207 research outputs found

    Almost Group Envy-free Allocation of Indivisible Goods and Chores

    Get PDF

    Almost Group Envy-free Allocation of Indivisible Goods and Chores

    Get PDF
    We consider a multi-agent resource allocation setting in which an agent's utility may decrease or increase when an item is allocated. We take the group envy-freeness concept that is well-established in the literature and present stronger and relaxed versions that are especially suitable for the allocation of indivisible items. Of particular interest is a concept called group envy-freeness up to one item (GEF1). We then present a clear taxonomy of the fairness concepts. We study which fairness concepts guarantee the existence of a fair allocation under which preference domain. For two natural classes of additive utilities, we design polynomial-time algorithms to compute a GEF1 allocation. We also prove that checking whether a given allocation satisfies GEF1 is coNP-complete when there are either only goods, only chores or both

    Fairly Allocating Contiguous Blocks of Indivisible Items

    Full text link
    In this paper, we study the classic problem of fairly allocating indivisible items with the extra feature that the items lie on a line. Our goal is to find a fair allocation that is contiguous, meaning that the bundle of each agent forms a contiguous block on the line. While allocations satisfying the classical fairness notions of proportionality, envy-freeness, and equitability are not guaranteed to exist even without the contiguity requirement, we show the existence of contiguous allocations satisfying approximate versions of these notions that do not degrade as the number of agents or items increases. We also study the efficiency loss of contiguous allocations due to fairness constraints.Comment: Appears in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    Fair Allocation of goods and chores -- Tutorial and Survey of Recent Results

    Full text link
    Fair resource allocation is an important problem in many real-world scenarios, where resources such as goods and chores must be allocated among agents. In this survey, we delve into the intricacies of fair allocation, focusing specifically on the challenges associated with indivisible resources. We define fairness and efficiency within this context and thoroughly survey existential results, algorithms, and approximations that satisfy various fairness criteria, including envyfreeness, proportionality, MMS, and their relaxations. Additionally, we discuss algorithms that achieve fairness and efficiency, such as Pareto Optimality and Utilitarian Welfare. We also study the computational complexity of these algorithms, the likelihood of finding fair allocations, and the price of fairness for each fairness notion. We also cover mixed instances of indivisible and divisible items and investigate different valuation and allocation settings. By summarizing the state-of-the-art research, this survey provides valuable insights into fair resource allocation of indivisible goods and chores, highlighting computational complexities, fairness guarantees, and trade-offs between fairness and efficiency. It serves as a foundation for future advancements in this vital field

    Envy-free Relaxations for Goods, Chores, and Mixed Items

    Get PDF
    In fair division problems, we are given a set SS of mm items and a set NN of nn agents with individual preferences, and the goal is to find an allocation of items among agents so that each agent finds the allocation fair. There are several established fairness concepts and envy-freeness is one of the most extensively studied ones. However envy-free allocations do not always exist when items are indivisible and this has motivated relaxations of envy-freeness: envy-freeness up to one item (EF1) and envy-freeness up to any item (EFX) are two well-studied relaxations. We consider the problem of finding EF1 and EFX allocations for utility functions that are not necessarily monotone, and propose four possible extensions of different strength to this setting. In particular, we present a polynomial-time algorithm for finding an EF1 allocation for two agents with arbitrary utility functions. An example is given showing that EFX allocations need not exist for two agents with non-monotone, non-additive, identical utility functions. However, when all agents have monotone (not necessarily additive) identical utility functions, we prove that an EFX allocation of chores always exists. As a step toward understanding the general case, we discuss two subclasses of utility functions: Boolean utilities that are {0,+1}\{0,+1\}-valued functions, and negative Boolean utilities that are {0,1}\{0,-1\}-valued functions. For the latter, we give a polynomial time algorithm that finds an EFX allocation when the utility functions are identical.Comment: 21 pages, 1 figur

    Fair Allocation of Two Types of Chores

    Full text link
    We consider the problem of fair allocation of indivisible chores under additive valuations. We assume that the chores are divided into two types and under this scenario, we present several results. Our first result is a new characterization of Pareto optimal allocations in our setting, and a polynomial-time algorithm to compute an envy-free up to one item (EF1) and Pareto optimal allocation. We then turn to the question of whether we can achieve a stronger fairness concept called envy-free up any item (EFX). We present a polynomial-time algorithm that returns an EFX allocation. Finally, we show that for our setting, it can be checked in polynomial time whether an envy-free allocation exists or not

    Developments in Multi-Agent Fair Allocation

    Full text link
    Fairness is becoming an increasingly important concern when designing markets, allocation procedures, and computer systems. I survey some recent developments in the field of multi-agent fair allocation

    Finding fair and efficient allocations

    Get PDF
    We study the problem of fair division, where the goal is to allocate a set of items among a set of agents in a ``fair" manner. In particular, we focus on settings in which the items to be divided are either indivisible goods or divisible bads. Despite their practical significance, both these settings have been much less investigated than the divisible goods setting. In the first part of the dissertation, we focus on the fair division of indivisible goods. Our fairness criterion is envy-freeness up to any good (EFX). An allocation is EFX if no agent envies another agent following the removal of a single good from the other agent's bundle. Despite significant investment by the research community, the existence of EFX allocations remains open and is considered one of the most important open problems in fair division. In this thesis, we make significant progress on this question. First, we show that when agents have general valuations, we can determine an EFX allocation with a small number of unallocated goods (almost EFX allocation). Second, we demonstrate that when agents have structured valuations, we can determine an almost EFX allocation that is also efficient in terms of Nash welfare. Third, we prove that EFX allocations exist when there are three agents with additive valuations. Finally, we reduce the problem of finding improved guarantees on EFX allocations to a novel problem in extremal graph theory. In the second part of this dissertation, we turn to the fair division of divisible bads. Like in the setting of divisible goods, competitive equilibrium with equal incomes (CEEI) has emerged as the best mechanism for allocating divisible bads. However, neither a polynomial time algorithm nor any hardness result is known for the computation of CEEI with bads. We study the problem of dividing bads in the classic Arrow-Debreu setting (a setting that generalizes CEEI). We show that in sharp contrast to the Arrow-Debreu setting with goods, determining whether a competitive equilibrium exists, is NP-hard in the case of divisible bads. Furthermore, we prove the existence of equilibrium under a simple and natural sufficiency condition. Finally, we show that even on instances that satisfy this sufficiency condition, determining a competitive equilibrium is PPAD-hard. Thus, we settle the complexity of finding a competitive equilibrium in the Arrow-Debreu setting with divisible bads.Die Arbeit untersucht das Problem der gerechten Verteilung (fair division), welches zum Ziel hat, eine Menge von Gegenständen (items) einer Menge von Akteuren (agents) \zuzuordnen". Dabei liegt der Schwerpunkt der Arbeit auf Szenarien, in denen die zu verteilenden Gegenstände entweder unteilbare Güter (indivisible goods) oder teilbare Pflichten (divisible bads) sind. Trotz ihrer praktischen Relevanz haben diese Szenarien in der Forschung bislang bedeutend weniger Aufmerksamkeit erfahren als das Szenario mit teilbaren Gütern (divisible goods). Der erste Teil der Arbeit konzentriert sich auf die gerechte Verteilung unteilbarer Güter. Unser Gerechtigkeitskriterium ist Neid-Freiheit bis auf irgendein Gut (envy- freeness up to any good, EFX). Eine Zuordnung ist EFX, wenn kein Akteur einen anderen Akteur beneidet, nachdem ein einzelnes Gut aus dem Bündel des anderen Akteurs entfernt wurde. Die Existenz von EFX-Zuordnungen ist trotz ausgeprägter Bemühungen der Forschungsgemeinschaft ungeklärt und wird gemeinhin als eine der wichtigsten offenen Fragen des Feldes angesehen. Wir unternehmen wesentliche Schritte hin zu einer Klärung dieser Frage. Erstens zeigen wir, dass wir für Akteure mit allgemeinen Bewertungsfunktionen stets eine EFX-Zuordnung finden können, bei der nur eine kleine Anzahl von Gütern unallokiert bleibt (partielle EFX-Zuordnung, almost EFX allocation). Zweitens demonstrieren wir, dass wir für Akteure mit strukturierten Bewertungsfunktionen eine partielle EFX-Zuordnung bestimmen können, die zusätzlich effizient im Sinne der Nash-Wohlfahrtsfunktion ist. Drittens beweisen wir, dass EFX-Zuordnungen für drei Akteure mit additiven Bewertungsfunktionen immer existieren. Schließlich reduzieren wir das Problem, verbesserte Garantien für EFX-Zuordnungen zu finden, auf ein neuartiges Problem in der extremalen Graphentheorie. Der zweite Teil der Arbeit widmet sich der gerechten Verteilung teilbarer Pflichten. Wie im Szenario mit teilbaren Gütern hat sich auch hier das Wettbewerbsgleichgewicht bei gleichem Einkommen (competitive equilibrium with equal incomes, CEEI) als der beste Allokationsmechanismus zur Verteilung teilbarer Pflichten erwiesen. Gleichzeitig sind weder polynomielle Algorithmen noch Schwere-Resultate für die Berechnung von CEEI mit Pflichten bekannt. Die Arbeit untersucht das Problem der Verteilung von Pflichten im klassischen Arrow-Debreu-Modell (einer Generalisierung von CEEI). Wir zeigen, dass es NP-hart ist, zu entscheiden, ob es im Arrow-Debreu-Modell mit Pflichten ein Wettbewerbsgleichgewicht gibt { im scharfen Gegensatz zum Arrow-Debreu-Modell mit Gütern. Ferner beweisen wir die Existenz eines Gleichgewichts unter der Annahme einer einfachen und natürlichen hinreichenden Bedingung. Schließlich zeigen wir, dass die Bestimmung eines Wettbewerbsgleichgewichts sogar für Eingaben, die unsere hinreichende Bedingung erfüllen, PPAD-hart ist. Damit klären wir die Komplexität des Auffindens eines Wettbewerbsgleichgewichts im Arrow-Debreu-Modell mit teilbaren Pflichten
    corecore