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Abstract

This paper is concerned with the almost sure exponential stability of the multi-
dimensional nonlinear stochastic differential delay equation (SDDE) with variable
delays of the form dx(t) = f(x(t−δ1(t)), t)dt+g(x(t−δ2(t)), t)dB(t), where δ1, δ2 :
R+ → [0, τ ] stand for variable delays. We show that if the corresponding (non-
delay) stochastic differential equation (SDE) dy(t) = f(y(t), t)dt + g(y(t), t)dB(t)
admits a Lyapunov function (which in particular implies the almost sure exponential
stability of the SDE) then there exists a positive number τ∗ such that the SDDE
is also almost sure exponentially stable as long as the delay is bounded by τ∗.
We provide an implicit lower bound for τ∗ which can be computed numerically.
Moreover, our new theory enables us to design stochastic delay feedback controls in
order to stabilize unstable differential equations.
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1 Introduction

It is very easy to show that the linear scalar stochastic differential equation (SDE)

dx(t) = σx(t)dB(t) (1.1)

is almost surely exponentially stable as long as σ 6= 0 (see, e.g., [2, 4, 11]). However, it
is hard to show if the corresponding linear scalar stochastic differential delay equation
(SDDE)

dx(t) = σx(t− τ)dB(t) (1.2)

is almost surely exponentially stable when σ 6= 0. Mohammed and Scheutzow [19] showed
that for a given fixed σ 6= 0, the SDDE (1.2) is almost surely exponentially stable provided
the time delay τ is sufficiently small. Their proof for this was already hard. Scheutzow
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[21] considered a more general SDDE dx(t) = σf(xt)dB(t) and generalised some of the
results in [19] by the method of Lyapunov functionals.

This paper is concerned with the almost sure exponential stability of the multi-
dimensional nonlinear SDDE with variable delays of the form

dx(t) = f(x(t− δ1(t)), t)dt+ g(x(t− δ2(t)), t)dB(t), (1.3)

where δ1, δ2 : R+ → [0, τ ] stand for variable delays. (For the general theory on SDDEs
we refer the read to, for example, [6, 7, 8, 9, 16, 18].) This SDDE is in a much more
general form than (1.2)—multi-dimension, nonlinearity and variable delays. Of course,
Mohammed and Scheutzow [19] also treated scalar SDDEs with distributed delay which
we do not in this paper due to the page limit here. (We will report the corresponding
results elsewhere.) We show that if the corresponding (non-delay) stochastic differential
equation (SDE)

dx(t) = f(x(t), t)dt+ g(x(t), t)dB(t) (1.4)

admits a Lyapunov function, which in particular implies the almost sure exponential
stability of the SDE, then there exists a positive number τ ∗ such that the SDDE (1.3) is
also almost surely exponentially stable as long as the delay is bounded by τ ∗. We provide
an implicit lower bound for τ ∗ which can be computed numerically. We will see that the
almost sure exponential stability of (1.2) for sufficiently small τ is a consequence of our
new result.

More usefully, our new theory will open a new chapter in the area of stochastic
stabilization—the stabilization of unstable differential equations by stochastic delay feed-
back controls. To explain this, we consider the scalar SDE

dx(t) = αx(t)dt+ σx(t)dB(t), (1.5)

where 0 < α < σ2/2. It is known that this SDE is almost surely exponentially stable
(see, e.g., [2, 4, 11]). If we regard this SDE as the stochastically controlled system of
the unstable differential equation ẋ(t) = αx(t), we see that it is the stochastic feedback
control σx(t)dB(t) that stabilizes the unstable system ẋ(t) = αx(t). Stochastic stabi-
lization of linear systems was initiated by Khasminskii [5] and generalized by Arnold et
al. [3]. Stochastic stabilization and destabilization of nonlinear systems in the plane were
done by Scheutzow [20] and then were generalised to multi-dimensional nonlinear systems
by Mao [10]. The theory was further developed by Appleby and Mao [1] to a class of
functional differential equations and by Mao et al. [17] to hybrid differential equations.
A common feature of these results is that the stochastic feedback control needs to depend
on the current state x(t) but not the delay state x(t− δ(t)), even when the given system
is a delay equation (see, e.g., [1]).

On the other hand, it is more realistic in practice if the control depends on a past
state, say x(t − τ), due to a time lag τ (> 0) between the time when the observation of
the state is made and the time when the feedback control reaches the system (see, e.g.,
[12, 15]). Accordingly, the stochastic control should depend on x(t− τ) but not x(t), say
in the form of g(x(t − τ), t)dB(t). Hence, the stochastically controlled system has the
form

dx(t) = f(x(t), t)dt+ g(x(t− τ), t)dB(t). (1.6)

The aim here is of course to design stochastic delay feedback control g(x(t−τ), t)dB(t) to
make this controlled system become almost surely exponentially stable. However, there
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is so far no result on this stabilization problem, although there are some results when the
delay feedback controls are in the drift part (see, e.g., [12, 15]). In this paper, we shall shed
some light on this problem. We will show that when f is globally Lipschitz continuous,
it is possible to design a linear stochastic delay feedback control Ax(t− τ)dB(t) to make
the stochastically controlled system

dx(t) = f(x(t), t)dt+ Ax(t− τ)dB(t) (1.7)

become almost surely exponentially stable.

It should also be pointed out that the almost sure exponential stability of discrete-time
or partial discrete-time SDEs has recently been discussed by several authors. For example,
Mao [13] discussed the almost sure exponential stability in the numerical simulation of
SDEs (i.e., stability of discrete-time SDEs). You et al. [22] studied the stability of the
controlled SDE dx(t) = (f(x(t), t)+u(x([t/τ ]τ), t))dt+g(x(t), t)dB(t), where [t/τ ] denotes
the integer part of t/τ and u(x([t/τ ]τ, t) is the feedback control based on the discrete-
time state observations x(0), x(τ), x(2τ) and so on. It is observed that the feedback
control in [22] is in the drift part which is significantly different from the case where the
control is in the diffusion part as in this paper (see equations (1.6) and (1.7)). Mao [14]
investigated the almost sure exponential stability of the stochastically controlled system
dx(t) = f(x(t), t)dt+Ax([t/τ ]τ)dB(t). This equation looks similar to equation (1.7) but
they are in fact different in the sense that x([t/τ ]τ) in this equation is of discrete-time
while x(t − τ) in (1.7) is of continuous-time. This equation is of course significantly
different from our main SDDE (2.1) and our result on equation (1.7) (namely Corollary
5.2) is only a simple application of our general theory established in this paper.

All of the points made above do not only show the difficulty of our proposed problem
but also highlight the differences between our current paper and the existing papers as
well as the potential of our new theory in the area of stochastic stabilization. Let us begin
to develop our new theory.

2 Problem Settings

Throughout this paper, unless otherwise specified, we will use the following notation. Let
|x| denote the Euclidean norm of vector x ∈ Rn. For a matrix A, let |A| =

√
trace(ATA)

be its trace norm and ‖A‖ = max{|Ax| : |x| = 1} be the operator norm. For a vector
or matrix A, its transpose is denoted by AT . If A is a symmetric real matrix (A = AT ),
denote by λmin(A) and λmax(A) its smallest and largest eigenvalue, respectively. Let
(Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the
usual conditions. Let B(t) = (B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion
defined on the probability space. Let τ > 0 and denote by C([−τ, 0];Rn) the family of
continuous functions ξ : [−τ, 0] → Rn with the norm ‖ξ‖ = sup−τ≤u≤0 |ξ(u)|. For t ≥ 0,
denote by L2

Ft
(Ω;Rn) the family of Ft-measurable Rn-valued random variables ζ such

that E|ζ|2 <∞, and by L2
Ft

(Ω;C([−τ, 0];Rn) the family of Ft-measurable C([−τ, 0];Rn)-
valued random variables ξ such that E‖ξ‖2 < ∞. Let δ1, δ2 : R+ → [0, τ ] be Borel
measurable functions.

Consider a nonlinear n-dimensional SDDE

dx(t) = f(x(t− δ1(t)), t)dt+ g(x(t− δ2(t)), t)dB(t) (2.1)
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on t ≥ t0 with the initial data x(t0 + u) = ξ(u) for u ∈ [−τ, 0], where t0 ≥ 0, ξ ∈
L2
Ft0

(Ω;C([−τ, 0];Rn) and

f : Rn × R+ → Rn and g : Rn × R+ → Rn×m.

We impose a standing hypothesis on f and g.

Assumption 2.1 Assume that f and g are Borel measurable. Assume also that there
exist two nonnegative constants K1 and K2 such that

|f(x, t)− f(y, t)| ≤ K1|x− y| and |g(x, t)− g(y, t)| ≤ K2|x− y| (2.2)

for all x, y ∈ Rn and t ≥ 0. For the stability purpose of this paper, we moreover assume
that f(0, t) = 0 and g(0, t) = 0 for all t ≥ 0.

This assumption implies the linear growth condition

|f(x, t)| ≤ K1|x| and |g(x, t)| ≤ K2|x| (2.3)

for all (x, t) ∈ Rn × R+. It is also known (see, e.g., [11, Theorem 3.2 on page 159])
that under Assumption 2.1, equation (2.1) has a unique solution on t ≥ t0 − τ and,
moreover, the second moment of the solution is finite. We will denote the solution by
x(t; t0, ξ) in order to emphasize the initial data ξ at time t0, though we will often write
it as x(t). Moreover, we define xt = {x(t + u) : u ∈ [−τ, 0]} for t ≥ t0 so xt is an Ft-
adapted C([−τ, 0];Rn)-valued stochastic process. We also have xt ∈ L2

Ft
(Ω;C([−τ, 0];Rn).

Furthermore, for any t0 ≤ s ≤ t < ∞, we can regard x(t) as the solution of the SDDE
(2.1) on t ≥ s with the initial data xs at time s. In other words, we have

x(t) = x(t; s, xs), t0 ≤ s ≤ t <∞. (2.4)

This shows clearly that given xs at time s, we can determine x(t) for all t ≥ s by solving the
SDDE (2.1) but the information on how the solution reaches xs from xt0 is of no further
use. We should also point out that it would be sufficient to consider the initial data
ξ ∈ C([−τ, 0];Rn) for the purpose of the almost sure exponential stability in this paper.
The reason why we consider the initial data ξ in a larger space L2

Ft0
(Ω;C([−τ, 0];Rn)) is

because we find that it is more convenient to perform our stability analysis in the space
L2
Ft

(Ω;C([−τ, 0];Rn)).

The key technique used in this paper is to compare the SDDE (2.1) with the corre-
sponding stochastic differential equation (SDE)

dy(t) = f(y(t), t)dt+ g(y(t), t)dB(t) (2.5)

for t ≥ t0 with the initial data y(t0) = y0, where t0 ≥ 0 and y0 ∈ L2
Ft0

(Ω;Rn). For the

general theory on SDEs we refer the reader to, for example, [2, 4, 5, 7, 11]. In particular,
it is known (see, e.g., [11, Theorem 3.1 on page 51]) that under Assumption 2.1, equation
(2.5) has a unique solution y(t) on t ≥ t0 and, moreover, the second moment of the
solution is finite. We will denote the solution by y(t; t0, y0) when we need to emphasize
the initial data y0 at time t0. We will choose t0 and y0 appropriately when we prove our
theorems in this paper. Our stability problems are:

(a) If the SDE (2.5) is almost surely exponentially stable, is the SDDE (2.1) also almost
surely exponentially stable provided τ is sufficiently small?
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(b) If the answer to (a) is yes, can we obtain an upper bound, say τ ∗, on τ such that
the SDDE (2.1) is almost surely exponentially stable provided τ < τ ∗?

It is therefore natural to assume that the SDE (2.5) is almost surely exponentially stable.
There are many results on the almost sure exponential stability of the nonlinear SDE
(2.5) (see, e.g., [2, 4, 5, 7, 11, 16]). We will cite one of the most useful criteria from
Mao [11, Theorem 3.3 on page 121] for the use of this paper. For this purpose, we
denote by V ∈ C2,1(Rn × R+;R+) the family of non-negative functions V (y, t) defined
on Rn × R+ such that they are continuously twice differentiable in x and once in t. For
V ∈ C2,1(Rn × R+;R+), we define the function LV : Rn × R+ → R by

LV (y, t) = Vt(y, t) + Vy(y, t)f(y, t) +
1

2
trace(gT (y, t)Vyy(y, t)g(y, t)),

where

Vt(y, t) =
∂V (y, t)

∂t
, Vy(y, t) =

(∂V (y, t)

∂yi

)
1×n

, Vyy(y, t) =
(∂2V (x, t)

∂yi∂yj

)
n×n

.

Let us now impose another assumption.

Assumption 2.2 Assume that there exists a function V ∈ C2,1(Rn × R+;R+) and con-
stants q > 0, c̄1 ≥ c1 > 0, c2 ∈ R, c3 ≥ 0 with c3 > 2c2 such that for all (y, t) ∈ Rn×R+,

c1|y|q ≤ V (y, t) ≤ c̄1|y|q, LV (y, t) ≤ c2V (y, t)

|Vy(y, t)g(y, t)|2 ≥ c3(V (y, t))2.

The theorem from Mao [11, Theorem 3.3 on page 121] states that under Assumption
2.2, the SDE (2.5) is almost surely exponentially stable. Our aim here is to establish the
positive answers to Problems (a) and (b) listed above under this assumption.

3 Main Results

Our positive answers to the problems are stated in the following theorem.

Theorem 3.1 Let Assumptions 2.1 and 2.2 hold. Then there is a positive number τ ∗

such that for any initial data ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn)), the solution of equation (2.1)
satisfies

lim sup
t→∞

1

t
log(|x(t; t0, ξ)|) < 0 a.s. (3.1)

provided τ < τ ∗. In practice, we can first choose a constant θ ∈ (0, 1) for (3.4) below to
hold and set p = θq; and then choose another constant ε ∈ (0, 1) and set

T =
1

γ
log
(22.5pM

ε

)
; (3.2)

and finally let τ ∗ > 0 be the unique root to the equation (in τ)

εe(K1+0.5K2
2 )pτ + 2pH1(τ, p, τ + T ) + 4pH2(τ, p, τ + T ) = 1, (3.3)

where M,γ will be defined by (3.6) while H1 and H2 by (3.11) and (3.17), respectively.
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In the statement above, we describe a way to determine τ ∗ by introducing two free
parameters θ and ε. Unfortunately, we do not know how to determine these two param-
eters in order to get the optimal τ ∗ yet. Our bound on τ ∗ is therefore conservative and it
is a challenge to get the optimal bound.

The proof of the theorem is very technical so we break it into a number of lemmas. Our
first lemma shows that under Assumption 2.2, the SDE (2.5) is pth moment exponentially
stable for all sufficiently small p ∈ (0, 1).

Lemma 3.2 Let Assumption 2.2 hold. Let θ ∈ (0, 1) be sufficiently small for which

θq < 1 and 0.5(1− θ)c3 > c2. (3.4)

Set p = θq. Then the solution of the SDE (2.5) satisfies

E|y(t; t0, y0)|p ≤Me−γ(t−t0)E|y0|p, ∀t ≥ t0 (3.5)

for all y0 ∈ L2
Ft0

(Ω;Rn), where

M = (c̄1/c1)
θ and γ = θ(0.5(1− θ)c3 − c2). (3.6)

Proof. Fix any t0 and y0 and write y(t; t0, y0) = y(t). Let us first consider the case when
y0 is deterministic, namely y0 ∈ Rn. Assertion (3.5) holds when y0 = 0 so we need to
show it for y0 6= 0. Fix any y0 6= 0. By Mao [11, Lemma 3.2 on page 120], we observe
that y(t) 6= 0 for all t ≥ 0 almost surely. Let U(y, t) = (V (y, t))θ. By the Itô formula, we
can show that

eγtEU(y(t), t) = eγt0U(y0, t0) + E
∫ t

t0

[
γeγsU(y(s), s) + eγsLU(y(s), s)

]
ds

for t ≥ t0, where LU : Rn × R+ → R has the form

LU(y, t) = θ(V (y, t))θ−1LV (y, t)− 0.5θ(1− θ)(V (y, t))θ−2|Vy(y, t)g(y, t)|2.

But, by Assumption 2.2 and inequality (3.4), we have

LU(y, t) ≤ −γU(y, t).

Consequently
eγtEU(y(t), t) ≤ eγt0U(y0, t0), ∀t ≥ t0.

Noting that cθ1|y|p ≤ U(y, t) ≤ c̄θ1|y|p, we then have

E|y(t)|p ≤M |y0|pe−γ(t−t0), ∀t ≥ t0.

In other words, we have shown that the assertion holds when y0 ∈ Rn.

Now, for any y0 ∈ L2
Ft0

(Ω;Rn), by the property of the conditional expectation, we
derive that, for t ≥ t0,

E|y(t)|p = E
(
E
(
|y(t)|p

∣∣Ft0)) ≤ E
(
M |y0|pe−γ(t−t0)

)
= Me−γ(t−t0)E|y0|p (3.7)

as required. The proof is complete.

In the following lemma we give some estimates on the pth moment of the solution of
the SDDE (2.1) for p ∈ (0, 1).
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Lemma 3.3 Let Assumption 2.1 hold and p ∈ (0, 1). Let ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn) be

arbitrary and write x(t; t0, ξ) = x(t). Then, for all t ≥ t0,

E|x(t)|p ≤
(

2e(2K1+K2
2 )(t−t0)

)p/2
E‖ξ‖p, (3.8)

E
(

sup
0≤u≤τ

|x(t+ u)− x(t)|p
)
≤ H1(τ, p, t− t0)E‖ξ‖p, (3.9)

and

E
(

sup
t0≤u≤t

|x(u)|p
)
≤
(

3 +
6((t− t0)K2

1 + 4K2
2)

2K1 +K2
2

e(2K1+K2
2 )(t−t0)

)p/2
E‖ξ‖p, (3.10)

where (for T ≥ 0)

H1(τ, p, T ) =
(

4τ(τK2
1 + 4K2

2)e(2K1+K2
2 )(T+τ)

)p/2
. (3.11)

Proof. By the method of conditional expectation as we did in (3.7), we only need to
show the lemma for ξ ∈ C([−τ, 0];Rn) (i.e., for deterministic initial data). By the Itô
formula and Assumption 2.1, it is easy to show that, for t ≥ t0,

E|x(t)|2 ≤ |x(t0)|2 + (2K1 +K2
2)

∫ t

t0

(
sup

t0−τ≤u≤s
E|x(u)|2

)
ds.

Noting that the right-hand-side term of the above inequality is increasing in t ∈ [t0,∞),
we hence have

sup
t0≤u≤t

E|x(u)|2 ≤ |x(t0)|2 + (2K1 +K2
2)

∫ t

t0

(
sup

t0−τ≤u≤s
E|x(u)|2

)
ds.

Consequently

sup
t0−τ≤u≤t

E|x(u)|2 ≤ ‖ξ‖2 + sup
t0≤u≤t

E|x(u)|2

≤ 2‖ξ‖2 + (2K1 +K2
2)

∫ t

t0

(
sup

t0−τ≤u≤s
E|x(u)|2

)
ds.

The well-known Gronwall inequality yields

sup
t0−τ≤u≤t

E|x(u)|2 ≤ 2‖ξ‖2e(2K1+K2
2 )(t−t0). (3.12)

By the Hölder inequality, we then have

E|x(t)|p ≤
(
E|x(t)|2

)p/2 ≤ (2e(2K1+K2
2 )(t−t0)

)p/2
‖ξ‖p. (3.13)

Namely, assertion (3.8) holds. By the Hölder inequality, the Doob martingale inequality,
Assumption 2.1 as well as (3.12), we further derive that

E
(

sup
0≤u≤τ

|x(t+ u)− x(t)|2
)

≤ 2τE
∫ t+τ

t

|f(x(s− δ1(s)), s)|2ds+ 8E
∫ t+τ

t

|g(x(s− δ2(s)), s)|2ds

≤ 2τK2
1

∫ t+τ

t

E|x(s− δ1(s))|2ds+ 8K2
2

∫ t+τ

t

E|x(s− δ2(s))|2ds

≤ 4τ(τK2
1 + 4K2

2)‖ξ‖2e(2K1+K2
2 )(t+τ−t0).
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Once again, by the Hölder inequality, we have

E
(

sup
0≤u≤τ

|x(t+ u)− x(t)|p
)
≤ H1(τ, p, t− t0)‖ξ‖p, (3.14)

where H1(τ, p, t − t0) has been defined in the statement of the lemma. That is, another
assertion (3.9) also holds. Similarly, we can show that

E
(

sup
t0≤u≤t

|x(u)|2
)
≤ 3|x(t0)|2 + 3(t− t0)K2

1

∫ t

t0

E|x(s− δ1(s))|2ds

+ 12K2
2

∫ t

t0

E|x(s− δ2(s))|2ds

≤
(

3 +
6((t− t0)K2

1 + 4K2
2)

2K1 +K2
2

e(2K1+K2
2 )(t−t0)

)
‖ξ‖2.

Consequently

E
(

sup
t0≤u≤t

|x(u)|p
)
≤
(

3 +
6((t− t0)K2

1 + 4K2
2)

2K1 +K2
2

e(2K1+K2
2 )(t−t0)

)p/2
‖ξ‖p. (3.15)

That is, the last assertion (3.10) holds too. The proof is complete.

The following lemma estimates the difference in the pth moment between the solution
of the SDDE (2.1) and that of the SDE (2.5).

Lemma 3.4 Let Assumption 2.1 hold and p ∈ (0, 1). Let ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn) be

arbitrary and write x(t; t0, ξ) = x(t). Then, for all t ≥ t0 + τ ,

E|y(t; t0 + τ, x(t0 + τ))− x(t)|p ≤ H2(τ, p, t− t0)E‖ξ‖p, (3.16)

where (for T ≥ τ)

H2(τ, p, T ) =
(8τ(K1 +K2

2)(τK2
1 +K2

2)

2K1 +K2
2

e(3K1+2K2
2 )(T−τ)

[
e(2K1+K2

2 )T − e(2K1+K2
2 )τ
])p/2

.

(3.17)

Proof. Once again, by the method of conditional expectation as we did in (3.7), we only
need to show the lemma for ξ ∈ C([−τ, 0];Rn). Write y(t; t0 + τ, x(t0 + τ)) = y(t). By
the Itô formula and Assumption 2.1, we can show that for t ≥ t0 + τ ,

E|x(t)− y(t)|2

≤E
∫ t

t0+τ

[
2K1|x(s)− y(s)||x(s− δ1(s))− y(s)|+K2

2 |x(s− δ2(s))− y(s)|2
]
ds

≤(3K1 + 2K2
2)

∫ t

t0+τ

E|x(s)− y(s)|2ds+ 2K1

∫ t

t0+τ

E|x(s)− x(s− δ1(s))|2ds

+2K2
2

∫ t

t0+τ

E|x(s)− x(s− δ2(s))|2ds.

The Gronwall inequality then implies

E|y(t)− x(t)|2 ≤ e(3K1+2K2
2 )(t−t0−τ)

×
(

2K1

∫ t

t0+τ

E|x(s)− x(s− δ1(s))|2ds+2K2
2

∫ t

t0+τ

E|x(s)− x(s− δ2(s))|2ds
)
. (3.18)
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On the other hand, by (3.12), we have that, for s ∈ [t0 + τ, t],

E|x(s)− x(s− δi(s))|2

≤2τK2
1

∫ s

s−δi(s)
E|x(u− δ1(u)|2du+ 2K2

2

∫ s

s−δi(s)
E|x(u− δ2(u)|2du

≤4τ(τK2
1 +K2

2)‖ξ‖2e(2K1+K2
2 )(s−t0), (3.19)

where i = 1 or 2. Substituting this into (3.18) yields

E|y(t)− x(t)|2 ≤ (H2(τ, p, t− t0))2/p‖ξ‖2, (3.20)

where H2(τ, p, t−t0) has been defined in the statement of the lemma. A simple application
of the Hölder inequality implies

E|y(t)− x(t)|p ≤ H2(τ, p, t− t0)‖ξ‖p, (3.21)

which is the required assertion. The proof is complete.

We can now prove our main theorem in this paper.

Proof of Theorem 3.1. To make it clearer, we divide the proof into three steps.

Step 1. We first choose a constant θ ∈ (0, 1) for (3.4) to hold and set p = θq so
p ∈ (0, 1). We then choose another constant ε ∈ (0, 1) and let

T =
1

γ
log
(22.5pM

ε

)
, namely 22.5pMe−γT = ε. (3.22)

Let τ ∗ be the unique root to equation (3.3). We first observe that once θ and ε are chosen,
p and T are determined, while the left-hand-side term of equation (3.3) is a continuously
increasing function of τ ≥ 0 and is equal to ε when τ = 0 so equation (3.3) must have a
unique root τ ∗ > 0.

Fix τ ∈ (0, τ ∗) and ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn)) arbitrarily and write x(t; t0, ξ) = x(t)

for t ≥ t0. Write y(t0 + τ + T ; t0 + τ, x(t0 + τ) = y(t0 + τ + T ). By Lemmas 3.2 and 3.3,
we have

E|y(t0 + τ + T )|p ≤ME|x(t0 + τ)|pe−γT ≤Me−γT
(

2e(2K1+K2
2 )τ
)p/2

E‖ξ‖p. (3.23)

By the elementary inequality (a+ b)p ≤ 2p(ap + bp) for any a, b ≥ 0, we have

E|x(t0 + τ + T )|p ≤ 2pE|y(t0 + τ + T )|p + 2pE|x(t0 + τ + T )− y(t0 + τ + T )|p.

Using (3.23) as well as Lemma 3.4, we get

E|x(t0 + τ + T )|p ≤ 2p
(
Me−γT

(
2e(2K1+K2

2 )τ
)p/2

+H2(τ, p, τ + T )
)
E‖ξ‖p. (3.24)

On the other hand, by Lemma 3.3, we have

E‖xt0+2τ+T‖p

≤2pE|x(t0 + τ + T )|p + 2pE
(

sup
0≤u≤τ

|x(t0 + τ + T )− x(t0 + τ + T + u)|p
)

≤2pE|x(t0 + τ + T )|p + 2pH1(τ, p, τ + T )E‖ξ‖p. (3.25)
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Combining (3.25) with (3.24) along with (3.22), we get

E‖xt0+2τ+T‖p

≤
(
εe(K1+0.5K2

2 )pτ + 4pH2(τ, p, τ + T ) + 2pH1(τ, p, τ + T )
)
E‖ξ‖p. (3.26)

But, as τ < τ ∗, we see from (3.3) that

εe(K1+0.5K2
2 )pτ + 4pH2(τ, p, τ + T ) + 2pH1(τ, p, τ + T ) < 1.

We may therefore write

εe(K1+0.5K2
2 )pτ + 4pH2(τ, p, τ + T ) + 2pH1(τ, p, τ + T ) = e−λ(2τ+T )

for some λ > 0. It then follows from (3.26) that

E‖xt0+2τ+T‖p ≤ e−λ(2τ+T )E‖ξ‖p. (3.27)

Step 2. Let us now consider the solution x(t) on t ≥ t0 + 2τ + T . By property (2.4),
this can be regarded as the solution of the SDDE (2.1) with the initial data xt0+2τ+T at
t = t0 + 2τ + T . By Step 1, we then have

E‖xt0+2(2τ+T )‖p ≤ e−λ(2τ+T )E‖xt0+2τ+T‖p.

This, together with (3.27), implies

E‖xt0+2(2τ+T )‖p ≤ e−2λ(2τ+T )E‖ξ‖p.

Repeating this procedure, we have

E‖xt0+k(2τ+T )‖p ≤ e−kλ(2τ+T )E‖ξ‖p (3.28)

for all k = 1, 2, · · · . But this holds for k = 0 obviously so (3.28) holds for all k = 0, 1, 2, · · · .
Now, by Lemma 3.3 (namely inequality (3.10)) as well as (3.28), we have

E
(

sup
t0+k(2τ+T )≤t≤t0+(k+1)(2τ+T )

|x(t)|p
)
≤ CE‖xt0+k(2τ+T )‖p ≤ Ce−kλ(2τ+T )E‖ξ‖p (3.29)

for all k = 0, 1, 2, · · · , where

C =
(

3 +
6((2τ + T )K2

1 + 4K2
2)

2K1 +K2
2

e(2K1+K2
2 )(2τ+T )

)p/2
.

Step 3. It now follows from (3.29) that

P
(

sup
t0+k(2τ+T )≤t≤t0+(k+1)(2τ+T )

|x(t)|p ≥ e−0.5kλ(2τ+T )
)
≤ Ce−0.5kλ(2τ+T )E‖ξ‖p

for all k ≥ 0. By the Borel–Cantelli lemma (see, e.g., [11, Lemma 2.4 on page 7]), we
obtain that for almost all ω ∈ Ω, there is an integer k0 = k0(ω) such that

sup
t0+k(2τ+T )≤t≤t0+(k+1)(2τ+T )

|x(t)|p < e−0.5kλ(2τ+T ) ∀k ≥ k0(ω).

This implies easily that

lim sup
t→∞

1

t
log(|x(t, ω)|) ≤ − λ

2p

for almost all ω ∈ Ω. The proof is hence complete.
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4 Corollaries

To show the power and usefulness of our new Theorem 3.1, let us first consider the scalar
linear SDDE

dx(t) = αx(t− τ)dt+ σx(t− τ)dB(t) (4.1)

on t ≥ t0 with the initial data xt0 = ξ ∈ L2
Ft0

(Ω;C([−τ, 0];R). Here x(t) ∈ R, B(t) is a
scalar Brownian motion, α ≥ 0 and σ, τ > 0 are all constants and we assume that

2α < σ2. (4.2)

It is obvious that Assumption 2.1 is satisfied with K1 = α and K2 = σ. To verify
Assumption 2.2, let us consider the corresponding linear scalar SDE

dy(t) = αy(t)dt+ σy(t)dB(t). (4.3)

Define a C2,1-function V (y, t) = y2 for (y, t) ∈ R× R+. It is then easy to show that

LV (y, t) = (2α + σ2)y2 and |Vy(y, t)σy|2 = 4σ2y4.

That is, the parameters in Assumption 2.2 are

q = 2, c̄1 = c1 = 1, c2 = 2α + σ2, c3 = 4σ2. (4.4)

By (4.2), we have
c3 − 2c2 = 2σ2 − 4α > 0, namely c3 > 2c2.

In other words, Assumption 2.2 is also satisfied with the parameters defined by (4.4). By
Theorem 3.1, we have the following corollary.

Corollary 4.1 Let condition (4.2) hold. Then there is a positive number τ ∗ such that for
any initial data ξ ∈ L2

Ft0
(Ω;C([−τ, 0];R)), the solution of the SDDE (4.1) satisfies

lim sup
t→∞

1

t
log(|x(t; t0, ξ)|) < 0 a.s. (4.5)

provided τ < τ ∗.

Our theory also enables us to obtain an estimate on τ ∗. We can first choose a constant
θ ∈ (0, 0.5) such that

(1− 2θ)σ2 > 2α (4.6)

and set γ = θ((1− 2θ)σ2 − 2α). Choose another constant ε ∈ (0, 1) and set

T =
1

γ
log
(25θ

ε

)
. (4.7)

Finally let τ ∗ > 0 be the unique root to the equation (in τ)

εe(2α+σ
2)θτ + 4θH3(τ, p, T ) + 8θH4(τ, p, T ) = 1, (4.8)

where

H3(τ, θ, T ) =
(

4τ(τα2 + 4σ2)e(2α+σ
2)(T+2τ)

)θ
. (4.9)
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and

H4(τ, θ, T ) =
(4τ(α + 2σ2)(τα2 + σ2)

2α + σ2
e(3α+2σ2)T

[
e(2α+σ

2)(T+τ) − e(2α+σ2)τ
])θ

. (4.10)

An even simpler SDDE is equation (1.1), namely

dx(t) = σx(t− τ)dB(t), (4.11)

which is the special case of equation (4.1) when α = 0. The following corollary is straight-
forward.

Corollary 4.2 Let τ ∗ > 0 be the unique root to the equation

εeσ
2θτ +

(
64τσ2eσ

2(T+2τ)
)θ

+
(

64τσ2e3σ
2T
[
eσ

2T − 1
])θ

= 1, (4.12)

where θ ∈ (0, 0.5) and ε ∈ (0, 1) are two free parameters and

γ = θ(1− 2θ)σ2, T =
1

γ
log
(25θ

ε

)
.

Then for any initial data ξ ∈ L2
Ft0

(Ω;C([−τ, 0];R)), the solution of the SDDE (4.11)
satisfies

lim sup
t→∞

1

t
log(|x(t; t0, ξ)|) < 0 a.s. (4.13)

provided τ < τ ∗.

Let us now consider a semi-linear SDDE

dx(t) = f(x(t− δ1(t)), t)dt+ Ax(t− δ2(t))dB(t) (4.14)

on t ≥ t0 with the initial data xt0 = ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn), where B(t) is a scalar

Brownian motion, f , δ1, δ2 are the same as before and A ∈ Rn×n. We assume that f
satisfies Assumption 2.1. The diffusion coefficient is linear so it satisfies Assumption 2.1
with K2 = ‖A‖. For the square matrix A, we impose the following assumption.

Assumption 4.3 There are two positive constants ρ1 and ρ2 such that

ρ2 − 0.5ρ1 > K1 (4.15)

and
|Ax|2 ≤ ρ1|x|2 and |xTAx|2 ≥ ρ2|x|4 (4.16)

for all x ∈ Rn, where K1 is the constant stated in Assumption 2.1.

We should also point out that there are many examples for the square matrix A that
fulfils Assumption 4.3. For example, let G ∈ Rn×n be a symmetric matrix such that

λmin(G) ≥
√

3

2
‖G‖ > 0.
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Let A = ρG for some positive constant ρ. Then

|Ax|2 ≤ (ρ‖G‖)2|x|2 and |xTAx|2 ≥ (ρλmin(G))2|x|4,

namely (4.16) holds with ρ1 = (ρ‖G‖)2 and ρ2 = (ρλmin(G))2. Hence

ρ2 − 0.5ρ1 ≥ 0.25ρ2‖G‖2.

So (4.15) holds as long as we choose ρ2 > 4K1/‖G‖2.
To verify Assumption 2.2, let us consider the corresponding semi-linear SDE

dy(t) = f(y(t), t)dt+ Ay(t)dB(t). (4.17)

Define a C2,1-function V (y, t) = |y|2 for (y, t) ∈ Rn × R+. It is then easy to show that

LV (y, t) = 2yTf(y, t) + |Ay|2 ≤ (2K1 + ρ1)|y|2

and
|Vy(y, t)Ay|2 = 4|yTAy|2 ≥ 4ρ2|y|4.

We hence see that the parameters in Assumption 2.2 are

q = 2, c̄1 = c1 = 1, c2 = 2K1 + ρ1, c3 = 4ρ2. (4.18)

By (4.15), we have

c3 − 2c2 = 4ρ2 − 2r1 − 4K1 = 4(ρ2 − 0.5ρ1 −K1) > 0, namely c3 > 2c2.

In other words, Assumption 2.2 is also satisfied with the parameters defined by (4.18).
By Theorem 3.1, we have the following corollary.

Corollary 4.4 Let Assumption 4.3 hold and f satisfy Assumption 2.1. Then there is a
positive number τ ∗ such that for any initial data ξ ∈ L2

Ft0
(Ω;C([−τ, 0];R2)), the solution

of the semi-linear SDDE (4.14) satisfies

lim sup
t→∞

1

t
log(|x(t; t0, ξ)|) < 0 a.s. (4.19)

provided τ < τ ∗. In practice, τ ∗ can be determined in the same way as described in
Theorem 3.1 with K2 = ‖A‖ and other parameters being defined by (4.18).

5 Stabilization by Stochastic Delay Feedback Control

Let us first apply our theory to discuss the stabilization problem (1.6). Given an unstable
differential equation

ẋ(t) = f(x(t), t), (5.1)

we are required to design a stochastic delay feedback control g(x(t− τ), t)dB(t) to make
the stochastically controlled system

dx(t) = f(x(t), t)dt+ g(x(t− τ), t)dB(t) (5.2)

become almost surely exponentially stable. This SDDE is a special case of our main
SDDE (2.1) with δ1(t) = 0 and δ2(t) = τ . The following theorem on the stability of the
SDDE (5.2) follows from Theorem 3.1 immediately.
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Theorem 5.1 Let Assumptions 2.1 and 2.2 hold. Then there is a positive number τ ∗

such that for any initial data ξ ∈ L2
Ft0

(Ω;C([−τ, 0];Rn)), the solution of equation (5.2)
satisfies

lim sup
t→∞

1

t
log(|x(t; t0, ξ)|) < 0 a.s. (5.3)

provided τ < τ ∗. In practice, τ ∗ can be determined in the same way as described in
Theorem 3.1

Similarly, we can apply Corollary 4.2 to discuss the stabilization problem (1.7). We
still consider the given unstable differential equation (5.1). We assume that its coefficient
f satisfies Assumption 2.1 so it obeys the linear growth condition (2.3). We therefore
look for a linear stochastic delay feedback control Ax(t − τ)dB(t) to stabilize equation
(5.1), where B(t) is a scalar Brownian motion and A ∈ Rn×n. That is, our stochastically
controlled system has the form

dx(t) = f(x(t), t)dt+ Ax(t− τ)dB(t). (5.4)

Our aim here is to design A and control τ sufficiently small in order for this controlled
system to be almost surely exponentially stable. This SDDE is a special case of equation
(4.14) with δ1(t) = 0 and δ2(t) = τ . An application of Corollary 4.4 therefore gives the
following result immediately.

Corollary 5.2 Assume that f satisfies Assumption 2.1. Design the matrix A to satisfy
Assumption 4.3. Determine τ ∗ in the same way as described in Theorem 3.1 with K2 =
‖A‖ and other parameters being defined by (4.18). Control the time lag τ < τ ∗. Then the
stochastically controlled system (5.4) is almost surely exponentially stable.

6 Conclusions

In this paper we have investigated the almost sure exponential stability of the multi-
dimensional nonlinear SDDEs with variable delays. In particular, our new theory has
enabled us to design stochastic delay feedback controls to stabilize unstable differential
equations. Although the stochastic stabilization of unstable differential equations have
been studied by many authors, all results so far require the stochastic feedback controls
depend on the current state x(t). However, it is more realistic in practice if the control
depends on a past state, say x(t− τ), due to a time lag τ between the time when the ob-
servation of the state is made and the time when the feedback control reaches the system.
We have successfully shown that an unstable differential equation can be stabilized by a
stochastic delay feedback control. Our new theory opens a new chapter in the area of
stochastic stabilization—the stabilization of unstable differential equations by stochastic
delay feedback controls.
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