MK1)p
(

α

γ − β

)
e(γ−β)r‖φ− ϕ‖p1e−(γ−β)n.

(5.4.25)
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On the other hand, by taking Lemma 5.5.1 into account, we have that

Π3 = E
[

sup
n≤t≤n+1

∥∥∥∥∫ t

n

R(t− n)
[
G(x(σ2(s)))−G(y(σ2(s)))

]
dW (s)

∥∥∥∥p
H

]
≤ (MK2)pCT

∫ n+1

n

E‖x(σ2(s))− y(σ2(s))‖pHds.
(5.4.26)

By using the change of variable u = σ2(s) in (5.4.26), we get

Π3 = (MK1)p
∫ σ1(n+1)

σ1(n)

E‖x(u)− y(u)‖pHdu

≤ (MK1)p
(
αCT
γ − β

)
e(γ−β)r‖φ− ϕ‖p1e−(γ−β)n.

(5.4.27)

Recalling (5.4.19), from (5.4.21) to (5.4.27), one can see that there exist a M1 > 0

such that

P
(

sup
t∈[n,n+1]

‖x(t)− y(t)‖pH > ε

)
≤ M1

ε
‖φ− ϕ‖p1e−(γ−β)n (5.4.28)

where M1 = (3M)pα

(
1 +Kp

1
1

γ−βe
(γ−β)r +Kp

2
Cp
γ−βe

(γ−β)r

)
.

For each integer n ≥ n0, we set εn = ‖φ− ϕ‖1e
−(γ−β)n/2p. Then one can have

that

P
(

sup
t∈[n,n+1]

‖x(t)− y(t)‖H > ‖φ− ϕ‖1e
−(γ−β)n/2p

)
≤M1e

−(γ−β)n/2. (5.4.29)

Hence, the Lemma 5.5.2 implies that there exist a random variable τ(ω), t ≥ 0

such that for all t ≥ τ(ω)

‖x(t)− y(t)‖pH ≤ ‖φ− ϕ‖
p
1e
−(γ−β)t/2 P a.s. (5.4.30)
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5.5 Illustrative Example

We consider the following system

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+

∫ t

0

α(t− s) ∂
2

∂x2
u(s, x)ds− u(σ1(t), x)

1 + |u(σ1(t), x)|

+σ
u(σ2(t), x)

1 + |u(σ2(t), x)|
dβ(t), t ≥ 0,

u(t, 0) = u(t, π) = 0, t ≥ 0,

u(t, x) = u0(t, x), t ∈ [−r, 0], x ∈ [0, π].

(5.5.1)

where r > 0, β(t) is a real standard Wiener process and α : R+ → R is

a continuous function. Let H = L2([0, π]) with the norm ‖ · ‖ and en :=√
2
π

sin(nx), n = 1, 2, 3, · · · denote the completed orthonormal basis in H. Let

W (t) =
∑∞

n=1

√
λnδn(t)en, where δn(t) are one dimensional standard Brownian

motion mutually independent on a complete probability space (Ω,F ,Ft≥0,P).

Define A : D(A) ⊂ H → H by A = ∂2

∂x2 , with domain D(A) = H2[0, π] ∩

H1
0 [0, π].

Then

Ah =
∞∑
n=1

−n2〈h, en〉en, h ∈ D(A),

where en, n = 1, 2, 3, · · · , is also the orthonormal set of eigenvectors of A. It is

well-known that A is the infinitesimal generator of a strongly continuous semi-

group S(t) on H, given by

S(t)h =
∞∑
n=1

e−n
2t〈h, en〉en, h ∈ H,

which is compact.

Let B(t) : D(A) ⊂ H → H, t ≥ 0, be the operator defined by

B(t)(z) = α(t)Az t ≥ 0, z ∈ D(A).
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If we put
x(t) = u(t, ·), t ≥ 0,

φ(t) = u0(t, ·), t ∈ [−r, 0].

(5.5.2)

Then the equation (5.5.1) takes the following abstract from
dx(t) =

[
Ax(t) +

∫ t

0

B(t− s)x(s) + F (x(σ1(t)))

]
dt+G(x(σ2(t)))dW (t), t ≥ 0,

x0(t) = φ(t) t ∈ [−r, 0].

(5.5.3)

We suppose b is bounded and b
′

is bounded and uniformly continuous, which

implies that the operator B(t) satisfies conditions (H1) and (H2) and hence, by

Theorem (5.2.1), equation (5.2.1) has a resolvent operator (R(t))t≥0 on H. By

Lipchiz condition (H4), we suppose that for all t ≥ 0,

‖R(t)‖L(H) ≤Me−γt, M ≥ 1, γ > 0,

then all the assumptions of Theorem 5.3.2 are fulfilled. Therefore, the stochastic

integro-differential equation (5.5.1) has a unique mild solution which is exponen-

tially stable in p-th moment provided

Mp

(
1 + γ1−peγr + Cp

(
p− 2

2(p− 1)γ

) p−2
2
)
<

1

3p−1
, (5.5.4)

for any p > 2 and there exists a

Cp =

(
p(p− 1)

2

)p/2
. (5.5.5)
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Chapter 6

Exponential Stability of Neutral

Impulsive Stochastic Delay

Partial Differential Equations

Driven by a Fractional Brownian

Motion

6.1 Introduction

The fractional Brownian motion is a special stochastic process. It differs signifi-

cantly from the standard Brownian motion and semi-martingales in the theory of

stochastic processes. As a family of centered Gaussian processes, it is character-

ized by the stationarity of its increments and a medium or long-memory property.

It also exhibits power scaling with exponent H. Its paths are Hölder continuous

of any order H ∈ (0, 1). When H = 1
2
, the fractional Brownian motion becomes

the standard Brownian motion. However, when H 6= 1
2
, fBm BH behaves in a

completely different way from the standard Brownian motion. In particular, it is
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neither a semi-martingale nor a Markov process.

We shall define the stochastic integral with respect to fractional Brownian

motion in infinite dimensional spaces in the same way as in Caraballo et al. [21].

They have also discussed the existence and exponential behaviour of mild solu-

tions. Although, stochastic functional differential equations driven by a fractional

Brownian motion have recently been studied intensively, as far as we know, there

are only a few satisfactory results. The following stochastic functional differential

equation driven by a fractional Brownian motion in a Hilbert space with finite

delay has been studied by Boufoussi and Hajji [12]
d[x(t) + u(t, x(t− r(t)))] = [Ax(t) + f(t, x(t− r(t)))]dt+ σ(t)dBH(t),

t ≥ 0,

x0(t) = φ(t), t ∈ (−r, 0].

(6.1.1)

R. Maheswari and S. Karunanithi [93] have discussed the existence, uniqueness

and asymptotic behaviors of mild solutions for a neutral stochastic differential

equation with finite delays driven by fractional Bownian motion in the following

form
d[x(t) + u(t, x(t− r(t)))] = [Ax(t) + f(t, x(t− r(t)))]dt

+g(t, x(t− r(t)))dW (t) + σ(t)dBH(t), t ≥ 0,

x0(t) = φ(t), t ∈ (−r, 0].

(6.1.2)

Moreover, in addition to stochastic effects, it is known that the impulsive ef-

fects exist in many different areas of real world such as mechanics, medicine and

biology, economics and finance. Impulsive effects often make systems under in-

vestigation unstable. Therefore, impulsive effects should be taken into account in
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the research of stochastic delay differential equations driven by fractional Brow-

nian motion. However, to our best knowledge, so far not many works have been

reported on the corresponding problems for impulsive stochastic neutral stochas-

tic differential equations driven by a fractional Brownian motion. Motivated by

this consideration in this chapter, we are interested in existence, uniqueness and

asymptotic behaviors of mild solutions for the following Hilbert space valued

neutral impulsive stochastic differential equation driven by a fractional Brownian

motion with finite (r > 0) or infinite delays (r = +∞):

d[x(t) + u(t, x(t− τ(t)))] = [Ax(t) + f(t, x(t− τ(t)))]dt+ g(t, x(t− τ(t)))dW (t)

+σ(t)dBH(t), t ≥ 0, t 6= tk,

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), t = tk, k = 1, 2, . . . ,

x(t) = φ(t), t ∈ (−r, 0].

(6.1.3)

where A is the infinitesimal generator of an analytic semigroup of bounded liner

operators (S(t))t≥0 in a Hilbert space Y with norm ‖ · ‖, BH(t) is a fractional

Brownian motion with H > 1
2

on a real and separable Hilbert space K, τ :

[0,∞) → [0, r) is continuous. Here u, f : [0,+∞) × Y → Y , g : [0,+∞) × Y →

L0
2(K0, Y ), are measurable functions, mapping σ : [0,+∞)→ Y and Ik : Y → Y

is measurable and 0 < t1 < . . . < tk < . . ., limk→∞ tk = ∞, x(t+k ) and x(t−k )

represent the right and left limits of x(t) at t = tk, k = 1, 2, . . . , respectively.

The mapping Ik represents the size of the jump at tk, k = 1, 2, . . .. The initial

value φ ∈ P ((−r, 0], Y ) the space of all continuous functions from (−r, 0) to Y ,

but φ(t+) and φ(t−) exist at accountable number of points on (−r, 0). φ(t+) and

φ(t−) denote the right-hand and left-hand limits of the function ψ(t), respectively.
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6.2 Fractional Brownian Motion

In this section, let (Ω,F ,P) be a complete probability space. We recall the

definition of Wiener integral with respect to fractional Brownian motions with

Hurst parameter H > 1
2
. We also establish some definitions and lemmas which

play an important role throughout this chapter.

Definition 6.2.1. An one-dimensional fractional Brownian motion with Hurst

parameter H ∈ (0, 1) is a continuous centered Gaussian process βH(t), t ∈ R,

with the covariance function

RH(t, s) = E
[
βH(t)βH(s)

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ R, (6.2.1)

where H is the Hurst parameter. The process above is called a two-side one-

dimensional fractional Brownian motion.

We shall define the stochastic integral with respect to fractional Brownian

motion in infinite dimensional spaces in the same way as in Caraballo et al.

[21]. Firstly, we introduce stochastic integral with respect to the one-dimensional

fractional Brownian motion βH . Let T > 0 and denote by Λ the linear space of

R-valued step functions on [0, T ], that is, ϕ ∈ Λ if

ϕ(t) =
n−1∑
i=1

xiX[ti,ti+1)(t), (6.2.2)

where t ∈ [0, T ], xi ∈ R and 0 = t1 < t2 < · · · < tn = T. For ϕ ∈ Λ we define its

stochastic integral with respect to βH as∫ T

0

ϕ(s)dβH(s) =
n−1∑
i=1

xi(β
H(ti+1)− βH(ti)). (6.2.3)

Let H be a Hilbert space defined as the closure of Λ with respect to the scalar

product

〈X[0,t],X[0,s]〉H = RH(t, s)
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It can be shown that the mapping

ϕ =
n−1∑
i=1

xiX[ti,ti+1) 7→
∫ T

0

ϕ(s)dβH(s) (6.2.4)

is an isometry between Λ and the linear space span {βH , t ∈ [0, T ]}, which can

be extended to an isometry between H and the first Wiener chaos of the fBm

spanL
2(Ω){βH , t ∈ [0, T ]}. The image of an element ϕ ∈ H by this ismetry is

called the stochastic integral of ϕ with respect to βH .

Next, we will give an explicit expression of this integral. To this end, we

consider the kernel function

KH(t, s) = cHs
1
2
−H
∫ t

0

(u− s)H−
3
2uH−

1
2du, t ≤ s, (6.2.5)

where cH =
√

H(2H−1)

B(2−2H,H− 1
2

)
, with B denoting the Beta function. It is not difficult

to see that

∂KH

∂t
(t, s) = cH

(
t

s

)H− 1
2

(t− s)H−
3
2 . (6.2.6)

Consider the linear operator K∗H : Λ→ L2([0, T ]) defined by

(K∗Hϕ)(s) =

∫ t

s

ϕ(t)
∂KH

∂t
(t, s)dt ϕ ∈ Λ. (6.2.7)

Then

(K∗HX[0,t])(s) = KH(t, s)X[0,t](s). (6.2.8)

It can be shown that K∗H is an isometry between Λ and L2[0, T ] that can be

extended to H. We define that

W (t) = βH((K∗H)−1X[0,t]), t ∈ [0, T ]. (6.2.9)

It turns out that W (t) is a Wiener process and βH has the following Wiener
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integral representation:

βH(t) =

∫ t

0

KH(t, s)dW (s), t ≥ 0.. (6.2.10)

In addition, for any ϕ ∈ H, it can be shown that∫ T

0

ϕ(s)dβH(s) =

∫ T

0

(K∗Hϕ)(t)dW (t), (6.2.11)

if and only if K∗Hϕ ∈ L2([0, T ]).

Also denoting L2
H([0, T ]) = {ϕ ∈ H, K∗Hϕ ∈ L2([0, T ])} and noticing H > 1

2
, we

have

L1/H([0, T ]) ⊂ L2
H([0, T ]), (6.2.12)

for more details, we refer reader to [98]. Moreover, the following result can be

shown.

Lemma 6.2.1. For ϕ ∈ L1/H([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0

|ϕ(s)||ϕ(u)||s− u|2H−2dsdu ≤ cH‖ϕ‖2
L1/H([0,T ]), (6.2.13)

where cH =
√

H(2H−1)

B(2−2H,H− 1
2

)
, with B denoting the Beta function.

Proof. The proof can be found in Nualart, D. [107].

Further, we shall introduce the Hilbert space valued fractional Brownian mo-

tion and give the definition of the corresponding stochastic integral.

Let (Y, ‖ · ‖Y , 〈·, ·〉Y ) and (K, ‖ · ‖K , 〈·, ·〉K) be separable Hilbert spaces. Let

L1(K,Y ) denote the space of all bounded linear operators from K to Y . Let

Q ∈ L1(K,K) be a positive self-adjoint operator. Denote by L0
2(K0, Y ) the space

of all Hilbert-Schmidt operator from K0 to Y . The norm is given by

‖ξ‖2
L0

2
= Tr(ξQ1/2(ξQ1/2)∗) <∞, ξ ∈ L0

2(K0, Y ).

Let {βHn (t)}n∈N be a sequence of two-sided one-dimensional standard fractional

Brownian motion mutually independent on (Ω,F ,P). We consider a K-valued
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stochastic process BH(t) given formally by the following series:

BH(t) =
∞∑
n=1

βHn (t)Q
1
2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series converges

in the space Y , this is, it holds that BH(t) ∈ L2(Ω, K). Then, we say that

the above BH(t) is a K-valued Q fractional Brownian motion with covariance

operator Q. For example, if {σn}n∈N is a bounded sequence of non-negative real

numbers such that Qen = σnen and assume that Q is a nuclear operator in K

(that is,
∑∞

n=1 σn <∞), then the stochastic process

BH(t) =
∞∑
n=1

βHn (t)Q
1
2 en =

∞∑
n=1

√
σnβ

H
n (t)en, t ≥ 0, (6.2.14)

is well-defined as a K-valued Q fractional Brownian motion. Let ϕ : [0, T ] →

L0
2(K0, Y ) be a measurable map such that

∞∑
n=1

‖K∗H(ϕQ
1
2 en)‖L2([0,T ];Y ) <∞. (6.2.15)

Definition 6.2.2. Suppose that ϕ : [0, T ] → L0
2(K0, Y ) satisfies (6.2.15). Its

stochastic integral with respect to the fractional Brownian motion BH is defined,

for t ≥ 0, as follows∫ t

0

ϕ(s)dBH(s) :=
∞∑
n=1

∫ t

0

ϕ(s)Q
1
2 endβ

H
n =

∞∑
n=1

∫ t

0

(K∗H(ϕQ
1
2 en))(s)dβ(s),

(6.2.16)

where β(s) is the standard Brownian motion used to present BH(s) as in 6.2.10.

Notice that if

‖ϕ‖L0
2

=
∞∑
n=1

‖ϕQ
1
2 en‖L1/H([0,T ];Y ) <∞, (6.2.17)

then (6.2.15) holds, which follows immediately from (6.2.12).

Now we close this subsection by stating the following result which is funda-

mental to prove our result.
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Lemma 6.2.2. For any σ : [0, T ]→ L0
2(K0, Y ) satisfies∫ T

0

‖σ(s)‖2
L0

2(K0,Y )ds <∞

then the above sum in (6.2.17) is well defined as a Y -valued random variable and

we have

E
∥∥∥∥∫ t

0

σ(s)dBH(s)

∥∥∥∥2

Y

≤ cHH(2H − 1)t2H−1

∫ t

0

‖σ(s)‖2
L0

2(K0,Y )ds (6.2.18)

Proof. Lemma 6.2.2 is obtained as an application of Lemma 6.2.1. The proof

can be found in Lemma 2 Caraballo et al. [17].

A similar lemma has also been proved in Lemma 2 by Boufoussi and Hajji [12].

6.3 The Existence of Mild Solutions for the Sys-

tem with Finite Delays

In this section, we establish the result for the system with finite delays by using

contraction mapping principle.

Let 0 < t < ∞, we have the following definition of mild solutions for system

(6.1.3).

Definition 6.3.1. A stochastic process {x(t), t ∈ (−r,∞)} is called a mild solu-

tion of equation (6.1.3) if the following conditions hold:

(i) x(t) is continuous on (0, t1] and each interval (tk, tk+1], k = 1, 2, 3, . . .,

(ii) For each tk, x(t+k ) = limt↓t+k
x(t) exists,
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(iii) For each t ∈ [0, T ], x(t) satisfies the following integral equation

x(t) =S(t)
[
φ(0) + u(0, φ(−τ(0)))

]
− u(t, x(t− τ(t)))

−
∫ t

0

AS(t− s)u(s, x(s− τ(s)))ds

+

∫ t

0

S(t− s)f(s, x(s− τ(s)))ds

+

∫ t

0

S(t− s)g(s, x(s− τ(s)))dW (s)

+

∫ t

0

S(t− s)σ(s)dBH(s) +
∑

0<tk<t

S(t− tk)Ik(x(t−k )),

(6.3.1)

and x(0) = φ ∈ P ([−r, 0];Y ).

In order to prove the main results, we assume the following assumptions:

(H1) A is the infinitesimal generater of an exponentially stable analytic semigroup

of bounded linear operators {S(t), t ≥ 0} in X, such that the following

inequality holds

‖S(t)‖ ≤Me−γt, t ≥ 0,

for M > 0 and γ > 0.

(H2) The coefficients f, g satisfy Lipschitz conditions, i.e. there exist some pos-

itive constants C1, C2 and K1, K2 such that for any x, y ∈ H and t ≥ 0,

(i) ‖f(t, x)− f(t, y)‖Y ≤ K1‖x− y‖Y ,

(ii) ‖f(t, x)‖Y ≤ C1(1 + ‖x‖Y ),

(iii) ‖g(t, x)− g(t, y)‖L0
2
≤ K2‖x− y‖Y ,

(iv) ‖g(t, x)‖L0
2
≤ C2(1 + ‖x‖Y ).

Moreover, we assume that f(t, 0) = g(t, 0) = 0, for x, y ∈ Y.

(H3) There exist constants α ∈ (0, 1] and K3 > 0 such that for any x ∈ Y and

t ≥ 0, u(t, x) ∈ D((−A)α) and

‖(−A)αu(t, x)− (−A)αu(t, y)‖Y ≤ K3‖x− y‖Y , x, y ∈ Y,
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with u(t, 0) = 0.

(H4) There exist a positive constant series {qk} for each k ∈ {1, 2, 3, . . .}, such

that
∑∞

k=1 qk = κ <∞ and

‖Ik(x)− Ik(y)‖ ≤ qk‖x− y‖,

with Ik(0) = 0 for each x, y ∈ Y .

(H5) The function σ : [0,∞)→ L0
2(K0, Y ) satisfies∫ ∞

0

e2λs‖σ(s)‖2
L0

2
ds <∞ for some λ > 0.

Theorem 6.3.1. Suppose the assumptions (H1)-(H5) hold for some α ∈ (0, 1),

p > 2. We further assume that

5

[
K4

2‖(−A)−α‖2 +M2
1−αK4

2γ−2αΓ(2α− 1)

+M2K2
1γ
−2 +M2K2

2γ
−2 +M2κpγ−2

]
< 1,

(6.3.2)

where Γ(·) is the Gamma function, M1−α is the corresponding number in Lemma

(2.1.4). Then the mild solution to (6.3.1) is exponential stability in mean square.

In other words, there exists some constants M0(φ) > 0, µ > 0 such that

E‖y(t)‖2
Y ≤M0(φ)e−µt, t ≥ 0.

Proof. First we define a space S as the family of all stochastic process x(t),

t ∈ [−r,∞), such that

E‖x(t)‖2
Y ≤ M̃E‖φ‖2e−ηt, t ≥ 0, (6.3.3)

for some constants M̃ > 0 and η > 0, where η < γ with a norm

‖x‖S := sup
t∈[0,∞)

E‖x(t)‖pY , x ∈ S.

It can be shown that S, under this norm, is a Banach space.
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Now we define a nonlinear map π on S by π(x)(t) = φ(t) for t ∈ [−r, 0] and

for t ≥ 0,

π(x)(t) = S(t)[φ(0) + u(0, φ(−τ(0))]− u(t, x(t− τ(t)))

−
∫ t

0

AS(t− s)u(s, x(s− τ(t)))ds+

∫ t

0

S(t− s)f(s, x(s− τ(t)))ds

+

∫ t

0

S(t− s)g(s, x(s− τ(t)))dW (s) +

∫ t

0

S(t− s)σ(t)dBH(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k ))

(6.3.4)

Then it is clear that to prove stability of mild solutions to equation (6.1.3), it

suffices to find a fixed point for the operator π in space S. In order to show that

π has a unique fixed point, we shall employ Banach fixed point theorem.

We first show that π is a mapping from S into S. Let x(t) ∈ S, from the

definition of π we have for t ≥ 0

E‖π(x)(t)‖2
Y ≤7E‖S(t)[φ(0) + u(0, φ)]‖2

H + 7E‖u(t, x(t− τ(s)))‖2
Y

+ 7E
∥∥∥∥∫ t

0

AS(t− s)u(s, x(s− τ(s)))ds

∥∥∥∥2

Y

+ 7E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− τ(s)))ds

∥∥∥∥2

Y

+ 7E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− τ(s)))dW (s)

∥∥∥∥2

Y

+ 7E
∥∥∥∥∫ t

0

S(t− s)σ(s)dBH(s)

∥∥∥∥2

Y

+ 7E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥2

Y

:= 7
7∑
i=1

Ii(t).

(6.3.5)

By the definition of S and assumption (H3) it follows that for each t ≥ 0,

I1(t) = E‖S(t)[φ(0) + u(0,−τ(0))]‖2
Y

≤ ‖S(t)‖2E‖φ(0) + u(0,−τ(0))‖2
Y

≤M2e−2γtE‖φ(0) + u(0,−τ(0))‖2
Y .

(6.3.6)
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Moreover, by using (6.3.3), (H2) and (H3) for t ≥ r, we have

I2(t) = E‖u(t, x(t− τ(s)))‖2
Y

= E‖(−A)−α(−A)αu(t, x(t− τ(s)))‖2

Y

≤ ‖(−A)−α‖2E‖(−A)αu(t, x(t− τ(s)))‖2
Y

≤ K2
3‖(−A)−α‖2E‖x(t− τ(s))‖2

Y .

(6.3.7)

Since x ∈ S, x satisfies the relation

E‖x(t− τ(s))‖2
Y ≤ M̃eηrE‖φ‖2e−ηt, t ≥ r. (6.3.8)

Substituting (6.3.8) into (6.3.7), we get that

I2(t) ≤ K2
3‖(−A)−α‖2

M̃eηrE‖φ‖2e−ηt, t ≥ r. (6.3.9)

By employing Theorem 2.1.4 and assumption (H4), for t ≥ r, we have that

I3(t) = E
∥∥∥∥∫ t

0

(−A)S(t− s)u(s, x(s− τ(s)))ds

∥∥∥∥2

Y

≤ E
∥∥∥∥∫ t

0

(−A)1−α(−A)αS(t− s)u(s, x(s− τ(s)))ds

∥∥∥∥2

Y

≤ E
(∫ t

0

‖(−A)(1−α)S(t− s)‖‖(−A)αu(s, x(s− τ(s)))‖Y ds
)2

.

(6.3.10)

Under the assumption (H3), we obtain for t ≥ r that

I3(t) ≤ E
(∫ t

0

‖M1−α(t− s)−(1−α)e−γ(t−s)‖‖(−A)αu(s, x(s− τ(s)))‖Y ds
)2

≤M2
1−αE

(∫ t

0

(t− s)α−1e−γ(t−s)‖(−A)αu(s, x(s− τ(s)))‖Y ds
)2

.

(6.3.11)

Moreover, by using Hölder inequality, we get that, for t ≥ r

I3(t) ≤M2
1−α

(∫ t

0

(t− s)2(α−1)e−γ(t−s)ds

)
·K2

4

∫ t

0

e−γ(t−s)E‖x(s− r(s))‖2
Y ds

≤M2
1−αK3

2γ1−2αΓ(2α− 1)

∫ t

0

e−γ(t−s)E‖x(s− τ(s))‖2
Y ds.

(6.3.12)

112



Since x ∈ S, x satisfies that

E‖x(t− τ(t))‖2
Y ≤ M̃eηrE‖φ‖2e−ηt, t ≥ r. (6.3.13)

Substituting (6.3.13) into (6.3.12), for t ≥ r, we get that

I3(t) ≤M2
1−αK

2
3γ

1−2αΓ(2α− 1)

∫ t

0

e−γ(t−s)M̃eηrE‖φ‖2e−ηsds

≤M2
1−αK

2
3γ

1−2αΓ(2α− 1)M̃E‖φ‖2eηγe−γt
1

γ − η
eγte−ηt

= M2
1−αK

2
3γ

1−2αΓ(2α− 1)
M̃E‖φ‖2eηγ

γ − η
e−ηt.

(6.3.14)

Now employing assumptions (H1), (H2), we similarly have that for each t ≥ r,

I4(t) = E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− τ(s)))ds

∥∥∥∥2

Y

≤ E
(∫ t

0

‖S(t− s)‖ · ‖f(s, x(s− τ(s)))‖Y ds
)2

≤ E
(∫ t

0

Me−γ(t−s)K1‖x(s− τ(s))‖Y ds
)2

.

(6.3.15)

Furthermore, by using Hölder inequality and substituting (6.3.13) into (6.3.15),

for t ≥ r, we get that

I4(t) ≤M2K2
1

(∫ t

0

e−γ(t−s)ds

)∫ t

0

e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

≤M2K2
1γ
−1

∫ t

0

e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

≤M2K2
1γ
−1M̃E‖φ‖2eηr

γ − η
e−ηt.

(6.3.16)

On the other hand, by taking (H1) into account, we have for each t ≥ r,

I5(t) = E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− τ(s)))dW (s)

∥∥∥∥2

Y

≤ E
∫ t

0

(
‖S(t− s)g(s, x(s− τ(s)))‖2

Y

)
ds

≤ E
∫ t

0

‖S(t− s)‖2
(
‖g(s, x(s− τ(s)))‖2

L0
2

)
ds

≤
∫ t

0

M2e−2γ(t−s)E‖g(s, x(s− τ(s)))‖2
L0

2
ds,

(6.3.17)

113



Moreover, under Lipschitz condition (H2), Lemma (2.2.1) and Hölder inequality,

for t ≥ r, the above inequality (6.3.17) turns to be

I5(t) ≤M2K2
2

(∫ t

0

e−2γ(t−s)E‖x(s− τ(s))‖2
Y ds

)
≤M2K2

2

(∫ t

0

e−γ(t−s)ds

)∫ t

0

e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

≤M2K2
2

∫ t

0

e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

≤M2K2
2

M̃E‖φ‖2eηr

γ − η
e−ηt.

(6.3.18)

Furthermore, by taking (H1), Lemma 6.2.2 and Hölder inequality into account,

we have for each t ≥ r,

I6(t) = E
∥∥∥∥∫ t

0

S(t− s)σ(s)dBH(s)

∥∥∥∥2

Y

≤M2cHH(2H − 1)t2H−1

∫ t

0

e−2γ(t−s)‖σ(s)‖2
L0

2
ds.

(6.3.19)

From inequality (6.3.19), we can deduce that

I6(t) = M2cHH(2H − 1)t2H−1

∫ t

0

e−2γte2γse−2λse2λs‖σ(s)‖2
L0

2
ds

≤


M2cHH(2H − 1)t2H−1e−2γt

∫ t

0

e2λs‖σ(s)‖2
L0

2
ds, γ ≤ λ,

M2cHH(2H − 1)t2H−1

∫ t

0

e−2γte(2γ−2λ)te2λs‖σ(s)‖2
L0

2
ds, γ > λ,

≤


M2cHH(2H − 1)t2H−1e−2γt

∫ t

0

e2λs‖σ(s)‖2
L0

2
ds, γ ≤ λ,

M2cHH(2H − 1)t2H−1e−2λt

∫ t

0

e2λs‖σ(s)‖2
L0

2
ds, γ > λ,

(6.3.20)

Since supt≥0

(
t2H−1e−(γ∧λ)t

)
<∞, by taking (H5) into account, inequality (6.3.20)

turns to be

I6(t) ≤M2e
−(γ∧λ)t, (6.3.21)

where γ ∧ λ = min{λ, γ}.
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Now, we estimate the impulsive term. From the condition (H1), for each t ≥ r,

we obtain

I7(t) = E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k ))

∥∥∥∥2

Y

≤ E
( ∑

0<tk<t

Me−γ(t−tk)qk‖(x(t−k )‖Y
)2

.

(6.3.22)

Now by taking assumption (H4) and Hölder inequality into account, we have for

each t ≥ r,

I7(t) ≤M2E
(
κ

∫ t

0

e−γ(t−s)‖x(s)‖Y ds
)2

≤M2κ2

(∫ t

0

e−γ(t−s)ds

)∫ t

0

e−γ(t−s)E‖x(s)‖2
Y ds

≤M2κ2γ−1

∫ t

0

e−γ(t−s)E‖x(s)‖2
Y ds.

(6.3.23)

Since x ∈ S, x satisfies that for t ≥ r,

E‖x(t)‖2
Y ≤ M̃E‖φ‖2e−ηs. (6.3.24)

Substituting (6.3.24) into (6.3.22), we get that for t ≥ r,

I7(t) ≤M2κ2γ−1M̃E‖φ‖2eηr

γ − η
e−ηt. (6.3.25)

Recalling (6.3.5) and combining from (6.3.6) to (6.3.25), one can see that there

exist some numbers Mc > 0 and η1 > 0 such that,

E‖(πx)(t)‖2
Y ≤McE‖φ‖2e−η1t, (6.3.26)

thus, we conclude that π(S) ⊂ S.
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Next, we show that the mapping π is contractive. For any x, y ∈ S, we have,

E‖(πx)(t)− (πy)(t)‖2
Y

≤ 5E‖u(t, x(t− τ(s)))− u(t, y(t− τ(s)))‖2
Y

+ 5E
∥∥∥∥∫ t

0

AS(t− s)
(
u(s, x(s− τ(s)))− u(s, y(s− τ(s)))

)
ds

∥∥∥∥2

Y

+ 5E
∥∥∥∥∫ t

0

S(t− s)
(
f(s, x(s− τ(s)))− f(s, y(s− τ(s)))

)
ds

∥∥∥∥2

Y

+ 5E
∥∥∥∥∫ t

0

S(t− s)
(
g(s, x(s− τ(s)))− g(s, y(s− τ(s)))

)
dW (s)

∥∥∥∥2

Y

+ 5E
∥∥∥∥ ∑

0<tk<t

S(t− tk)(Ik)(x(t−k )− y(t−k ))

∥∥∥∥2

Y

= 5
5∑
i=1

Ji(t).

(6.3.27)

Noting that x(s) = y(s) = φ(s) for s ∈ [−r, 0], then from assumption (H3), we

have for t ≥ r that

J1(t) = E‖u(t, x(t− τ(s)))− u(t, y(t− τ(s)))‖2
Y

≤ K2
3‖(−A)−α‖2E‖x(t− τ(s))− y(t− τ(s))‖2

Y

≤ K2
3‖(−A)−α‖2 sup

t≥0
E‖x(t)− y(t)‖2

Y

(6.3.28)

By using Lemma (2.1.4) and Hölder’s inequality, we have for t ≥ r

J2(t) = E
∥∥∥∥∫ t

0

AS(t− s)
[
u(s, x(s− τ(s)))− u(s, y(s− τ(s)))

]
ds

∥∥∥∥2

Y

≤M2
1−αK

2
3

∫ t

0

(t− s)2(α−1)e−γ(t−s)ds

·
∫ t

0

e−γ(t−s)E‖x(s− τ(s))− y(s− τ(s))‖2
Y ds

≤M2
1−αK

2
3Γ(2α− 1)γ1−2α

·
∫ t

0

e−γ(t−s)E‖x(s− τ(s))− y(s− τ(s))‖2
Y ds

≤M2
1−αK

2
3Γ(2α− 1)γ2α sup

t≥0
E‖x(t)− y(t)‖2

Y .

(6.3.29)
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By employing the assumption (H1), we have for t ≥ r that

J3(t) = E
∥∥∥∥∫ t

0

S(t− s)
(
f(s, x(s− τ(s)))− f(s, y(s− τ(s)))

)
ds

∥∥∥∥2

Y

≤ E
(∫ t

0

‖S(t− s)‖‖f(s, x(s− τ(s)))− f(s, y(s− τ(s)))‖Y ds
)2

≤ E
(∫ t

0

M2e−γ(t−s)‖f(s, x(s− τ(s)))− f(s, y(s− τ(s))‖Y ds
)2

.

(6.3.30)

Furthermore, by taking assumption (H2) and Hölder’s inequality into account,

for t ≥ r, one can get,

J3(t) ≤M2K2
1γ
−1

∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s− τ(s))− y(s− τ(s))‖2
Y ds

= M2K2
1γ
−1 sup
−r≤s<∞

E‖x(s− τ(s))− y(s− τ(s))‖2
Y

∫ t

0

e−γ(t−s)ds

≤M2K2
1γ
−2 sup
−r≤s<∞

E‖x(s− τ(s))− y(s− τ(s))‖2
Y .

(6.3.31)

By employing Lemma (2.2.1) and condition (H2), we have for t ≥ r

J4(t) = E
∥∥∥∥∫ t

0

S(t− s)
(
g(s, x(s− τ(s)))− g(s, y(s− τ(s)))

)
dW (s)

∥∥∥∥2

Y

≤ E
∫ t

0

∥∥S(t− s)
(
g(s, x(s− τ(s)))− g(s, y(s− τ(s)))

)∥∥2

Y
ds

≤ E
∫ t

0

‖S(t− s)‖2‖g(s, x(s− τ(s)))− g(s, y(s− τ(s)))‖2
L0

2
ds.

(6.3.32)

By taking condition (H1) Hölder inequality into account, for t ≥ r, we have that

J4(t) ≤
(∫ t

0

M2e−2γ(t−s)E‖g(s, x(s− τ(s)))− g(s, y(s− τ(s)))‖2
L0

2
ds

)
≤M2K2

2

(∫ t

0

e−2γ(t−s)E‖x(s− τ(s))− y(s− τ(s))‖2
Y ds

)
≤M2K2

2

∫ t

0

e−2γ(t−s) sup
−r≤s<∞

E‖x(s− τ(s))− y(s− τ(s))‖2
Y ds

≤M2K2
2 sup
−r≤s<∞

E‖x(s− τ(s))− y(s− τ(s))‖2
Y

∫ t

0

e−2γ(t−s)ds

≤M2K2
2(2γ)−1 sup

−r≤s<∞
E‖x(s− τ(s))− y(s− τ(s))‖2

Y .

(6.3.33)
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Now, from assumptions (H1)and (H4), for t ≥ r, we get

J5(t) = E
∥∥∥∥ ∑

0<tk<t

S(t− tk)Ik(x(t−k )− y(t−k ))

∥∥∥∥2

Y

≤M2E
( ∑

0<tk<t

e−γ(t−tk)qk‖(x(t−k )− y(t−k ))‖Y
)2

≤M2E
(
κ

∫ t

0

e−γ(t−s)‖x(s)− y(s)‖Y ds
)2

.

(6.3.34)

By using Hölder inequality, for t ≥ 0, we have

J5(t) ≤M2κ2

(∫ t

0

e−γ(t−s)ds

)∫ t

0

e−γ(t−s)E‖x(s)− y(s)‖2
Y ds

≤M2κ2

(∫ t

0

e−γ(t−s)ds

)∫ t

0

e−γ(t−s) sup
−r≤s<∞

E‖x(s)− y(s)‖2
Y ds

≤M2κ2γ−1 sup
−r≤s<∞

E‖x(s)− y(s)‖2
Y

∫ t

0

e−γ(t−s)ds

≤M2κ2γ(−2) sup
−r≤s<∞

E‖x(s)− y(s)‖2
Y ds.

(6.3.35)

We proved that π is a contraction mapping.

‖(πx)− (πy)‖2
S

≤ 5

[
K3

2‖(−A)−α‖2 +M2
1−αK

2
3γ
−2αΓ(2α− 1)

+M2K2
1γ
−2 +M2K2

2(2γ)−1 +M2κ2γ(−2)

]
‖x− y‖2

S .

(6.3.36)

Since,

5

[
K2

4‖(−A)−α‖2 +M2
1−αK

2
4γ
−2αΓ(2α− 1)

+M2K2
1γ
−2 +M2K2

2(2γ)−1 +M2κ2γ(−2)

]
< 1,

(6.3.37)

π is a contraction mapping and hence there exists a unique fixed point which is

a mild solution of the equation (6.1.3) on (−r,∞). This completes the proof.
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6.4 The Mild Solution of the System with Infi-

nite Delays

Theorem 6.4.1. Under the assumptions of (H1) to (H5), the mild solution to

system (6.1.3) exists uniquely and converges to zero in mean square, i.e.,

lim
t→∞

E‖x(t)‖2 = 0.

Proof. Denote by S ′ the space of all stochastic processes x(t, ω) : (−∞,∞)×Ω→

Y satisfying x(t) = φ(t), t ∈ (−∞, 0] and the definition (6.3.1) and

lim
t→∞

E‖x(t)‖2 = 0. (6.4.1)

We define a nonlinear the operator Ψ on S ′ by (Ψx)(t) = φ(t), −∞ < t ≤ 0 and

(Ψx)(t) = S(t)[φ(0) + u(0, φ(−τ(0))]− u(t, x(t− τ(t)))

−
∫ t

0

AS(t− s)u(s, x(s− τ(s)))ds+

∫ t

0

S(t− s)f(s, x(s− τ(s)))ds

+

∫ t

0

S(t− s)g(s, x(s− τ(s)))dW (s) +

∫ t

0

S(t− s)σ(t)dBH(s)

+
∑

0<tk<t

S(t− tk)Ik(x(t−k )) :=
7∑
i=1

Πi(t), t ≥ 0.

(6.4.2)

Since (Ψx)(t) = (πx)(t) on [0,∞), this implies that Ψ is contractive. Hence, it

remains to check Ψx ⊂ S ′ . In order to obtain this result, we shall prove that for

all x ∈ S ′ ,

lim
t→∞

E‖(Ψx)(t)‖2 = 0.

By definition of S ′ , assumption (H5) and the fact t− τ(t)→∞, t→∞, we

get

lim
t→∞

E‖Π1(t)‖2 = lim
t→∞

E‖Π2(t)‖2 = lim
t→∞

E‖Π6(t)‖2 = 0. (6.4.3)
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We further have

E‖Π3(t)‖2

≤ E
∥∥∥∥∫ t

0

AS(t− s)u(s, x(s− τ(s)))ds

∥∥∥∥2

Y

≤M2
1−αK

2
3

∫ t

0

(t− s)α−1e−γ(t−s)ds

∫ t

0

(t− s)α−1e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

≤M2
1−αK

2
3Γ(2α− 1)γ−α

∫ t

0

(t− s)α−1e−γ(t−s)E‖x(s− τ(s))‖2
Y ds.

(6.4.4)

For any x ∈ S ′ and ε > 0, it follows from (6.4.1) that there exists s1 > 0 such

that E‖x(s− τ(s))‖2 < ε for all s ≥ s1. Thus we obtain

E‖Π3(t)‖2 ≤M2
1−αK

2
3Γ(2α− 1)γ−α

∫ s1

0

(t− s)α−1e−γ(t−s)E‖x(s− τ(s))‖2
Y ds

+M2
1−αK

2
3Γ2(2α− 1)γ−2αε,

(6.4.5)

which proves limt→∞ E‖Π3(t)‖2 ≤M2
1−αK

2
3Γ2(2α− 1)γ−2αε.

Similarly, we also have

E‖Π4(t)‖2 = E
∥∥∥∥∫ t

0

S(t− s)f(s, x(s− τ(s)))ds

∥∥∥∥2

Y

≤M2K2
1

∫ t

0

e−γ(t−s)ds

∫ t

0

e−γ(t−s)E‖x(s− τ(s)‖2
Y ds

≤M2K2
1γ
−1

∫ t

0

e−γ(t−s)E‖x(s− τ(s)‖2
Y ds.

(6.4.6)

For any x ∈ S ′ and ε > 0, it follows from (6.4.1) that there exists s1 > 0 such

that E‖x(s− τ(s))‖2 < ε for all s ≥ s1. We have that

E‖Π4(t)‖2 ≤M2K2
1γ
−1

∫ s1

0

e−γ(t−s)E‖x(s− τ(s)‖2
Y ds+M2K2

1γ
−2ε, (6.4.7)

which proves that

lim
t→∞

E‖Π4(t)‖2 ≤M2K2
1γ
−2ε, (6.4.8)
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Moreover, we have

E‖Π5(t)‖2 = E
∥∥∥∥∫ t

0

S(t− s)g(s, x(s− τ(s)))dW (s)

∥∥∥∥2

Y

≤M2K2
2

∫ t

0

e−2γ(t−s)E‖x(s− τ(s)‖2
Y ds,

(6.4.9)

and

E‖Π5(t)‖2 ≤M2K2
2

∫ s1

0

e−2γ(t−s)E‖x(s− τ(s)‖2
Y ds+M2K2

2(2γ)−1ε, (6.4.10)

which proves that

lim
t→∞

E‖Π5(t)‖2 ≤M2K2
2(2γ)−1ε, (6.4.11)

Let ε→ 0, we have limt→∞ E‖Π5(t)‖2 = 0. Furthermore, since

E‖Π7(t)‖2 = E‖
∑

0<tk<t

S(t− tk)Ik(x(t−k ))‖2

≤M2E
( ∑

0<tk<t

e−γ(t−tk)qk‖x(t−k )‖Y
)2

≤M2E
(
κ

∫ t

0

e−γ(t−s)‖x(s)‖Y ds
)2

≤M2κ2

∫ t

0

e−γ(t−s)ds

∫ t

0

e−γ(t−s)E‖x(s)‖2
Y ds

≤M2κ2γ−1

∫ s1

0

e−γ(t−s)ds+M2κ2γ−2ε,

(6.4.12)

thus, limt→∞ E‖Π7(t)‖2 ≤ M2κ2γ−2ε. Since ε is arbitrary, let ε → 0, we have

limt→∞ E‖Π7(t)‖2 = 0.

Once again, We complete the proof of the theorem by employing the Banach

fixed point theorem.
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6.5 Illustrative Example

In this section, we consider the following neutral stochastic partial differential

equation with delays and impulsive effects

d[x(t) + α0

(
− ∂2

∂x2

)−α
x(t− τ(t))] =

∂2

∂x2
x(t) + α1x(t− τ(t))dt

+α2x(t− τ(t))dβ(t) + e−tdβH(t)

t ≥ 0, t 6= tk,

∆x(tk) = x(tk)− x(t−k ) = α3x(tk), t = tk, k ∈ N,

x0(t) = φ(t), t ∈ [−r, 0], x ∈ [0, π],

(6.5.1)

where αi > 0, i = 0, 1, 2, 3, α ∈ (0, 1) are constants and β(t) denotes the one-

dimetional Brownian motion.

Let X = L2([0, π]) with the norm ‖ · ‖ and inner product 〈·, ·〉. Define A :

X → X by Ax = x
′′

with domain

D(A) := {x ∈ X : x, x
′

are absolutely continuous x
′′ ∈ X, x(0) = x(π) = 0}.

Then the equation (6.5.1) can be written in the form of the system (6.1.3) with

the coefficients

u(t, x(t− τ(t))) = α0(−A)−αx(t− τ(t)),

f(t, x(t− τ(t))) = α1x(t− τ(t)),

g(t, x(t− τ(t))) = α2x(t− τ(t)),

Ik(x(tk)) = α3x(t−k ), σ(t) = e−t.

(6.5.2)

Thus, the assumptions (H1)-(H6) are satisfied with

M = γ = 1, K3 = α0‖(−A)−α‖, K1 = α1, K2 = α2, κ = α3, k ∈ N

For the operator A, it is known from Pazy [109] that the following properties
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hold:

(1) Ax =
∑∞

n=1−n2〈x, en〉en, x ∈ D(A), where en(t) =
√

2
π

sin(nt), n = 1, 2, · · ·

is the set of eigenvector of A.

(2) A is the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, in X:

S(t)x =
∞∑
n=1

e−n
2t〈x, en〉en, for all x ∈ X and every t > 0.

(3) The unbounded linear operator (−A)
3
4 is well defined and given by

(−A)
3
4x =

∞∑
n=1

n
3
2 〈x, en〉en, x ∈ X,

with domain

D((−A)
3
4 ) :=

{
x ∈ X :

∞∑
n=1

n
3
2 〈x, en〉en ∈ X

}
.

Consequently, we can conclude, by Theorem 6.3.2, that the stochastic partial

equation (6.5.1) has a unique mild solution and that this solution converges to zero

in mean square if the parameters α1, α2, and α3 satisfy the following relation:

α2
0‖(−A)−α‖4 + α2

0‖(−A)−α‖2M2
1−αΓ(2α− 1) + α2

1 + 2α2
2 + α2

3 <
1

5
. (6.5.3)
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Chapter 7

Conclusion

In this chapter, we summarize the material presented in this thesis. We have

studied and analysed some properties of stability of mild solutions to several dif-

ferent stochastic models in infinite dimensional spaces, mainly in Hilbert space.

The stochastic models have been investigated such as neutral stochastic impul-

sive partial differential delay equations with Poisson jumps, stochastic partial

integro-differential equations with delays and impulsive stochastic partial differ-

ential equations driven by a fractional Brownian motion with infinite delays.

In Chapter 3, we have discussed the stability of mild solutions to neutral

stochastic impulsive partial differential delay equations with Poisson jumps. Un-

der some natural conditions, by employing the Banach fixed point theorem, we

have given the condition for p-th moment exponential stability of mild solutions

to the system. The existence, uniqueness and asymptotic behaviour of solutions

of the stochastic differential equations have been studied by using Lyapunov’s

direct method in Liu and Truman [82], Tanguchi [114] and among others. Com-

paring to their works, we applied fixed point theory to discuss the stability of

mild solutions to stochastic delay systems, where the conditions do not require

the boundedness of delays. In contrast with Cui and Yan [36] [35], we have studied

more general type of equations which include both Poisson point processes and

impulsive effects with delays. Moreover, we have also considered p-th moment
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exponential stability of mild solutions.

The main difficulty in studying the exponential stability of mild solutions to

the case of impulsive stochastic differential delay equations comes from impulsive

effects in the system. Those type of stochastic models have not been fully devel-

oped. Although the investigation of asymptotic stability of nonlinear impulsive

stochastic impulsive stochastic differential equations has been given in Sakthivel

and Lou [87]. Chen [30] established an impulsive-integral inequality, some suf-

ficient conditions about the exponential stability of mild solutions for impulsive

stochastic partial differential equations with delays are obtained. Comparing to

Chen [30], Chapter 4 developed an impulsive-integral inequality for a more gen-

eral type of system which contains impulsive effects, delays and Poisson jumps.

We have also studied the p-th exponential stability of mild solutions to system

with more general conditions.

Stochastic partial differential equations have applied in a various of application

areas. Stochastic partial integro-differential equations are more general. The

existence, uniqueness and asymptotic behaviours of mild solution to stochastic

integro-differential equations has been investigated by using Banach fixed point

theorem in Diop et al. [48], [49], [47], [50], [17]. Comparing to their studies,

Chapter 5 mainly concerns the p-th moment and almost surely stability properties

of the stochastic partial integro-differential system with delays. We have obtained

the sufficient condition for p-th moment exponential stability of mild solutions

to delay equations by using Theorem 5.5.2 which based on the properties of

stochastic convolution. We have proved this theorem by using resolvent operator

instead of the semigroup.

Finally, in Chapter 6, we have studied the exponential stability of mild so-

lutions to neutral stochastic partial differential equations driven by a fractional

Brownian motion with impulsive effects. Defining the stochastic integral with

respect to fractional Brownian motion in infinite dimensional spaces in the same
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way as in Caraballo et al. [21], we have given the analysis of existence, uniqueness

and exponential stability of mild solutions to a more general class of equations

(6.1.3) in Theorem 6.3.1. In most of the works, the delays are finite. Compar-

ing to Boufoussi and Hajji [12] and Maheswari and Karunanithi [93], we have

considered infinite delays and impulsive effects in the stochastic system.
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