
Finding Fair and Efficient Allocations

A Dissertation
Submitted Towards the Degree Doctor of Natural Sciences (Dr. rer.

nat.) of the Faculty of Mathematics and Computer Science
of Saarland University

by Bhaskar Ray Chaudhury

Saarbrücken 2021

Day of Colloquium: July 5th, 2021
Dean of the Faculty: Prof. Dr. Thomas Schuster

Chair of the Committee: Prof. Dr. Krishna P. Gummadi
Reporters

First reviewer: Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn.
Second reviewer: Prof. Dr. Karl Bringmann.
Third reviewer: Prof. Tim Roughgarden, Ph.D.
Fourth reviewer: Prof. Hervé Moulin, Ph.D.

Academic Assistant: Dr. Sándor Kisfaludi-Bak

ii

Abstract

Abstract. We study the problem of fair division, where the goal is to allocate a set
of items among a set of agents in a “fair” manner. In particular, we focus on settings
in which the items to be divided are either indivisible goods or divisible bads. Despite
their practical significance, both these settings have been much less investigated than
the divisible goods setting.

In the first part of the dissertation, we focus on the fair division of indivisible goods.
Our fairness criterion is envy-freeness up to any good (EFX). An allocation is EFX if no
agent envies another agent following the removal of a single good from the other agent’s
bundle. Despite significant investment by the research community, the existence of EFX
allocations remains open and is considered one of the most important open problems in
fair division. In this thesis, we make significant progress on this question. First, we show
that when agents have general valuations, we can determine an EFX allocation with a
small number of unallocated goods (almost EFX allocation). Second, we demonstrate
that when agents have structured valuations, we can determine an almost EFX allocation
that is also efficient in terms of Nash welfare. Third, we prove that EFX allocations exist
when there are three agents with additive valuations. Finally, we reduce the problem of
finding improved guarantees on EFX allocations to a novel problem in extremal graph
theory.

In the second part of this dissertation, we turn to the fair division of divisible bads.
Like in the setting of divisible goods, competitive equilibrium with equal incomes (CEEI)
has emerged as the best mechanism for allocating divisible bads. However, neither a
polynomial time algorithm nor any hardness result is known for the computation of CEEI
with bads. We study the problem of dividing bads in the classic Arrow-Debreu setting
(a setting that generalizes CEEI). We show that in sharp contrast to the Arrow-Debreu
setting with goods, determining whether a competitive equilibrium exists, is NP-hard in
the case of divisible bads. Furthermore, we prove the existence of equilibrium under a
simple and natural sufficiency condition. Finally, we show that even on instances that
satisfy this sufficiency condition, determining a competitive equilibrium is PPAD-hard.
Thus, we settle the complexity of finding a competitive equilibrium in the Arrow-Debreu
setting with divisible bads.

Zusammenfassung. Die Arbeit untersucht das Problem der gerechten Verteilung (fair
division), welches zum Ziel hat, eine Menge von Gegenständen (items) einer Menge von
Akteuren (agents) “zuzuordnen”. Dabei liegt der Schwerpunkt der Arbeit auf Szenarien,
in denen die zu verteilenden Gegenstände entweder unteilbare Güter (indivisible goods)
oder teilbare Pflichten (divisible bads) sind. Trotz ihrer praktischen Relevanz haben diese
Szenarien in der Forschung bislang bedeutend weniger Aufmerksamkeit erfahren als das
Szenario mit teilbaren Gütern (divisible goods).

Der erste Teil der Arbeit konzentriert sich auf die gerechte Verteilung unteilbarer
Güter. Unser Gerechtigkeitskriterium ist Neid-Freiheit bis auf irgendein Gut (envy-
freeness up to any good, EFX). Eine Zuordnung ist EFX, wenn kein Akteur einen anderen
Akteur beneidet, nachdem ein einzelnes Gut aus dem Bündel des anderen Akteurs ent-
fernt wurde. Die Existenz von EFX-Zuordnungen ist trotz ausgeprägter Bemühungen der
Forschungsgemeinschaft ungeklärt und wird gemeinhin als eine der wichtigsten offenen
Fragen des Feldes angesehen. Wir unternehmen wesentliche Schritte hin zu einer Klärung
dieser Frage. Erstens zeigen wir, dass wir für Akteure mit allgemeinen Bewertungsfunk-
tionen stets eine EFX-Zuordnung finden können, bei der nur eine kleine Anzahl von
Gütern unallokiert bleibt (partielle EFX-Zuordnung, almost EFX allocation). Zweitens
demonstrieren wir, dass wir für Akteure mit strukturierten Bewertungsfunktionen ei-
ne partielle EFX-Zuordnung bestimmen können, die zusätzlich effizient im Sinne der
Nash-Wohlfahrtsfunktion ist. Drittens beweisen wir, dass EFX-Zuordnungen für drei Ak-
teure mit additiven Bewertungsfunktionen immer existieren. Schließlich reduzieren wir
das Problem, verbesserte Garantien für EFX-Zuordnungen zu finden, auf ein neuartiges
Problem in der extremalen Graphentheorie.

Der zweite Teil der Arbeit widmet sich der gerechten Verteilung teilbarer Pflichten.
Wie im Szenario mit teilbaren Gütern hat sich auch hier das Wettbewerbsgleichgewicht
bei gleichem Einkommen (competitive equilibrium with equal incomes, CEEI) als der
beste Allokationsmechanismus zur Verteilung teilbarer Pflichten erwiesen. Gleichzeitig
sind weder polynomielle Algorithmen noch Schwere-Resultate für die Berechnung von
CEEI mit Pflichten bekannt. Die Arbeit untersucht das Problem der Verteilung von
Pflichten im klassischen Arrow-Debreu-Modell (einer Generalisierung von CEEI). Wir
zeigen, dass es NP-hart ist, zu entscheiden, ob es im Arrow-Debreu-Modell mit Pflichten
ein Wettbewerbsgleichgewicht gibt – im scharfen Gegensatz zum Arrow-Debreu-Modell
mit Gütern. Ferner beweisen wir die Existenz eines Gleichgewichts unter der Annahme
einer einfachen und natürlichen hinreichenden Bedingung. Schließlich zeigen wir, dass die
Bestimmung eines Wettbewerbsgleichgewichts sogar für Eingaben, die unsere hinreichen-
de Bedingung erfüllen, PPAD-hart ist. Damit klären wir die Komplexität des Auffindens
eines Wettbewerbsgleichgewichts im Arrow-Debreu-Modell mit teilbaren Pflichten.

iv

Acknowledgments

First and foremost, I would like to thank my advisor Kurt Mehlhorn, for all the freedom
and care he has provided me throughout my doctoral studies. I thank him for saying
a “yes” to all of my requests regarding selection of projects, collaborations and travels.
His vision for foundational research and diversity in interests is astounding and I am
extrememly privileged that he actively shared them with me. I am greatly indebted to
him for initiating the reading group in fair division, which stimulated all the research
presented in this dissertation.

I am grateful to my second advisor Karl Bringmann, for teaching me the fundamentals
of doing research, and for also patiently and honestly answering all random questions
I had. I am thankful to Raimund Seidel for introducing me to the world of theoretical
computer science. His constant zeal towards finding simple and elegant solutions to
problems kindled my interest towards algorithms and complexity.

I express my gratitude towards Tim Roughgarden and Hervé Moulin for agreeing to
be on my thesis committee.

I thank Kavitha Telikepalli, Jugal Garg and Ruta Mehta for hosting me for very
stimulating research visits. I also thank Kavitha and Jugal for the numerous scientific
and personal advice. Going back further in time, I thank Hemalatha Thiagarajan, M.K.
Tiwari and Siddhant Das for the motivation they provided me during my undergraduate
studies; In particular, motivating me to adopt a life in scientific pursuits.

I was fortunate to work with a wonderful group of researchers. All the contents in this
dissertation benefit from many fruitful discussions I had with them. In addition to the
names that I have already mentioned, I would also like to extend my gratitude towards
Naveen Garg, Martin Hoefer, Yun Kuen Cheung, Alkmini Sgouritsa, Pranabendu Misra
and Peter McGlaughlin.

I am privileged to have a group of very supportive friends. I thank Anurag and Shrey
for all the scientific and theological discourses we have had in the past three years. I
thank Aravind, Siddhant, Mahalakshmi, Abhishek, and Aishwarya for being supportive
of all my decisions and boosting my morale during difficult times. I thank Alina, Prabal,
Ali, Mihai and Verica for all the wonderful Friday group gatherings we had during early
years of my stay in Germany. I thank Philip for all the good time we have had growing
up as PhD students– starting from taking courses to writing our theses. I thank André,
Daniel, Attila, Hannaneh, Marvin, Golnoosh, Nick and the other MPI monkeys for all
our office fun (before the pandemic) and the wonderful bouldering sessions.

I thank Corinna for believing in me and supporting me during the tough days of
the pandemic. Her endless inquisitiveness and the continual desire to learn has often
reinforced my belief that research is indeed a lifestyle. Lastly, I thank my parents for
all their sacrifices, support, and hard work to raise me and provide me with all the
opportunities. Whatever I am today, is because of them.

vi

Dedication

Dedicated to my parents, Amitabha Ray Chaudhury and Susan Ray Chaudhury.

viii

Contents

1 Introduction 1

2 Background and Preliminaries 5
2.1 Fair and Efficient Allocation of Divisible Goods. 5
2.2 Fair and Efficient Allocation of Indivisible Goods. 10
2.3 Fair and Efficient Allocation of Divisible Bads 18

I Fair and Efficient Allocation of Indivisible Goods 21

3 EFX Allocations with Bounded Charity 23
3.1 EFX with Bounded-Charity. 23
3.2 Additive Valuations: Implications for Other Notions of Fairness 32

4 Efficient EFX Allocations 39
4.1 Additive Valuations . 40
4.2 Subadditive Valuations . 41

5 EFX Allocations for Three Agents 53
5.1 Notation and Tools . 54
5.2 Existence of EFX: Three sources in the Envy-Graph 59
5.3 Existence of EFX: Two sources in the Envy-Graph 65
5.4 Limitations of the Approach from Chapter 3 73

6 Almost EFX Allocations with Sublinear Charity 79
6.1 Notation and Tools . 82
6.2 Relating the Number of Unallocated Goods to the Rainbow Cycle Number 84
6.3 Bounds on the Rainbow Cycle Number 89
6.4 Finding Efficient (1− ε)-EFX Allocations with Sublinear Charity 93
6.5 Limitations of the Approach from Chapter 5 94

II Fair and Efficient Allocation of Divisible Bads 99

7 Competitive Equilibrium with Divisible Bads 101
7.1 Complexity of Determining the Existence of a Competitive Equilibrium 106
7.2 Sufficiency Conditions for the Existence of a Competitive Equilibrium . 117
7.3 PPAD-Hardness of Determining a Competitive Equilibrium 138

8 Outlook 153

x

CHAPTER 1

Introduction

Fair division has developed into a fundamental branch of mathematical economics over
the last seven decades (since the seminal work of Hugo Steinhaus in the 1940s [90]). In
a classical fair division problem, the goal is to “fairly” allocate a set items among a set
of agents. Early mentions of such problems date back to the Bible and ancient Greek
mythology. Even today, several real-life scenarios are paradigmatic of the problems in
this domain, e.g., division of family inheritance [85], divorce settlements [24], spectrum
allocation [55], air traffic management [93], course allocation [13] and many more1. For the
past two decades, the computer science community has developed concrete formulations
and tractable solutions to fair division problems and thus contributing substantially to
the development of the field. With the advent of the Internet and the rise of centralized
electronic platforms that intend to impose fairness constraints on their decisions (e.g.,
Airbnb would like to fairly matching hosts and guests, and Uber would like to fairly
match drivers and riders etc..), there has been an increasing demand for computationally
tractable protocols to solve fair division problems.

In an instance of a fair division problem, we have a set of agents and a set of items,
and the goal is to determine an allocation of the items among the agents that makes every
agent content i.e., is “fair” and achieves high welfare, i.e., is “efficient”. The items to be
divided can be divisible or indivisible, and they can be desirable (goods) or undesirable
(bads or chores). Motivated by applications, there are several notions of fairness and
efficiency, which lead to several distinct problems.

The most extensively studied setting is that of divisible goods. In this setting, deter-
mining a competitive equilibrium with equal incomes (CEEI) is a canonical way of getting
a fair and efficient allocation. In a CEEI, one creates a virtual market with the agents
and the goods and gives each agent the same purchasing power (say we give every agent
1 USD). Thereafter, one determines prices for the goods, and an allocation of the goods
to the agents, such that under the given prices and the spending constraints (each agent
may spend up to 1 USD), each agent is allocated the goods that maximize her utility.
Such an allocation is envy-free (fair), i.e., no agent prefers another agent’s bundle to her
own, and Pareto-optimal (efficient), i.e., there is no way to give an agent a better bundle
without giving another agent a worse bundle. At first glance, it is not clear why such
prices and allocations exist. However, there is an extensive line of work on competitive
equilibrium (also referred to as market equilibrium) that not only shows the existence of
such prices and allocations but also describes several fast algorithms to compute them. In
fact, competitive equilibrium theory has a long history going back to the works of Léon
Walras in 1874 [94]. However, the emphasis always was on determining prices at which
demand equals supply and it is not until quite recently the techniques and concepts from
competitive equilibrium theory have been leveraged to find fair and efficient allocation
of items that go beyond divisible goods. Most notably, the following two settings have

1Check [1] and [2] for more detailed explanation of fair division protocols used in day to day problems.

Chapter 1. Introduction

received growing attention in the last decade:

(1) fair and efficient division of indivisible goods, and

(2) fair and efficient division of divisible bads. (In particular, competitive equilibrium
with divisible bads.)

Both of these settings are practically relevant: For instance, jewellery, artworks, estates,
and electronics are indivisible goods that frequently require allocation, and household
chores, teaching loads, and job shifts are divisible bads that must often be split up in
everyday life. Despite the similarity in the nature of the problems, both settings pose far
more challenges than the setting with divisible goods. In this thesis, after introducing
the basic concepts and notations (Chapter 2), we investigate these difficulties and answer
fundamental questions in both settings (Chapters 3-7), before discussing avenues for
future research (Chapter 8). In summary, our main contributions are as follows:

Fair and Efficient Allocation of Indivisible Goods.

Fair division problems involving indivisible goods have been relatively understudied,
primarily because classic fairness notions such as envy-freeness and proportionality cannot
be guaranteed even in trivial instances, such as a setting with two agents and a single
indivisible good that both agents find valuable. However, over the last decade, several
relaxations of envy-freeness and proportionality have been proposed and studied. In this
thesis, we consider one of the most important relaxations of envy-freeness: envy-freeness
up to any good (EFX).

Envy-freeness up to any good (EFX). “The closest analogue of envy-freeness” in
the context of indivisible goods is that of envy-freeness up to any good (EFX) [28]. An
allocation is said to be EFX if no agent envies another agent following the removal
of any single good from the other agent’s bundle. Until now, it is not known whether
EFX allocations exist even when agents have additive valuations, despite “significant
effort” by the research community ([28, 78]). Ariel Procaccia, in an editorial note in
Communications of the ACM [87], refers to the question as

“fair division’s biggest open problem”.

In this thesis, we take significant steps towards solving this problem. In Chapter 3, we
show that even when agents have much more general valuations than additive valuations2,
an EFX allocation always exists if we allow a small number of goods to remain unallocated.
To be precise, the number of goods not allocated is less than the number of agents3, and
for each agent, the value of the unallocated goods is smaller than the value of the bundle
allocated to the agent. This result makes substantial progress towards understanding the
existence of EFX allocations, given that prior to this result, the only settings in which
EFX allocations were known to exist for general valuations were the setting with only two

2A valuation v is additive if v(S) =
∑
s∈S v({s}) for all S.

3Number of agents is significantly smaller than the number of goods.

2

agents or the setting in which all agents have the same valuation [84]. In Chapter 6, we
improve the bound on the number of unallocated goods to be sublinear in the number of
agents using further novel ideas and techniques. In particular, we establish a connection
between the number of unallocated goods and a problem in extremal graph theory.

Despite the above result, the existence of complete EFX allocations, where no goods
remain unallocated, remained a hard problem even for three agents with additive val-
uations (“highly non-trivial problem” according to [84]). In Chapter 5, we show that
EFX allocations always exist when there are three agents with additive valuations. This
result is surprising as there are many other fairness notions in discrete fair division (such
as maximin-share [MMS]) that do not exist even when there only three agents with
additive valuations. We introduce several novel ideas and techniques in this work and
also highlight the drawbacks of the existing techniques by disproving a conjecture made
about EFX.

Nash welfare and approximations. Alongside fairness, another desirable property
of an allocation is “efficiency”: a measure of the overall welfare that the allocation
achieves. One of the most common measures of economic efficiency is Nash welfare4–
defined as the geometric mean of the valuations of the agents. It is intuitive that an
allocation having high Nash welfare will have less skew in the valuation functions of
the agents. At a high-level, Nash welfare captures the natural balance between fairness
and efficiency and therefore is widely regarded as a direct indicator of the fairness and
efficiency of an allocation. As a result, the problem of maximizing Nash welfare has
independently received a great deal of attention from the research community [42, 6, 7,
18, 59]. In Chapter 4, we show that in polynomial-time, we can determine an allocation
that maintains all the fairness guarantees achieved in Chapter 3, and achieves a good
approximation of Nash welfare. In fact, when agents have more general valuations (e.g.,
submodular or subadditive), our algorithm improves on the best known approximations
for Nash welfare.

Fair and Efficient Allocation of Divisible Bads.

Several real life scenarios may involve the fair division of undesirable bads, also known as
chores. As in the case of divisible goods, finding a competitive equilibrium is again the best
mechanism for dividing chores. However, there are no algorithmic or hardness results for
determining a competitive equilibrium with chores in any fundamental economic model,
even when the agents have linear disutility functions.

Hardness of finding a CE, even when agents have linear disutilities. In Chap-
ter 7, we study competitive equilibria in the classic linear Arrow-Debreu setting with
chores, where agents divide their chores amongst themselves while minimizing their
disutility. This setting generalizes the CEEI setting with chores. The Arrow-Debreu
setting with chores is significantly more complex than the Arrow-Debreu setting with
goods. To start with, in the setting with goods, there are simple polynomial-time veri-
fiable necessary and sufficient conditions for the existence of a competitive equilibrium.

4Maximum Nash welfare implies some other efficiency measures such as Pareto-optimality.

3

Chapter 1. Introduction

In contrast, the problem of determining the existence of competitive equilibrium with
chores is NP-hard. Thus, we can only hope for polynomial-time verifiable sufficient (not
necessary and sufficient) conditions that capture interesting instances. To this end, we
formulate polynomial-time verifiable simple and natural sufficiency conditions, and then
prove the existence of competitive equilibrium under these conditions using a novel
fixed-point formulation. However, surprisingly, even under these sufficiency conditions,
we show that determining a competitive equilibrium is PPAD-hard. These results come
in sharp contrast to the setting with goods, in which there are strongly polynomial-time
algorithms [63].

Bibliographic Notes.

The contributions presented in this thesis are based on the following publications and
drafts:

Chapter 3: B. R. Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa. A little
charity guarantees almost envy-freeness. In Proceedings of the 31st Symposium on
Discrete Algorithms (SODA), pages 2658–2672, 2020

The full version of this paper will appear in SIAM Journal on Computing (SICOMP).

Chapter 4: B. R. Chaudhury, J. Garg, and R. Mehta. Fair and efficient allocations
under subadditive valuations. In AAAI, 2021 (To appear)

Chapter 5: B. R. Chaudhury, J. Garg, and K. Mehlhorn. EFX exists for three agents.
In EC, pages 1–19. ACM, 2020

Chapter 6: B. R. Chaudhury, J. Garg, K. Mehlhorn, R. Mehta, and P. Misra. Im-
proving EFX guarantees through rainbow cycle number. CoRR, abs/2103.01628, 2021

This paper will appear in the Proceedings of the 22nd ACM Conference on Economics
and Computation (EC 2021).

Chapter 7: B. R. Chaudhury, J. Garg, P. McGlaughlin, and R. Mehta. Dividing bads
is harder than dividing goods: On the complexity of fair and efficient division of chores.
CoRR, abs/2008.00285, 2020

4

CHAPTER 2

Background and Preliminaries

In this chapter, we introduce the fundamental concepts and techniques used in fair
division and competitive equilibrium theory. An instance of fair division is given by a
set of agents, a set of items, and each agent has a valuation function that captures her
utility for the set of bundles that can be allocated to her. The goal is to determine an
allocation that is fair and efficient. Throughout this thesis, we will focus on envy-freeness
and its relaxations as the fairness measure and the Nash welfare (for indivisible goods)
and Pareto-optimality (for divisible bads) as the measure of efficiency 1. There are other
notions of fairness in the fair division literature and we will discuss them briefly in this
chapter.

We now elaborate on fair and efficient allocation of divisible goods. We remark that
the following discussion focuses on the fair and efficient allocation of homogeneous goods.
There is impressive and extensive research done on Cake-cutting [51, 24, 91, 86, 11, 10]
which is beyond the scope of this thesis and will not be discussed.

2.1 Fair and Efficient Allocation of Divisible Goods.

We are given a set of n agents [n] and a set of m divisible goods M . Without loss
of generality, we assume that there is one unit of each good. Each agent i ∈ [n] has
a valuation function vi : Rm≥0 → R≥0 that quantifies her utility for the bundles that
can be allocated to her. In an allocation X, we refer to agent i’s bundle as Xi. Each
Xi ∈ Rm≥0 and is expressed as 〈Xi1, Xi2, . . . , Xim〉, where Xij is the amount of good j
allocated to agent i. Agent i’s utility from Xi is vi(Xi). A general assumption made about
the valuation functions of all agents is that they are locally non-satiable (generalizes
monotonicity), i.e, for all i ∈ [n], for all bundles Xi and for all ε > 0, there exists some
X ′i such that ‖X ′i − Xi‖2 ≤ ε and vi(X

′
i) > vi(Xi). We now define envy-freeness and

Pareto-optimality.

Envy-free allocation. An allocation X is envy-free if and only if for all agent i and
j, we have vi(Xi) ≥ vi(Xj), i.e, no agent strictly prefers the bundle of any other agent
to her own.

One may wonder that why determining an allocation that is envy-free or proportional
(fair) is not good enough, i.e., why do we care for efficiency in addition to fairness.
We address this concern. Consider an instance I with two agents and two goods in
Table 2.1. Agent 1’s valuation v1(X1) = 1 · X11 + 0 · X12 and agent 2’s valuation
v2(X2) = 0 ·X21 + 1 ·X22. Consider an allocation Y , where Y11 = Y12 = Y21 = Y22 = 1/2,
meaning we give every agent 1/2 units of both the goods. Observe that Y is envy-free
and therefore fair. However, there is another allocation Z where Z11 = Z22 = 1 and

1We will explain envy-freeness and its relaxations, Nash welfare and Pareto-optimality shortly.

Chapter 2. Background and Preliminaries

good 1 good 2

Agent 1 1 0

Agent 2 0 1

Table 2.1: Instance I. Agent 1 has a valuation of 1 for one unit of good 1, and has
a valuation of 0 for one unit of good 2. Valuations are linear and separable across
the goods, meaning that we have v1(X1) = 1 · X11 + 0 · X12. Similarly, agent 2 has a
valuation of 0 for one unit of good 1, and has a valuation of 1 for one unit of good 2,
and v2(X2) = 0 ·X21 + 1 ·X22.

Z12 = Z21 = 0, meaning we give g1 entirely to 1 and g2 entirely to 2. Notice that Z is also
envy free, but both agents are strictly better off than they were in Y . This suggests that
some fair allocations are stricly preferred over the other as they achieve better welfare on
a total as well as an individual basis. Therefore, we should find fair allocations with high
overall welfare. This is why we impose efficiency requirements on our desired allocation.
Now we define Pareto-optimality, one of the most well accepted notions of economic
efficiency.

Pareto-optimal allocation. An allocation X is Pareto-optimal if and only if there
exists no other allocation Y such that vi(Yi) ≥ vi(Xi) for all i ∈ [n], with a strict
inequality for at least one i. Intuitively, an allocation X is Pareto-optimal if there is no
way to give an agent a strictly better bundle without giving any other agent a worse
bundle.

Observe that envy-free allocations are easy to find: give 1/n fraction of each good to
every agent. However, it is non-trivial to show the existence of envy-free allocations that
are Pareto-optimal. It is not at all immediate that such allocations (that are envy-free
and Pareto-optimal) exist. A great line of seminal works in mathematical economics
answer this question positively, i.e., in all instances where agents have concave valuations,
there exists allocations that satisfy envy-freeness and Pareto-optimality simultaneously.
The proof of existence follows from the existence of a competitive equilibrium with equal
incomes (CEEI) in the same setting with the agents [n] and the goods M . In a CEEI
setting, we design a virtual market with the agents [n] and the goods M . We equip
each agent with 1 dollar of money and determine the prices of the goods in M and the
allocation of the goods to the agents in [n] at which the market clears (when demand
equals supply). We now give a formal description of CEEI.

Competitive Equilibrium with Equal Incomes (CEEI). Given [n] and M , in a
CEEI, we determine a non-negative price pj for each good j ∈M and an allocation X
such that

• Each agent is allocated the bundle X∗i which maximizes her utility subject to a
spending constraint of 1 unit, i.e.,

X∗i ∈ argmaxXi∈Rm≥0
{vi(Xi) | Xij ≥ 0 ∀i, j and

∑
j∈M

Xij · pj ≤ 1}

6

2.1. Fair and Efficient Allocation of Divisible Goods.

• all the goods are completely allocated, i.e.,
∑

i∈[n]X
∗
ij = 1 (as we assumed that

there is one unit of each good).

We briefly mention why X∗ is envy-free and Pareto-optimal: The bundle allocated
each agent satisfies the spending constraint. Since each agent receives the bundle that
maximizes her utility under the spending constraint, the bundle of any other agent (that
also satisfies the spending constraint) will not give her more utility. Thus, X∗ is envy-free.
We now show that X∗ is Pareto-optimal. Consider any allocation Y which allocates all
the goods and v`(Y`) > vi(X

∗
`) for some ` ∈ [n]. First note that

∑
i∈[n]

∑
j∈M Yij · pj =∑

i∈[n]
∑

j∈M X∗ij · pj ≤ n:∑
i∈[n]

∑
j∈M

Yij · pj =
∑
j∈M

pj ·
∑
i∈[n]

Yij

=
∑
j∈M

pj

=
∑
j∈M

pj ·
∑
i∈[n]

X∗ij

=
∑
i∈[n]

∑
j∈M

X∗ij · pj

≤ n (as
∑
j∈M

X∗ij · pj ≤ 1 for all i ∈ [n]).

Since every agent is allocated a bundle that maximizes her utility under the spending
constraint, if an agent gets a strictly better bundle in any other allocation, then the
spending constraint must be violated. Since v`(Y`) > v`(X

∗
`), we have

∑
j∈M Y`j · pj > 1.

Again, since
∑

i∈[n]
∑

j∈M Yij · pj =
∑

i∈[n]
∑

j∈M X∗ij · pj ≤ n, there must be an `′ such
that

∑
j∈M Y`′j · pj < 1. Since v`′(·) is locally non-satiable, there exists a bundle X`′ and

a sufficiently small scalar ε > 0 such that ‖X`′ − Y`′‖2 ≤ ε, and
∑

j∈M X`′j · pj ≤ 1, and
v`′(X`′) > v`′(Y`′). Note that by the definition of X∗`′ we have that v`′(X

∗
`′) ≥ v`′(X`′) >

v`′(Y`′). Therefore, for any allocation Y such that v`(Y`) > v`(X
∗
`), there exists an agent

`′ ∈ [n] such that v`′(Y`′) < v`′(X
∗
`′). Thus X∗ is also Pareto-optimal.

Now the crucial question is whether such set of prices and allocation satisfying the
properties of CEEI exist and can they be determined efficiently. To this end, we briefly
elaborate the history of markets and market equilibirum.

2.1.1 Existence and Computation of CEEI – Market Equilibrium The-
ory

A market is a fundamental system in economics which involves a set of consumers
and resources. The market mechanisms involve the allocation of these resources to the
consumers through determination of prices for these resources, which again depends on
the supply and demand interactions. In particular, the prices and the allocation are
determined in a way where demand equals supply; often referred to as a competitive
equilibrium. Study of existence of competitive equilibrium dates back to Léon Walras
in 1874 [94]. However, a formal proof to the existence of equilibrium in a very general
economic model, was provided by Kenneth Arrow and Gérard Debreu in 1954 [8] and

7

Chapter 2. Background and Preliminaries

also independently by Lionel W. Mckenzie in 1954 [76]2. This result is widely regarded
as the crown jewel of mathematical economics.

Finding fair allocations through market mechanisms (like CEEI) has a very unique
trait of being natural and intuitive as the market mechanisms are very natural real-
world mechanisms. At the same time, this is also surprising, given that a competitive
equilibrium is an “inherently decentralized concept”, where each agent acts according
to her best interest (and thereby defining the demand for the resources), while fairness
and efficiency are “inherently centralized concepts” aimed at the welfare of the society.
We now discuss the Arrow-Debreu market, which is one of the most fundamental and
general market models. We will see later in this subsection that CEEI is a special case
of a competitive equilibrium in a Arrow-Debreu market.

Arrow-Debreu Markets. An Arrow-Debreu market or equivalently an exchange mar-
ket was introduced by Léon Walras in 1874 [94]. The market comprises of the agents
[n] and goods M . Each agent has an initial endowment of the goods. Formally, agent i
brings wi,j amounts of good j to the market. At a competitive equilibrium, we determine
a non-negative price pj for each good j ∈M and an allocation X∗ such that,

• Each agent purchases the most preferred bundle of goods in exchange of her initial
endowment, i.e.,

X∗i ∈ argmaxXi∈Rm≥0
{vi(Xi) | Xij ≥ 0 ∀i, j and

∑
j∈M

Xij · pj ≤
∑
j∈M

wi,j · pj}

• all the goods are completely allocated, i.e.,
∑

i∈[n]X
∗
ij = 1.

Notice that the equilibrium prices are also scale-invariant. The Arrow-Debreu mar-
ket generalizes the markets where agents have fixed budgets/ money instead of initial
endowment of the goods. The latter markets are called Fisher markets and they were
introduced by Irving Fisher in 1891 [57]. We now formally define the Fisher markets.

Fisher Markets. The market comprises of the agents [n] and the goods M . Each
agent i has an initial budget of mi > 0. At a competitive equilibrium, we determine a
non-negative price pj for each good j ∈M and an allocation X∗ such that,

• Each agent purchases the most preferred bundle of goods by spending at most mi

dollars, i.e.,

X∗i ∈ argmaxXi∈Rm≥0
{vi(Xi) | Xij ≥ 0 ∀i, j and

∑
j∈M

Xij · pj ≤ mi}

• all the goods are completely allocated, i.e.,
∑

i∈[n]X
∗
ij = 1.

A Fisher market can be also seen as a special case of the Arrow-Debreu market where
for all i ∈ [n] and j ∈M we have wi,j = mi

3.

2Mckenzie also made improvements later in 1959 [77].
3We also scale down the price vector by

∑
j∈M pj .

8

2.1. Fair and Efficient Allocation of Divisible Goods.

Now, observe that a CEEI is a special case of a competitive equilibrium in a Fisher
market where mi = 1 for all i ∈ [n]. Therefore, we have the following containment
relation,

CEEI ⊂ Competitive equilibrium in Fisher markets ⊂ Competitive equilibrium in
Arrow-Debreu markets.

Arrow and Debreu [8], and Mckenzie [76, 77] had shown the existence of competitive
equilibrium in Arrow-Debreu markets under some mild conditions, when agents have
concave valuation functions. These conditions are satisfied by a Fisher market and thus
the existence result immediately implies the existence of a CEEI when agents have
concave valuation functions. Unfortunately, all of these results suffer the same drawback
of being non-constructive. Since the past two decades, the computer science community
has contributed substantially to coming up with algorithms to determine the competitive
equilibrium in all of these market models. We now highlight some significant contributions
along this direction.

Computational aspects of determining a market equilibrium. There have been
substantial algorithmic studies on both Fisher markets and Arrow-Debreu markets over
the last twenty years. The full coverage of all these results is well beyond the scope
of the thesis. We refer the reader to [41] for a detailed survey. We highlight some of
the important algorithms. One of the most fundamental valuation functions that has
been extensively studied are linear valuation functions, where for all i ∈ [n], we have
vi(Xi) =

∑
j∈M Xij · vij where vij is the utility derived by agent i from consuming one

unit of good j.

Fisher markets: The first polynomial-time algorithm for linear Fisher markets (where
agents have linear valuation functions) was given by Devanur, Papadimitriou, Saberi and
Vazirani [47]. The algorithm is a primal-dual algorithm and is weakly polynomial.

There are some gradient descent [40] and ellipsoid method based approaches to
compute a competitive equilibrium and approximate competitive equilibrium (one in
which almost all the goods are sold) respectively in linear Fisher markets. Most of such
approaches either build on or are inspired from the following fascinating convex program
formulation of the competitive equilibrium, introduced by Eisenberg and Gale [52].

maximize
∑
i∈[n]

mi log(vi(Xi))

subject to vi(Xi) =
∑
j∈M

vij ·Xij , ∀i ∈ [n]∑
i∈[n]

Xij = 1, ∀j ∈M

Xij ≥ 0, ∀i ∈ [n], ∀j ∈M

Any allocation that maximizes the weighted sum of logarithms of the valuation of the
agents or equivalently the weighted product of the valuations, is an allocation corre-
sponding to a competitive equilibrium. To verify the claim, one needs to apply the KKT
conditions on the above convex program where the prices of the goods correspond to
the dual variables for the set of inequalities {

∑
i∈[n]Xij = 1 | j ∈ M}; in particular,

9

Chapter 2. Background and Preliminaries

the dual variable λj corresponding to the inequality
∑

i∈[n]Xij = 1 represents the price
of the good j. Furthermore, the KKT conditions of the convex program also imply that
the prices at a competitive equilibrium are unique. Note that this is a different proof
of existence (the proof by Arrow-Debreu and Mckenzie made use of Kakutani’s fixed
point theorem) of competitive equilibrium in linear Fisher markets. Jain and Vazirani
further explored the potential of the above convex program and show that it captures
competitive equilibrium in a wide variety of markets - all of these markets are now coined
as Eisenberg Gale markets [67].

In 2010, James Orlin [82] provided a strongly polynomial-time algorithm4 for deter-
mining a competitive equilibrium in linear Fisher markets.

Both polynomial-time algorithms and hardness results are known for determining
a competitive equilibrium in Fisher markets when agents have more general valuation
functions than linear valuation functions. When agents have budget-additive valuation
functions, then there exists polynomial-time algorithms to determine a competitive
equilibrium [20]. However, when agents have separable piecewise linear concave (SPLC)
valuations, then determining a competitive equilibrium is PPAD-hard [39].

Arrow-Debreu market: Similar to the linear Fisher markets, there have been several
algorithms for linear Arrow-Debreu markets. The first polynomial-time algorithms were
the ellipsoid algorithm by Jain [66] and the interior point algorithm by Ye [96]. Similar to
the Eisenberg-Gale convex program, there are several convex program formulations that
capture the competitive equilibrium in linear Arrow-Debreu markets [81, 46]. The first
combinatorial algorithm was given by Duan and Mehlhorn [50] (later improved in [49]).
However, all of the aforementioned algorithms were weakly polynomial and the existence
of a strongly polynomial-time algorithm remained an enigmatic open problem and this
was quite recently settled by Garg and Vegh [63]. Similar to Fisher markets, the Arrow-
Debreu markets have also been studied when agents have more general valuations [37, 38].

To summarize, a competitive equilibrium exists under mild assumptions in a Arrow-
Debreu market and these assumptions are always satisfied by Fisher markets. Therefore,
CEEI always exists, implying that envy-free and Pareto-optimal allocations always exist
when the goods to be allocated are divisible. There are several polynomial-time algorithms
to determine a competitive equilibrium in linear Fisher markets (also for CEEI) and
linear Arrow-Debreu markets. There are also algorithms that run in polynomial-time
when agents have valuations that go beyond additive. There are also known barriers
(PPAD-hardness) to come up with polynomial-time algorithms when agents have more
general valuations.

2.2 Fair and Efficient Allocation of Indivisible Goods.

Fair division of indivisible goods is a natural setting for combinatorial and algorithmic
analysis and thus has received substantial contributions from the computer science
community. The fundamental problems in this domain pose challenges and barriers of a
different flavor than their counterparts in fair division of divisible goods. In this section,

4The algorithm is in PSPACE and the total number of arithmetic operations performed by the
algorithm depends only on the size of the input and not on the bitlength of the input

10

2.2. Fair and Efficient Allocation of Indivisible Goods.

we briefly cover some of important concepts and techniques that are prerequisites for
the Chapters in Part 1 of the thesis.

Classical fairness notions like envy-freeness do not exist even in trivial instances:
consider a simple setting of two agents and one indivisible good that they both find
valuable. In any feasible allocation, one agent will be left with an empty bundle and will
thus not get her fair share. Therefore, people have proposed relaxations of envy-freeness.
In the majority of this thesis, we deal with relaxations of envy-freeness and thus will
discuss them in more detail in this section. Although we relax the notions of fairness,
the notions of efficiency remains the same. We still use Pareto-optimality as a measure
of efficiency. We will also talk about an alternative measure of efficiency called Nash
welfare in this section.

We now briefly describe the setup. Similar to the case of allocating divisible goods,
we have a set of n agents [n] and m goods M . An allocation X is a partition of M into
n bundles 〈X1, X2, . . . , Xn〉, where each agent is allocated the bundle Xi. We now define
the relaxed fairness notions. Each agent i has a valuation function vi : 2M → R≥0 that
captures her utility for each subset of goods. We assume that the valuations functions
are normalized (vi(∅) = 0) and monotone (vi(S ∪ {g}) ≥ vi(S)). Most of the studies,
make stronger assumptions on the valuation functions. While some of the main results
in this thesis work when agents have general valuation functions, others crucially make
stronger assumptions on the valuation functions. In this light, we briefly define the three
well studied and fundamental valuation classes:

• Additve valuation functions: These are the most well studied class of valuations
and they are the analogue of linear valuations in discrete fair division. A valuation
function v : 2M → R≥0 is an additive valuation function if the valuation on any
set of goods is the sum of valuation of the individual goods in the set, i.e., for all
S ⊆M , we have v(S) =

∑
s∈S v({s}).

• Submodular valuation functions: These valuation functions are more general
than additive valuation functions and they capture the property of diminishing
marginal returns. A valuation function v : 2M → R≥0 is a submodular valuation
function if for all A ⊆ S ⊆M and g /∈ S, we have v(A ∪ {g}) ≥ v(S ∪ {g}).

• Subadditive valuation functions: These are more general than submodular
valuation functions and capture the concept of natural monopoly in economics.
Formally, a valuation function v : 2M → R≥0 is subadditive if for all A,B ⊆M we
have v(A) + v(B) ≥ v(A ∪B).

2.2.1 Envy-freeness up to one good (EF1)

Envy-freeness up to one good (EF1) was introduced by Budish [26]. An allocation X
is said to be EF1 if no agent i envies another agent j after the removal of some good
in j’s bundle, i.e., vi(Xi) ≥ vi(Xj \ {g}) for some g ∈ Xj . So we allow i to envy j, but
the envy must disappear after the removal of some valuable good (according to agent
i) from j’s bundle. Note that there is no actual removal: This is simply to assess how
agent i values her own bundle when compared to j’s bundle.

We give a small example: Consider an instance comprising of two agents and three
goods, namely a laptop, iPad and a phone. Both agents have additive valuation functions

11

Chapter 2. Background and Preliminaries

laptop iPad phone

Agent 1 10 9 3

Agent 2 10 9 3

Table 2.2: Instance used to illustrate EF1. Both agents have identical additive valuation
functions, i.e., a valuation of 10 for the laptop, 9 for the iPad and 3 for the phone.

(the analogue of linear valuations in discrete fair division) where the valuation on any
set is the sum of valuations of the individual goods in the set. The valuation that each
agent has for each good is captured in Table 2.2. Notice that an allocation where agent 1
gets the laptop and agent 2 gets the iPad and the phone seems intuitively fair. Also, note
that this allocation is EF1: agent 2 has a total valuation of 9 + 3 = 12 which is larger
than her valuation for agent 1’s bundle (which is 10) and therefore she does not envy
agent 1. Agent 1 on the other hand, indeed envies agent 2 as her valuation for her own
bundle is 10 and her valuation for agent 2’s bundle is 12; however, following the removal
of the phone from agent 2’s bundle, agent 1 does not envy agent 2 anymore as agent 1
values the laptop more than the iPad. Therefore the allocation is EF1. Now, consider
the allocation where agent 1 gets the laptop and iPad, while agent 2 gets only the phone.
Intuitively, it seems to be an unfair allocation and we observe that the allocation is
indeed not EF1: agent 2 values both the laptop and the iPad more than the phone,
implying that following removal of any good (irrespective of whether it is the laptop or
the iPad) from agent 1’s bundle, the envy does not disappear.

Existence and computation of EF1 allocations. Lipton et al. [72] show that EF1
allocations exist when agents have monotone valuations. Moreover, such allocations can
be determined with strongly polynomial number of value queries - queries that given
an agent i and a good set S ⊆ M , outputs vi(S). We briefly discuss this algorithm. A
simple yet crucial concept introduced by this algorithm is that of an envy-graph: Given
an allocation X, an envy-graph EX has vertices corresponding to the agents and there
is an edge from agent i to agent j in EX if and only if i envies j, i.e., vi(Xi) < vi(Xj).
The invariant maintained is that the envy-graph is a DAG: a cycle corresponds to a
cycle of envy and by swapping bundles along a cycle, every agent becomes better-off and
the number of envy edges decreases. More precisely, if i0 → i1 → i2 → . . .→ i`−1 → i0
is a cycle in the envy graph, then reassigning Xij+1 to agent ij for 0 ≤ j < ` (indices
are to be read modulo `) will increase the valuation of every agent in the cycle. Also if
there was an edge from s to some ik where s is not a part of the cycle, this edge just
gets directed now from s to ik+1 after we exchange bundles along the cycle. Thus the
number of envy edges in the graph does not increase and the valuations of the agents in
the cycle goes up. Thus cycles can be eliminated. The algorithm in [72] runs in rounds
and always maintains an allocation that is also EF1 - it starts with an empty allocation
in the first round which is trivially EF1. At the beginning of every round, an unenvied
agent s (this is a source vertex in this DAG) is identified and an unallocated good g
is allocated to s. The new allocation is also EF1, as nobody will envy the bundle of s
after removing the good g. All the set of operations can be implemented with strongly

12

2.2. Fair and Efficient Allocation of Indivisible Goods.

polynomial many value queries.

Recall that the goal is to compute fair “and efficient” allocations. Unfortunately,
the algorithm in Lipton [72] does not give us any guarantee on Pareto-optimality. This
brings us to the question whether EF1 and Pareto-optimality can be guaranteed at the
same time and if yes, how fast can we determine such allocations.

Existence and computation of efficient EF1 allocations. Unfortunately, there
are instances where no EF1 allocation is Pareto-optimal. However, when agents have
simpler and more structured valuations, there are some positive results. The most well
studied class of valuations is that of linear valuations also known as additive valuations
in this context, where for each agent i, we have that vi(S) =

∑
g∈S vi({g}) for all S ⊆M .

When agents have additive valuations, Caragiannis et al. [28] show that an integral
version of the Eisenberg Gale program will ensure the existence of EF1 allocations that
are also Pareto-optimal, further showing the power of this program.

maximize
∑
i∈[n]

log(vi(Xi))

subject to vi(Xi) =
∑
j∈M

vij ·Xij , ∀i ∈ [n]∑
i∈[n]

Xij = 1, ∀j ∈M

Xij ∈ {0, 1}, ∀i ∈ [n], ∀j ∈M

Equivalently, any allocation that maximizes the sum of logarithms of the valuations
of the agents or the product of the valuations of the agents is EF1 and Pareto-optimal.

The geometric mean of the valuations of the agents (
∏
i∈[n] vi(Xi))

1
n is also called the

Nash welfare of the allocation X. Observe that for all monotone valuation functions, any
allocation that maximizes the Nash welfare is also Pareto-optimal, as if there is another
allocation that Pareto dominates the Nash welfare maximizing allocation, then the same
allocation has higher Nash welfare also, which is a contradiction. Also, due to its non-
binary nature, Nash welfare is also considered a measure of economic efficiency [27]. For
additive valuation functions, it turns out that the Nash welfare maximizing allocation is
also EF1 and thus the Nash welfare of an allocation is a direct indicator of the fairness
of the allocation when agents have additive valuation functions.

We now address the algorithmic question regarding determining allocations that
are EF1 and Pareto-optimal. Unfortunately, maximizing Nash welfare is APX-hard [70],
ruling out the existence of any polynomial-time approximations scheme (PTAS). Barman
et al. [18] provide a pseudo-polynomial-time algorithm that determines an allocation
that is EF1 and Pareto-optimal. In the same paper, Barman et al. [18] show that the
EF1 and Pareto-optimal allocation computed by their algorithm also achieves a 1.445
approximation of the optimum Nash welfare (Nash welfare maximization has received a
great deal of independent interest– see [42], [6], [7], [59]). The existence of a polynomial-
time algorithm to determine an allocation that is EF1 and Pareto-optimal still remains
an enigmatic open problem in discrete fair division.

However, an EF1 allocation may be unsatisfactory, even from a fairness point of view:
Intuitively, EF1 insists that the envy disappears after the removal of the most valuable

13

Chapter 2. Background and Preliminaries

good according to the envying agent from the envied agent’s bundle—however, in many
cases, the most valuable good might be the primary reason for very large envy to exist in
the first place. Therefore, stronger notions of fairness are desirable in many circumstances.
This leads us to the next relaxation of envy-freeness, namely, envy-freeness up to any
good (EFX).

2.2.2 Envy-freeness up to any good (EFX)

This relaxation was introduced by Caragiannis et al. [28]. An allocation X is said to be
EFX if no agent i envies another agent j after the removal of any good in j’s bundle, i.e.,
vi(Xi) ≥ vi(Xj \{g}) for all g ∈ Xj . Unlike EF1, in an EFX allocation, the envy between
any pair of agents disappears after the removal of the least valuable good (according to
agent i) from j’s bundle. Note that every EFX allocation is an EF1 allocation, but not
vice-versa. Consider a simple example of two agents with additive valuations and three
goods {a, b, c} from [36], where the agents valuation for individual goods are as follows,

g1 g2 g3

Agent 1 1 1 2

Agent 2 1 1 2

Observe that g3 is twice as valuable than g1 or g2 for both agents. An allocation
where one agent gets {g1} and the other gets {g2, g3} is EF1 but not EFX. The only
possible EFX allocation is where one agent gets {g3} and the other gets {g1, g2}, which
is clearly fairer than the given EF1 allocation. This example also shows how EFX helps
to rule out some unsatisfactory EF1 allocations. Caragiannis et al. [27] remark that

“Arguably, EFX is the best fairness analog of envy-freeness of indivisible
items.”

Existence and Computation of EFX allocations. While an EF1 allocation is
always guaranteed to exist, very little is known about the existence of EFX allocations.
Caragiannis et al. [28] state that

“Despite significant effort, we were not able to settle the question of whether
an EFX allocation always exists (assuming all items must be allocated), and
leave it as an enigmatic open question.”

Plaut and Roughgarden [84] show two scenarios for which EFX allocations are guar-
anteed to exist: (i) All agents have identical valuations (i.e., v1 = v2 = · · · = vn), and
(ii) Two agents (i.e., n = 2). We briefly elaborate their proofs.

First consider the case where all agents have the same valuation v. For simplicity,
we only consider only non-degenerate instances, i.e., instances where v(S) 6= v(S′) for all
S 6= S′5. For all such instances, any allocation that maximizes the valuation of the agent
with the smallest valuation is EFX: Assume otherwise and let X be an allocation that

5In Chapter 3, we show that it suffices to only consider non-degenerate instances.

14

2.2. Fair and Efficient Allocation of Indivisible Goods.

maximizes the valuation of the agent with the smallest valuation, and there are agents i
and j such that v(Xi) < v(Xj \ {g}) for some g ∈ Xj . Note that since agents have the
same valuation function, if v(Xi) < v(Xj \ {g}), then we have v(Ximin) < v(Xj \ {g})
where imin is the agent with the smallest valuation in X. Consider the allocation X ′ =
〈X1, . . . , Ximin ∪ {g}, . . . , Xj \ {g}, . . . Xn〉. Note that the only changed bundles are that
of imin and j, and both of them have valuations still higher than imin ’s initial valuation,
i.e., v(Ximin ∪ {g}) > v(Ximin) (strict inequality follows because of our non-degeneracy
assumption) and v(Xj \ {g}) > v(Ximin). This implies that all agents in X ′ have a
valuation strictly larger than the valuation of imin in X, further implying that X is not
the allocation that maximizes the valuation of the agent with smallest utility, which is a
contradiction.

Now consider the scenario when there are only two agents. Then EFX allocation
can be guaranteed by the classic cut and choose protocol. Agent 1 divides the goods
into two bundles X1 and X2 such that v1(X1) > v1(X2) > v1(X1 \ {g}) for all g ∈ X1.
Note that such a division is possible as we just proved that when agents have identical
valuations then EFX allocations exist; thus agent 1 can divide the good set into two
bundles assuming that both agents have the same valuation as she has and thus we have
the aforementioned inequalities. Now, agent 2 picks her favorite bundle out of X1 and
X2 and the other bundle is allocated to agent 1. Note that agent 2 will not envy agent 1
as she chose the better bundle out of the two and agent 1 will not envy agent 2 as she
divided the goods in a way that she is fine with either of the bundles.

In the same paper, Plaut and Roughgarden [84] show that determining an EFX allo-
cation with two agents with identical submodular valuations requires exponential number
of value queries. However, when agents have additive valuations, then in polynomial-
time, one can determine an EFX allocation in both the special cases mentioned above.
Unfortunately, starting from three agents, even for the well studied class of additive
valuations, it was open whether EFX allocations exist. Plaut and Roughgarden [84] also
remark that:

“The problem seems highly non-trivial even for three players with different
additive valuations.”

In Chapter 5 of this thesis we resolve this question by showing that EFX allocations
exist when there are three agents with additive valuations. However, starting from four
agents, the question still remains open.

Approximate EFX allocations. Since very little is known about the existence of
EFX allocations, there have been studies on approximations of the same. An allocation
X = 〈X1, X2, . . . , Xn〉 is an α-EFX allocation (an α-approximate-EFX allocation) for
some scalar α ∈ (0, 1], if for all pairs of agents i and j, we have vi(Xi) ≥ α·vi(Xj \{g}) for
all g ∈ Xj . Plaut and Roughgarden [84] show the existence of 1/2-EFX allocations when
agents have subadditive valuations. Amanatadis et al. show the existence of a (φ−1)-EFX
allocation [5] where φ is the golden ratio, when agents have additive valuations.

Existence and Computation of efficient EFX allocations. Plaut and Roughgar-
den [84] show that even when agents have additive valuations, there are instances where

15

Chapter 2. Background and Preliminaries

no EFX allocation is Pareto-optimal. We show the example here. Consider an instance
with two agents and three goods g1, g2 and g3. The agents valuations for the goods are
as below,

g1 g2 g3

Agent 1 1 2 0

Agent 2 0 2 1

Notice that in any EFX allocation, the agent that gets g2, cannot get any other good
, as this will lead to the other agent envying it following the removal of a single good.
Therefore, in any EFX allocation, one agent gets g2 and the other agent gets g1 and g3.
Consider the allocation where agent 2 gets g2 and agent 1 gets g1 and g3. Note that
there is a pareto-dominating allocation: agent 2 gets g2 and g3 and agent 1 gets g1. We
can also argue symmetrically for the other EFX allocation. Therefore, we cannot find
allocations that are EFX and Pareto-optimal. In fact, changing v1({g1}) and v2({g3})
to some small δ > 0, will ensure that no δ-EFX allocation is Pareto-optimal.

Since we cannot guarantee Pareto-optimality for any good approximation on EFX,
it is natural to ask whether we can find EFX allocations that have high Nash welfare6

To this end, Caragiannis et al. [27] show that when agents have additive valuations,
we can determine partial EFX allocations that have high Nash welfare. An allocation
X = 〈X1, X2, . . . , Xn〉 is called a partial-EFX allocation ifX is EFX and not all goods are
necessarily allocated, i.e., ∪i∈[n]Xi ⊆M . There is always a trivial partial EFX allocation
where each Xi is empty. Therefore, a good partial EFX allocation is the one which has
good qualitative and quantitative guarantees on the unallocated goods. Caragiannis et
al. [27] show that there exists a partial EFX allocation where every agent gets a bundle
which she values at least as much as half of her value for the bundle she receives in a Nash
welfare maximizing allocation. This implies that there exists a partial EFX allocation
that achieves a 1/2-approximation of the optimum Nash welfare. This result served as
an initiation study for several results that followed on finding good relaxations of EFX
allocations (this includes good approximate EFX allocations also) that have high Nash
welfare. Parts of Chapter 3 and Chapter 6 and all of Chapter 4 of this thesis is dedicated
to finding efficient relaxed EFX allocations.

2.2.3 Other Fairness Notions (for Goods)

In this section, we briefly mention some other notions of fairness. Note that envy-freeness
and its relaxations are highly “non-local” fairness notions i.e., whether an agent receives
her fair share or not depends on how she values the bundles of all the other agents. In
the fair division literature, there is another fairness notion which is inherently “local”.
This fairness notion is proportionality. An allocation is proportional if and only if every
agent receives a bundle that she values a 1/n fraction of the entire good set. Envy-
freeness and proportionality are independent fairness notions when agents have general
monotone valuations. However, when agents have linear valuations (for divisible goods)
and subadditive valuations7 (for indivisible goods), envy-freeness implies proportionality.

6Recall that Nash welfare is also a measure of efficiency.
7A valuation v is subadditive if for any two sets A and B, we have v(A ∪B) ≤ v(A) + v(B).

16

2.2. Fair and Efficient Allocation of Indivisible Goods.

Thus, for divisible goods, when agents have linear valuations a CEEI allocation is envy-
free, Pareto-optimal and proportional.

Similar to envy-freeness, a proportional allocation does not exist when the goods to
be divided are indivisible. Therefore relaxations of the same have been proposed and
studied. We mention two of the well studied relaxations:

Proportionality up to one good (PROP1). Similar to EF1, an allocation X is
said to be proportional up to one good or equivalently PROP1 if for each agent i ∈ [n],
there exists a good g such that vi(Xi ∪ {g}) ≥ vi(M)/n. This notion was introduced by
Conitzer et al. [43] as relaxations of envy-freeness are not adaptable for fairness in public
decision makings. For additive valuations, an EF1 allocation is also a PROP1 allocation:
in an EF1 allocation, for each agent i ∈ [n], we have that vi(Xi) ≥ vi(Xj \ {g}) for some
g ∈ Xj . Let h be such that h /∈ Xi and vi({h}) is maximum. Then, for all j ∈ [n] we
have

vi(Xi ∪ {h}) = vi(Xi) + vi({h})
≥ vi(Xj \ {g}) + vi({h}) (as X is EF1)

= vi(Xj)− vi({g}) + vi({h})
≥ vi(Xj) (as vi({h}) ≥ vi({g}) by definition of h)

Therefore we have that vi(Xi ∪{h}) ≥ vi(Xj) for all j ∈ [n]. Summing the inequality
over all j ∈ [n] we have that vi(Xi) ≥ (1/n) ·

∑
j∈[n] vi(Xj) = (1/n) · vi(M). Thus, when

agents have additive valuations PROP1 allocations exist (as EF1 allocations exist) and
can be determined in polynomial-time. Similarly any allocation that maximizes the Nash
welfare is also PROP1 and Pareto-optimal. However, in contrast to the algorithmic results
on finding allocations that are EF1 and Pareto-optimal, there is a strongly polynomial-
time algorithm that determines PROP1 and Pareto-optimality [17].

One could also define the notion of proportionality up to any good (PROPX) where
for each agent i and for all g /∈ Xi we have vi(Xi∪{g}) ≥ 1/n·vi(M). However, even when
agents have additive valuations, there are instances where no allocations are PROPX [12].

Maximin share (MMS). Suppose agent i has to partition M into n bundles (or sets)
knowing that she would receive the worst bundle with respect to her valuation. Then i
will choose a partition of M that maximizes the valuation of the worst bundle (wrt her
valuation). The value of this worst bundle is the maximin share of agent i. An important
question here is: does there always exist an allocation of M where every agent gets a
bundle worth at least her maximin share?

Formally, let [n] and M be the sets of n agents and m goods, respectively. We define
the maximin share of an agent (say, i) as follows: (here X is the set of all complete
allocations)

MMS i(n,M) = max
〈X1,...,Xn〉∈X

min
j∈[n]

vi(Xj).

The goal is to determine an allocation 〈X1, X2, . . . , Xn〉 of M such that for every i we
have vi(Xi) ≥ MMS i(n,M). This question was first posed by Budish [26]. Procaccia and
Wang [88] showed that such an allocation need not exist, even in the restricted setting
of only three agents with additive valuations! Thereafter, approximate-MMS allocations

17

Chapter 2. Background and Preliminaries

were studied [88, 61, 64, 62] mostly in the setting where agents have additive valuations8

and we know polynomial-time algorithms to find allocations where for all i, agent i gets
a bundle of value at least α ·MMS i(n,M); the current best guarantee for α is 3/4− ε by
Ghodsi et al. [64] (for any ε > 0) and this was very recently improved to 3/4 by Garg
and Taki [62].

2.3 Fair and Efficient Allocation of Divisible Bads

Fair and efficient allocation of divisible bads has received far less attention than its goods
counterpart, although many real life scenario involves division of non-disposable bads
(chores). Similar to the setup with divisible goods, we have a set of agents [n], a set of
bads M , and each agent i has a disutility function di : Rm≥0 → R≥0 capturing the agent’s
pain/ inconvenience for an allocated bad bundle. Similar to the goods case, a CEEI is
the best mechanism for a fair and efficient allocation of divisible bads. A CEEI allocation
guarantees envy-freeness and Pareto-optimality. We now formally define the notion of
CEEI for bads. Similar to the case with goods, in a CEEI, we determine a non-negative
price pj for each bad j ∈M and an allocation X such that

• each agent is allocated the bundle X∗i which minimizes her disutility subject to a
earning constraint of 1 unit, i.e.,

X∗i ∈ argminXi∈Rm≥0
{di(Xi) | Xij ≥ 0 ∀i, j and

∑
j∈M

Xij · pj ≥ 1}

• all the bads are completely allocated, i.e.,
∑

i∈[n]X
∗
ij = 1 (w.l.o.g. assume that

there is one unit of each bad).

While dividing bads, a CEEI exists when agents have continuous, satiable and convex
valuations9.

Although CEEI is the best mechanism for dividing divisible goods and bads, CEEI
for bads exhibit far less structure, causing many algorithmic challenges. Bogomolnaia
et al. [22] show that there are several disconnected CEEI, even when agents have linear
valuations. This is in sharp contrast to CEEI with divisible goods, where all the compet-
itive equilibria are captured by the solutions to the Eisenberg-Gale convex program. We
elaborate the issue of several disconnected equilibria briefly: Consider an instance with
two agents a1 and a2 and two bads b1 and b2. Both agents have linear disutility values,
which is captured from the matrix below: a1 has a disutility of 1 for one unit of b1 and 3
for one unit of b2, while a2 has a disutility of 3 for one unit of b1 and 1 for one unit of b2.

b1 b2

a1 1 3

a2 3 1

8Ghodsi et al [64] also talk about the setting when agents have submodular valuations and subadditive
valuations.

9Note that CEEI exists in the context of goods even when valuations are non-convex

18

2.3. Fair and Efficient Allocation of Divisible Bads

Let p = 〈p(b1), p(b2)〉 be an equilibrium price vector. In a CEEI, each agent is
allocated the bad that has minimum disutility to price ratio, i.e., minimum pain per buck
(since both agents have linear disutilities and the bads are divisible). Let MPBa denote
the minimum pain per buck bundle for agent a at prices p: a bad b ∈ MPBa if and only

if d(a,b)
p(b) ≤

d(a,b′)
p(b′) for all other bads b′ in the instance. Observe that this small instance

exhibits exactly three competitive equilibria:

• The first competitive equilibrium is when both p(b1) and p(b2) are set to 1. Note
that only MPBa1 = {b1} and MPBa2 = {b2}. Thus a1 earns her entire one unit of
money from b1 and a2 earns her entire one unit of money from b2.

• The second competitive equilibrium is when a1 earns from both b1 and b2. For
this we set p(b1) to 1/2 and p(b2) to 3/2. Note that MPBa1 = {b1, b2} and
MPBa2 = {b2}. Under these prices, a2 earns her entire money by doing 2/3 of b2,
and a1 earns her money by doing all of b1 and 1/3 of b2.

• The third competitive equilibria is symmetric to the second: a2 earns from both
b1 and b2. We set p(b2) to 1/2 and p(b1) to 3/2.

The instance exhibits no other competitive equilibrium. Thus, the set of prices and
allocations at competitive equilibria are disjoint. In fact, [22] show that there exists
exponentially many disconnected competitive equilibrium in fair division of divisible
bads.

There are polynomial-time enumerative algorithms ([60]) known that work when the
number of agents is O(1) or the number of goods is O(1). These algorithms exhaustively
search all competitive equilirbira, which turns out to be polynomial if n ∈ O(1) or
m ∈ O(1). In [32], Chaudhury et al. give an LCP formulation (implying a simplex like
algorithm) for determining a CEEI with a mixed manna which includes goods and bads10.
This is the only non-enumerative algorithm known for the setting with divisible bads.

Despite all the algorithmic challenges outlined above, no hardness result is also
known for CEEI with division bads. We initiate this hardness study with our results in
Chapter 7, where we study the existence and computational complexity of determining a
competitive equilibrium in the Arrow-Debreu model with chores. Similar to the case with
divisible goods, competitive equilibrium in the Arrow-Debreu model is a generalization
of CEEI. In particular, we show that when agents can have infinite disutilities for bads
(signifying that the agent is incapable of completing the task/ chore) a competitive
equilibrium may not always exist. Furthermore, it is NP-hard to determine the existence
of a competitive equilibrium. Thereafter, we propose simple and natural, polynomial-time
verifiable sufficiency conditions, under which competitive equilibrium exists. Then, we
show that even under the said sufficiency conditions, it is PPAD-hard to determine a
competitive equilibrium. Unfortunately, our hardness proof does not extend to the CEEI
setting with chores and we leave this as an enigmatic problem for future research.

10so the LCP formulation also works for the all bads setting

19

Chapter 2. Background and Preliminaries

20

PART I

Fair and Efficient Allocation of
Indivisible Goods

22

CHAPTER 3

EFX Allocations with Bounded Charity

In this chapter, we show the existence of a relaxation of EFX. Since the existence of
EFX allocations remains open despite significant effort by the research community, it is
natural to look into its relaxations. As mentioned in Chapter 2, one natural relaxation
is that of approximate-EFX: we say an allocation X = 〈X1, X2, . . . , Xn〉 is α-EFX (or
equivalently α-approximate EFX) for some α ∈ [0, 1], if and only if for all pairs of agents
i and j, we have vi(Xi) ≥ α · vi(Xj \ {g}) for all g ∈ Xj . Plaut and Roughgarden [84]
showed the existence of 1/2-EFX allocations when agents have sub-additive valuations.
Amanatadis et al. showed the existence of (φ − 1)-EFX allocations when agents have
additive valuations, where φ is the golden ratio.

Quite recently, Caragiannis et al. [27] introduced another interesting relaxation of
EFX, called EFX with charity, where the goal is to determine a good partial EFX alloca-
tion (where some of the goods are unallocated). Observe that there exists a trivial partial
EFX allocation: the one where every agent gets an emptyset and the entire set of goods
remain unallocated. This partial EFX allocation is clearly not interesting. Therefore, the
goal is to obtain a partial EFX allocation with some “qualitative” and “quantitative”
bounds on the goods that are allocated. With this goal in mind, Caragiannis et al. [27]
show that when agents have additive valuations, then there exists a partial EFX alloca-
tion X = 〈X1, X2, . . . , Xn〉, such that each agent’s valuation for her bundle is at least
half of her valuation for the bundle she receives in an allocation that maximizes Nash
welfare1, i.e., for all i ∈ [n], we have vi(Xi) ≥ vi(X

∗
i)/2, where X∗ = 〈X∗1 , X∗2 , . . . , X∗n〉

is an allocation that has highest Nash welfare. However, whenever there are some unal-
located goods, it is only natural to consider the valuation the agents have for this set of
goods (“quality”) and also how many or what fraction of the goods are being unallocated
(“quantity”). There are no such guarantees in the partial EFX allocation determined by
the algorithm in [27]. In this chapter, we wish to address this issue, even when agents
have more general valuation functions!

3.1 EFX with Bounded-Charity.

Our goal is to determine a partial EFX allocation such that no agent values the set of
unallocated goods too highly and also a significant fraction of the goods get allocated.
To this end, we state the main result of this chapter.

Theorem 3.1. There exists a partition of the good set M into n+1 bundles,X1, X2, . . . , Xn

and P (pool of unallocated goods) such that

• X is EFX.

1Recall that an allocation that maximizes Nash welfare has fairness and efficiency properties when
agents have additive valuations.

Chapter 3. EFX Allocations with Bounded Charity

• vi(Xi) ≥ vi(P) for all i ∈ [n], i.e., no agent envies the set of unallocated goods, and

• |P | < n, i.e., less than n goods remain unallocated (n� m).

We call an allocation X that satisfies the conditions in Theorem 3.1 an EFX allocation
X with bounded charity P . We present a simple algorithmic proof to Theorem 3.1. At a
high level, our algorithm is as follows: we iteratively maintain a partial EFX allocation,
and as long as

• there is some agent who envies the pool, i.e., for some i ∈ [n], we have vi(Xi) <
vi(P),

• or if the number of goods in the pool P are larger than n,

we determine (constructively) another partial EFX allocation X ′ that Pareto-dominates
X , i.e., each agent is at least as happy in X ′ as she was in X and one agent is strictly
happier: vi(X

′
i) ≥ vi(Xi) for all i ∈ [n] with at least one strict inequality. Since the

valuations are integral and upper-bounded, we cannot keep updating the partial EFX
allocation. Thus, the update process halts after finite iterations, and our final partial
allocation satisfies the conditions in Theorem 3.1.

Most envious agent. The crucial step of our algorithm is obtaining an EFX allocation
X ′ from X that Pareto dominates X when all the conditions in Theorem 3.1 are not
satisfied. For this crucial step, we introduce the concept of a most envious agent. Given
an allocation X, and any set S ⊆M , we denote the set of most envious agents of S as
AX(S).

Definition 3.2. Given a set S ⊆M and an allocation X, an agent i is a most envious
agent of the set S or i ∈ AX(S) if and only if there exists Zi ⊆ S such that vi(Zi) > vi(Xi),
and for any agent j (including i), we have vj(Z

′) ≤ vj(Xj) for all Z ′ ⊂ Zi (no agent
envies a strict subset of Zi).

Intuitively, an agent is a most envious agent for a set S, if no other agent envies a
strict subset of the inclusion-wise minimal subset of S that i envies. Now, we state a
necessary and sufficient condition for AX(S) to be non-empty.

Observation 3.3. AX(S) 6= ∅ if and only if there is some agent i such that vi(S) >
vi(Xi). Also, in O(n · |S|2) time, one can find an agent t ∈ AX(S) and a set Z ⊆ S such
that vt(Z) > vt(Xt) and no agent envies a strict subset of Z.

Proof. We first show the “only if” direction. For any agent t ∈ AX(S), we have vt(S) >
vt(Xt). Thus, if for all agents i ∈ [n], we have vi(S) ≤ vi(Xi), then AX(S) = ∅.

Now, we show the “if” direction. Let i be the agent such that vi(Xi) < vi(S). We
construct a sequence (t`, Z`) as follows: initially we set t1 to i and Z1 to S. Assume that
(t`−1, Z`−1) are defined. If no agent (including t`−1) envies Z`−1 following the removal of
any good from Z`−1, then we stop, otherwise let i′ be the agent that envies Z`−1 \ {g}
for some g ∈ Z`−1. We set t` to i′ and Z` to Z`−1 \ {g} and continue. We will eventually
stop, as with every next pair in the sequence, the size of the set is reducing by one. Say
we stop at `∗. Then, we have that agent t`∗ envies Z`∗ ⊆ S and no agent envies a strict
subset of Z`∗ . Thus t`∗ ∈ AX(S) and therefore AX(S) 6= ∅.

24

3.1. EFX with Bounded-Charity.

From the proof of the “if direction”, it is clear that we can determine the agent
t`∗ ∈ AX(S) and the set Z`∗ in O(n · |S|2) time: the maximum length of the sequence
(t`, Z`) is |S| + 1 as the size of the set Z` = |S| + 1 − `. For each value of `, it takes
O(n · |Z`|) ∈ O(n · |S|) time to find (t`+1, Z`+1). Thus the total time needed to find an
arbitrary t ∈ AX(S) is O(n · |S|2).

We now state the exact construction of X ′ from X, where we will see that this natural
and simple concept of a most envious agent is very crucial.

Case 1: vi(Xi) < vi(P) for some i ∈ [n]. We first look into the case where there
exists an agent i ∈ [n] that envies the pool. Observe that since there is at least one agent
that envies the pool, AX(P) is not empty (Observation 3.3). We first determine an agent
i′ ∈ AX(P) and the set Zi′ such that vi′(Zi′) > vi′(Xi′) and no agent envies a strict
subset of Zi′ in O(n · |P |2) time (by Observation 3.3) . Then, we update our allocation
X to X ′ as follows,

X ′i′ = Zi′ ,

X ′i = Xi for all i 6= i′.

First, observe that X ′ is also EFX: The only new bundle is that of i′. Nobody envies i′

up to any good as nobody envies a strict subset of Zi′ (by definition of a most envious
agent of P). Also agent i′ has a strictly better bundle than before as vi′(Zi′) > vi′(Xi′)
and all the other agents retain their previous bundles. Therefore, if agent i′ did not envy
any bundle up to any good in X, she will not envy any bundle up to any good after she
gets a better bundle in X ′. Thus X ′ is also EFX. Now observe that X ′ Pareto-dominates
X: all agents other than i′ retain their previous bundles and thus their valuations remain
the same and agent i′’s valuation strictly increases as she gets a better bundle. Therefore,
we obtain a partial EFX allocation X ′ which Pareto dominates X. We call this entire
update procedure as U1 and it is outlined in Algorithm 1.

1: function U1(X,P)
Precondition: vi(Xi) < vi(P) for some i ∈ [n].

2: Find t ∈ AX(P) and Z ⊆ P as in Observation 3.3.
3: X ′t ← Z and X ′i ← Xi for all i 6= t.
4: P ′ ← (P \ Z) ∪Xt.
5: return (X ′, P ′).
6: end function

Algorithm 1: Update Rule U1

Case 2: |P | ≥ n. We now look into the second case, where there are at least n goods
in the pool. First, observe that if there exists any good g ∈ P and an agent i ∈ [n]
such that no agent envies a strict subset of Xi ∪ {g}, then we trivially get a partial EFX
allocation X ′ = 〈X1, X2, . . . , Xi ∪ {g}, . . . , Xn〉 in which all agents are at least as happy
as they were in X, i.e., vi(X

′
i) ≥ vi(Xi) for all i ∈ [n]2. However, with each such update,

2X ′ may not Pareto-dominate X as vi(Xi ∪ {g}) may be equal to vi(Xi).

25

Chapter 3. EFX Allocations with Bounded Charity

the number of unallocated goods decreases. Thus, we may have at most m consecutive
such updates. From here on, we assume that for each good g ∈ P and and for each agent
i ∈ [n], there is an agent j 6= i who likes a strict subset of the bundle Xi ∪ {g}.

X

X1∪ga1

X2a2 X3a3

X4a4 X5 a5 X6 a6

X7 a7

X′

X2a1

X4a2 X3a3

X7a4 X5 a5 X6 a6

Sa7a7

Figure 3.1: Illustration of the update rule. The figure on the left indicates the envy-
graph corresponding to the allocation X. Blue edges indicate weak envy edges: the blue
edge from ai to aj signifies that ai envies aj , however ai does not envy any strict subset of
aj ’s bundle. The red edges indicate strong envy edges: a red edge from ai to aj indicates
that ai also envies some strict subset of aj ’s bundle. Initially the envy-graph has only
blue edges with a1 as the only source. Agents a7, a5 and a6 strongly envy a1 when we
give a1 the good g and a7 is a most envious agent (hence the thicker red edge). The
figure on the right indicates the envy-graph of the allocation X ′ that we obtain after
applying the update rule. We shift the bundles along the path a1 → a2 → a4 → a7 and
give a7, the subset Za7 that she still envies and no other agent envies strongly. All the
agents along the path (a1, a2, a4, a7) strictly improve their valuations. All the red edges
disappear as a7 is a most envious agent by definition, no other agent envies a strict subset
of Za7 (there may or may not be blue edges directed towards a7, depending on whether
a1, a5 or a6 were also most envious agents).

To complete the description of the update rule, we recall the notion of an envy-
graph defined in Chapter 2. Given an allocation X, an envy-graph EX has vertices
corresponding to the agents and there is an edge from agent i to agent j in EX if and
only if i envies j, i.e., vi(Xi) < vi(Xj). We can assume without loss of generality that
EX is acyclic.

Fact 3.4 ([72]). Let X = 〈X1, X2, . . . , Xn〉 be an EFX allocation such that EX is cyclic.
Then there exists another EFX allocation Y = 〈Y1, Y2, . . . , Yn〉, where for all i ∈ [n],
Yi = Xj for some j ∈ [n], such that EY is acyclic and Y Pareto dominates X.3

Our update rule relies on the configuration of EX . For ease of explanation, we start
by describing the update rule in the simple scenario where EX has a single source.

Warmup: EX has only one source. For ease of explanation, we first discuss a simple case:
when the envy-graph EX has only a single source, namely s. We pick a good g arbitrarily

3The allocation Y is obtained by exchanging the bundles along the cycles in EX . Thus, the bundles
remain the same, but the owners of the bundles may change.

26

3.1. EFX with Bounded-Charity.

from P . Recall that we are in the case where there is some agent i 6= s that envies a
strict subset of Xs ∪ {g}. Therefore, the set AX(Xs ∪ {g}) 6= ∅. Let t ∈ AX(Xs ∪ {g})
and let Zt ⊆ Xs∪{g} such that vt(Zt) > vt(Xt) and no other agent envies a strict subset
of Zt (we can determine t and Zt in polynomial-time by Observation 3.3). Since EX has
only a single source, t is reachable from s by a path s→ i1 → · · · → ik−1 → t in EX . We
do a leftwise shift of bundles along this path: so s gets i1’s bundle, and for 1 ≤ r ≤ k− 1:
ir gets ir+1’s bundle (where ik = t), and finally t gets Zt. The goods in Xs ∪{g} \Zt are
thrown back into the pool of unallocated goods. (See Figure 3.1).

We now show that X ′ is also EFX and Pareto dominates X. To this end, first observe
that the agents along the path from s to t have got better bundles than what they had
in X, and the rest of the agents retain their previous bundles. Therefore, X ′ Pareto-
dominates X. Now, we show that X ′ is also EFX. Note that for every agent i 6= t, we
have X ′i = Xi′ for some i′ ∈ [n]: if i was in the path from s to t, then i gets the bundle
of the agent next to it in the path from s to t in EX , and if i was not in the path,
then i retains its previous bundle. Also, we have vi(X

′
i) ≥ vi(Xi) for all i ∈ [n]. Now

consider any two agents i and j. We show that vi(X
′
i) ≥ vi(X ′j \ {h}) for all h ∈ X ′j , by

distinguishing between the following two cases,

• j = t: In this case, we have vi(X
′
i) ≥ vi(Xi) ≥ vi(Z ′) for all Z ′ ⊂ Zt = X ′t (by the

definition of Zt from Observation 3.3). Thus we have that vi(X
′
i) ≥ vi(X

′
t \ {h})

for all h ∈ X ′t.

• j 6= t: In this case, we have vi(X
′
i) ≥ vi(Xi) ≥ vi(Xj′ \ {h}) for all j′ ∈ [n] and

all h ∈ Xj′ as X was EFX. Since j 6= t, we have that Xj = Xj′ for some j′ ∈ [n].
Therefore, we have vi(X

′
i) ≥ vi(X ′j \ {h}) for all h ∈ X ′j .

Therefore X ′ is EFX and Pareto-dominates X.
EX has multiple sources. The crucial idea used so far is that given a source s and a
good g ∈ P , we get the strongly envied bundle Xs ∪{g} to a most envious agent without
decreasing the valuations of the other agents. When EX has only a single source s, this
is easy as the most envious agent is reachable from the source s. However, this is not
true when the envy-graph has multiple sources, and the most envious agent of Xs ∪ {g}
determined by Observation 3.3 is not reachable from s. However, we show that there is
a fix to this problem, provided that there are enough goods in the pool. In particular
when |P | ≥ n.

Given a source s in the envy-graph EX , let C(s) denote all the set of nodes that are
reachable from s in the envy-graph. Now, we make a small observation.

Observation 3.5. In polynomial-time , for some ` ≥ 1, we can determine distinct goods
g0, g1, . . . , g`−1 in P , distinct sources s0, s1, . . . , s`−1 in EX , distinct agents t1, t2, . . . , t`
and sets Zi ⊆ Xsi ∪ {gi} for all i ∈ {0, 1, . . . , ` − 1} such that ti ∈ C(si), ti is a
most envious agent of Xsi−1 ∪ {gi−1} for i ∈ {0, . . . , `− 1}, (indices are modulo `) and
vti(Zi−1) > vti(Xti) and no agent envies a strict subset of Zi−1.

Proof. By assumption, for every source s in EX and every good g ∈ P , there exists
an agent j ∈ [n] and some subset S′ ⊆ Xs ∪ {g} such that we have vj(S

′) > vj(Xj).
Therefore AX(Xs ∪ {g}) is not empty for all sources s in EX and all g ∈ P . Construct
a sequence of triples (si, gi, ti+1), i ≥ 0 defined as follows: let s0 be an arbitrary source

27

Chapter 3. EFX Allocations with Bounded Charity

in EX and g0 be an arbitrary good in P . Assume we have defined si−1 and gi−1. Let
ti be a most envious agent of Xsi−1 ∪ {gi−1}, and Zi−1 ⊆ Xsi−1 ∪ {gi−1} such that
vti(Zi−1) > vti(Xti) and no agent envies a strict subset of Zi−1 (indices are modulo `)–
note that this can be determined by the polynomial-time procedure in Observation 3.3.
If ti 6∈ C(s0) ∪ · · · ∪ C(si−1), let si be such that ti ∈ C(si). Also, let gi be a good in P
distinct from g0 to gi−1. If ti ∈ C(s0) ∪ · · · ∪ C(si−1), then stop the construction of the
sequence and let j be the maximum index such that ti ∈ C(sj). Set ` = i− j and return
sj , . . . , si−1, gj , . . . , gi−1, tj+1, . . . , ti and Zj , . . . , Zi−1. See Figure 3.2 for an illustration.

Since |P | ≥ n, the construction is well defined and we cannot run out of goods. The
sources and goods are pairwise distinct by construction. The agents t1 to ti−1 are also
distinct by construction. Finally, agent ti is distinct from any agent tk for j < k < i as
ti ∈ C(sj) and tk /∈ (C(s0)∪ · · · ∪C(sk−1)) for all k < i, implying that tk /∈ C(sj) for all
j < k < i.

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

s0 s1 s2

Xs2
∪ g2Xs1

∪ g1Xs0
∪ g0

t2

t1

t0

C(s0)

C(s2)
C(s1)

Figure 3.2: Illustration of the proof of Observation 3.5. We have ti as a most envious
agent of Xsi−1 ∪ {gi−1}. Moreover, ti 6∈ C(s0) ∪ · · · ∪ C(si−1) for i = 1, 2 and t3 ∈
C(s0) ∪ · · · ∪C(s2). Note that j = 1 is the largest index such that t3 ∈ C(sj). The cycle
is defined by s1, s2, g1, g2, t2 and t3.

Let g0, g1, . . . , g`−1 and s0, s1, . . . , s`−1, and t1, t2, . . . , t` and Z0, Z1, . . . , Z`−1 be the
goods, sources, most envious agents and valuable subsets respectively that satisfy the
conditions in Observation 3.5. Also, for each i ∈ {0, 1, . . . , `−1}, let ui0 → ui1 → · · · → uimi
be the path of length mi from si = ui0 to ti = uimi in C(si). We define X ′ as follows,

X ′uik
= Xuik+1

∀k ∈ {0, . . . ,mi − 1},∀i ∈ {0, . . . , `− 1},

X ′ti = Zi−1 ∀i ∈ {1, . . . , `}

We now show that our allocation X ′ is EFX and Pareto-dominates X. To this
end, we first observe that the valuations of the agents for their bundles have either
increased or remained the same (since either the agents are left with their old bundles
or assigned bundles that they envied). In particular, the valuations of all the agents in⋃`−1
i=0

⋃mi
k=0{uik} are strictly larger, where the vertices uik are defined above. Thus X ′

Pareto-dominates X.

It remains to show that the allocation X ′ is EFX. To this end, let T = {t1, t2, . . . , t`}.
Observe that for any agent i /∈ T , we have that X ′r = Xr′ for some r′ ∈ [n]: if r was in

28

3.1. EFX with Bounded-Charity.

the path from some si to ti, then r gets the bundle of the agent next to it in the path,
and if r was not part of any path from si to ti for all i ∈ {0, 1, . . . , `− 1}, then r retains
its bundle in X. Also, since none of the agents valuations went down in X ′, we have that
vi(X

′
i) ≥ vi(Xi) for all i ∈ [n]. Now consider any two agents j and k in [n]. We show that

vj(X
′
j) ≥ vj(X ′k \ {g}) for all g ∈ X ′k, distinguishing between two cases depending on k:

• k ∈ T : Let k = tr for some r ∈ [`]. In this case, we have vi(X
′
i) ≥ vi(Xi) ≥ vi(Z

′)
for all Z ′ ⊂ Zr−1 = X ′tr (by the definition of Zr−1 and tr). Thus we have vi(X

′
i) ≥

vi(X
′
tr \ {g}) for all g ∈ X ′tr .

• k 6∈ T : In this case, we have vi(X
′
i) ≥ vi(Xi) ≥ vi(Xj′ \ {g}) for all j′ ∈ [n] and

all g ∈ Xj′ as X was EFX. Since k 6∈ T , we have that X ′k = Xk′ for some k′ ∈ [n].
Therefore, we have vi(X

′
i) ≥ vi(Xk′ \ {g}) = vi(X

′
k \ {g}) for all g ∈ X ′k.

Therefore X ′ is EFX and Pareto-dominates X. We call this entire update procedure U2

and it is outlined in Algorithm 2

1: function U2(X,P)
Precondition: |P | ≥ n.

2: if ∃i ∈ [n], ∃g ∈ P , such that 〈X1, . . . , Xi ∪ {g}, . . . Xn〉 is EFX then
3: X ′ ← 〈X1, X2, . . . , Xi ∪ {g}, . . . Xn〉.
4: P ′ ← P \ {g}.
5: else
6: (s0, . . . s`−1, g0, . . . , g`−1, t1, . . . , t`, Z0, . . . , Z`−1)← FindCycle(X,P).
7: for all i ∈ {0, 1, . . . , `− 1} do
8: Let ui0 → · · · → uimi be the path from si = ui0 to ti = uimi .
9: end for

10: P ′ ←
(
P \ ∪`−1i=0{gi}

)⋃`−1
i=0 ((Xsi ∪ gi) \ Zi).

11: X ′
uik
← Xuik+1

for all k ∈ {0, . . . ,mi − 1} and all i ∈ {0, . . . , `− 1}.
12: X ′ti ← Zi−1 for all i ∈ {1, . . . , `}.
13: X ′j ← Xj for all other j.
14: end if
15: return (X ′, P ′).
16: end function

Algorithm 2: Update Rule U2

29

Chapter 3. EFX Allocations with Bounded Charity

1: function FindCycle(X,P)
2: i← 0
3: si ←arbitrary source in EX and gi ←arbitrary good in P .
4: ti+1 ← arbitrary agent in AX(Xsi ∪ {gi}).
5: while ti+1 /∈ C(s0) ∪ C(s1) ∪ · · · ∪ C(si) do
6: si+1 ← s where ti+1 ∈ C(s).
7: gi+1 ← arbitrary good in P \ {g0, g1, . . . , gi}.
8: Find ti+2 ∈ AX(Xsi+1 ∪ {gi+1}) and Zi+1 as in Observation 3.3.
9: i← i+ 1.

10: end while
11: j ← largest index less than i+ 1 such that ti+1 ∈ C(sj).
12: return (sj , . . . , si, gj , . . . , gi, tj+1, . . . , ti+1, Zj , . . . , Zi).
13: end function

Algorithm 3: The subroutine FindCycle used by update rule U2 (Algorithm 2).

Thus, we showed that given any partial EFX allocation X and a set of unallocated
goods P , if vi(Xi) < vi(P) for some agent i ∈ [n] or if |P | ≥ n, then we can constructively
find another partial EFX allocation X ′ that Pareto-dominates X. Since the valuations
functions can be assumed to be integral without loss of generality, after finite number of
updates, there should be no agent that envies the pool, and the number of goods in the
pool should be at most the number of agents. This completes the proof of Theorem 3.1.
The overall algorithm is outlined in Algorithm 4.

1: Xi ← ∅ for all i ∈ [n] and P ←M .
2: while vi(Xi) < vi(P) for some agent i or |P | ≥ n do
3: if vi(Xi) < vi(P) for some agent i then
4: (X,P)← U1(X,P).
5: else
6: (X,P)← U2(X,P).
7: end if
8: Decyclify EX .
9: end while

10: return (X,P).

Algorithm 4: Algorithm to determine EFX with bounded charity

Running time of Algorithm 4. By Observation 3.3, in O(n · |S|2), for any S ⊆M
and an allocation X, one can find an agent t ∈ AX(S) and Z ⊆ S s.t. vt(Zt) > vt(Xt) no
agent envies a strict subset of Z. Thus every step in the update rues U1 (Algorithm 1)
and U2 (Algorithm 2) can be implemented in poly(n,m) time. Thus each iteration in
Algorithm 4 can be implemented in poly(n,m) time. Since the valuations are integral,
and in each iteration the valuation of at least one agent increases by unity, the total
number of iterations are n ·V , where V = max i∈[n]vi(M). Thus, Algorithm 4 runs in time
poly(n,m, V) time. The running time is unfortunately, pseudo-polynomial and cannot be
improved, since the increase in individual valuations of the agents when we perform the
update rules could be very small. However, if we just wanted an “almost” EFX allocation

30

3.1. EFX with Bounded-Charity.

with bounded charity, i.e., for every pair of agents i and j, we are happy to ensure that
(1 + ε) · vi(Xi) ≥ vi(Xj), and (1 + ε) · vi(Xi) ≥ vi(P) for every i, and |P | < n, then we
have an algorithm that runs in poly(n,m, 1ε , log V) time and finds the desired allocation.
We formalize this statement in the following lemma:

Theorem 3.6. For normalized and monotone valuations, given any ε > 0, using poly(n,
m, 1ε , log V) value queries, we can find an allocation X = 〈X1, X2, . . . , Xn〉 and a pool
of unallocated goods P such that

• for any pair of agents i and j, we have (1+ε) ·vi(Xi) ≥ vi(Xj \{g}) for all g ∈ Xj,

• for any agent i, we have (1 + ε) · vi(Xi) ≥ vi(P), and

• |P | < n.4

The proof follows in a straightforward manner from the proof of Theorem 3.1. The key
idea is that the “almost” EFX property is violated if and only if (1+ε)·vi(Xi) < vi(Xj \g)
for some i, j ∈ [n] or (1 + ε) · vi(Xi) < vi(P) for some i ∈ [n]. So every time we apply
update rules U1 or U2, there is a multiplicative improvement (by a factor of 1 + ε) in
the valuation of some agents. Since these valuations are upper-bounded by V we get a
bound of poly(n,m, log(1+ε) V) = poly(n,m, 1ε , log V) on the number of iterations and
consequently also on the number of value queries.

Robustness of Algorithm 3.1. We make a small remark about the robustness of
our main algorithm. Observe crucially, that the algorithm can start with any partial
EFX allocation Y , and return a final EFX allocation X with bounded charity, such that
vi(Xi) ≥ vi(Yi) for all i ∈ [n]. Therefore, if our initial EFX allocation has good welfare
(Nash welfare or social welfare), the welfare of the final EFX allocation can only be
more. This small observation will be very crucially used when we want to give efficiency
Guarantees for our EFX allocations in Chapter 4. On a high-level, all it takes to get some
efficiency guarantees is to start off with a clever initial EFX allocation. In Chapter 4,
we show that for additive valuations, we can determine (1 − ε)-EFX allocation with
bounded charity and a 2-approximation to the maximum Nash welfare and when agents
have subadditive valuations we can determine a (1 − ε)-EFX allocation with bounded
charity and an O(n) approximation of Nash welfare (in fact, on a much larger class of
efficiency functions, namely, the generalized p-mean welfare function)5 in polynomial-
time . Barman et al. [15] showed that it requires an exponential number of value queries
to provide any sublinear approximation to Nash welfare under subadditive valuations.
Therefore, by choosing the initial partial EFX allocation carefully, in polynomial-time ,
our algorithm yields an (1− ε)-EFX allocation with bounded charity that also achieves
the best possible approximation of the Nash welfare in polynomial-time .

4Observe that (1 + ε) · vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj , implies that vi(Xi) ≥ (1− ε) · vi(Xj \ {g})
for all g ∈ Xj and (1 + ε) · vi(Xi) ≥ vi(P) implies that vi(Xi) ≥ (1 − ε) · vi(P) (as 1

1+ε
≥ 1 − ε).

Therefore, Theorem 3.6 implies that we can determine a (1− ε)-EFX allocation with bounded charity
with poly(n,m, 1

ε
, log V) value queries.

5Independently, Barman et al. [15] also showed how to achieve an O(n) approximation for the gener-
alized p-mean welfare.

31

Chapter 3. EFX Allocations with Bounded Charity

3.2 Additive Valuations: Implications for Other Notions
of Fairness

The most well-understood class of valuation functions is the set of additive valuations. We
consider the case when all agents have additive valuations and show that our allocation
or very minor variants of our allocation can guarantee several other notions of fairness. In
this section, we discuss the implications of our result (Theorem 3.1) on coming up with
allocations that satisfy some approximation of other fairness notions, namely Maximin
Share (MMS) and Groupwise Maximin Share (GMMS).

3.2.1 Number of Unallocated Goods and MMS Guarantee.

Another interesting and well-studied notion of fairness is maximin share, a popular
relaxation of Proportionality in discrete fair division. Recall the definition of MMS from
Chapter 2. Given a set [n] of agents and a set M of m indivisible goods the maximin
share of an agent (say, i) MMS i(n,M) is defined as follows: (here X is the set of all
complete allocations)

MMS i(n,M) = max
〈X1,...,Xn〉∈X

min
j∈[n]

vi(Xj).

The goal is to determine an allocation 〈X1, X2, . . . , Xn〉 of M such that for every i, we
have vi(Xi) ≥ MMS i(n,M). This question was first posed by Budish [26]. Procaccia and
Wang [88] showed that such an allocation need not exist, even in the restricted setting of
only three agents! Thereafter, approximate-MMS allocations were studied [88, 61, 64, 62]
and there are polynomial-time algorithms to find allocations where for all i, agent i gets
a bundle of value at least α ·MMS i(n,M); the current best guarantee for α is 3/4− ε by
Ghodsi et al. [64] (for any ε > 0) and this was very recently improved to 3/4 by Garg
and Taki [62]. Amanatidis et al. [4] showed that any complete EFX allocation is also a
4
7 -MMS allocation.

We show that our allocation promises better MMS guarantees when the number of
unallocated goods is large: Recall that our algorithm continues till |P | is smaller than the
number of sources in the envy-graph EX and also recall that the sources are unenvied
agents. In particular, if |P | = n− 1, then the number of sources in EX is n; so no agent
envies another. That is, for each i, we have vi(Xi) ≥ vi(Xj) for all j ∈ [n]. Moreover,
vi(Xi) ≥ vi(P). So we have

vi(Xi) ≥
vi(M)

n+ 1

≥
(

1 +
1

n

)−1
· vi(M)

n

≥
(

1 +
1

n

)−1
·MMS i(n,M),

where for every agent i, the inequality MMS i(n,M) ≤ vi(M)/n holds for additive val-
uations. Thus larger the size of P , higher is the number of unenvied agents, and since

32

3.2. Additive Valuations: Implications for Other Notions of Fairness

no agent envies the pool, the allocation is “closer” to a proportional allocation6, which
gives the desired MMS guarantees. Formally, we show the following theorem.

Theorem 3.7. Given a set of [n] agents with additive valuations and a set of M of
indivisible goods, there exists a partial EFX allocation X = 〈X1, X2, . . . , Xn〉 and a set
of unallocated goods P , such that (X,P) satisfies the guarantees in Theorem 3.1 and

vi(Xi) ≥ MMS i(n,M)/(2− |P |n).

Hence, larger the number of unallocated goods, better are the guarantees that we
get on MMS. The extreme values are |P | = 0 and |P | = n− 1. When |P | = 0, we have a
complete EFX allocation and when |P | = n− 1, we have an EFX allocation that is an
almost-MMS allocation: vi(Xi) ≥ (1− 1/n) ·MMS i(n,M) for all i. This, in fact shows
that having large number of unallocated goods is not necessarily a weakness of the fair
allocation in Theorem 3.1, as this gives good guarantees in other fairness notions.

We now show the proof of Theorem 3.7. The following proposition from [61] will be
useful. It states that if we exclude any set of agents and at most the same number of
any goods from N and M , respectively, the maximin share of any remaining agent can
only increase.

Proposition 3.8 (Garg and Taki [61]). Let N be a set of n agents with additive valuations
and M be a set of m goods. If N ′ ⊆ N and M ′ ⊆M are such that |N \N ′| ≥ |M \M ′|,
then for any agent i ∈ N ′, we have MMS i(n

′,M ′) ≥ MMS i(n,M) where n′ = |N ′|.

Proof of Theorem 3.7. Let (X,P) be the allocation guaranteed by Theorem 3.1.

Let k be the number of unallocated goods (k = |P |). We fix some agent i and let
N ′ ⊆ N be the set of agents consisting of all sources in EX , agent i and all other agents
j with |Xj | ≥ 2. Let M ′ be the set of goods allocated to the agents in N ′. Observe that
every agent in N \N ′ is allocated at most one good and so |N \N ′| ≥ |M \ (M ′∪P)|. By
Proposition 3.8, it holds that MMS i(n

′,M ′ ∪ P) ≥ MMS i(n,M) where n′ = |N ′|. Thus,
it suffices to show that vi(Xi) ≥ MMS i(n

′,M ′ ∪ P)/
(
2− k

n

)
.

Consider any agent j ∈ N ′ with |Xj | ≥ 2. Because X is EFX, it holds that vi(Xi) ≥
vi(Xj \ {g}) for all g ∈ Xj . Since the valuations are additive, we have

vi(Xi) ≥
(

1− 1

|Xj |

)
· vi(Xj) ≥

1

2
· vi(Xj).

We know the following inequalities hold:

vi(Xi) ≥ vi(P), (3.1)

vi(Xi) ≥ vi(Xj) for all j that were sources in GX , (3.2)

2vi(Xi) ≥ vi(Xj) for all other j ∈ N ′. (3.3)

Recall that the number of sources is at least |P | + 1 = k + 1. Summing up all
inequalities in (7.16)-(3.3) and using the fact that vi is additive, we have

(2(n′ − (k + 1)) + k + 2) · vi(Xi) ≥ vi(M
′ ∪ P).

6each agent i gets a bundle that she values vi(M)/n

33

Chapter 3. EFX Allocations with Bounded Charity

Hence we have

vi(Xi) ≥
vi(M

′ ∪ P)

2n′ − k

≥ vi(M
′ ∪ P)

n′
· n′

2n′ − k

≥ MMS i(n
′,M ′ ∪ P) · n′

2n′ − k
(since vi is additive)

= MMS i(n
′,M ′ ∪ P)/

(
2− k

n′

)
≥ MMS i(n

′,M ′ ∪ P)/
(
2− k

n

)
(since n′ ≤ n).

3.2.2 An Improved Bound for Approximate-GMMS

Barman et al. [16] recently introduced a notion of fairness called groupwise maximin
share (GMMS) which is stronger than MMS and EFX. An allocation is said to be GMMS,
if the MMS condition is satisfied for every subgroup of agents and the union of the sets
of goods allocated to them. Formally,

Definition 3.9. Given a set N of n agents and a set M of m goods, an allocation
X = 〈X1, X2, . . . , Xn〉 is α-GMMS if for every N ′ ⊆ N and all i ∈ N ′, we have:

vi(Xi) ≥ α ·MMS i(n
′,
⋃
j∈N ′

Xj) where n′ = |N ′|.

Observe that every GMMS, i.e. α = 1, allocation is an MMS allocation. Addition-
ally, every GMMS allocation, is also a complete EFX allocation [16]. It is known [16]
that GMMS strictly generalizes MMS. In particular, it was shown in [16] that GMMS
allocations rule out some very unsatisfactory allocations that have MMS guarantees. For
example, consider an instance with n agents with additive valuations and a set M of
n− 1 goods and every agent has a valuation of one for each good. Since the number of
goods is less than the number of agents, we have MMS i(n,M) = 0 for every agent i. So
any allocation has MMS guarantees. It is not hard to see that the only allocation with
a GMMS guarantee is one where n − 1 agents get one good each and one agent is left
without any goods. See Subsection 2.1 in [16] for more discussion.

Naturally, it is a harder problem to approximate GMMS than MMS. While 3
4 -MMS

allocations always exist, the largest α for which α-GMMS allocations are known to exist
is 1

2 [16]. We now describe how to modify our allocation so that the resulting allocation
is 4

7 -GMMS.

Let X = 〈X1, . . . , Xn〉 be the allocation and P be the pool of unallocated goods that
satisfy the conditions of Theorem 3.1. Without loss of generality, assume that agent 1
is a source in the envy-graph EX . Define the complete allocation Y = 〈Y1, . . . , Yn〉 as
follows:

Y1 = X1 ∪ P, and

Yi = Xi for all i 6= 1.

34

3.2. Additive Valuations: Implications for Other Notions of Fairness

We show in Theorem 3.10 that Y is our desired allocation. The proof of Theorem 3.10
is similar to [4, Proposition 3.4]. We also remark that one can use the proof of [4,
Proposition 3.4] to show that any EFX allocation is a 4/7-GMMS. However note that
Y is not necessarily an EFX allocation. But it has sufficiently nice properties so that we
can still show that it is 4/7-GMMS. For the sake of convenience, we will refer to goods
in the proof of Theorem 3.10 as items.

Theorem 3.10. Given a set N of n agents with additive valuations and a set M of m
items, the allocation Y defined above satisfies is 4

7 -GMMS.

Proof. We need to show that for every Ñ ⊆ N and all i ∈ Ñ , we have vi(Yi) ≥
4
7MMS i(ñ, M̃) where ñ = |Ñ | and M̃ =

⋃
j∈Ñ Yj .

Fix some i ∈ Ñ . Define N ′ as the subset of Ñ that contains i and all agents that
have been allocated at least two items in Y , i.e., j ∈ N ′ if and only if j = i or |Yj | ≥ 2.
Let M ′ =

⋃
j∈N ′ Yj .

Note that Y allocates all items of M̃ \M ′ to agents in Ñ \N ′. Since every agent in

Ñ \N ′ has been allocated at most one item, we have |Ñ \N ′| ≥ |M̃ \M ′|. Proposition 3.8

tells us that MMS i(n
′,M ′) ≥ MMS i(ñ, M̃) where n′ = |N ′|. Thus, it suffices to show

vi(Yi) ≥ 4/7 ·MMS i(n
′,M ′).

We now classify the items in M ′ as good or bad. An item is good if it is contained
in a Yj of cardinality at least three or is contained in Y1 or Yi. All other items are bad,
i.e., a bad item is contained in a bundle of cardinality two different from Y1 and Yi. A
bundle in Y containing good items is good.

We will next reduce the problem further. Let x be the number of bad items in M ′.
Since the bad items are contained in bundles of cardinality two, the good items in M ′

come from n′−x/2 good bundles of Y . As long as x > n′, we will apply a reduction step.
Each reduction step will reduce the number of bad items in M ′ by two, the number of
agents by one, will not decrease the MMS i-value, and will leave the quantity n′ − x/2
and set of good items in M ′ unchanged.

Let Z = 〈Z1, Z2, . . . Zn′〉 be an optimal MMS partition for agent i of the set M ′ of
items. If there are more than n′ bad items in M ′, then there is a set Zk with at least two
bad items, say g1 and g2. We distribute the items in Zk \ {g1, g2} arbitrarily among the
other sets in Z. So we have a partition of the set M ′ \ {g1, g2} of items into n′ − 1 many
bundles. The value for agent i of any remaining bundles did not decrease. We set M ′ to
M ′ \ {g1, g2} and decrement n′. Note that we reduced the number of bad items by two,
the number of agents by one, did not decrease MMS i(n

′,M ′) and the set of good items
in M ′ still come from the n′ − x/2 good bundles in Y . We keep repeating this reduction
until M ′ contains at most n′ bad items. At this point, we have a set M ′ of items and an
integer n′ with the following properties:

(1) The number x of bad items in M ′ is at most n′.

(2) MMS i(n
′,M ′) ≥ MMS i(ñ, M̃), and

(3) The set of good items in M ′ has not changed. They come from n′ − x/2 good
bundles in Y .

35

Chapter 3. EFX Allocations with Bounded Charity

We will next relate the value of good and bad items to the value of Yi.

Lemma 3.11. We have

(a) For any bad item g, vi(g) ≤ vi(Yi).

(b) vi(Y1) ≤ 2vi(Yi).

(c) If j 6= 1 and Yj is a good bundle then vi(Yj) ≤ 3/2 · vi(Yi).

Proof. First observe that by the construction of the complete allocation Y , we have
vi(Yi) ≥ vi(Xi) for all i ∈ [n]. Now, we prove each of the statements in the lemma.

(a) Since g is a bad item, it must belong to a bundle that has exactly two goods. Let
Yj = {g, g′} be the bundle containing g. Since j 6= 1 (by definition of a bad item),
we have vi(Yi) ≥ vi(Xi) ≥ vi(Xj \ {g′}) = vi(Yj \ {g′}) = vi(g).

(b) Since agent 1 is a source, vi(Xi) ≥ vi(X1). By Theorem 3.1, vi(Xi) ≥ vi(P).
Therefore, vi(Y1) = vi(X1 ∪ P) = vi(X1) + vi(P) ≤ vi(Xi) + vi(Xi) = 2vi(Xi) =
2vi(Yi).

(c) Let g ∈ Yj be such that vi({g}) is minimal. Then vi(Yj \ {g}) ≤ vi(Yi) and
vi({g}) ≤ vi(Yj)/|Yj |. Thus,

vi(Yi) ≥
(

1− 1

|Yj |

)
· vi(Yj)

≥
(

1− 1

3

)
· vi(Yj)

=
2

3
· vi(Yj).

Now we are ready to show the bound on GMMS. We have x bad items in M ′. The
good items in M ′ come from n′ − x/2 good bundles. Also x ≤ n′. The total value of the
good items for agent i is at most

3

2
(n′ − x

2 − 2) · vi(Yi) + vi(Yi) + 2vi(Yi) =
3

2
(n′ − x

2) · vi(Yi),

since there are at most n′ − x/2 − |{1, i}| good bundles different from Y1 and Yi: each
of value at most (3/2 · vi(Yi)), and Y1 has value at most 2vi(Yi). Also, the total value
of the bad items for agent i is at most x · vi(Yi), since there are x many bad items and
each bad item is worth at most vi(Yi). Therefore,

vi(M
′) = vi(bad items in M ′) + vi(good items in M ′)

≤ x · vi(Yi) +
3

2
(n′ − x

2
) · vi(Yi)

=
6n′ + x

4
· vi(Yi) ≤

7n′

4
· vi(Yi).

Therefore, we have vi(Yi) ≥ (4/7) · (vi(M ′)/n′) ≥ (4/7) ·MMS i(n
′,M ′)

This concludes this chapter. We present a graphical view of our main results and
techniques so far, that will help us to build more results in the upcoming chapters and
also enable the reader to have a global picture of the thesis. See Figure 3.3.

36

3.2. Additive Valuations: Implications for Other Notions of Fairness

A Partial EFX
Allocation X

Algorithm 4

EFX allocation
X ′ >PD X

with Bounded
Charity P

(1/(2 − |P |/n))-
MMS + EFX

allocation
X ′ >PD X

with Bounded
Charity P

4/7-GMMS
Allocation
Y >PD X

Additive valuationsAdditive valuations

Figure 3.3: We start with any partial EFX allocation X (trivially one could start
with an allocation where every agent receives no good). Algorithm 4 outputs an EFX
allocation X ′ with some bounded charity P , where X ′ >PD X (X ′ Pareto-dominates X).
For additive valuations we are able to give more fairness guarantees in terms of MMS
and GMMS, but each time our final allocation Pareto-dominates X. On an intuitive
level, all welfare guarantees of the first partial EFX allocation is maintained in all of our
final allocations, and we will see how by choosing a clever partial EFX allocation at the
beginning, we get efficiency guarantees to all of our final allocations in Chapter 4.

37

Chapter 3. EFX Allocations with Bounded Charity

38

CHAPTER 4

Efficient EFX Allocations

In this chapter, we focus on finding fair and efficient allocations. As mentioned in
Chapter 1, efficiency is a measure of the overall welfare that an allocation achieves. Even
when the underlying notion of fairness is EFX, there maybe some EFX allocations that
are highly unsatisfactory: consider a scenario with two agents a1 and a2 and two goods g1
and g2. We define vi({gj}) = 1 if i = j and vi({gj}) = 0 if i 6= j. The allocation a1 ← {g2}
and a2 ← {g1} is an EFX allocation, as following the removal of any single good, each
agents bundle is empty. However, there is clearly, a more satisfactory allocation, such as
a1 ← {g1} and a2 ← {g2}. Thus, in this chapter, we aim to find EFX allocations with
bounded charity that are also efficient.

As mentioned in Chapter 1, there are several measures of economic efficiency - one of
the common measures being Pareto-optimality. However, there are trivial instances where
there exists no EFX allocation that is Pareto-optimal [84]: for instance two agents a1 and
a2 and three goods g1, g2 and g3. We have v1(g2) = v2(g2) = 2 and v1(g1) = v2(g3) = 1.9
and v1(g3) = v2(g1) = 0.

However, an alternative and a non-binary measure of efficiency is that of Nash welfare.
Recall that the Nash welfare of an allocation is defined as the geometric mean of the

valuations NW (X) =
(∏

i∈[n] vi(Xi)
)1/n

. As mentioned in Chapter 1, an allocation that

has highest Nash welfare is also Pareto-optimal. When agents have additive valuations,
an allocation with highest Nash welfare is also envy-free up to one good (EF1). Thus,
a natural question is can we find EFX allocations with bounded charity that have high
Nash welfare. We answer this question in two scenarios: when agents have additive
valuations and when agents have subadditive valuations. The main result of this chapter
is captured by the following theorem,

Theorem 4.1. Given an instance comprising of a set of agents [n], a set of goods M ,
let X∗ be the allocation with highest Nash welfare. Then, in polynomial-time , we can
determine a (1− ε)-EFX allocation X with bounded charity P 1, such that

• NW (X) ≥ (1/2.89) ·NW (X∗), when agents have additive valuations, and

• NW (X) ≥ ((1− ε)/4(n+ 1)) ·NW (X∗), when agents have subadditive valuations.

Discussion on Theorem 4.1. Apart from the main takeaway that there exists EFX
allocations with bounded charity and high Nash welfare, we highlight certain other
significance of Theorem 4.1. In particular, this result makes substantial progress in the
studies dedicated to approximating Nash welfare for valuations more general than additive
valuations2 in polynomial-time . Although there exists a polynomial-time algorithm that

1Allocation X is (1− ε)-EFX, |P | < n, and for all i ∈ [n], we have vi(Xi) ≥ (1− ε) · vi(P).
2More details on Nash welfare approximation for additive valuations can be found in Chapter 1

Chapter 4. Efficient EFX Allocations

achieves a 1.445 approximation on Nash welfare when agents have budget-additive SPLC
valuations [30], the best approximation that can be achieved in polynomial-time when
agents have subadditive valuations, prior to this work is O(m), where m is the number
of goods. In fact, our algorithm also improves the best polynomial-time approximation
of O(n log(n)) for Nash welfare when agents have submodular valuations [59] as well.

Our technique is also fairly general and our approximation guaranteed hold for a much
broader class of welfare functions such as the generalized p-mean welfare GM p(X) =(

(1/n) ·
∑

i∈[n] vi(Xi)
p
)1/p

. Maximizing this welfare function captures a wide range

of fairness and efficiency measures that have been used frequently in the literature:
maximizing Nash welfare for p = 0, max-min welfare (also known as the egalitarian
welfare) for p = −∞ and maximizing social welfare for p = 1. Barman and Sundaram [19]
also mention that,

“generalized means with p ∈ (−∞, 1] exactly constitute the family of welfare
functions that satisfy the Pigou-Dalton transfer principle and a few other key
axioms.”

In the same paper, they show that when agents have identical valuations, there is an
algorithm that provides an O(1) factor approximation to the p-mean welfare. In this
chapter, we show that we can determine an EFX allocation X with bounded charity
P such that GM p(X) ≥ 1/(5n) ·GM p(X

∗), where X∗ is the allocation that maximizes
GM p(X). Our approximation also asymptotically matches the current best approximation
ratio for special cases like p = −∞ [69], while also retaining the remarkable fairness
properties of EFX with bounded charity.

We now present the proof of Theorem 4.1. We consider the cases when agents have
additive valuations and when agents have subadditive valuations separately. At a high
level, our procedures for both cases look similar: carefully select a partial EFX allocation
with high welfare and then run Algorithm 4 (in Chapter 3) on the goods that remain.

4.1 Additive Valuations

The guarantee for Nash welfare when agents have additive valuations, follows almost
immediately from the seminal work of Caragiannis et al [27]. They show that given an
allocation X∗, that is a ρ-approximation of the maximum Nash welfare, in polynomial-
time , one can determine a partial EFX allocation X = 〈X1, X2, . . . , Xn〉, such that for
all i ∈ [n], we have Xi ⊆ X∗i and vi(Xi) ≥ (1/2ρ) · vi(X∗i). Observe that NW (X) ≥
(1/2ρ) ·NW (X∗). Recall that Algorithm 3.1 can start with any partial EFX allocation
and output a final EFX allocation with bounded charity that Pareto-dominates the initial
partial EFX allocation. Thus, if we start Algorithm 3.1 with allocation X, then the for
the final allocation X ′, we have vi(X

′) ≥ vi(Xi) ≥ (1/2ρ) · vi(X∗i) for all i ∈ [n]. Thus
NW (X ′) ≥ (1/2ρ) · NW (X∗). Note that this implies that there exists EFX allocations
with bounded charity that achieve a (1/2) approximation of the Nash welfare (by setting ρ
to 1), when agents have additve valuations (setting ρ to 1). Unfortunately, determining an
allocation with highest Nash welfare is APX-hard and Algorithm 3.1 is pseudo-polynomial.
As a fix, we use the algorithm in Barman et al. [18] that determines an allocation with

e
1
e -approximation of the optimum Nash welfare in polynomial-time , and Algorithm 3.1

40

4.2. Subadditive Valuations

to determine a (1− ε)-EFX allocation (this runs in polynomial-time). With this, we get
an algorithm that runs in polynomial-time , and returns a (1− ε)-EFX allocation with

bounded charity that achieves 1/(2e
1
e) = (1/2.89)-approximation of the optimum Nash

welfare.

4.2 Subadditive Valuations

One of the primary motivation of our techniques used here, is to show that certain
fair allocations can give us reasonably efficient allocations. While, an arbitrary EFX
allocation does not give us any guarantee on the generalized p-mean welfare, even in the
context of additive valuations, we outline that certain EFX allocations with bounded
charity can help us get good approximations to a broad class of welfare measures like
the generalized p-mean welfare.

We first give an intuitive overview of the Algorithm: Let us consider the scenario
that a given instance admits an envy-free allocation, i.e., there is a partition of the
goods into n bundles X1, X2, . . . , Xn such that for all pairs of agents i and j we have
vi(Xi) ≥ vi(Xj). In that case, for each agent i we have

n · vi(Xi) ≥
∑
j∈[n]

vi(Xj)

≥ vi(∪j∈[n]Xj) (by subadditivity)

= vi(M)

This implies that vi(Xi) ≥ (1/n) · vi(M). Since in any optimal allocation no agent can
get a valuation more than vi(M), we conclude that each agent has a bundle worth 1/n
times her bundle in the p-mean welfare maximizing allocation. This would immediately
give us an n-approximation for generalized p-mean welfare. However, most instances may
not admit an envy-free allocation. Naturally, we then look into the close relaxation of
envy-freeness that is known to exist in the context of indivisible goods, say EFX with
bounded charity 3. So let us consider the EFX allocation X with bounded charity P :
Here we can partition the given instance into n+ 1 bundles X1, X2, . . . , Xn, P such that
for all pairs of agents i and j we have vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj and for all
agents i ∈ [n], we have vi(Xi) ≥ vi(P). Let us first look into all the bundles Xj that are
not singleton, i.e., |Xj | ≥ 2: We have that vi(Xi) ≥ vi(Xj \ {g}) for all g ∈ Xj , implying

that vi(Xi) ≥ (1/2) ·max
(
vi(Xj \ {g}), vi({g})

)
(as |Xj | ≥ 2). Thus,

3In order to get a polynomial-time algorithm, we need to work with the notion of (1−ε)-EFX allocation
with bounded charity. However for the sake of clarity here, we stick to EFX allocation with bounded
charity.

41

Chapter 4. Efficient EFX Allocations

(n+ 1) · vi(Xi) ≥
∑
|Xj |≥2

1

2
·
(
vi(Xj \ {g}) + vi({g})

)
+ vi(P)

≥ 1

2
·
∑
|Xj |≥2

vi(Xj) + vi(P) (by subadditivity)

≥ 1

2
· vi(∪|Xj |≥2Xj ∪ P) (by subadditivity)

(4.1)

Let S be the set of all the goods in singleton bundles in X, i.e.,S = {g | ∃j, Xj = {g}}.
Then, from (4.1) we have the guarantee that for every agent vi(Xi) ≥ (1/2(n+ 1))·vi(M \
S). Therefore, in any EFX allocation with bounded charity, every agent has an 1/2(n+ 1)
fraction of her valuation on the goods she receives from M \ S in the optimal allocation,
i.e., vi

(
X∗i ∩ (M \ S)

)
where X∗ = (X∗1 , . . . , X

∗
n) is the allocation that has the highest

generalized p-mean welfare. The only problem is how to allocate the goods in the set S
appropriately.

The only scenario where an incorrect allocation of the goods in S causes a significant
decrease in the p-mean welfare is when there are agents who have a substantially high
valuation for some goods in S. However, we could be in a scenario where there are only
a few goods in S (say less than n/3) which are very valuable to many agents and then
we may not be able to give every agent a bundle that she values 1/n times the whole
set S4. Therefore, we need to compare our allocation with the allocation that maximizes
the p-mean welfare.

We briefly sketch how we compare the allocation with the allocation that maximizes
the p-mean welfare. The good aspect of the situation is that the number of goods in S
is small, i.e., |S| ≤ n. Let Hi denote the set of n goods that are valued by agent i the
most, i.e., all goods in Hi are more valuable than any good outside Hi. Now, we find a
single good allocation (where each agent gets exactly one good) of the high valued goods,
namely the set H = ∪i∈[n]Hi, optimally to the agents assuming that we can give each
agent at least 1/n times their valuation for the low valued goods, namely the set M \Hi,
i.e., we find a single good allocation, where every agent i gets exactly one high valued
good hi ∈ Hi, that maximizes

∑
i∈[n]

(
vi({hi}) + 1

nvi(M \Hi)
)p

(such allocations can be
found efficiently by matching algorithms). Let us call the current single good allocation
Y . Note that Y is trivially EFX as every agent has exactly one good. We then run the
Algorithm 4 from Chapter 3, starting with Y as the initial partial EFX allocation. The
intuition being that the low valued goods appear in non-singleton bundles and the high
valued goods occur in singleton bundles in the final EFX allocation X. Since the low
valued goods occur in non-singleton bundles, we are indeed able to give every agent 1/n
times their valuation for the low valued goods. Also, we have allocated the high valued
goods correctly (up to a factor of 1/n, as we computed a single good allocation, while
the optimum need not necessarily give every agent exactly one high valued good) as we
started out with an optimum allocation of the high valued goods.

4A very simple scenario is to divide n goods among n agents with identical additive valuations, where
all agents have a valuation of 1 for a single good and ε� 1/n for the rest of the goods. In any division
there will be n− 1 agents who do not get 1/n of their valuation on the set of n goods

42

4.2. Subadditive Valuations

Now we elaborate our algorithm. Our algorithm primarily has two steps: first, it
allocates the high valued goods carefully and then runs Algorithm 4 (Chapter 3) on the
remaining set of goods. We outline the details of both these procedures and analyze the
guarantees that can be ensured.

Allocating the high valued goods Y . We first formally define the notion of high
valued goods for an agent. For each agent i, we order the goods in M as

{
gi1, g

i
2, . . . , g

i
m

}
such that vi(g

i
1) ≥ vi(g

i
2) ≥ · · · ≥ vi(g

i
m). Let Hi =

{
gi1, g

i
2, . . . , g

i
n

}
. We refer to Hi as

the set of high valued goods for agent i. Also for each good gik, and an agent i, we define
rank i(g

i
k) = k. Notice that if for any agent i, if rank i(g) < rank i(g

′), then vi(g) ≥ vi(g′).
We now outline how we compute the initial allocation Y . We construct the complete

bipartite graph G = ([n]∪M, [n]×M) with the weight of the edge from agent i to good
g, wig being

• n · vi({g}) + vi(M \Hi) if p = −∞,

• log
(
n · vi({g}) + vi(M \Hi)

)
if p = 0 and

•
(
n · vi({g}) + vi(M \Hi)

)p
otherwise.

Depending on the value of p, we choose an appropriate matching mechanism to
determine Y . Y is determined such that ∪i∈[n](i, Yi) is

• a max-min matching5 in G if p = −∞,

• a maximum weight matching in G if p ≥ 0, and,

• a minimum weight perfect matching in G if p < 0 and p 6= −∞.

Let Y be the allocation outputed by the corresponding matching subroutine. Let
Y = ∪i∈[n]Yi. We modify the allocation Y slightly such that ∪i∈[n](i, Yi) still remains
the optimum matching, but no agent ranks a good outside Y lower than she ranks the
good allocated to her in Y (Yi), i.e., we wish to determine an allocation Y such that
for all agent i ∈ [n] and all g /∈ Y, we have rank i(Yi) < rank i(g). To achieve this, as
long as there is an agent i ∈ [n] and a good g /∈ Y such that rank i(g) < rank i(Yi)
we set Yi ← {g}. Note that such an operation does not worsen the objective function
of the matching: vi({g}) ≥ vi(Yi) (as rank i(g) < rank i(Yi)) and hence wig ≥ wiYi for
p = −∞ and p ∈ [0, 1], while wig ≤ wiYi for p < 0 and p 6= −∞. This implies that
the objective value of the matching does not decrease when p ∈ [0, 1] and p = −∞
and the objective value of the matching does not increase when p < 0 and p 6= −∞.
Therefore, ∪i∈[n](i, Yi) still stays an optimum matching, but

∑
i∈[n] rank i(Yi) strictly

decreases. Since n ≤
∑

i∈[n] rank i(Yi) ≤ nm, after O(nm) iterations we will have an
allocation Y such that ∪i∈[n](i, Yi) is still an optimum matching, but for all agents i ∈ [n]
and for all goods g /∈ Y we have rank i(Yi) < rank i(g).

The complete algorithm is outlined in Algorithm 5 (Selection of the allocation Y is
captured in steps 1 to 5). We now make some helpful observations about the allocation
Y .

5This is a matching that maximizes the weight of the smallest edge in the matching.

43

Chapter 4. Efficient EFX Allocations

Lemma 4.2. For all i ∈ [n], we have Yi ⊂ Hi. Furthermore, for all

• g /∈ Hi, and

• g /∈ Y,

we have vi(Yi) ≥ vi({g}).

Proof. We first show that Yi ⊂ Hi. We prove the same by contradiction. Assume oth-
erwise, i.e., Yi 6⊂ Hi. In that case, note that there is always a good g ∈ Hi \ Y (as
|Hi| = |Y| = n and there is a good in Y (namely Yi) which is not in Hi). From the
definition of Hi, it is clear that rank i(g) < rank i(g

′) for all g′ /∈ Hi. Thus, we have
rank i(g) < rank i(Yi) when g /∈ Y, which is a contradiction. Therefore Yi ⊂ Hi. This also
shows that for all g /∈ Hi we have vi({g}) ≤ vi(Yi) (as Yi ⊂ Hi and any good in Hi is at
least as valuable as any good outside Hi to agent i). We have that rank i(Yi) < rank i(g)
for all g /∈ Y, immediately implying that vi(Yi) ≥ vi({g}). Thus, vi(Yi) ≥ v({g}) for all
g /∈ Hi and for all g /∈ Y.

Run Algorithm 4 (Chapter 3) on the Remaining Goods. Once we determined
the initial allocation Y , we run Algorithm 4 (Chapter 3) on the remaining goods starting
with Y as the initial allocation (Y is a feasible initial allocation as it is trivially an EFX
allocation as every agent has exactly a single good). Let Z be the final (1 − ε)-EFX
allocation with bounded charity P . As mentioned earlier, the singleton sets allocated
to the agents are the barriers to proving our desired p-mean welfare approximation for
any (1− ε)-EFX allocation with bounded charity. However, since we started with a good
initial allocation (namely Y), we first show that we have some nice properties about the
singleton sets in the final allocation Z.

Observation 4.3. If |Z`| = 1 for any ` ∈ [n], then we have Z` ⊂ Y.

Proof. Since Z is obtained by running Algorithm 4 starting with Y as the initial alloca-
tion, we have for every agent i that vi(Zi) ≥ vi(Yi) (Algorithm 4 returns a final allocation
Z that Pareto-dominates the initial allocation Y (see Figure 3.3 in Chapter 3)). In par-
ticular, Algorithm 4 ensures that for any agent `, if the final bundle Z` is not the same as
the initial bundle Y`, then v`(Z`) > v`(Y`). Now consider an agent ` such that |Z`| = 1.
If Z` = Y`, then we immediately have Z` ⊂ Y. So now consider the case when Z` 6= Y`.
Then we have v`(Z`) > v`(Y`). By Lemma 4.2, we know that no good outside Y can be
more valuable to agent ` than Y`. Therefore Z` ⊂ Y.

Now we show a lower bound on the final valuation of an agent in terms of the low
valued goods.

Observation 4.4. We have vi(Zi) ≥ (1− ε) · vi(M\Y)
2(n+1) for all i ∈ [n].

Proof. Fix an agent i. Consider any agent j such that Zj is not a singleton. Since Z is a
(1−ε)-EFX allocation with bounded charity P , we have that vi(Zi) ≥ (1−ε) ·vi(Zj \{g})
for all g ∈ Zj and vi(Zi) ≥ (1 − ε) · vi(P). Since |Zj | ≥ 2, we can say that vi(Zi) ≥
(1− ε) ·max (vi(Zj \ {g}), vi({g})). Therefore we have,

44

4.2. Subadditive Valuations

vi(Zi) ≥ (1− ε) · (vi(Zj \ {g}) + vi({g}))
2

≥ (1− ε) · vi(Zj)
2

(by subadditivity)

Let S = ∪|Z`|=1Z`. By Observation 4.3, we know that S ⊆ Y. We have,

(n+ 1− |S|)vi(Zi) ≥ (1− ε) · 1

2

∑
|Zj |≥2

vi(Zj) + (1− ε) · vi(P)

≥ (1− ε) · 1

2
vi

(⋃
|Zj |≥2

Zj ∪ P
)

(by subadditivity)

=
(1− ε)

2
vi(M \ S)

≥ (1− ε)
2

vi(M \ Y) (since S ⊆ Y)

Therefore, we have vi(Zi) ≥ ((1− ε)/(2(n+ 1− |S|))) · vi(M \Y) ≥ (1− ε) · vi(M \
Y)/2(n+ 1).

Now we prove a lower bound on vi(Zi) in terms of the initial allocation Y and the
set of low valuable goods for agent i, i.e., M \Hi.

Lemma 4.5. For all i ∈ [n], we have vi(Zi) ≥ (1−ε)
4(n+1) ·

(
n · vi(Yi) + vi

(
M \Hi

))
.

Proof. We have vi(Zi) ≥ vi(Yi) (since Z is an allocation determined by Algorithm 4 with

Y as the initial allocation) and from Observation 4.4 we have vi(Zi) ≥ (1− ε) · vi(M\Y)
2(n+1) .

Therefore, for all i ∈ [n], we have

vi(Zi) ≥
1

2
·
(
vi(Yi) +

(1− ε)
2(n+ 1)

· vi(M \Y)

)
=

1

2
·
(
vi(Yi) +

(1− ε)
2(n+ 1)

· vi
((
M \ (Y ∩Hi)

)
\ (Y \Hi)

))
≥ 1

2
·
(
vi(Yi) +

(1− ε)
2(n+ 1)

· vi
(
M \ (Y ∩Hi)

)
− (1− ε)

2(n+ 1)
· vi
(
Y \Hi

))
≥ 1

2
·
(
vi(Yi) +

(1− ε)
2(n+ 1)

· vi
(
M \Hi

)
− (1− ε)

2(n+ 1)
· vi
(
Y \Hi

))
, (4.2)

where the second last inequality follows from subadditivity and the last inequality
follows from the fact that Y ∩Hi ⊆ Hi. By Lemma 4.2, we know that vi(Yi) ≥ vi({g})

45

Chapter 4. Efficient EFX Allocations

1: Construct G = 〈[n] ∪M, [n]×M〉 with

wig =


n · vi({g}) + vi(M \Hi) if p = −∞
log
(
n · vi({g}) + vi(M \Hi)

)
if p = 0(

n · vi({g}) + vi(M \Hi)
)p

otherwise

2: Set Y such that

∪i∈[n](i, Yi) =


Max-Min-Matching(G) if p = −∞
Min-Weight-Perfect-Matching(G) if p < 0 and p 6= −∞
Max-Weight-Matching(G) otherwise

3: while ∃i ∈ [n] and ∃g /∈ Y such that rank i(g) < rank i(Yi) do
4: Yi ← {g}.
5: end while
6: Set (Z,P)← Run Algorithm 4 for (1−ε)-EFX allocation with bounded charity, with

initial allocation 〈Y1, . . . , Yn〉.

Algorithm 5: Determining a (1− ε)-EFX allocation with bounded charity and ((1−
ε)/4(n+ 1))-approximation on optimum p-mean.

for all g /∈ Hi. In particular, vi(Yi) ≥ vi({g}) for all g ∈ Y \Hi. Thus,

vi(Y \Hi) ≤
∑

g∈Y\Hi

vi({g}) (by subadditivity)

≤
∑

g∈Y\Hi

vi(Yi)

= |Y \Hi| · vi(Yi)
≤ n · vi(Yi) (as |Y| = n)

≤ (n+ 1) · vi(Yi).

Substituting the upper bound for vi(Y \Hi) in (4.2) we have

vi(Zi) ≥
1

2
·
(

(1− (1− ε)
2

) · vi(Yi) +
(1− ε)

2(n+ 1)
· vi
(
M \Hi

))
≥ 1

2
·
(

1

2
· vi(Yi) +

(1− ε)
2(n+ 1)

· vi
(
M \Hi

))
≥ (1− ε)

4(n+ 1)
·
(

(n+ 1) · vi(Yi) + vi

(
M \Hi

))
≥ (1− ε)

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

))
The final allocation is the set Z which is obtained by running Algorithm 4 starting

with Y as the initial allocation. Therefore, our final allocation is a (1− ε)-EFX alloca-
tion with bounded charity. We would now show the approximation guarantees that the

46

4.2. Subadditive Valuations

algorithm achieves. The sections that follow prove that the allocation Z has a p-welfare
that is (1−ε)

4(n+1) times p-mean welfare achieved by the optimal allocation. Each section
from here on presents the proof for particular value or a range of values of p.

4.2.1 Case p = −∞

This is the case where GM p(X) = mini∈[n]vi(Xi). Let X∗ be the allocation with the
highest p-mean value and let g∗i be agent i’s most valuable good in X∗i . We will show in

this subsection that GM p(Z) ≥ (1−ε)
4(n+1) ·GM p(X

∗). First observe that by Lemma 4.5, we

have that for all i ∈ [n], vi(Zi) ≥ (1−ε)
4(n+1) ·

(
n · vi(Yi) + vi

(
M \Hi

))
. Therefore,

mini∈[n]vi(Zi) ≥ mini∈[n]
(1− ε)

4(n+ 1)
·
(
n · vi(Yi) + vi

(
M \Hi

))
Recall that Y is chosen such that ∪i∈[n](i, Yi) is a max-min matching in the bipartite
graph G = ([n] ∪ M, [n] × M) where the weight of an edge from agent i to good g,
wig = n · vi({g}) + vi(M \Hi). Also note that ∪i∈[n](i, g∗i) is a feasible matching in G.
Thus we have

mini∈[n]

(
n · vi(Yi) + vi(M \Hi)

)
≥ mini∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)
Therefore we have,

mini∈[n]vi(Zi) ≥
(1− ε)

4(n+ 1)
·mini∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)
≥ (1− ε)

4(n+ 1)
·mini∈[n]

(
n · vi({g∗i }) + vi

(
X∗i ∩ (M \Hi)

))
≥ (1− ε)

4(n+ 1)
·mini∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))
(as |Hi| = n)

≥ (1− ε)
4(n+ 1)

·mini∈[n]vi(X
∗
i) (by subadditivity)

This shows that GM p(Z) ≥ (1−ε)
4(n+1) ·GM p(X

∗) when p = −∞.

4.2.2 Case p < 0 and p 6= −∞

The proof in this subsection is very similar to the proof when p = −∞. Still for com-
pleteness, we sketch the whole proof. Let X∗ be the allocation with the highest p-mean
value and let g∗i be agent i’s most valuable good in X∗i . Similar to the case p = −∞, will

show in this section that GM p(Z) ≥ (1−ε)
4(n+1) ·GM p(X

∗). We now define

R(Z) =
∑
i∈[n]

vi(Zi)
p

Note that GM p(Z) =
(

1
n ·R(Z)

)1
p
. We now prove an upper bound on R(Z).

47

Chapter 4. Efficient EFX Allocations

Lemma 4.6. We have R(Z) ≤ (1−ε)p(
4(n+1)

)p · (∑i∈[n] vi(X
∗
i)p
)

.

Proof. By Lemma 4.5, we have that for all i ∈ [n], vi(Zi) ≥ (1−ε)
4(n+1) ·

(
n · vi(Yi) + vi

(
M \

Hi

))
. Therefore,

R(Z) ≤
∑
i∈[n]

(
(1− ε)

4(n+ 1)
·
(
n · vi(Yi) + vi(M \Hi)

))p
(as p is negative)

Recall that Y is chosen such that ∪i∈[n](i, Yi) is a minimum weight perfect matching in
the bipartite graph G = ([n] ∪M, [n]×M) where the weight of an edge from agent i to

good g, wig =
(
n · vi({g}) + vi(M \Hi)

)p
. Note that ∪i∈[n](i, g∗i) is a feasible matching

in G. Thus we have,∑
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)p
≤
∑
i∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)p
Therefore we have6

R(Z) ≤
∑
i∈[n]

(
(1− ε)

4(n+ 1)
·
(
n · vi({g∗i }) + vi(M \Hi)

))p
=

(1− ε)p(
4(n+ 1)

)p ·∑
i∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)p
≤ (1− ε)p(

4(n+ 1)
)p ·∑

i∈[n]

(
n · vi({g∗i }) + vi

(
X∗i ∩ (M \Hi)

))p
≤ (1− ε)p(

4(n+ 1)
)p ·∑

i∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))p
(as |Hi| = n)

≤ (1− ε)p(
4(n+ 1)

)p ·∑
i∈[n]

vi(X
∗
i)p (by subadditivity)

Now we are ready to prove the guarantee on the p-mean welfare. We have,

GM p(Z) =
(1

n
·R(Z)

)1
p

≥
(

1

n
· (1− ε)p(

4(n+ 1)
)p · (∑

i∈[n]

vi(X
∗
i)p
))1

p
(by Lemma 6.3, and also p is negative)

≥ (1− ε)p

4(n+ 1)
·GM p(X

∗)

This shows that GM p(Z) ≥ 1
4(n+1) ·GM p(X

∗) when p ∈ (−∞, 0).

6For the set of inequalities that follow the reader is reminded that we are in the case where p < 0.

48

4.2. Subadditive Valuations

4.2.3 Case p = 0: Nash Welfare

This is the case where GM p(X) =
(∏

i∈[n] vi(Xi)
) 1
n

. Let X∗ be the allocation with the

highest p-mean value and let g∗i be agent i’s most valuable good in X∗i . Like in the earlier

subsections, we will show in this subsection that GM p(Z) ≥ (1−ε)
4(n+1) · GM p(X

∗). First

observe that by Lemma 4.5, we have that for all i ∈ [n], vi(Zi) ≥ (1−ε)
4(n+1) ·

(
n · vi(Yi) +

vi

(
M \Hi

))
. Therefore,

(∏
i∈[n]

vi(Zi)

) 1
n
≥
(∏
i∈[n]

(1− ε)
4(n+ 1)

·
(
n · vi(Yi) + vi

(
M \Hi

)) 1
n

=
(1− ε)

4(n+ 1)
·
(∏
i∈[n]

(
n · vi(Yi) + vi

(
M \Hi

)) 1
n

Recall that Y was chosen such that (i, Yi) is a maximum weight matching in the bipartite
graph G = ([n] ∪ M, [n] × M) where the weight of an edge from agent i to good g,

wig = log
(
n · vi({g}) + vi(M \Hi)

)
. Note that ∪i∈[n](i, g∗i) is a feasible matching in G.

Thus we have∑
i∈[n]

log
(
n · vi(Yi) + vi(M \Hi)

)
≥
∑
i∈[n]

log
(
n · vi({g∗i }) + vi(M \Hi)

)
=⇒

∏
i∈[n]

(
n · vi(Yi) + vi(M \Hi)

)
≥
∏
i∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)
Therefore we have,(∏
i∈[n]

vi(Zi)

) 1
n
≥ (1− ε)

4(n+ 1)
·
(∏
i∈[n]

(
n · vi({g∗i }) + vi(M \Hi)

)) 1
n

≥ (1− ε)
4(n+ 1)

·
(∏
i∈[n]

(
n · vi({g∗i }) + vi

(
X∗i ∩ (M \Hi)

))) 1
n

≥ (1− ε)
4(n+ 1)

·
(∏
i∈[n]

(
vi(X

∗
i ∩Hi) + vi

(
X∗i ∩ (M \Hi)

))) 1
n

(as |Hi| = n)

≥ (1− ε)
4(n+ 1)

·
(∏
i∈[n]

vi(X
∗
i)
) 1
n

(by subadditivity)

This shows that GM p(Z) ≥ (1−ε)
4(n+1) ·GM p(X

∗) when p = 0.

4.2.4 Case p ∈ (0, 1]

The proof of the approximation guarantee in this case follows almost the same proof in
the Subsection 4.2.2, with the only difference that since p is positive and we compute

49

Chapter 4. Efficient EFX Allocations

a Maximum weight matching in the bipartite graph G = ([n] ∪M, [n]×M) where the

weight of an edge from agent i to good g, wig =
(
n · vi({g}) + vi(M \Hi)

)p
and we will

have lower bounds on R(Z) and consequently also lower bounds on GM p(Z).
Therefore, our algorithm computes an EFX allocation Z with bounded charity, which

is also an (1− ε)/(4(n+ 1))-approximation of the optimum generalized p-mean welfare.
Proof of Theorem 4.1. We showed that the allocation Z computed by Algorithm 5

is a (1− ε)-EFX allocation with bounded charity P and GM p(Z) ≥ 1−ε
4(n+1) ·GM p(X

∗).
It suffices to show that Algorithm 5 runs in polynomial-time . Note that steps 1 of
the algorithm can be implemented in poly(n,m) time. Step 2 can also be realized in
polynomial-time as all the matching subroutines run in poly(n,m). The while loop in
step 3 runs for poly(n,m) iterations as with each iterations

∑
i∈[n] rank i(Yi) decreases

by 1 and n <
∑

i∈[n] rank i(Yi) ≤ nm. In step 4, we run the Algorithm 3.1 with Y as
the initial allocation. Since we are interested in (1 − ε)-EFX allocation with bounded
charity, Algorithm 3.1 runs in polynomial-time by Theorem 3.6 in Chapter 3. Therefore,
the entire algorithm runs in polynomial-time .

We remark that a minor variant of our approach (changing the weights of the edges
of the complete bipartite graph G([n]∪B, [n]×B) appropriately - step 1 of Algorithm 5)
gives a O(n) approximation on weighted generalized p-mean, defined as WGM p(X) =(∑

i∈[n] ηi · vi(Xi)
p
)1
p . In particular, we also get an O(n) approximation algorithm for

asymmetric Nash welfare when agents have submodular valuations (improving the current
best bound of O(n · log n) by Garg et al. [59]).

In a very recent work, Barman et al. [15], show that for all p ∈ (−∞, 1] and all ε > 0,
getting an O(n1−ε)-approximation of the generalized p-mean welfare under subadditive
valuations requires exponential value queries. Thus, our algorithm is able to achieve the
best approximation of the generalized p-mean welfare in polynomial-time , when agents
have subadditive valuations, while still having remarkable fairness properties.

Figure 4.1 summarizes the fairness and efficiency guarantees we are able to ensure
when agents have different valuation functions.

50

4.2. Subadditive Valuations

Clever Par-
tial EFX

Allocation X

Algorithm 4

EFX allocation
X ′ >PD X

with Bounded
Charity P

(1/(2−|P |/n)−ε′)-
MMS + (1 − ε)-
EFX allocation
X ′ with bounded

Charity P ,
and (1/2.89)-

approximation
of Nash welfare

(4/7− ε′)-GMMS
Allocation

and (1/2.89)-
approximation
of Nash welfare

(1 − ε)-EFX
allocation X ′

with bounded
charity and

((1− ε)/4(n+ 1))-
approximation
of Nash welfare

Additive valuationsAdditive valuations

Subadditive valuations

Figure 4.1: Illustration of the efficiency guarantees that we get on all the fair allocations
we determined in Chapter 3 (Figure 3.3) in polynomial-time . When agents have additive
valuations, we are able to get an approximation of 1/2.89 of the optimum Nash welfare
and when agents have subadditive valuations we are able to get an approximation of
1/4(n+ 1) of the optimum Nash welfare.

51

Chapter 4. Efficient EFX Allocations

52

CHAPTER 5

EFX Allocations for Three Agents

In this chapter we show that EFX allocations exist when there are three agents with
additive valuations. This is the first result on complete EFX allocations, i.e, EFX allo-
cations in which all the goods are allocated. Observe that Theorem 3.1 from Chapter 3
implies that there exists an EFX allocation with at most two goods (as n = 3) unallo-
cated. However, allocating the remaining two goods seems to be highly non-trivial. We
elaborate this point briefly. Recall that Algorithm 4 determines a partial EFX allocation
with only at most two goods unallocated, by proving that whenever we have a partial
EFX allocation and three or more goods left unallocated, then there is another partial
EFX allocation that Pareto dominates the existing partial EFX allocation. It is natural
to ask whether this approach works when there is even one unallocated good. In this
chapter, we highlight the limitation of this approach. We exhibit an instance with three
agents, seven goods, and a partial EFX allocation on six goods. We show that there is
no complete EFX allocation that Pareto dominates the partial EFX allocation on the
six goods. In fact, we can further show that no complete EFX allocation has higher
Nash welfare than the partial EFX allocation on the six goods, thereby falsifying the
monotonicity conjecture on EFX by Caragiannis et al [27]. Thus, we need a different
approach to find complete EFX allocations and this chapter takes the first step towards
the same.

Theorem 5.1. EFX allocations always exist for three agents with additive valuations.

We first briefly explain our overall approach. We start by sketching the simple algo-
rithm of Plaut and Roughgarden [84] that determines an EFX allocation when all agents
have the same valuation function, say v. Note that since agents have the same valuation
function, if v(Xi) < v(Xj \ {g}) for two agents i and j for some g ∈ Xj , then we have
v(Ximin) < v(Xj \ {g}) where imin is the agent with the lowest valuation. The algorithm
in [84] starts off with an arbitrary allocation (not necessarily EFX), and as long as there
are agents i and j such that v(Xi) < v(Xj \ {g}) for some g ∈ Xj , the algorithm takes
the good g away from j (j’s new bundle is Xj \ {g}) and adds it to imin ’s bundle (imin ’s
new bundle is Ximin ∪ {g}). Also, note that after re-allocation, the only changed bundles
are that of imin and j, and both of them have valuations still higher than imin ’s initial
valuation, i.e., v(Ximin ∪ {g}) > v(Ximin) and v(Xj \ {g}) > v(Ximin). Observe that such
an operation increases the valuation of an agent with the lowest valuation. Thus, after
finitely many applications of this re-allocation, we must arrive at an EFX allocation.
Note that this crucially uses the fact that the agents have identical valuations. In the
general case, the valuation of agent j may drop significantly after removing g and j’s
current valuation may be less than imin ’s initial valuation. Therefore, it is important to
understand how agents value good(s) that we move across the bundles. To this end, we
carefully split every bundle into upper and lower half bundles (see (5.1) in Section 5.1).
We systematically quantify the agent’s relative valuations agents have for these upper and

Chapter 5. EFX Allocations for Three Agents

lower half bundles, and in most cases, we are able to move these bundles from one agent
to the other, improve the valuation of some of the agents, and while still guaranteeing
EFX property. This idea is detailed in Sections 5.2 and 5.3.

We need to show that there is progress after every swap of half bundles. The typical
method here is to show improvement of the valuation vector on the Pareto front (like
Algorithm 4 in Chapter 3 and the algorithm that returns a 1/2-EFX allocation in
Plaut Roughgarden [84]). However, as mentioned earlier, there are limitations to this
approach: In particular, we show an instance and a partial EFX allocation such that the
valuation vector of any complete EFX allocation does not Pareto dominate the valuation
vector of the existing partial EFX allocation. To overcome this barrier, we first pick an
arbitrary agent a at the beginning and show that whenever we are unable to improve
the valuation vector on the Pareto front, we can strictly increase a’s valuation. In other
words, the valuation of a particular agent a never decreases throughout re-allocations,
and it improves after finitely many re-allocations, showing convergence. A more elaborate
discussion on this technique is presented in Section 5.1.

5.1 Notation and Tools

We introduce some new notations and definitions in this chapter for convenience. We write
vi(g) for vi({g}), vi(Xi∪g) for vi(Xi∪{g}), and vi(Xj\g) for vi(Xj\{g}). Further, we write
S⊕iT for vi(S)⊕vi(T) with⊕ ∈ {≤,≥, <,>}. Given an allocation X = 〈X1, X2, . . . , Xn〉
we say that i strongly envies a bundle S ⊆M if Xi <i S \ g for some g ∈ S, and we say
that i weakly envies S if Xi <i S but Xi ≥i S \ g for all g ∈ S. From this perspective an
allocation is an EFX allocation if and only if no agent strongly envies another agent.

Non-degenerate instances: We call an instance I = 〈[3],M,V〉 non-degenerate if
and only if no agent values two different sets equally, i.e., ∀i ∈ [3] we have vi(S) 6= vi(T)
for all S 6= T . We first show that it suffices to deal with non-degenerate instances. Let
M = {g1, g2, . . . , gm}. We perturb any instance I to I(ε) = 〈[3],M,V(ε)〉, where for
every vi ∈ V we define v′i ∈ V(ε), as

v′i(gj) = vi(gj) + ε2j .

Lemma 5.2. Let δ = mini∈[3] minS,T : vi(S)6=vi(T) |vi(S) − vi(T)| and let ε > 0 be such
that ε · 2m+1 < δ. Then

(1) For any agent i and S, T ⊆M such that vi(S) > vi(T), we have v′i(S) > v′i(T).

(2) I(ε) is a non-degenerate instance. Furthermore, if X = 〈X1, X2, X3〉 is an EFX
allocation for I(ε) then X is also an EFX allocation for I.

54

5.1. Notation and Tools

Proof. For the first statement of the lemma, observe that

v′i(S)− v′i(T) = vi(S)− vi(T) + ε(
∑

gj∈S\T

2j −
∑

gj∈T\S

2j)

≥ δ − ε
∑

gj∈T\S

2j

≥ δ − ε · (2m+1 − 1)

> 0

For the second statement of the lemma, consider any two sets S, T ⊆ M such that
S 6= T . Now, for any i ∈ [3], if vi(S) 6= vi(T), we have v′i(S) 6= v′i(T) by the first statement
of the lemma. If vi(S) = vi(T), we have v′i(S)− v′i(T) = ε(

∑
gj∈S\T 2j −

∑
gj∈T\S 2j) 6= 0

(as S 6= T). Therefore, I(ε) is non-degenerate.

For the final claim, let us assume that X is an EFX allocation in I(ε) and not an
EFX allocation in I. Then there exist i, j, and g ∈ Xj such that vi(Xj \ g) > vi(Xi). In
that case, we have v′i(Xj \ g) > v′i(Xi) by the first statement of the lemma, implying
that X is not an EFX allocation in I(ε) as well, which is a contradiction.

From now on we only deal with non-degenerate instances. In non-degenerate instances,
all agents have positive valuation for all goods.

New Potential φ. An allocation X ′ Pareto dominates an allocation X if vi(Xi) ≤
vi(X

′
i) for all i with strict inequality for at least one i. The existing algorithms for “EFX

with bounded charity” (Chapter 3) or “approximate EFX allocations” [84] construct a
sequence of EFX allocations in which each allocation Pareto dominates its predecessor.
However we exhibit in Section 5.4 a partial EFX allocation that is not Pareto dominated
by any complete EFX allocation. Thus we need a more flexible approach in the search
for a complete EFX allocation.

We name the agents a, b, and c arbitrarily and consider the lexicographic ordering
of the triples

φ(X) = (va(Xa), vb(Xb), vc(Xc)),

i.e., φ(X) ≺lex φ(X ′) (X ′ dominates X) if (i) va(Xa) < va(X
′
a) or (ii) va(Xa) = va(X

′
a)

and vb(Xb) < vb(X
′
b) or (iii) va(Xa) = va(X

′
a) and vb(Xb) = vb(X

′
b) and vc(Xc) < vc(X

′
c).

We construct a sequence of allocations in which each allocation dominates its predecessor.
Of course, if X ′ Pareto dominates X, then it also dominates X, so we can use all the
update rules in [36].

Our goal then is to iteratively construct a sequence of EFX allocations such that each
EFX allocation dominates its predecessor. To this end, we first recollect some standard
tools that we defined in Chapter 3.

Most envious agent. We crucially use the notion of a most envious agent, introduced
in Chapter 3. Recall the definition of a most envious agent.

Definition. Given a set S ⊆M and an allocation X, an agent i is a most envious agent
of the set S or i ∈ AX(S) if and only if there exists Zi ⊆ S such that vi(Zi) > vi(Xi),

55

Chapter 5. EFX Allocations for Three Agents

and for any agent j1, we have vj(Z
′) ≤ vj(Xj) for all Z ′ ⊂ Zi (no agent envies a strict

subset of Zi).

We also recall the observation made in Chapter 3, about a sufficient condition when
the set AX(S) is not an ∅.

Observation 5.3. AX(S) 6= ∅ if and only if there is some agent i such that vi(S) >
vi(Xi). Also, in O(n · |S|2) time, one can find an agent t ∈ AX(S) and a set Z ⊆ S such
that vt(Zt) > vt(Xt) and no agent envies a strict subset of Z.

Throughout this chapter, we will often be referring to the most envious agents of
the sets Xi ∪ g for an agent i ∈ [n] and an unallocated good g. Thus, we now state an
immediate consequence of Observation 5.3.

Observation 5.4. Given an allocation X, and an unallocated good g, for any i ∈ [3],
AX(Xi ∪ g) 6= ∅.

Proof. It suffices to prove that there exists at least one agent who strictly prefers Xi ∪ g
over her own bundle in allocation X. This is guaranteed since we are dealing with
non-degenerate instances, in which Xi ∪ g >i Xi.

Champions and Champion Graph MX : Let X be the partial EFX allocation at
any stage in our algorithm, and let g be an unallocated good. We say that i champions
j (w.r.t g) if i is a most envious agent for Xj ∪ g, i.e., i ∈ AX(Xj ∪ g). We define the
champion graph MX , where each vertex corresponds to an agent and there is a directed
edge (i, j) ∈MX if and only if i champions j.

Observation 5.5. The champion graph MX is cyclic.

Proof. By Observation 5.4, we have that the set of champions of any agent is never empty.
Therefore, every vertex in MX has at least one incoming edge. Thus MX is cyclic.

If i champions j, we define Gij as the subset of Xj ∪ g such that (Xj ∪ g) \Gij >i Xi,
and for all agents k (including i) we have Z ≤k Xk where Z ⊂ (Xj ∪ g) \Gij. Since the
valuations are additive, note that such a subset can be identified as the set K of the k
least valuable goods for i in Xj ∪ g such that (Xj ∪ g) \K >i Xi and k is maximum.
Now we make some small observations.

Observation 5.6. Assume i champions j.

(1) We have ((Xj ∪ g) \ Gij) \ h ≤k Xk for all h ∈ (Xj ∪ g) \ Gij and all agents k
including i.

(2) If agent k does not champion j, we have (Xj ∪ g) \Gij ≤k Xk.

Proof. No agent envies a strict subset of (Xj ∪g)\Gij by the definition of Gij . Therefore
for all agents k (including i), we have ((Xj ∪ g) \Gij) \ h ≤k Xk.

Now we prove the second statement of the observation by contradiction. Assume that
k does not champion j. However, we have (Xj ∪ g) \Gij >k Xk. By definition of Gij we
know that no agent envies a strict subset of (Xj ∪ g) \ Gij . Then k ∈ AX(Xj ∪ g) (by
definition of a most envious agent) and k champions j (w.r.t g) which is a contradiction.

1Note that j can also be i.

56

5.1. Notation and Tools

We next mention two cases where it is known how to obtain a Pareto dominating
EFX allocation from an existing EFX allocation. For an allocation X, let EX be the
envy-graph, in which vertices represent agents, and in which there is a directed edge from
i to j if i envies j, i.e., Xj >i Xi. Recall that we can assume without loss of generality
that EX is acyclic.

Fact 5.7 ([72]). Let X = 〈X1, X2, X3〉 be an EFX allocation. Then there exists another
EFX allocation Y = 〈Y1, Y2, Y3〉, where for all i ∈ [3], Yi = Xj for some j ∈ [3], such
that EY is acyclic and φ(Y) �lex φ(X) (because Y Pareto-dominates X).

We generalize an observation made in Chapter 3 about the existence of a suitable
update rule when EX has a single source.

Observation 5.8 (Chapter 3). Consider an EFX allocation X. Let s be any agent and
let g be an unallocated good. If i champions s and i is reachable from s in EX , then there
is an EFX allocation Y Pareto dominating X. Additionally, agent s is strictly better off
in Y , i.e., Ys >s Xs.

Proof. We have that i is reachable from s in EX . Let t1 → t2 → · · · → tk be the path
from t1 = s to tk = i in EX . We determine a new allocation Y as follows:

Ytj = Xtj+1 for j ∈ [k − 1]

Yi = (Xs ∪ g) \Gis)
Y` = X` for all other `

Note that every agent along the path has strictly improved her valuation: Agents t1 to
tk−1 got bundles they envied in EX and agent i championed s and got (Xs ∪ g) \ Gis,
which is more valuable to i than Xi (by definition of Gis). Also, every other agent
retained their previous bundles and thus their valuations are not lower than before. Thus
φ(Y) �lex φ(X) and also Ys >s Xs (s was an agent along the path). It only remains to
argue that Y is EFX. To this end, consider any two agents j and j′. We wish to show
that j does not strongly envy j′ in Y .

Case j′ 6= i: Note that Yj′ = X` for some ` ∈ [3] (j′ either received a bundle of another
agent when we shifted the bundles along the path or retained the previous bundle).
Also, note that Yj ≥j Xj (no agent is worse off in Y). Therefore, Yj ≥j Xj ≥j
X` \ h =j Yj′ \ h for all h ∈ Yj′ (j did not strongly envy ` in X as X was EFX).

Case j′ = i: We have Yj′ = (Xs ∪ g) \ Gis. Since i championed s, by Observation 5.6
(part 1) we have that ((Xs ∪ g) \Gis) \ h ≤j Xj . Like earlier, Yj ≥j Xj (no agent
is worse off in Y). Thus j does not strongly envy i.

Observation 5.8 implies that if there is some unallocated good and (i) if the envy-
graph EX has a single source2 or (ii) any agent champions himself then there is a strictly
Pareto dominating EFX allocation.

Corollary 5.9. Let X be an EFX allocation, and g be an unallocated good. If EX has a
single source s, or MX has a 1-cycle involving agent s, then there is an EFX allocation
Y that Pareto dominates X in which Ys >s Xs.

2A source is a vertex in EX with in-degree zero.

57

Chapter 5. EFX Allocations for Three Agents

Proof. If EX has a single source s, the champion of s (which always exist, by Obser-
vation 5.4) is reachable from s. If MX has a 1-cycle involving agent s then again the
champion of s (which is s itself) is reachable from s. In both cases, since the champion
of s is reachable from s in the envy-graph EX , there is a Pareto dominating allocation
Y such that Ys >s Xs by Observation 5.8.

Hence, starting from Section 5.2, we only discuss the cases where the envy-graph has
more than one source and there are no self-champions.

We start with some simple yet crucial observations.

Observation 5.10. If i champions j and Xi ≥i Xj, then g /∈ Gij, Gij ⊆ Xj, and
Gij <i g.

Proof. We have i ∈ AX(Xj ∪ g). Since g /∈ Xj , Gij ⊆ Xj ∪ g, and valuations are additive
and we have that vi((Xj∪g)\Gij) = vi(Xj)+vi(g)−vi(Gij). Again since i ∈ AX(Xj∪g),
by the definition of Gij , (Xj ∪g)\Gij >i Xi, and hence, vi(Xi) < vi(Xj)+vi(g)−vi(Gij).
Now we have Xi ≥i Xj , implying that Gij <i g, and therefore, g 6∈ Gij .

Observation 5.10 tells us that if i champions j, and i does not envy j, then Gij ⊆ Xj .
Therefore, we can split the bundle of agent j into two parts Gij and Xj \Gij . We refer
to Gij as the lower-half bundle of j, and to Xj \Gij as the upper-half bundle of j, and
visualize the bundle of agent j as

Xj =

Xj \Gij
Gij

(j)

if i champions j and i does not envy j. (5.1)

We collect some more useful facts about the values of lower and upper half bundles.

Observation 5.11. If i champions j and j does not champion himself (self-champion),
then we have Gij 6= ∅ and Gij ≥j g.

Proof. Since j does not self-champion, by Observation 5.6 (part 2), we have that (Xj ∪
g) \ Gij ≤j Xj . Since g /∈ Xj and Gij ⊆ Xj ∪ g we have vj((Xj ∪ g) \ Gij) = vj(Xj) +
vj(g)− vj(Gij) ≤ vj(Xj), implying that Gij ≥j g. Since the value of g for j is non-zero,
Gij is non-empty.

Observation 5.12. Let i champion j, and Xi ≥i Xj. Let i′ champion k and Xi′ ≥i′ Xk.
If i does not champion k, then Xj \Gij >i Xk \Gi′k.

Proof. Since i ∈ AX(Xj ∪ g) and Xi ≥i Xj , by Observation 5.10, we have g /∈ Gij . Thus,
Gij ⊆ Xj . By the same reasoning, g /∈ Gi′k and Gi′k ⊆ Xk. Therefore, (Xj ∪ g) \Gij =
(Xj \Gij) ∪ g, and (Xk ∪ g) \Gi′k = (Xk \Gi′k) ∪ g. By the definition of Gij , we have
(Xj\Gij)∪g >i Xi. Since i /∈ AX(Xk∪g), we have Xi ≥i (Xk\Gi′k)∪g by Observation 5.6
(part 2). Combining the two inequalities, we have (Xj \Gij)∪ g >i (Xk \Gi′k)∪ g, which
implies Xj \Gij >i Xk \Gi′k.

In the upcoming sections, we show how to derive a dominating EFX allocation from an
existing EFX allocation. Corollary 5.9 already deals with the cases that EX has a single
source or MX has a 1-cycle. We proceed under the following general assumptions: EX
is cycle-free and has at least two sources and there is no 1-cycle in MX . We distinguish
the remaining cases by the number of sources in EX .

58

5.2. Existence of EFX: Three sources in the Envy-Graph

5.2 Existence of EFX: Three sources in the Envy-Graph

If EX has three sources, the allocation X is envy-free, i.e., Xi ≥i Xj for all i and j. We
make a case distinction by whether or not MX contains a 2-cycle.

5.2.1 2-cycle in MX

Assume without loss of generality that agent 2 champions agent 1 and agent 1 champions
agent 2. Since X1 ≥1 X2 and X2 ≥2 X1, the bundles X1 and X2 decompose according
to 5.1. Since neither 1 nor 2 self-champion (as MX has no 1-cycle), by Observation 5.12,
we have X2 \G12 >1 X1 \G21 and X1 \G21 >2 X1 \G12. We swap the upper-halves of
X1 and X2 to obtain

X ′ =

X2 \G12

G21

(1)

X1 \G21

G12

(2)

X3

(3)

.

Note that agent 3 has the same valuation as before, while 1 and 2 are strictly better off.
If X ′ is EFX we are done. So assume otherwise. We first determine the potential strong
envy edges.

• From 1 : We replaced the more valuable (according to 1) X2 \G12 in X2 with the
less valuable X1 \ G21 and left X3 unchanged. Thus 1 is strictly better off and
according to him, the valuations of the bundles of 2 and 3 in X ′ is at most the
valuation of their bundles in X. As 1 did not envy 2 and 3 before in X, 1 does not
envy 2 and 3 in X ′.

• From 2 : A symmetrical argument shows that 2 does not envy 1 and 3.

• From 3 : For agent 3, the sum of the valuations of agents 1 and 2 has not changed
by the swap and 3 envied neither 1 nor 2 before the swap. Thus 3 envies at most
one of the agents 1 and 2 after the swap. Assume without loss of generality that
she envies agent 2. We then replace the lower-half bundle of agent 2 (G12) with g
to obtain

X ′′ =

X2 \G12

G21

(1)

X1 \G21

g

(2)

X3

(3)

.

In X ′′, agent 2 is still strictly better off than in X since by the definition of G21, we
have (X1 \G21) ∪ g >2 X2. Thus, X ′′ Pareto dominates X. We still need to show
that X ′′ is EFX. To this end, observe that as we have not changed the bundles of
agents 1 and 3, there is no strong envy between them. So we only need to exclude
strong envy edges to and from agent 2.

– Nobody strongly envies agent 2 : Note that 2 championed 1. Thus, ((X1\G21)∪
g) \ h ≤1 X1 and ((X1 \ G21) ∪ g) \ h ≤3 X3 for all h ∈ (X1 \ G21) ∪ g by
Observation 5.6 (part 1). Since both 1 and 3 are not worse off than before,
they do not strongly envy 2.

59

Chapter 5. EFX Allocations for Three Agents

– Agent 2 does not envy anyone: We have that (X1 \ G21) ∪ g >2 X2. Also
according to 2, the valuation of the current bundles of 1 and 3 is at most their
previous one, and 2 did not envy them before (when she had X2). Hence, 2
does not envy 1 and 3.

We have thus shown that X ′′ is EFX and Pareto dominates X. Actually, the strategy
described above handles a more general situation. It yields a Pareto dominating EFX
allocation as long as 3 envies neither 1 nor 2 initially, even if 1 and 2 envied (not strongly
envied) 3 initially:

Remark 5.13. Let X be an EFX allocation, and let g be an unallocated good. If MX

has a 2-cycle, say involving agents 1 and 2, and agent 3 envies neither 1 nor 2, then
there exists an EFX allocation Y Pareto dominating X.

Remark 5.13 will be helpful when we deal with certain instances where EX has two
sources later in Section 5.3.

5.2.2 No 2-cycle in MX

We now consider the case when MX has no two cycle. Since MX is cyclic and we neither
have a 1-cycle nor a 2-cycle, we must have a 3-cycle. Let us assume w.l.o.g. that agent
i + 1 is the unique champion of agent i (indices are modulo 3, so i + 1 corresponds to
(i mod 3) + 1). Since, in addition, i + 1 does not envy i, all three bundles decompose
according to (5.1) and the current allocation can be written as

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3 \G13

G13

(3)

.

Let us collect what we know for agent 1’s valuation of the upper-half bundles: 1
uniquely champions 3, while 2 and 3 uniquely champion 1 and 2, respectively. Also, the
current allocation is envy-free. Thus Xi ≥ Xj for all i, j ∈ [3]. By Observation 5.12, we
know that X3 \ G13 >1 max1(X1 \ G21, X2 \ G32)

3 (X3 \ G13 is 1’s favorite upper-half
bundle).

Now, let us collect what we know for agent 1’s valuation of the lower-half bundles:
1 champions 3 and does not envy 3’s bundle. Thus, by Observation 5.10, G13 <1 g and
g 6∈ G13. Also, 1 does not champion himself, and 3 champions 1. Thus, by Observation 5.11,
g ≤1 G21. We can make similar statements about agents 2 and 3. Since g 6∈ G21, and our
instance is assumed to be non-degenerate, we even have g <1 G21. Tables 5.1 and 5.2
summarize this information.

We first move to an allocation where everyone gets their favorite upper-half bundle
(we achieve this by performing a cyclic shift of the upper-half bundles). Thus, the new
allocation is:

X ′ =

X3 \G13

G21

(1)

X1 \G21

G32

(2)

X2 \G32

G13

(3)

3max1(X1 \G21, X2 \G32) is 1’s favorite bundle out of X1 \G21 and X2 \G32

60

5.2. Existence of EFX: Three sources in the Envy-Graph

Agent 1 X3 \G13 >1 max1(X1 \G21, X2 \G32)

Agent 2 X1 \G21 >2 max2(X2 \G32, X3 \G13)

Agent 3 X2 \G32 >3 max3(X3 \G13, X1 \G21)

Table 5.1: No 2-cycle in MX : Ordering for the upper half bundles.

Agent 1 G21 >1 g >1 G13

Agent 2 G32 >2 g >2 G21

Agent 3 G13 >3 g >3 G32

Table 5.2: No 2-cycle in MX : Ordering for the lower half bundles. Furthermore, g 6∈ G13,
g 6∈ G21, and g 6∈ G32.

Clearly, every agent is strictly better off, and thus, X ′ Pareto dominates X. If X ′ is EFX,
we are done. So we assume otherwise. What envy edges could exist? We first observe
that no agent will envy the agent from whom it took its upper-half during the cyclic
shift.

Observation 5.14. In X ′, agent i+ 1 does not envy agent i for all i ∈ [3] (indices are
modulo 3).

Proof. We just show the proof for i = 1, and the other cases follow symmetrically.
Note that 2 values its current upper-half more than 1’s upper-half (it has its favorite
upper-half): X1 \G21 >2 X3 \G13. Similarly 2’s also values its lower-half more than 1’s
lower-half: G32 ≥2 g >2 G21. Therefore, 2 values her entire bundle more than 1’s bundle,
and hence does not envy 1.

Therefore, the only envy edges (and hence strong envy edges) can be from agent i
to agent i+ 1 as shown in the following figure.4

1 2 3

We now distinguish two cases depending on the number of such strong envy edges.

Three strong envy edges: In this case, the envy-graph is a 3-cycle. We perform a
cyclic shift of the bundles and obtain an EFX allocation Pareto dominating the initial
allocation X.

At most two strong envy edges: Note that in this case, there is a strong envy edge
from at least one agent i ∈ [3] to i + 1 and there is no strong envy edge from at least
one agent j ∈ [3] to j + 1. Let us assume without loss of generality that there is a strong
envy edge from 1 to 2 , there may or may not be a strong envy edge from 2 to 3, and
there is no strong envy edge from 3 to 1.

4In the figures that follow, we use red edges to indicate strong envy, and blue edges to indicate weak
envy.

61

Chapter 5. EFX Allocations for Three Agents

1 2 3

Note that 1 is strictly better off in X ′ than in X. The existence of envy from 1 and 2,
despite this improvement, allows us to say more about the preference ordering of the
upper-half and the lower-half bundles.

Observation 5.15. If 1 envies 2 in X ′, X1 \G21 >1 X2 \G32, and G32 >1 G21.

Proof. We argue by contradiction. Therefore, assume that i.e. X1 \G21 ≤1 X2 \G32 or
G32 ≤1 G21. If X1 \G21 ≤1 X2 \G32, then

(X1 \G21) ∪G32 ≤1 (X2 \G32) ∪G32

= X2

≤1 X1 (since 1 did not envy 2 before)

<1 (X3 \G13) ∪G21 (since 1 is better off than before)

implying that 1 does not envy 2, a contradiction. If G32 ≤1 G21, then

(X1 \G21) ∪G32 ≤1 (X1 \G21) ∪G21

= X1

<1 (X3 \G13) ∪G21 (since 1 is better off than before)

again implying that 1 does not envy 2, a contradiction.

So we now have

X2 \G32 <1 X1 \G21 <1 X3 \G13 and G13 <1 g <1 G21 <1 G32. (5.2)

We replace the lower-half bundle of 2 (G32) by g to obtain

X ′′ =

X3 \G13

G21

(1)

X1 \G21

g

(2)

X2 \G32

G13

(3)

.

Note that agents 1 and 3 are still strictly better off (as we have not changed their
bundles after the cyclic shift of the upper-half bundles) than in X. Agent 2 championed
1, thus, X1 \ G21 ∪ g >2 X2, and agent 2 is also strictly better off. Hence, X ′′ Pareto
dominates X. If there are no strong envy edges, we are done. So assume otherwise. We
first note that the only possible strong envy edge is from 2 to 3:

• Agent 1 does not envy anyone: 1 did not envy 3 in X ′ and the bundles of 1 and
3 are the same in X ′ and X ′′. 1 does not envy 2 anymore as she prefers her own
upper-half bundle and lower-half bundle to 2’s upper-half bundle and lower-half
bundle respectively, i.e., X3 \G13 >1 X1 \G21 (from Table 5.1) and G21 ≥1 g (from
Table 5.2).

62

5.2. Existence of EFX: Three sources in the Envy-Graph

• Agent 3 does not envy anyone: We use a similar argument. 3 did not envy 1 in X ′

and the bundles of 1 and 3 are the same in X ′ and X ′′. 3 does not envy 2 as well
as she prefers her own upper-half bundle and lower-half bundle to 2’s upper-half
bundle and lower-half bundle respectively, namely X2 \ G32 >3 X1 \ G21 (from
Table 5.1) and G13 ≥3 g (from Table 5.2).

• Agent 2 does not envy 1: Note that agent 2 has her favorite upper-half bundle and
values it more than 1’s upper-half bundle: X1 \G21 >2 X3 \G13 (from Table 5.1)
and 2 also values her lower-half bundle more than 1’s lower-half bundle: g >2 G21

(from Table 5.2).

Therefore, the only possible strong envy edge is from 2 to 3 as shown below.

1 2 3

Similar to Observation 5.15, we can now infer more about 2’s preference ordering for the
bundles:

Observation 5.16. If 2 strongly envies 3 in X ′′, we have X2 \ G32 >2 X3 \ G13 and
G13 >2 G32.

Proof. As in Observation 5.15, we argue by contradiction. Therefore, assume that i.e.
X2 \G32 ≤2 X3 \G13 or G13 ≤2 G32. If X2 \G32 ≤2 X3 \G13, then

(X2 \G32) ∪G13 ≤2 (X3 \G13) ∪G13

= X3

≤2 X2 (since 2 did not envy 3 before)

<2 (X1 \G21) ∪ g (as 2 is better off than before)

implying that 2 does not envy 3, a contradiction. If G13 ≤2 G32, then

(X2 \G32) ∪G13 ≤2 (X2 \G32) ∪G32

= X2

<1 (X1 \G21) ∪ g (as 2 is better off than before)

again implying that 2 does not envy 3, a contradiction.

So we now have

X3 \G13 <2 X2 \G32 <2 X1 \G21 and G21 <2 g <2 G32 < G13. (5.3)

We are ready to construct the final allocation. To this end, consider the bundle (X1 \
G21) ∪G13. Note that,

(X1 \G21) ∪G13 >2 (X1 \G21) ∪G32 (as G13 >2 G32 from Observation 5.16)

≥2 (X1 \G21) ∪ g (as G32 ≥2 g from Table 5.2)

>2 X2 (as 2 championed 1)

Let Z be a smallest cardinality subset of (X1 \ G21) ∪ G13 such that Z >2 X2. Since
g 6∈ X1 and g 6∈ G13, g 6∈ Z. We now give two allocations, depending on how much 3
values Z.

63

Chapter 5. EFX Allocations for Three Agents

Case Z >3 X3: Consider

X ′′′ =

X3 \G13

g

(1)

X2 \G32

G32

(2)

Z

(3)

.

Since 1 was the champion of 3, we have (X3 \ G13) ∪ g >1 X1. Thus, 1 and 3
are strictly better off, and 2 has the same bundle as in X. Therefore, X ′′′ Pareto
dominates X. We still need to show that X ′′′ is EFX.

• Nobody strongly envies agent 1 : Since 1 is the champion of 3, we have that
((X3\G13)∪g)\h <2 X2 and ((X3\G13)∪g)\h <3 X3 for all h ∈ (X3\G13)∪g
by Observation 5.6 (part 1). As both 2 and 3 are not worse off than in X,
neither of them strongly envies (X3 \G13) ∪ g.

• Nobody envies agent 2 : Both 1 and 3 are strictly better off than in X and
they did not envy X2 in X. Thus they do not envy X2 now.

• Nobody strongly envies agent 3 : We first show that 1 does not envy (X1 \
G21) ∪G13. This follows from the observation that 1 prefers her own upper-
half bundle to X1 \G21 and lower-half bundle to G13: X3 \G13 >1 X1 \G21

(from Table 5.1) and g >1 G13 (from Table 5.2). Thus (X3 \ G13) ∪ g >1

(X1 \G21)∪G13. Therefore, 1 does not envy Z either, as Z ⊆ (X1 \G21)∪G13.

Agent 2 does not strongly envy Z since Z is a smallest cardinality subset of
(X1 \G21)∪G13 that 2 values more than X2. Thus Z \ h ≤2 X2 for all h ∈ Z.

Case Z ≤3 X3: Consider

X ′′′ =

X3 \G13

G32

(1)

Z

(2)

X2 \G32

g

(3)

.

We first show that 1 is strictly better off in X ′′′ than in X. Observe that

(X3 \G13) ∪G32 >1 (X3 \G13) ∪G21 (by Observation 5.15)

≥1 (X3 \G13) ∪ g (G21 ≥1 g from Table 5.2)

>1 X1 (as 1 championed 3)

2 is better off as Z >2 X2 by definition of Z. 3 is also better off than in X as it
championed 2 and thus X2 \G32 ∪ g >3 X3. Thus, all agents are strictly better off,
and hence X ′′′ Pareto dominates X. We next show that X ′′′ is EFX.

• Nobody envies agent 1 : Agent 2 does not envy 1 since

(X3 \G13) ∪G32 <2 (X2 \G32) ∪G32 (by Observation 5.16)

= X2

<2 Z (by definition of Z).

64

5.3. Existence of EFX: Two sources in the Envy-Graph

1 2

3

Figure 5.1: Envy-Graph for two sources when (2, 3) /∈ EX : Green nodes correspond to
the agents. Blue edges are the edges in EX .

Agent 3 does not envy 1 either since she prefers her current upper-half bun-
dle to and lower-half bundle to 1’s upper-half bundle and lower-half bundle,
respectively, i.e., X2 \G32 >3 X3 \G13 (from Table 5.1) and g >3 G32 (from
Table 5.2).

• Nobody envies agent 2 : Observe that 1 does not envy (X1 \G21) ∪G13 since
1 is strictly better off, G21 ≥1 g >1 G13 from Table 5.2, and G32 >1 G21 by
Observation 5.15. Thus (X3\G13)∪G32 >1 (X1\G21)∪G21 >1 (X1\G21)∪G13.
Therefore, 1 does not envy Z either as Z ⊆ (X1 \G21) ∪G13.

Agent 3 does not envy 2 since (X2 \G32)∪ g >3 X3 (see above) and X3 ≥3 Z.

• Nobody strongly envies agent 3 : Since 3 is the champion of 2, we have ((X2 \
G32) ∪ g) \ h <2 X2 and ((X2 \G32) ∪ g) \ h <1 X1 for all h ∈ (X2 \G32) ∪ g
by Observation 5.6 (part 1). As both 1 and 2 are strictly better off (in X ′′′)
than in X, neither of them strongly envies (X2 \G32) ∪ g.

We have thus shown that given an allocation X such that EX has three sources
and MX has a 3-cycle, there exists an EFX allocation Y Pareto dominating X. We
summarize our main result for this section:

Lemma 5.17. Let X be a partial EFX allocation and g be an unallocated good. If EX
has three sources, then there is an EFX allocation Y Pareto dominating X.

5.3 Existence of EFX: Two sources in the Envy-Graph

Let us assume that agents 1 and 2 are the sources, and let (1, 3) ∈ EX . We have two
configurations for EX now, depending on whether or not (2, 3) ∈ EX . If (2, 3) ∈ EX , it
is relatively straightforward to determine a new EFX allocation Pareto dominating X.
Agent 3 is reachable from both 1 and 2 in EX , and hence, if 3 champions either 1 or 2,
we have a Pareto dominating EFX allocation by Observation 5.8. If 3 champions neither
1 nor 2, 1 and 2 must be champions of each other (Recall that no agent self-champions).
Also note that 3 envies neither 1 nor 2. Therefore, by Remark 5.13, we have a Pareto
dominating EFX allocation.

From now on, we assume that (2, 3) /∈ EX .
The envy-graph of the scenario is now as shown in Figure 5.1. Next, we discuss the

possible configurations of the champion graph MX . We show that most configurations are
easily handled. If 3 champions 1, then by Observation 5.8, there is a Pareto dominating
EFX allocation. If 3 does not champion 1, and since 1 does not self-champion, agent
2 champions 1. If now 1 champions 2, we have a 2-cycle in MX involving 1 and 2,

65

Chapter 5. EFX Allocations for Three Agents

and 3 envies neither of them. Therefore by Remark 5.13, there is a Pareto dominating
EFX allocation. Thus, we may assume that 1 does not champion 2. Since 2 does not
self-champion, agent 3 champions 2. There are only three possible configurations for
MX now, depending on who champions 3 (only 1, only 2, both 1 and 2 as 3 does not
self-champion) (see Figure 5.2).

1 2

3

1 2

3

1 2

3

Figure 5.2: The possible states of MX that require further discussion: Green nodes
correspond to the agents. Blue edges are the edges in EX and green edges are the edges
in MX . There is a unique configuration of EX and three different configurations of MX .

We now show how to deal with these configurations of MX . In Section 5.2, we showed
how to move from the current allocation X to an allocation that Pareto dominates X.
In Section 5.4, we show that this is impossible in this particular configuration of EX and
MX . More specifically, we exhibit an EFX allocation X that is not Pareto dominated by
any complete EFX allocation. We also show that there is no complete EFX allocation
with higher Nash welfare than X, thereby falsifying a conjecture of Caragiannis et al. [27].

Recall that our potential is φ(X) = (va(Xa), vb(Xb), vc(Xc)). We move to an alloca-
tion in which agent a is strictly better off. We distinguish the cases: a = 1, a = 2, and
a = 3.

Also, recall that we are in the scenario where 2 champions 1 and 2 does not envy
1. Similarly 3 champions 2 and 3 does not envy 2. Therefore, by Observation 5.10, we
have that g /∈ G21 and g /∈ G32, and hence, the bundles X1 and X2 decompose according
to (5.1). Also, since 2 champions 1 and 1 does not self-champion, by Observation 5.11,
we have that G21 6= ∅, and a similar argument also shows that G32 6= ∅.

5.3.1 Agent a is agent 1 or 3

We start from the allocation

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

.

Our goal is to determine an EFX allocation in which 1 and 3 are strictly better off (2
may be worse off). To this end, we consider

X ′ =
X3

(1)

X1 \G21

G32

(2)

X2 \G32

g

(3)

.

66

5.3. Existence of EFX: Two sources in the Envy-Graph

In X ′, every agent is better off than in X: 1 is better off because X3 >1 X1 (1 envied
3 in EX). We now show that 2 is better off: 2 championed 1 and 3 championed 2.
Also, 2 did not self-champion, 2 did not envy 1 and 3 did not envy 2 . Therefore, by
Observation 5.12, (setting i = k = 2, j = 1, i′ = 3), we have that X1 \G21 >2 X2 \G32.
Hence, (X1 \G21) ∪G32 >2 (X2 \G32) ∪G32 = X2. Thus 2 is also better off. Agent 3 is
better off as 3 championed 2, and by the definition of G32, we have (X2 \G32 ∪ g) >3 X3.
Thus X ′ Pareto dominates X. If X ′ is EFX, we are done. So assume otherwise. We show
that the only possible strong envy edge will be from 1 to 2.

• Nobody envies 1 : Note that 1 has X3 and neither 2 nor 3 envied X3 earlier (3 had
X3 and 2 did not envy 3). Since both 2 and 3 are better off than before, they do
not envy 1.

• Nobody strongly envies 3: 1 does not strongly envy 3 and 2 does not envy 3: 3
championed 2 and 1 did not. Therefore, by Observation 5.6 (part 1) we have
((X2 \G32)∪ g) \h ≤1 X1 for all h ∈ (X2 \G32)∪ g. Since 1 is better off than in X,
it does not strongly envy 3. Agent 2 does not envy 3 since its prefers both of its
parts over the corresponding part of agent 3. This was argued above for the top
part and follows from Observation 5.11

• 3 does not envy 2 : 3 championed 2 and 3 did not envy 2 earlier. Therefore by
Observation 5.10 we have that G32 <3 g. Therefore (X1 \ G21) ∪ G32 <3 (X1 \
G21)∪g. Since 2 championed 1 and 3 did not, by Observation 5.6 (part 2), we have
((X1 \G21) ∪ g) ≤3 X3. Since 3 is better off than in X, 3 does not envy 2.

Thus, the only strong envy edge is from 1 to 2. The current state of the envy-graph
is depicted below:

1 2 3

Let Z be a smallest cardinality subset of (X1 \G21) ∪G32 that 2 values more than
max2((X2 \G32)∪g,X3), where max2((X2 \G32)∪g,X3) is defined as the more valuable
bundle out of (X2\G32)∪g and X3 according to 2. Note that max2((X2\G32)∪g,X3) ≤2

(X1 \G21) ∪G32 since 2 does not envy neither 1 nor 3 in X ′. Since the instance is non-
degenerate, the inequality is strict, and hence Z exists. We now consider two allocations
depending on 1’s value for Z.

Case Z ≤1 X3: We replace 2’s current bundle with Z and obtain

X ′′ =
X3

(1)

Z

(2)

X2 \G32

g

(3)

Agents 1 and 3 have the same bundles as in X ′ and hence are strictly better off
than in X. Thus, X ′′ dominates X, as a = 1 or a = 3 and we improve a strictly.
We next show that X ′′ is EFX. Since the only bundle we have changed is that of
2, and there were no strong envy edges between 1 and 3 earlier, it suffices to show
that there are no strong envy edges to and from 2.

67

Chapter 5. EFX Allocations for Three Agents

• Nobody envies 2 : 3 did not envy the set (X1 \G21)∪G32. As Z ⊆ (X1 \G21)∪
G32, agent 3 does not envy Z either . 1 does not envy Z because we are in
the case where Z ≤1 X3.

• 2 does not envy anyone: This follows from the definition of Z itself since
Z >2 max2((X2 \G32) ∪ g,X3).

Case Z >1 X3: In this case, we consider

X ′′ =
Z

(1)

max 2((X2 \G32) ∪ g,X3)

(2)

min2((X2 \G32) ∪ g,X3)

(3)

Agent 1 is still strictly better off than in X as we are in the case Z >1 X3 >1 X1,
and agent 3 is not worse off than before as both X3 and (X2 \G32)∪ g are at least
as valuable to him as her previous bundle X3. We first show that X ′′ is EFX.

• 1 does not envy anyone: We are in the case where Z >1 X3 and 1 did not
envy (X2 \G32)∪ g when she had X3 itself (and now 1 is better off than with
X3). Thus, 1 does not envy anyone.

• 2 does not strongly envy anyone: Since 2 chooses the better bundle out of
X3 and (X2 \G32) ∪ g, 2 does not envy 3. Agent 2 does not strongly envy 1
since by the definition of Z, we have Z \ h ≤2 max 2((X2 \ G32) ∪ g,X3) for
all h ∈ Z. However, note that 2 envies 1. Thus, 2 does not envy 3 and does
not strongly envy 1 (but envies 1).

• 3 does not strongly envy anyone: 3 did not envy the set (X1 \ G21) ∪ G32,
5 and X3 ≤ X ′′3 as we argued above. Thus, 3 will not envy Z either as
Z ⊆ (X1 \G21)∪G32. We next show that 3 does not strongly envy 2, observe
that (X2\G32)∪g >3 X3. Therefore, if min2((X2\G32)∪g,X3) = (X2\G32)∪g,
we are done. So assume min2((X2 \G32) ∪ g,X3) = X3. Since 3 championed
2 and from Observation 5.6 (part 1), we have that ((X2 \G32)∪ g) \ h ≤3 X3

for all h ∈ (X2 \G32) ∪ g: Thus 3 does not strongly envy 2.

Now if a = 1, we are done, as X ′′ is EFX and agent 1 strictly improved. So assume
a = 3. If min2((X2 \G32) ∪ g,X3) = (X2 \G32) ∪ g, then agent 3 is strictly better
off and we are done. This leaves the case that agent 3 gets X3, and hence

X ′′ =
Z

(1)

X2 \G32

g

(2)

X3

(3)

The envy-graph EX′′ with respect to allocation X ′′ is a path (shown below): 1 does
not envy anyone, 2 envies 1 (not strongly) and does not envy 3, and 3 envies 2.

5We repeat the argument made earlier: 3 championed 2 and 3 did not envy 2 earlier. Therefore, by
Observation 5.10 we have that G32 <3 g. Hence, (X1 \G21)∪G32 <3 (X1 \G21)∪ g. Since 2 championed
1 and 3 did not, by Observation 5.6 (part 2), we have ((X1 \G21) ∪ g) ≤3 X3.

68

5.3. Existence of EFX: Two sources in the Envy-Graph

1 2 3

Also, note that we have some unallocated goods, e.g., the goods in G21. Recall that
we argued G21 6= ∅ in the paragraph just before Section 5.3.1. Consider any good
g′ ∈ G21. Since 3 is the only source in EX′′ , by Corollary 5.9, there is an EFX
allocation X ′′′ Pareto dominating X ′′, where X ′′′3 >3 X

′′
3 = X3. Thus, we have an

EFX allocation X ′′′ that dominates X (as agent 3 is strictly better off and a = 3).

5.3.2 Agent a is agent 2

Recall that we argued just before the beginning of Section 5.3.1 that g /∈ G21 and g /∈ G32.
Thus, the current EFX allocation X is

X =

X1 \G21

G21

(1)

X2 \G32

G32

(2)

X3

(3)

Our aim is to determine an EFX allocation, in which agent 2 has a bundle more valuable
than X2. First, observe that (X1 \G21)∪ g is such a bundle. As 2 championed 1, we have
(X1 \G21) ∪ g >2 X2 by the definition of G21. We also observe that both agents 1 and 3
value X3 as least as much as X2 and (X1 \G21) ∪ g.

Observation 5.18. X3 >i maxi(X2, ((X1 \G21) ∪ g) for i ∈ {1, 3}.

Proof. We argue ≥i; strict inequality then follows from non-degeneracy.
Nobody envies 2 in X. Thus, X2 ≤3 X3, and X2 ≤1 X1 <1 X3 (the strict inequality

holds as 1 envies 3 in X).
2 is the unique champion of 1 in X (both 1 and 3 do not champion 1). Therefore, by

Observation 5.6 (part 2), we have (X1 \G21)∪ g ≤3 X3 and (X1 \G21)∪ g ≤1 X1 <1 X3

(the strict inequality holds as 1 envies 3 in X).

For i ∈ {1, 3}, let κi be the size of a smallest subset Zi of X3 such that Zi >i
maxi((X1 \G21) ∪ g,X2). We use the relative size of κ1 and κ3 to differentiate between
agents 1 and 3. We use w (winner) to denote the agent with the smaller value of κi, i.e.,
w = 1 if κ1 ≤ κ3 and w = 3 if κ1 > κ3. We use ` (loser) for the other agent. Consider

X ′ =
X3

(w)

max `(X2, (X1 \G21) ∪ g)

(`)

min`(X2, (X1 \G21) ∪ g)

(2)

In X ′, the only possible strong envy edge is from ` to w. By Observation 5.18, w
envies neither ` nor 2. Note that 2 championed 1 and therefore, (X1 \G21)∪g >2 X2, but
by Observation 5.6 (part 1), we have ((X1 \G21)∪ g) \h ≤2 X2 for all h ∈ (X1 \G21)∪ g.
Thus, 2 gets a bundle worth at least X2 and does not strongly envy `. 2 also does not
envy w (as she did not envy X3 when she had X2). ` does not envy 2 as she chooses the
better bundle out of X2 and X1 \G21 ∪ g. Thus, the only possible strong envy edge is
from ` to w. How we proceed then depends on whether or not ` strongly envies w.

69

Chapter 5. EFX Allocations for Three Agents

` does not strongly envy w: Then X ′ is EFX. If min`(X2, (X1 \G21) ∪ g) = (X1 \
G21) ∪ g, we are done as X ′ dominates X (2 is strictly better off and a = 2). So assume
otherwise. Then

X ′ =
X3

(w)

X1 \G21 ∪ g

(`)

X2

(2)

By Observation 5.18, ` envies w. Since 2 only envies `, ` only envies w, and w does not
envy anyone, the envy-graph EX′ is a path with source 2.

2 ` w

Also, note that there are unallocated goods, namely the goods in G21 (we argued just
before the beginning of Section 5.3.1 that G21 6= ∅). Therefore, by Corollary 5.9, there
is an EFX allocation X ′′, in which 2 is strictly better off. Thus, X ′′ dominates X as 2 is
strictly better off and a = 2.

` strongly envies w: We keep removing the least valuable good according to w from
w’s bundle, until ` does not strongly envy w anymore. Let Z be the bundle obtained in
this way. Consider

X ′ =
Z

(w)

max `(X2, (X1 \G21) ∪ g)

(`)

min`(X2, (X1 \G21) ∪ g)

(2)

Claim 5.19. w does not envy 2 and `.

Proof. Recall that κw is the smallest cardinality of a subset of X3 that w still values more
than maxw(X2, (X1 \G21) ∪ g); κw was defined just after Observation 5.18. Such a set
can be obtained by removing w’s |X3| − κw least valuable goods from X3. Observe that
Z is obtained by removing |X3| − |Z| of w’s least valuable goods from X3. If |Z| ≥ κw,
w will envy neither 2 nor `. If |Z| < κw ≤ κ` (recall that κw ≤ κ`), let h be the last
good removed. Then ` strongly envies Z ∪ h (otherwise we would not have removed h),
meaning that there exists an h′ ∈ Z∪h such that (Z∪h)\h′ >` max`(X2, (X1 \G21)∪g).
Thus, there is a subset of X3 of size |(Z ∪ h) \ h′| < κw + 1− 1 = κw that ` values more
than max`(X2, (X1 \G21) ∪ g), a contradiction to κw ≤ κ`.

The allocation X ′ is EFX: w envies neither 2 nor `, ` does not strongly envy w, `
does not envy 2, and 2 envies neither ` nor w. If min`(X2, (X1 \G21)∪ g) is X1 \G21 ∪ g,
then we are done as X ′ dominates X (2 is strictly better off and a = 2). So assume
otherwise. Then

X ′ =
Z

(w)

X1 \G21 ∪ g

(`)

X2

(2)

In X ′, w envies nobody (by Claim 5.19), 2 envies `, and ` may or may not envy w. We
distinguish cases according to whether or not ` envies w.

70

5.3. Existence of EFX: Two sources in the Envy-Graph

2 ` w

Case ` envies w: Then, the current envy-graph is a path with 2 as the source.

2 ` w

Since there are unallocated goods, namely the goods in G21 (we argued just before
the beginning of Section 5.3.1 that G21 6= ∅), by Corollary 5.9, there is an EFX
allocation X ′′ in which agent 2 is strictly better off. The allocation X ′′ dominates
X (as 2 is strictly better off and a = 2).

Case ` does not envy w: Then the current envy-graph has two sources, namely w
and 2, and one envy edge from 2 to `.

2 ` w

There are at least two unallocated goods, the goods in G21 (we argued just before
the beginning of Section 5.3.1 that G21 6= ∅) and the goods in X3\Z (note that this
set is not empty; we definitely have removed at least one good from X3 as ` strongly
envied w when w had X3). Now consider the allocation X ′ and some g′ ∈ G21. If
the champion of 2 is 2 itself or ` (definition of champion based on allocation X ′

and the unallocated good g′), by Observation 5.8 there is an EFX allocation Y
where the source, namely 2, is strictly better off and hence Y will dominate X. So
assume that the champion of 2 is w, i.e., w ∈ AX′(X ′2 ∪ g′). Let g′′ ∈ X3 \Z be the
last element that we removed from X3 when we constructed Z from X3. Then `
strongly envies Z ∪ g′′ and, according to w, g′′ is the least valuable good in Z ∪ g′′.
We observe that ` is the unique champion of w (definition of champion based on
allocation X ′ and the unallocated good g′′) ,i.e., AX′(X

′
w ∪ g′′) = {`}.

Observation 5.20. For any good g′′ ∈ X3 \ Z, we have AX′(X
′
w ∪ g′′) = {`}.

Proof. We haveX ′w = Z. First we show that 2 /∈ AX′(Z∪g′′). Note that Z∪g′′ ⊆ X3.
Since X2 ≥2 X3 (as 2 did not envy 3 in X), 2 will not envy Z ∪ g′′ either.

Note that ` strongly envies Z ∪ g′′. Hence, there exists h ∈ Z ∪ g′′ such that
(Z ∪ g′′) \ h >` X ′`. However, (Z ∪ g′′) \ h ≤w X ′w = Z: By the construction of Z,
g′′ is w’s least valuable good in Z ∪ g′′. Thus, the removal of any good from Z ∪ g′′
will result in a bundle whose value for w is no more than the value of Z for w
Therefore, ` envies a subset (Z ∪ g′′) \h of Z ∪ g′′ that no other agent (agent 2 and
w) strongly envies. Thus, ` ∈ AX′(Z ∪ g′′).

Consider

X ′′ =
(X ′2 ∪ g′) \Gw2

(w)

(X ′w ∪ g′′) \G`w

(`)

X ′`

(2)

71

Chapter 5. EFX Allocations for Three Agents

or equivalently

X ′′ =
(X2 ∪ g′) \Gw2

(w)

(Z ∪ g′′) \G`w

(`)

(X1 \G21) ∪ g

(2)

.

Note that every agent is strictly better off than in X ′. w championed 2, and by
the definition of Gw2, we have (X ′2 ∪ g′) \Gw2 >w X ′w. Similarly, ` championed w,
and by the definition of G`w, we have (X ′w ∪ g′′) \G`w >` X ′`. 2 is better off as 2
envied ` in X ′ i.e. X ′2 <2 X

′
`. Now we have an allocation X ′′ in which agent 2 is

strictly better off than it was in X. Thus, X ′′ dominates X (as a = 2). It suffices
to show that X ′′ is EFX now. To this end, observe that,

• Nobody strongly envies w: w championed 2. Thus, by Observation 5.6 (part
1), we have that ((X ′2 ∪ g′) \Gw2) \ h ≤2 X

′
2 and ((X ′2 ∪ g′) \Gw2) \ h ≤` X ′`

for all h ∈ ((X ′2 ∪ g′) \Gw2). Since both 2 and ` are better off than before (in
X ′), they do not strongly envy w.

• Nobody strongly envies `: The argument is very similar to the previous case.
` championed 2. Thus, by Observation 5.6 (part 1), we have that ((X ′w ∪ g′′) \
G`w)\h ≤2 X

′
2 and ((X ′w ∪ g′′)\G`w)\h ≤w X ′w for all h ∈ ((X ′w ∪ g′′)\G`w).

Since both 2 and w are better off than before (than they were in X ′), they
do not strongly envy w.

• Nobody strongly envies 2: Both w and ` did not envy X ′` (` had X ′` and w did
not envy `) when they had X ′w and X ′` itself. Both w and ` are strictly better
off than they were in X ′. Therefore, they also do not envy 2.

We conclude that there is an EFX allocation dominating X in the case, a = 2 as
well.

This allows us to summarize our main result for this section as follows,

Lemma 5.21. Let X be a partial EFX allocation, and let g be an unallocated good, where
the envy-graph EX has two sources. Then there is an EFX allocation Y dominating X.

Having covered all the cases, we arrive at our main result:

Theorem 5.22. For any instance I = 〈[3],M,V〉 where all vi ∈ V are additive, an EFX
allocation always exists.

Proof. We start off with an empty allocation (Xi = ∅ for all i ∈ [3]), which is trivially
EFX. As long as X is not a complete EFX allocation, there is an allocation Y that
dominates X: If EX has a single source or MX has a 1-cycle, there is a dominating EFX
allocation Y by Corollary 5.9. Lemmas 5.17 and 5.21 establish the existence of Y when
EX has multiple sources and MX does not have a 1-cycle. Since φ is bounded from above,
the process must stop. When it stops, we have arrived at a complete EFX allocation.

72

5.4. Limitations of the Approach from Chapter 3

g1 g2 g3 g4 g5 g6 g7

a1 8 2 12 2 0 17 1

a2 5 0 9 4 10 0 3

a3 0 0 0 0 9 10 2

Table 5.3: An instance where no complete EFX allocation dominates the EFX allocation
X for the first six goods defined in the text. The valuations are assumed to be additive
and the entry in row i and column j is the value of good j for agent i.

5.4 Limitations of the Approach from Chapter 3

In this section, we highlight some barriers to the techniques developed in Chapter 3
for computin an EFX allocation with bounded charity. We give an instance with three
agents and seven goods such that there is a partial EFX allocation for six of the goods
that is not Pareto-dominated by any complete EFX allocation for the full set of goods.
We also generalize this example and give an instance with a partial EFX allocation
which has a Nash welfare larger than the Nash welfare of any complete EFX allocation.
These examples make it unlikely that there is an iterative algorithm towards a complete
EFX allocation that improves the current EFX allocation in each iteration either in the
sense of Pareto domination or in the sense of Nash welfare (like the algorithms in [84]
and Chapter 3). The second example also falsifies the EFX monotonicity conjecture (see
Conjecture 5.24) by Caragiannis et al. [27].

Theorem 5.23. For the instance given in Table 6.1, the partial allocation X = 〈X1, X2, X3〉,
where

X1 = {g2, g3, g4} X2 = {g1, g5} X3 = {g6} ,

is an EFX allocation of the first six goods. No complete EFX allocation Pareto dominates
X.

Proof. Note that v1(X1) = 16, v2(X2) = 15, and v3(X3) = 10. We will show that there
is no complete EFX allocation X ′ with v1(X

′
1) ≥ 16, v2(X

′
2) ≥ 15 and v3(X

′
3) ≥ 10. To

this end, we systematically consider potential bundles X ′1 that can keep a1’s valuation
at or above 16.

Let us first assume g6 ∈ X ′1, and hence, v1(X
′
1) ≥ 17. Now, to ensure v3(X

′
3) ≥ 10,

we need to allocate g5 and g7 to a3. We are left with goods g1, g2, g3 and g4. In order to
ensure v2(X

′
2) ≥ 15, we definitely need to allocate g1, g3 and g4 to a2. Now even if we

allocate the remaining good g2 to a1, we will have v1(X
′
1) = v1({g2, g6}) = 19 < 20 =

v1({g1, g3}) ≤ v1(X ′2 \ g4). Therefore, a1 will strongly envy a2. Thus g6 /∈ X ′1.
If g6 /∈ X ′1 and v1(X

′
1) ≥ 16, X ′1 must contain g3 (the total valuation for a1 of all the

goods other than g3 and g7 is less than 16). We need to consider several subcases.
Assume g1 ∈ X ′1 first. Since X ′1 already contains g1 and g3, the goods that can be

allocated to a2 and a3 are g2, g4, g5, g6, and g7. In order to ensure v2(X
′
2) ≥ 15 we need

to allocate g4, g5, and g7 to a2. Even if we allocate all the remaining goods (g2 and g6)
to a3, we have v3(X

′
3) = v3({g3, g6}) = 10 < 11 = v3({g5, g7}) ≤ v3(X ′2 \ g4). Therefore,

a3 will strongly envy a2.

73

Chapter 5. EFX Allocations for Three Agents

Thus g1 /∈ X ′1. Since neither g1 nor g6 belongs to X ′1, the only way to ensure v1(X
′
1) ≥

16 is to at least allocate g2, g3, and g4 to a1(we can allocate more). Similarly, given that
the goods not allocated yet are g1, g5, g6, and g7, the only way to ensure v1(X

′
2) ≥ 15 is

to allocate at least g1 and g5 to a2. Similarly, the only way to ensure v3(X
′
3) ≥ 10 now

is to allocate at least g6 to a3. We next show that adding g7 to any one of the existing
bundles will cause a violation of the EFX property.

• Adding g7 to X ′1: a2 strongly envies a1 as v2(X
′
2) = 15 < 16 = v2({g3, g4, g7}) =

v2(X
′
1 \ g2).

• Adding g7 to X ′2: a3 strongly envies a2 as v3(X
′
3) = 10 < 11 = v3({g5, g7}) =

v3(X
′
2 \ g1).

• Adding g7 to X ′3: a1 strongly envies a3 as v1(X
′
1) = 16 < 17 = v1(g6) = v1(X

′
3 \g7).

Thus, there exists no complete EFX allocations Pareto dominating X.

We now move on to the second example. We will modify the example in Table 6.1 to
highlight some barriers in the existence of “efficient” EFX allocations, i.e., complete EFX
allocations with high Nash welfare. We have seen the existence of EFX allocations with
bounded charity that have high Nash welfare in Chapter 4. However, we have limited
knowledge on the existence of complete EFX allocations with high Nash welfare, even
when there are three agents with additive valuations. To this end, Caragiannis et al. [27]
mention the following conjecture, which if true, would imply the existence of complete
EFX allocations with high Nash welfare.6

Conjecture 5.24. Adding an good to an instance that admits an EFX allocation results
in another instance that admits an EFX allocation with Nash welfare at least as high as
that of the partial allocation before.

We will now show that this conjecture is false, which suggests that EFX demands
“too much fairness” and some “trade-offs with efficiency” may be necessary. In particular,
we construct an instance I ′, such that there exists a partial EFX allocation X with
Nash welfare NW (X) strictly larger than the Nash welfare NW (X ′) of any complete
EFX allocation X ′. From the example in Table 6.1, it is clear that in any complete EFX
allocation, we need to decrease the valuation of one of the agents. The high level idea is
to modify I to I ′ such that the decrease in valuation of one of the agents is significantly
more than the increase in valuation of the other agents.

Theorem 5.25. For the instance I ′ with three agents and seven goods given in Table 5.4,
the allocation X = 〈X1, X2, X3〉, where

X1 = {g2, g3, g4} X2 = {g1, g5} X3 = {g6} ,

is an EFX allocation of the first six goods whose Nash welfare is larger than the Nash
welfare of any complete EFX allocation.7

6In their talk at EC’19 they explicitly mention this as the “Monotonicity Conjecture”.
7The reader is encouraged to keep an eye on Table 5.4 for the entire proof of Theorem 5.25.

74

5.4. Limitations of the Approach from Chapter 3

g1 g2 g3 g4 g5 g6 g7

a1 ε3 + 6ε5 2ε5 10− ε3 ε3 10− 2ε3 10 + 3ε5 ε5

a2 ε 0 10− ε2 + ε6 2ε2 10 0 ε− ε2
a3 0 0 0 0 10− ε4 10 2ε4

Table 5.4: An instance where no complete EFX allocation has larger Nash welfare
than the EFX allocation X for the first six goods defined in the text. The valuations are
assumed to be additive and the entry in row i and column j is the value of good j for
agent i; ε is positive, but infinitesimally small.

Proof. Observe that NW (X) = ((10 + 2ε5) · (10 + ε) · (10))1/3. Let X ′ be a complete
EFX allocation with maximum Nash welfare.

Lemma 5.26. X ′ allocates the goods g3, g5 and g6 to distinct agents. Additionally,

• X ′2 contains exactly one good from {g3, g5}.

• X ′3 contains exactly one good from {g5, g6}.

Proof. Consider the following complete EFX allocation X̂ = 〈X̂1, X̂2, X̂3〉:

X̂1 = {g6} X̂2 = {g3, g4, g7} X̂3 = {g1, g2, g5}

It is easy to verify that X̂ is EFX and NW (X̂) = ((10 + 3ε5)(10 + ε+ ε6)(10− ε4))1/3.
Since X ′ is a complete EFX allocation with maximum Nash welfare, we have NW (X ′) ≥
NW (X̂). If g3, g5, and g6 are not allocated to distinct agents, there is an agent ai
who does not get any of these goods. The valuation of this agent is at most 4ε (since
ε is the maximum valuation of any agent for any good outside the set {g3, g5, g6}).
The valuation of the other two agents can be at most 3 · (10 + ε) + 4ε = 30 + 7ε
(since ε is the maximum valuation of any agent for any good outside the set {g3, g5, g6},
and 10 + ε upper bounds the maximum valuation of any good in {g3, g5, g6}). Thus
NW (X ′) ≤ ((4ε) · (30 + 7ε)2)1/3 < NW (X̂) for sufficiently small ε.

A similar argument shows that X ′2 contains at least one good from {g3, g5} and X ′3
contains at least one good from {g5, g6} (since these are the only goods that the agents
value close to 10). Since the goods g3, g5, and g6 are allocated to distinct agents, a2 will
get exactly one good from {g3, g5} and a3 will get exactly one good from {g5, g6}.

Let us denote the set {g5, g6, g7} as VAL3, the goods valuable for agent a3. Note that
v3(X

′
3) = v3(X

′
3 ∩VAL3). We will now prove our claim by studying the cases that arise

depending on X ′3∩VAL3. By Lemma 5.26, X ′3∩VAL3 is non-empty and contains exactly
one of g5 and g6. Thus, X ′3 ∩VAL3 can be {g5}, {g6}, {g5, g7}, or {g6, g7} only.

Lemma 5.27. If X ′3 ∩VAL3 = {g5}, then NW (X ′) < NW (X).

Proof. We have that v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10 − ε4. Lemma 5.26 implies that

X ′2 contains g3 and X ′1 contains g6. Note that X ′1 cannot contain any additional good
other than g6 as this would lead to a3 strongly envying a1 (note that v3(g6) = 10 >
10−ε4 = v3(X

′
3)). Therefore v1(X

′
1) = 10+3ε5. Now we distinguish two cases depending

on whether or not X ′2 contains g1.

75

Chapter 5. EFX Allocations for Three Agents

• g1 ∈ X ′2: In this case, X ′2 = {g1, g3}, as otherwise a1 strongly envies a2 (note that
v1(X

′
1) = 10 + 3ε5 < 10 + 6ε5 = v1({g1, g3}), and hence, v2(X

′
2) = v2({g1, g3}) =

10 + ε+ ε6 − ε2. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
= 1− ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
≤ 1,

and hence, NW (X ′)/NW (X) < 1.

• g1 /∈ X ′2: Then v2(X
′
2) ≤ v2(remaining goods) = v2({g2, g3, g4, g7}) = 10 + ε + ε6,

and hence,

NW (X ′)

NW (X)
= ((1 +

ε5

10 + 2ε5
)(1 +

ε6

10 + ε
)(1− ε4

10
))1/3 < 1

.

Lemma 5.28. If X ′3 ∩VAL3 = {g5, g7}, then NW (X ′) < NW (X).

Proof. This proof follows the proof of Lemma 5.27 closely. We have v3(X
′
3) = v3(X

′
3 ∩

VAL3) = 10 + ε4. Lemma 5.26 implies that X ′2 contains g3 and X ′1 contains g6. We now
distinguish two cases depending on whether or not {g1, g4} ⊆ X ′2.
• {g1, g4} ⊆ X ′2: Then a1 strongly envies a2 as v1(X

′
1) ≤ v1(remaining goods) =

v1({g2, g6}) = 10 + 5ε5 < 10 + 6ε5 = v1({g1, g3}) ≤ v1(X ′2 \ g4).

• {g1, g4} 6⊆ X ′2. Then v2(X
′
2) ≤ v2({g1, g2, g3}) = 10 + ε − ε2 + ε6 (not giving

the less valuable g4 and giving everything else that remains). Also, v1(X
′
1) ≤

v1({g1, g2, g4, g6}) = 10 + 2ε3 + 11ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

2ε3 + 9ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
= 1− ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1 +

ε4

10

, and hence, NW (X ′) < NW (X).

Lemma 5.29. If X ′3 ∩VAL3 = {g6, g7}, then NW (X ′) < NW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩VAL3) = 10 + 2ε4. By Lemma 5.26, one of g3 and g5

will be allocated to each of a2 and a1. We argue that g1 ∈ X ′1. If g1 /∈ X ′1, then

v1(X
′
1) ≤ max (v1(g3), v1(g5)) + v1({g2, g4})

= (10− ε3) + ε3 + 2ε5

< 10 + 3ε5

= v1(g6)

= v1(X
′
3 \ g7),

and hence, a1 strongly envies a3.
Therefore g1 ∈ X ′1. But we still have v1(X

′
1) ≤ max (v1(g3), v1(g5))+v1({g1, g2, g4}) =

(10− ε3) + (2ε3 + 8ε5) = 10 + ε3 + 8ε5. However, since g1 ∈ X ′1, we have that v2(X
′
2) ≤

max (v2(g3), v2(g5)) + v2({g2, g4}) = 10 + 2ε2. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 6ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε− 2ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1 +

2ε4

10

, and hence, NW (X ′) < NW (X).

76

5.4. Limitations of the Approach from Chapter 3

Lemma 5.30. If X ′3 ∩VAL3 = {g6} and g3 ∈ X ′2, then NW (X ′) < NW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩VAL3) = 10. Since g3 and g5 are allocated to a1 and

a2, respectively, and g3 ∈ X ′2, we have g5 ∈ X ′1 by Lemma 5.26. We now distinguish two
cases depending, on whether or not g1 ∈ X ′2.

• g1 ∈ X ′2: Then X ′2 cannot contain any other goods than g1 and g3, else a1 will
strongly envy a2: v1(X

′
1) ≤ v1(remaining goods) ≤ v1({g2, g4, g5, g7}) = 10− ε3 +

3ε5 < 10 + 6ε5 = v1({g1, g3}). Therefore v2(X
′
2) = v2({g1, g3}) = 10 + ε− ε2 + ε6.

Also, note that v1(X
′
1) ≤ v1({g2, g4, g5, g7}) = 10 − ε3 + 3ε5. In that case, the

valuations of both a1 and a2 decrease, and that of a3 does not increase. Thus
NW (X ′) < NW (X).

• g1 /∈ X ′2: Then X ′2 cannot contain both of g4 and g7, else a1 will strongly envy
a2: v1(X

′
1) ≤ v1(remaining goods) = v1({g1, g2, g5}) = 10 − ε3 + 8ε5 < 10 =

v1({g3, g4}) = v1(X
′
2\g7). Therefore, v2(X

′
2) ≤ max (v2(g4), v2(g7))+v2(remaining goods) ≤

max (v2(g4), v2(g7))+v2({g2, g3}) = 10+ε−2ε2+ε6 and v1(X
′
1) ≤ v1({g1, g2, g4, g5, g7}) =

10 + 9ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

7ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− 2ε2 − ε6

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NW (X ′) < NW (X).

Lemma 5.31. If X ′3 ∩VAL3 = {g6} and g3 /∈ X ′2, then NW (X ′) < NW (X).

Proof. We have v3(X
′
3) = v3(X

′
3 ∩ VAL3) = 10. Since g3 /∈ X ′2, we have g5 ∈ X ′2 and

g3 ∈ X ′1 by Lemma 5.26. We now distinguish two cases depending on whether or not
g7 ∈ X ′2.

• g7 ∈ X ′2: Then X ′2 cannot contain any other goods than g5 and g7, else a3 will
strongly envy a2: v3(X

′
3) = 10 < 10 + ε4 = v3({g5, g7}). Therefore, v2(X

′
2) =

v2({g5, g7}) = 10+ε−ε2 and v1(X
′
1) ≤ v1(remaining goods) = v1({g1, g2, g3, g4}) =

10 + ε3 + 8ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 6ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NW (X ′) < NW (X).

• g7 /∈ X ′2: Then X ′2 cannot contain both of g1 and g4 else a1 will strongly envy a2:
v1(X

′
1) ≤ v1(remaining goods) = v1({g2, g3, g7}) = 10− ε3 + 3ε5 < 10− ε3 + 6ε5 =

v1({g1, g5}) = v1(X
′
2 \ g4). Now we consider two cases depending on whether or

not g1 ∈ X ′2.

– g1 ∈ X ′2: ThenX ′2 cannot have g4. Thus v2(X
′
2) ≤ v2(g1)+v2(remaining goods) =

v2(g1)+v2({g2, g5}) = 10+ε = v2(X2). Note that X ′1 cannot have all of the re-
maining goods g2, g3, g4, g7, else a2 will strongly envy a1: v2(X

′
2) ≤ 10+ε < 10+

ε+ε6 = (10−ε2+ε6)+(2ε2)+(ε−ε2) = v2({g3, g4, g7}) = v2({g2, g3, g4, g7}\g2).
Therefore, X ′1 is a strict subset of {g2, g3, g4, g7}, and it should contain g7 (as

77

Chapter 5. EFX Allocations for Three Agents

we are in the case where neither X ′2 nor X ′3 can have g7). Since a1’s valu-
ation for g7 is strictly less than her valuation for any of g2, g3, and g4, we
have that v1(X

′
1) < v1({g2, g3, g4}) = v1(X1). Since we are in the case where

v2(X
′
2) ≤ v2(X2) and v3(X

′
3) = v3(X3), we have NW (X ′) < NW (X).

– g1 /∈ X ′2: Then v2(X
′
2) ≤ v2(remaining goods) = v2({g2, g4, g5}) = 10 + 2ε2

and v1(X
′
1) ≤ v1({g1, g2, g3, g4, g7}) = 10 + ε3 + 9ε5. Thus,

v1(X
′
1)

v1(X1)
= 1 +

ε3 + 7ε5

10 + 2ε5
,

v2(X
′
2)

v2(X2)
≤ 1− ε− 2ε2

10 + ε
, and

v3(X
′
3)

v3(X3)
= 1

, and hence, NW (X ′) < NW (X).

Lemmas 5.30 and 5.31 immediately imply the following:

Lemma 5.32. If X ′3 ∩VAL3 = {g6}, then NW (X ′) < NW (X).

We are now ready to complete the proof. Lemma 5.26 implies that a3 gets exactly one
good from {g5, g6}. Thus, X ′3 ∩ VAL3 6= ∅, and {g5, g6} 6⊆ X ′3 ∩ VAL3. So X ′3 ∩ VAL3 ∈
{{g5} , {g6} , {g5, g7} , {g6, g7}}. However, Lemmas 5.27, 5.28, 5.29, and 5.32 imply that
in all of these cases, NW (X ′) < NW (X).

78

CHAPTER 6

Almost EFX Allocations with Sublinear
Charity

In this Chapter, we show the existence of improved relaxations of EFX allocations.
Given the hardness of this problem, we believe that studying weaker relaxations (of EFX
allocations) is a systematic and promising direction to find the answer regarding the
existence of EFX allocations. We elaborate this point briefly. It has been suspected in
Plaut and Roughgarden [84] that EFX allocations may not exist in the general setting:

“We suspect that at least for general valuations, there exist instances where
no EFX allocation exists, and it may be easier to find a counterexample in
that setting.”

However, finding counter-examples, at least in the additive setting, would also be a very
challenging task: Quite recently Manurangsi and Suksompong [73] show that when agents
valuations for individual goods are drawn at random from a probability distribution,
then EFX allocations exist with high probability. This demands a non brute-force ap-
proach to find counter-examples, if any. Thus finding better relaxations (improving the
approximation factor or reducing the number of unallocated goods in a partial EFX
allocation) is a systematic way to find the right answer to this open problem. We achieve
exactly this by the first main result of this chapter,

Theorem 6.1. For all ε ∈ (0, 1/2] we can determine a partial allocation X and a set of
unallocated goods P in polynomial-time such that

• X is (1− ε)-EFX,

• |P | ≤ 64(n/ε)4/5.

We remark that reducing the number of unallocated goods could be quite challenging:
Indeed, a corollary from the main result (Theorem 3.1) in Chapter 3 already establishes
that there exists a partial EFX allocation with at most two goods unallocated when there
are three agents. However, removing the last two goods to obtain an EFX allocation for
three agents turned out to be highly non-trivial task and the proof in Chapter 5 requires
careful and cumbersome case analysis. Furthermore, in Section 6.5 of this chapter, we
show that the technique in Chapter 5 does not extend to four agents with additive
valuations for finding a (1− ε)-EFX allocation.

In this chapter, we show a novel method that reduces the problem of determining
good relaxations of EFX allocations to a combinatorial problem in graph theory. We now
briefly elaborate the combinatorial graph problem . We define the rainbow cycle number
of an integer as follows.

Definition 6.2. For any positive integer d, the rainbow cycle number or R(d) is the
largest k such that there exists a directed k-partite graph G = (∪i∈[k]Vi, E) such that

Chapter 6. Almost EFX Allocations with Sublinear Charity

(1) |Vi| ≤ d for all i ∈ [k],

(2) for any two distinct parts Vi and Vj in G, every vertex in Vi has an incoming edge
from a vertex in Vj, and

(3) there exists no cycle in G that intersects each part at most once.

To give the reader a clearer understanding of Definition 6.2, we show that R(1) = 1
and R(2) = 2. Let us deduce that R(1) = 1: It is clear that G can be a single vertex and
satisfy all the conditions in Definition 6.2 and thus R(1) ≥ 1. However, R(1) cannot be
larger than one, as otherwise we have two parts V1 and V2 in a graph G, where there is
exactly one vertex each in V1 and V2. So let V1 = {a1} and V2 = {a2}. By condition 2
in Definition 6.2, we must have an edge from a1 to a2 and an edge from a2 to a1. This
gives a 2-cycle a1 → a2 → a1. However, this cycle contains exactly one vertex from each
V1 and V2, which contradicts condition 3 in Definition 6.2.

Now, using a more involved argument we show that R(2) = 2. We first show that
R(2) ≤ 2 by contradiction. Let us assume otherwise and let V1, V2 and V3 be any three
parts of G. We first look into the edges of the induced bipartite graph G[V1∪V2]. Without
loss of generality, let us assume that vertex b1 in V2 has an incoming edge from vertex a1
in V1. By condition 2 in Definition 6.2, a1 has an incoming edge from some vertex in V2.
However, this vertex cannot be b1 as this will violate condition 3 in Definition 6.2. This
implies that there must be another vertex in V2, say b2 that has an edge to a1. Again,
by a similar argument, b2 cannot have an incoming edge from a1 and therefore has an
incoming edge from another vertex in V1, say a2 and a2 has the incoming edge from b1
and not b2 (since there can be no other vertices in V2). Thus, the induced bipartite graph
G[V1 ∪ V2] is a four-cycle as shown below

V1 V2

a1

a2

b1

b2

Note that the induced bipartite graph G[V2 ∪ V3] will be isomorphic to G[V1 ∪ V2].
Thus, so far we have the following edges in G[V1 ∪ V2 ∪ V3],

V1 V2 V3

a1

a2

b1

b2

c1

c2

We now look at the edges between the parts V1 and V3. Since G[V1 ∪ V3] is isomorphic
to G[V1 ∪ V2], it must also be a four-cycle and hence in G[V1 ∪ V3], there is either an

80

edge from a1 to c1 or from c1 to a1. If there is an edge from a1 to c1, then we have a
3-cycle a1 → c1 → b2 → a1, which visits each part of G at most once and thus this is a
contradiction. Similarly, if there is an edge from c1 to a1, then also we have a 3-cycle
a1 → b1 → c1 → a1, which visits each part of G at most once and thus this is also a
contradiction. Thus, R(2) ≤ 2. Also we have that R(2) ≥ 2: the bipartite graph G[V1∪V2].
Therefore, we have R(2) = 2.

However, it is not at all clear what values R(d) takes, or if it is finite for all integers d.
As the second key result of this chapter, we show that any upper-bound on R(d) implies
the existence of (1 − ε)-EFX allocations with sublinear many unallocated goods and
better upper bounds on R(d) give better upper bounds on the number of unallocated
goods. Formally,

Theorem 6.3. Let h(d) = d ·R(d) and ε ∈ (0, 1/2]. Let h−1(n/ε) be the smallest integer
such that h(d) ≥ n/ε. Then, there is a (1− ε)-EFX allocation X and a set of unallocated
goods P such that |P | ≤ (4n/(ε · h−1(2n/ε)).

The beneficial aspect of Theorem 6.3 is that it gives a clean graph theoretic frame-
work for determining improved relaxations of EFX allocations. However, Theorem 6.3 is
meaningless is R(d) is not finite for all d. We briefly sketch the proof that this is indeed
the case:

R(d) is finite. We briefly show that for any d ∈ N, R(d) is finite. Consider a k-partite
graphG = (∪i∈[k]Vi, E) in Definition 6.2. For all i ∈ [k], let Vi = {(i, 1), (i, 2), . . . , (i, |Vi|)}.
For all i < j and i′ < j′, we say that the directed bipartite graphs G[Vi∪Vj] andG[Vi′∪Vj′]
have the same configuration if and only if for each directed edge from vertex (i, a) to
(j, b) (and equivalently from (j, b′) to (i, a′)) in G[Vi ∪ Vj], there is an edge from (i′, a)
to (j′, b) (and equivalently from (j′, b′) to (i′, a′)) in G[Vi′ ∪ Vj′] and vice-versa. We first
show that if there are 4d parts in G, say w.l.o.g. V1, V2, . . . , V4d, such that the induced
directed bipartite graph G[Vi ∪ Vj] has the same configuration for all 1 ≤ i < j ≤ 4d,
then there exists a cycle in G that visits each part at most once.

Consider the parts V1 and V2, and the induced directed bipartite graph G[V1 ∪ V2].
Since every vertex in one part has an incoming edge from a vertex in the other part,
G[V1 ∪ V2] is cyclic. Let the simple cycle be C = (1, i1) → (2, i2) → (1, i3) → · · · →
(2, i2β)→ (1, i1) for some β ≤ d. Since all the induced bipartite graphs G[Vi ∪ Vj] have
the same configuration for all 1 ≤ i < j ≤ 4d, we can claim that for all ` ∈ [β], for
each edge (1, i2`−1) → (2, i2`) in C, there is an edge from (2` − 1, i2`−1) to (4d − `, i2`)
in G[V2`−1, V4d−`] (note that 2` − 1 < 4d − ` as ` ≤ β ≤ d). Similarly for all ` ∈ [β],
for each edge (2, i2`) → (1, i2`+1) in C (2β + 1 is to interpreted as 1), there is an edge
from (4d − `, i2`) to (2` + 1, i2`+1) in G[V2`+1, V4d−`] (again, note that 2` + 1 < 4d − `
as ` ≤ β ≤ d). This implies that there is a cycle C ′ = (1, i1)→ (4d− 1, i2)→ (3, i3)→
(4d− 2, i4)→ · · · → (4d− β, i2β)→ (1, i1) in G. Clearly, C visits each part of G at most
once. Therefore, there cannot be 4d parts in G such that the induced directed bipartite
graph G[Vi ∪ Vj] has the same configuration for all 1 ≤ i < j ≤ 4d.

We now rephrase the question about an upper bound on R(d). Let D be the set of all
configurations of a directed bipartite graph, where the number of vertices in each part
is at most d and every vertex has an incoming edge. We treat D as a set of colors and
note that |D| ∈ 2O(d

2). Now consider a complete graph Kk with vertex set [k], where

81

Chapter 6. Almost EFX Allocations with Sublinear Charity

the vertex ` ∈ [k] corresponds to part V` in G. For all 1 ≤ i < j ≤ k, we color/label
the edge (i, j) in Kk with a color from D. The color on the edge (i, j) corresponds
to the configuration of the directed bipartite graph G[Vi ∪ Vj]. Clearly, R(d) must be
strictly smaller than the largest k such that every coloring of the edges of Kk with colors
from D contains a monochromatic clique of size 4d. This value of k corresponds to the
(multicolor) Ramsey number [48] R(n1, n2, . . . n|D|) in which ni = 4d for all i ∈ [|D|].
This number is finite and the current best known upper bounds on it are exponential in
|D| and d [53, 71, 48, 44]. Therefore, R(d) is also bounded. However, this upper-bound
is very large and only provides a weak version of Theorem 7.3. This necessitates the
study of finding “good” upper bounds on R(d); in particular, upper bounds that are
polynomial in d. We address this in Section 6.3 by showing that R(d) ∈ O(d4). This
brings us to the third main result of this chapter.

Theorem 6.4. For all d ≥ 1, we have R(d) ≤ d4 + d. Furthermore, let G be a k-partite
digraph with k > d4 + d parts of cardinality at most d each, such that for every vertex
v and any part W not containing v, there is an edge from W to v. Then, there exists a
cycle in G visiting each part at most once, and it can be found in time polynomial in k.

Theorems 6.4 and 6.3 imply Theorem 6.1. We remark that, although we give a
polynomial upper bound on R(d), we believe that there is further room for improvement.
As an illustration, our upper bound in Theorem 6.4 for d = 2 is 24 + 2 = 18, while we
showed that R(2) ≤ 2. We suspect that R(d) ∈ O(d) (implying existence of (1− ε)-EFX
allocations withO(

√
n/ε) many unallocated goods). We believe that finding better upper

bounds on R(d) is a natural combinatorial question and better upper-bounds to R(d)
imply the existence of better relaxations of EFX allocations. Therefore, investigating
better upper bounds on R(·) is of interest in its own right and we leave this as an
interesting open problem.

Finding (1 − ε)-EFX allocations with high Nash welfare. We have mentioned
throughout the thesis that efficiency is also a desirable property of the final allocation.
Similar to the algorithm in Chapter 3, we show that with minor modifications to our main
algorithm, we can determine an allocation that satisfies the conditions in Theorem 6.1,
and achieves a 2e1/e ≈ 2.89 approximation of the Nash welfare, i.e., in polynomial-time
we can find efficient (1− ε)-EFX allocation with sublinear charity (Section 6.4).

6.1 Notation and Tools

Similar to Chapter 5, we write vi(g) instead of vi({g}) and vi(S ∪ g) for vi(S ∪ {g}). For
a fixed 0 < ε < 1, we say that an agent i

• envies a set S of goods if vi(Xi) < vi(S),

• heavily envies a set S of goods if vi(Xi) < (1− ε)vi(S),

• strongly envies a set S of goods if it heavily envies a proper subset of S, and

An agent envies (heavily envies, strongly envies) an agent j if it has these feelings for the
set Xj . Clearly, strong envy implies heavy envy implies envy. An allocation X ′ strongly

82

6.1. Notation and Tools

Pareto-dominates an allocation X, or equivalently X ′ >PD X, if and only if vi(X
′
i) ≥

vi(Xi) for all i ∈ [n] and for some agent i′ ∈ [n] we have (1− ε) · vi′(X ′i′) ≥ vi′(Xi′).

At a high level, our algorithm is similar to previous algorithms used to prove the
existence of relaxations of EFX allocations [36, 84, 33]. Our algorithm always maintains a
(1− ε)-EFX allocation on the set of allocated goods and as long as the current allocation
and the set of unallocated goods P satisfies “some properties”, it determines another
(1−ε)-EFX allocation that strongly Pareto-dominates the previous (1−ε)-EFX allocation.
Since the valuation of an agent for the entire good set is bounded, this procedure will
eventually converge to a (1 − ε)-EFX allocation, where the current allocation and the
set of unallocated goods do not satisfy these properties. The bulk of the effort goes into
determining the right properties under which one can come up with update rules that
transform one (1− ε)-EFX allocation into a “better” (1− ε)-EFX allocation. We briefly
recollect the update rules used in [72] and [36].

Envy cycle elimination [72]. The envy-graph EX of an (1 − ε)-EFX allocation X
has the agents as its vertex set and there is an edge from vertex i to vertex j in EX if
agent i envies agent j, i.e., vi(Xi) < vi(Xj). The paper [72] shows that whenever EX has
a cycle, then one can determine another (1 − ε)-EFX allocation X ′ in which no agent
has a worse bundle and EX′ is acyclic. Formally,

Lemma 6.5 ([72]). Consider a (1 − ε)-EFX allocation X. If there is a cycle in EX ,
then in polynomial-time , we can determine a (1 − ε)-EFX allocation X ′ such that
vi(X

′
i) ≥ vi(Xi) for all i ∈ [n], and EX′ is acyclic.1

Update rules in Chapter 3. We modify the update rules in Chapter 3 slightly, as we
are dealing with (1− ε)-EFX allocations and not EFX allocations. These rules are more
involved and make essential use of the concept of a a most envious agent. We adjust the
definition of a most envious agent from Chapter 3: Given an allocation X, and any set
S ⊆M , we denote the set of most envious agents of S as AX(S).

Definition 6.6. Given a set S ⊆M and an allocation X, an agent i is a most envious
agent of the set S or i ∈ AX(S) if and only if there exists Zi ⊆ S such that (1−ε)·vi(Zi) >
vi(Xi) (agent i heavily envies Zi), and for all agents j, we have (1− ε) · vj(Z ′) ≤ vj(Xj)
for all Z ′ ⊂ Zi (no agent strongly envies Zi).

Also, we can re-adjust the necessary and sufficient condition (Observation 3.3 from
Chapter 3) for AX(S) to be non-empty.

Observation 6.7. AX(S) 6= ∅ if and only if there is some agent i that heavily envies S.
Also, in O(n · |S|2) time, one can find an agent t ∈ AX(S) and a set Z ⊆ S such that t
heavily envies Z and no agent strongly envies Z.

Following the definition of a champion in Chapter 5, we say that given an allocation
X, an agent i champions j w.r.t an unallocated good g if and only if i ∈ AX(Xj ∪ g).

1Let C be an envy cycle. For each edge (i, j) of the cycle one assigns in X ′ the bundle Xj to i. One
continues in this way as long as there is a cycle in the envy-graph.

83

Chapter 6. Almost EFX Allocations with Sublinear Charity

We now recall and subtly change the update rules. The first rule, is a modification
of the update rule U1(Algorithm 1) in Chapter 3. This is applicable whenever there is
an agent that heavily envies the set of unallocated goods2.

Lemma 6.8 (U1). Consider a (1−ε)-EFX allocation X and let P be the set of unallocated
goods. If there is an agent i ∈ [n] that heavily envies P , then in polynomial-time , we
can determine3 a (1− ε)-EFX allocation X ′ >PD X.

The second update rule U2 (Algorithm 2) in Chapter 3 is applicable whenever there
are more than n unallocated goods. However, we decompose U2 in Chapter 3 into two
update rules in this chapter: U2 and U3. Rule U2 is applicable whenever we can allocate
an unallocated good to an unenvied agent (a source in EX), without creating any strong
envy. In this case, we simply allocate this good to the corresponding source. This creates
another (1− ε)-EFX allocation where no agent gets a worse bundle and the number of
unallocated goods decreases.

Lemma 6.9 (U2). Consider a (1 − ε)-EFX allocation X. If there is a source s in
EX and an unallocated good g such that no agent strongly envies Xs ∪ g, then X ′ =
〈X1, X2, . . . , Xs ∪ g, . . . , Xn〉 is a (1 − ε)-EFX allocation and vi(X

′
i) ≥ vi(Xi) for all

i ∈ [n].

Note that there can be at most m consecutive applications of this rule as the number
of unallocated goods decreases by one every time we apply this update rule. Update rule
U3 is a refinement of envy-cycle elimination.

Lemma 6.10 (U3). Consider a (1−ε)-EFX allocation X. If there exists a set of sources
s1, s2, . . . s` in EX , a set of unallocated goods g1, g2, . . . , g`, and a set of agents t1, t2, . . . , t`,
such that each ti is reachable from si in EX and ti is the champion of Xsi+1 w.r.t gi+1

(indices are modulo `), then in polynomial-time , we can determine4 a (1 − ε)-EFX
allocation X ′ >PD X.

6.2 Relating the Number of Unallocated Goods to the
Rainbow Cycle Number

In this section, we give the proof of Theorem 6.3, i.e, we show how any upper bound on
R(d) allows us to obtain a (1 − ε)-EFX with sublinear many goods unallocated. More
precisely, we show that given a (1−ε)-EFX allocation X, if EX is acyclic, and the update
rules U1 and U2 are not applicable, and the number of unallocated goods is larger than
4n/(ε · h−1(2n/ε)), then rule U3 is applicable. Therefore, for most of this section, we

2In Chapter 3, this is applicable whenever there is an agent that envies (instead of heavily envies)
the set of unallocated goods

3Let t be the most envious agent of P and Z ⊆ P be such that t heavily envies Z and no agent
strongly envies Z. In X ′, one assigns Z to t and changes the pool to Xt ∪ (P \ Z).

4Let Zi+1 ⊆ Xsi+1 ∪ gi+1 be the smallest subset of Xsi+1 ∪ gi+1 such that ti heavily envies Zi+1 and
no agent strongly envies Zi+1. One then essentially proceeds as in cycle elimination. For each i, one
assigns Zi+1 to ti and to each agent on the path from si to ti except for ti one assigns the bundle owned
by the successor on the path.

84

6.2. Relating the Number of Unallocated Goods to the Rainbow Cycle Number

proceed under the assumption

EX is acyclic and the update rules U1(Lemma 6.8) and U2 (Lemma 6.9) are not applicable.
(*)

We start with some definitions. Given a partial allocation X, we call an unallocated
good g valuable to an agent i if vi(g) > ε · vi(Xi). We first make an observation about
the agents that could potentially strongly envy Xs ∪ g, where s is a source in EX and g
is an unallocated good.

Observation 6.11. Consider an unallocated good g and any source s in EX . If agent i
heavily envies Xs ∪ g, then g is valuable to agent i.

Proof. We have vi(Xs) ≤ vi(Xi) since s is a source of EX and vi(Xi) < (1− ε)vi(Xs ∪ g)
since i heavily envies Xs∪g. Thus vi(Xi) < (1−ε)(vi(Xi)+vi(g)) and hence (1−ε)vi(g) >
εvi(Xi).

Note that under assumption (*), for each unallocated good g, and each source s in
the envy-graph, there is an agent that strongly envies Xs ∪ g (since the conditions of the
update rule U2 (Lemma 6.9) are not satisfied). Thus, each unallocated good is valuable to
some agent. Now, we make a classification of the unallocated goods based on the number
of agents that find them valuable. To be precise, given an allocation X, we classify the
unallocated goods into two categories: high-demand goods HX and low-demand goods LX .
A good g belongs to HX , if it is valuable to at least d+1 agents and to LX if it is valuable
to at most d agents. We will choose the exact value of d later (right now, just think of
it as any integer less than n). Observe that the set of unallocated goods P = HX ∪ LX .
To prove our claim, it suffices to show that when |HX |+ |LX | > 4n/(ε · h−1(2n/ε)), the
rule U3 is applicable. To this end, we first make a simple observation about |HX |.

Observation 6.12. Under assumption (*), we have |HX | < 2n/(ε · d).

Proof. For each good g ∈ HX , let ηg be the number of agents that find g valuable. By
definition of HX , we have that ηg > d and hence

∑
g ηg > |HX |d. We next upper bound∑

g ηg by n · (2/ε) by showing that at most 2/ε unallocated goods are valuable to any
agent.

Consider any agent i. By assumption (*), rule U1 is not applicable and hence the
value of the unallocated goods to i is at most 1/(1 − ε)vi(Xi). This is at most 2vi(Xi)
since ε ≤ 1/2. Any valuable good has value at least εvi(Xi) for i. Thus the number of
unallocated goods valuable to i is at most 2/ε.

We next bound |LX |. In particular, we show that |LX | ≤ R(d). To this end, we
introduce the notion of group champion graph G.

Group champion graph. To each agent a, we assign a source s(a), such that a is
reachable from s(a) in the envy-graph EX . Recall that we operating under assumption (*)
and hence EX is acyclic. If a is reachable from multiple sources, we pick s(a) arbitrarily
from these sources. Let k := |LX |. For each g ∈ LX , let Qg be the set of all agents that
find g valuable. By definition of LX , we have |Qg| ≤ d for all g ∈ LX . We now define a
k-partite graph G = (∪g∈LXVg, E), in which the part Vg corresponding to g consists of

85

Chapter 6. Almost EFX Allocations with Sublinear Charity

Vga Vgb

a1

a2

a3

a4

b1

b2

(ga,a1)

(ga,a3)

(gb,b1)

a2 champions all agents w.r.t ga.

b2 champions all agents w.r.t gb.

Figure 6.1: Illustration of a group champion graph. We have an instance with six agents
∪i∈[4]ai and ∪i∈[2]bi and two unallocated goods, namely ga and gb. The agents ∪i∈[4]ai
find ga valuable and the agents ∪i∈[2]bi find gb valuable. The envy-graph EX of the
instance is shown on the left side. EX shows that s(a2) = a1, s(a4) = a3, and s(b2) = b1.
Also, we have that agent a2 champions all the agents w.r.t ga and b2 champions all the
agents w.r.t gb. The group champion graph (right) has two parts, Vga corresponding to
ga and Vgb corresponding to gb. Vga contains the copies of the sources of all the agents
that find ga valuable, namely (ga, a1) and (ga, a3). Similarly, Vgb contains (gb, b1). There
is an edge from (ga, a1) to (gb, b1) as a2 (which is reachable from a1 in EX) champions b1
w.r.t to ga. Similarly, there is an edge from (gb, b1) to (ga, a3) as b2 (which is reachable
from b1 in EX) champions a3 w.r.t to gb.

copies of the sources assigned to the agents in Qg, formally, Vg = {(g, s(a)) | a ∈ Qg}.
For any goods g and h and agents a ∈ Qg and b ∈ Qh, there is an edge from (g, s(a)) in
Vg to (h, s(b)) in Vh if and only if a is the champion of Xs(b) ∪ g (see Figure 6.1 for an
illustration). We now make an observation about the set of edges between Vg and Vh in
G for any g, h ∈ LX .

Observation 6.13. Under assumption (*): Consider any g, h ∈ LX . Then each vertex
in Vh, has an incoming edge from a vertex in Vg.

Proof. Consider any vertex (h, s(b)) ∈ Vh. By assumption (*), there is an agent that
strongly envies the bundle Xs(b) ∪ g. Otherwise, rule U1 would be applicable. By Obser-
vation 6.11, all agents that strongly envy Xs(b) ∪ g, consider g valuable and hence belong
to Qg. Let a be the champion of Xs(b)∪g. By Observation 6.7, a strongly envies Xs(b)∪g
and hence belongs to Qg. Thus there is an edge from (g, s(a)) in Vg to (h, s(b)) in Vh
(by the construction of G).

Now we claim that the existence of a cycle that visits each part of G at most once,
would imply the existence of a (1−ε)-EFX allocation that Pareto-dominates the existing
(1− ε)-EFX allocation.

Lemma 6.14. Given a cycle C in G that contains at most one vertex from each Vg, for
all g ∈ LX , we can determine a (1− ε)-EFX allocation X ′ >PD X in polynomial-time .

Proof. Let C = (gi+1, si) → (gi+2, si+1) → · · · → (gj+1, sj) → (gi+1, si) be a cycle in
G that visits each part at most once. It will become clear below, why we index the g’s

86

6.2. Relating the Number of Unallocated Goods to the Rainbow Cycle Number

starting at i+ 1. Consider the sequence si, si+1, . . . , sj . If all the sources in this sequence
are not distinct, there exists a contiguous subsequence si′ , si′+1, . . . , sj′ where all the
sources are distinct and sj′+1 = si′ with i ≤ i′ < j′ ≤ j (index j + 1 is to be interpreted
as i).

We now work with the sequence si′ , si′+1, . . . , sj′ where all the sources are distinct
and sj′+1 = si′ . For all ` ∈ [i′ + 1, j′ + 1], the existence of the edge (g`, s`−1)→ (g`+1, s`)
implies the existence of an agent t`−1 such that t`−1 is the champion of Xs` ∪ g` and
s(t`−1) = s`−1, i.e., t`−1 is reachable from s`−1 in EX . Since the sources si′ , si′+1, . . . , sj′

are distinct, the agents ai′ , ai′+1, . . . , aj′ are also distinct (as each agent has a unique
source assigned). Therefore, we have distinct sources si′ , . . . , sj′ in EX , distinct goods
gj′+1, gi′+1, . . . , gj′ and distinct agents ti′ , . . . tj′ that satisfy the conditions under which
the update rule U3 (Lemma 6.10) is applicable. By applying U3 we can get a (1−ε)-EFX
allocation X ′ >PD X.

With Lemma 6.14, we are now ready to give an upper bound on |LX |. Observe that
|LX | equals the number of parts in G. Now the question is how many parts can G have
such that it does not admit a cycle that visits each part at most once. This is where we
upper bound |LX | with the rainbow cycle number.

Lemma 6.15. Consider a (1− ε)-EFX allocation X. If |LX | > R(d), there is a (1− ε)-
EFX allocation X ′ >PD X.

Proof. Recall that |LX | = k, where k is the number of parts in G. Note that each part
of G corresponds to the sources assigned to the agents that find a particular good in LX
valuable (Qg for some g ∈ LX). By definition of LX , there are at most d agents that find
a good in LX valuable. Thus each part has at most d vertices. Again, by Observation 6.13,
between any two parts Vg and Vh of G, each vertex in Vh has an incoming edge from a
vertex in Vg. Therefore, by Definition 6.2, we have that if k > R(d), then there exists a
cycle C in G that visits each part at most once. Once we have C, by Lemma 6.14, we
can determine a (1− ε)-EFX allocation X ′ >PD X.

Given a (1 − ε)-EFX allocation X such that |LX | > R(d), Lemma 6.15 only gives
the existence of a (1 − ε)-EFX allocation X ′ >PD X. However, to determine X ′ in
polynomial-time , one needs to find a cycle C in G which visits each part at most once
when |LX | > R(d), in polynomial-time . Let us remark that this is a non-trivial problem
in general, reminiscent of the well-known k-Path and k-Cycle problems which are
NP-complete [45]. Here, the input is a (di)graph G and an integer k, and the objective is
to determine of there is a path (cycle) on at least k-distinct vertices of the graph. These
problems can be solved in 2O(k) · poly(n) time using techniques based on color-coding,
hash-functions and splitters [45, 3, 79]. In particular, we can reduce k-Path to the
following problem in polynomial-time : find a k-path in a colorful graph on n vertices,
whose vertices have been colored with O(poly(k) · log n) colors, such that every vertex
of the k-path has a distinct color. However, for our purposes the construction of the
cycle C in G is a part of the proof of Theorem 6.21 (described in Section 6.3: we show
that in polynomial-time , one can find a cycle in a (d4 + d)-partite digraph, in which
each part has at most d vertices and for any two parts V and V ′ in the digraph, every
vertex in V ′ has an incoming edge from some vertex in V and vice-versa. This implies
that if |LX | > d4 + d, then in polynomial-time , we can determine a cycle C in G that

87

Chapter 6. Almost EFX Allocations with Sublinear Charity

visits each part at most once and then determine a (1− ε)-EFX allocation X ′ >PD X
by applying U3. This also implies that R(d) ≤ d4 + d. Therefore,

Lemma 6.16. Consider a (1−ε)-EFX allocation X. If |LX | > d4+d, then in polynomial-
time , we can determine a (1− ε)-EFX allocation X ′ >PD X.

Putting it together. We give the existence proof and indicate in brackets the changes
required for the polynomial-time algorithm. We start with an empty allocation, which is
trivially a (1−ε)-EFX. Then, our algorithm iteratively maintains a (1−ε)-EFX allocation
X and a pool of unallocated goods. In each iteration, the algorithm first makes EX acyclic
in polynomial-time (Lemma 6.5). Thereafter, our algorithm checks whether any one of the
update rules U1 and U2 is applicable. If U1 is applicable, then our algorithm determines a
(1− ε)-EFX allocation X ′ >PD X. If U2 is applicable, then our algorithm determines an
allocation a (1−ε)-EFX allocationX ′ where vi(X

′
i) ≥ vi(Xi) for all i ∈ [n] and the number

of unallocated goods reduces. If neither U1 nor U2 is applicable, then it determines the sets
HX and LX . By Lemma 6.12, we have |HX | ≤ 2n/(ε ·d). If |LX | ≤ R(d) (|LX | ≤ d4 +d),
then it returns the allocation X. Otherwise it determines a cycle that visits each part of G
at most once and then determines (1−ε)-EFX allocation X ′ >PD X by applying update
rule U3 (by Lemma 6.15). If |LX | > d4 + d, the cycle can be determined in polynomial-
time (Theorem 6.21 in Section 6.3). Therefore, when the algorithm terminates, we have
that |HX | ≤ 2n/(ε · d) and |LX | ≤ R(d), (|LX | ≤ d4 + d) implying that the total number
of unallocated goods is |HX |+ |LX | ≤ 2 ·max(2n/(ε · d),R(d)) (2 ·max(2n/(ε · d), 2d4)).

We now state the explicit value of d, first for the existence proof. We choose d as the
smallest integer such that 2n/(εd) ≤ R(d), i.e, d = h−1(2n/ε). 5 Therefore, the number
of unallocated goods is at most 4n/(ε · h−1(2n/ε)).

For the algorithmic result, we choose d as the smallest integer such that 2n/(ε·d) ≤ 2d4.
Then d = d(n/ε)1/5e and the number of unallocated goods is at most 4d(n/ε)1/5e4. This
is less than 64(n/ε)4/5.

It only remains to show that the algorithm will terminate. We prove a polynomial
bound on the number of iterations. The bound applies to the existence and the algorithmic
version. To this end, note that in each iteration, after removing cycles from EX , our
algorithm determines a new (1 − ε)-EFX allocation X ′ through one of the following
procedures:

• applying U1,

• applying U2,

• determining a cycle C that visits each part in G at most once and then applying
U3.

Note that the initial envy-cycle elimination and subsequent application of all of the above
procedures ensure that vi(X

′
i) ≥ vi(Xi) for all i ∈ [n] (Lemmas 6.5, 6.8, 6.9, 6.10). Thus,

throughout the algorithm the valuation of an agent never decreases. Note that there can-
not be more than m consecutive applications of U2, as the number of unallocated goods de-
creases with each application of U2. Every time we apply U1 or U3, we ensure thatX ′ >PD

5Recall that h(d) = d · R(d) in Definition 6.2 and that h−1(2n/ε) is defined as the smallest integer
such that h(d) ≥ 2n/ε.

88

6.3. Bounds on the Rainbow Cycle Number

X, implying that the valuation of some agent improves by a factor of at least (1 + ε).
Since each agent’s valuation is bounded by W = max i∈[n]vi(M), and the valuation of an
agent never decreases throughout the algorithm, we can have at most poly(n,m,W, 1/ε)
many iterations that involve applications of U1 and U3. Therefore, the total number of
iterations of our algorithm is m · (iterations involving application of U2 or U3) which is
also poly(n,m, logW, 1/ε). Notice that in the algorithmic case, each of the iterations can
also be implemented in polynomial-time : U1 and U2 can be implemented in polynomial-
time (Lemmas 6.8 and 6.9). When |LX | ≥ 2d4 ≥ d4 + d, then in polynomial-time we can
determine the cycle C and apply U3 (Lemma 6.16). We can now state the main result
of this section.

Theorem 6.17. Let h(d) = d ·R(d). Then there is a (1−ε)-EFX allocation X and a set
of unallocated goods P such that |P | ≤ (4n/(ε · h−1(n/(ε))). In polynomial-time , one can
find a (1−ε)-EFX allocation and a set P of unallocated goods such that |P | ≤ 64(n/ε)4/5.

Note that any upper bound on the rainbow cycle number will imply an upper bound
on the number of unallocated goods.

6.3 Bounds on the Rainbow Cycle Number

In this section, we give the proof of Theorem 6.4. We briefly recall the setup: There is
a k-partite digraph G = (∪i∈[k]Vi, EG) such that each part has at most d vertices. For
every distinct parts Vi and Vj , every vertex in Vj has an incoming edge from some vertex
in Vi. There is no cycle in G that visits each part at most once. Our goal is to establish
an upper bound on k.

We now introduce some helpful notations and concepts. For each i ∈ [k], we represent
the vertices in the part Vi as (i, vertex id), i.e, Vi = {(i, 1), (i, 2), . . . , (i, |Vi|)}. For any
positive integer d and a, b ∈ [d], we use σd(a, b) to denote (a − 1) · d + b. Note that
1 ≤ σd(a, b) ≤ d2. The σd(a, b) captures the lexicographic ordering among the pairs
∪a∈[d]∪b∈[d] (a, b). For any Boolean vector u ∈ {0, 1}r, we use u[k] to refer to the kth coor-
dinate of the vector u. We introduce the simple yet crucial notion of representative set for
a set of Boolean vectors. Given a set D of r-dimensional Boolean vectors, the set B ⊆ D is
a representative set of D, if {` | a[`] = 1 for some a ∈ D} = {` | b[`] = 1 for some b ∈ B}.
We first make an observation about the size of B.

Observation 6.18. Given any set D of r-dimensional Boolean vectors, there exists a
representative set B ⊆ D of size at most r.

Proof. For each coordinate ` ∈ [r] we do: if there is a vector a ∈ D with a[`] = 1, we put
one such vector into B. Clearly, |B| ≤ r.

We prove Theorem 6.4 by contradiction. To be precise, we show that if k > d4 + d,
then there exists a cycle in G that visits every part at most once. Moreover, this cycle
can be found in time polynomial in k.

We construct the cycle in two steps. We first show the existence of a part V˜̀ such
that there is a directed cycle that visits only the parts V˜̀, V1, V2, . . . , Vd and moreover
each of the parts V1, V2, . . . , Vd at most once. In the second step we replace the vertices
in V˜̀ in this cycle by vertices in distinct parts.

89

Chapter 6. Almost EFX Allocations with Sublinear Charity

For each ordered pair (i, j) ∈ [d] × [d], and ` ∈ [k] \ [d], we define a d2-dimensional
vector ui,j,` as follows: for all x ∈ [d] and y ∈ [d], we set ui,j,`[σd(x, y)] = 1 if and only if
there exists a path (i, x)→ (`, z)→ (j, y) in G for some (`, z) ∈ V`, i.e., if there exists a
path from vertex (i, x) in Vi to vertex (j, y) in Vj through some vertex in V`. Otherwise,
we set ui,j,`[σd(x, y)] = 0.

Let L = [k]\ [d]. For each ordered pair (i, j) ∈ [d]× [d], we construct the sets Bi,j and
Li,j as follows: For each (i, j) taken in the increasing order of σd(i, j), define Li,j = L and
Bi,j as a representative vector set of {ui,j,` | ` ∈ Li,j} of size at most d2. A set Bi,j of this
size exists because our vectors have dimension d2. Then we set L = L \ {` | ui,j,` ∈ Bi,j}.
At most d2 elements are removed from L in each iteration.

For clarity, we write Lf to denote the set L at the end of the construction. Observe
that |Lf | ≥ 1. This holds since we start with a set of size larger than d4 and removed at
most d2 elements in each of the d2 iterations.

Observation 6.19. Consider distinct ordered pairs (i, j) ∈ [d]× [d] and (i′, j′) ∈ [d]× [d].
The sets {` | ui,j,` ∈ Bi,j} and {` | ui′,j′,` ∈ Bi′,j′} are disjoint.

Proof. Let us assume without loss of generality that σd(i, j) < σd(i
′, j′). Consider any `

such that ui,j,` ∈ Bi,j . Then ` is removed from L at the end of the iteration for the pair
(i, j) and hence does not belong to L at the beginning of the iteration for the pair (i′, j′).
Consequently ui′,j′,` /∈ Bi′,j′ (by definition of Bi′,j′ , if ui′,j′,` ∈ Bi′,j′ , then ` ∈ Li′,j′).

At the end of the construction, we arbitrarily pick a ˜̀∈ Lf (this is possible as Lf 6= ∅).
Now, we make a small observation about the vector ui,j,˜̀ for all i, j ∈ [d].

Observation 6.20. For all i, j ∈ [d], if ui,j,˜̀[q] = 1 for some q ∈ [d2], then there exists

a vector ui,j,l′ ∈ Bi,j such that ui,j,l′ [q] = 1.

Proof. Observe that Lf ⊆ Li,j . Therefore, l̃ ∈ Li,j . By definition, Bi,j is a representative
vector set of {ui,j,` | ` ∈ Li,j}. Therefore, by the definition of representative set, there
exists a vector ui,j,`′ ∈ Bi,j such that ui,j,`′ [q] = 1.

We are now ready for the construction of a cycle that visits each part at most once.
We first show that there exists a cycle C in G that visits only the parts V˜̀, V1, . . . , Vd
and each of the parts V1, . . .Vd at most once, i.e, the only part it may visit more than
once is V˜̀. See Figure 6.2 for an illustration.

Let (˜̀, wd) be an arbitrary vertex in V˜̀. We construct a path

(˜̀, w0)→ (1, v1)→ . . .→ (i−1, vi−1)→ (˜̀, wi−1)→ (i, vi)→ (˜̀, wi)→ . . .→ (d, vd)→ (˜̀, wd)

by starting at (˜̀, wd) and tracing backwards: We start in (˜̀, wd). Assume that we already
traced back to (˜̀, wi) with i = d initially. By the construction of G, there must be an
edge from some vertex (i, vi) in Vi to (˜̀, wi) in V˜̀, and there must be an edge from some

vertex (˜̀, wi−1) in V˜̀ to (i, vi) in Vi. Thus there is the path (˜̀, wi−1)→ (i, vi)→ (˜̀, wi)

in G. We keep continuing this procedure until we reach (˜̀, w0).
Since the part V˜̀ can have at most d vertices, by the pigeonhole principle, there must

be i and j with 0 ≤ i < j ≤ d such that wi = wj . Let C be the subpath from (˜̀, wi) to
(˜̀, wj), i.e.,

C = (˜̀, wi)→ (i+ 1, vi+1)→ (˜̀, wi+1)→ . . .→ (˜̀, wj−1)→ (j, vj)→ (˜̀, wj).

90

6.3. Bounds on the Rainbow Cycle Number

(1,v1)

(2,v2)

(3,v3)

(˜̀,w1)

(˜̀,w2)

(˜̀,w3)

V1

V2

V3

V˜̀

Figure 6.2: Illustration of the first part of the construction. The cycle in the figure
visits the parts V1, V2 and V3 exactly once and the part V˜̀ three times. It is given by

(˜̀, w3)→ (1, v1)→ (˜̀, w1)→ (2, v2)→ (˜̀, w2)→ (3, v3)→ (˜̀, w3).

Observe that C visits all the parts of G except V˜̀ at most once. We now show that
by using “bypass” parts we can make the cycle simple. For clarity, we rewrite C as

C = (i+ 1, vi+1)→ (˜̀, wi+1)→ . . .→ (˜̀, wj−1)→ (j, vj)→ (˜̀, wj)→ (i+ 1, vi+1).

Making the Cycle Simple. For all q ∈ [i+ 1, j] consider the subpath

(q, vq)→ (˜̀, wq)→ (q + 1, vq+1)

of C (index j + 1 is to be interpreted as i + 1). The existence of such a subpath in
G implies that uq,q+1,˜̀[σd(vq, vq+1)] = 1. By Observation 6.20, we know that there is

a vector uq,q+1,`q ∈ Bq,q+1 such that uq,q+1,`q [σd(vq, vq+1)] = 1. This implies that there
exists a part V`q , and a vertex (`q, yq) in part V`q , such that there is a subpath

(q, vq)→ (`q, yq)→ (q + 1, vq+1) .

By Observation 6.19, we have that `q 6= `q′ for all q 6= q′. Therefore we have a simple
cycle C ′ in G that visits each part in G at most once, namely,

C ′ = (i+1, vi+1)→ (`i+1, yi+1)→ · · · → (`j−1, yj−1)→ (j, vj)→ (`j , yj)→ (i+1, vi+1).

91

Chapter 6. Almost EFX Allocations with Sublinear Charity

See Figure 6.3 for an illustration of this entire procedure.
Therefore if k > d4 + d, then there exists a cycle in G that visits each part at most

once. Moreover, this cycle can be found in time polynomial in k. With this we arrive at
the main result of this section.

Theorem 6.21. For all d ≥ 1, we have R(d) ≤ d4+d. Furthermore, Let G be a k-partite
digraph with k > d4 + d parts of cardinality at most d each, such that for every vertex
v and any part W not containing v, there is an edge from W to v. Then, there exists a
cycle in G visiting each part at most once, and it can be found in time polynomial in k.

An improved upper bound on R(d) would imply a better bound on the number of
unallocated goods. However, we show that an exponential improvement (e.g. R(d) ∈
poly(log(d))) is not possible by showing a linear lower bound, i.e., R(d) ≥ d. However,
this still leaves room for polynomial improvement and we suspect that R(d) ∈ O(d). This
would imply the existence of a (1− ε)-EFX allocation with O(

√
n/ε) many goods unal-

located. For a polynomial-time algorithm, the construction of a cycle as in Theorem 6.21
would have to be polynomial-time . However, we remark that this is an initiation study
for determining (1 − ε)-EFX allocations with sublinear number of unallocated goods
and we use concepts like the group champion graph that are natural extensions of the
champion graph. We believe that this still leaves room for developing more sophisticated
concepts and techniques that may reduce the number of unallocated goods to o(

√
n/ε).

Lower bound on R(d). We show that R(d) ≥ d. We construct a d-partite graph
G = (∪i∈[d]Vi, E) such that each part Vi has d vertices, for all pairs of parts Vi and Vj ,
every vertex in Vj has an incoming edge from a vertex in Vi and vice-versa, and there
exists no cycle that visits each part at most once.

We now define the edges in G. Let Vi = {(i, 0), (i, 1), . . . , (i, d− 1)}. Consider any i
and j such that i < j . For each 0 ≤ ` ≤ d− 1, we have an edge from (i, `) in Vi to (j, `)
in Vj and there is an edge from (j, `) in Vj to (i, (`+ 1) mod d) in Vi (see Figure 6.4 for
an illustration). One can easily verify that for all parts Vi and Vj , every vertex in part
Vj has an incoming edge from part Vi and vice-versa. It suffices to show that G admits
no cycle that visits each part at most once.

V1 V2

(1,0)

(1,1)

(2,0)

(2,1)

V1 V2 V3

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(3,0)

(3,1)

(3,2)

Figure 6.4: Illustration of the construction of d-partite graph G that satisfies all the
conditions in Definition 6.2, for d = 2 (left) and d = 3 (right).

92

6.4. Finding Efficient (1− ε)-EFX Allocations with Sublinear Charity

Lemma 6.22. There exists no cycle in G that visits each part at most once.

Proof. We prove by contradiction. Assume that there is a cycle C = (i1, `1)→ (i2, `2)→
· · · → (ir, `r)→ (i1, `1) that visits each part at most once, i.e., i1 6= i2 6= · · · 6= ir. From
here on, all the indices are modulo r. Note that by the construction of the edges of G,
for all q ∈ [r], we have `q+1 = `q if iq < iq+1 and `q+1 = (`q + 1) mod d if iq > iq+1. Let
#1 = {q ∈ [r] | iq > iq+1} (recall that r + 1 is 1). The existence of the cycle C in G
implies that `1 = (`1 + #1) mod d.

Since i1 6= i2 6= · · · 6= ir and there exists the cycle C in G, there are indices q′ and
q′′ such that iq′ > iq′+1 and iq′′ < iq′′+1, further implying that 1 ≤ #1 ≤ r − 1. Since G
has d parts, we have r ≤ d, implying that 1 ≤ #1 ≤ d − 1. However this implies that
(`1 + #1) mod d 6= `1, which is a contradiction.

6.4 Finding Efficient (1 − ε)-EFX Allocations with Sublin-
ear Charity

We note that like the algorithms in [36, 84], our algorithm is flexible with the initialization,
i.e., starting with any initial (1−ε)-EFX allocation X, it can determine a final (1−ε)-EFX

allocation Y with at most O((n/ε)
4
5) many goods unallocated and vi(Yi) ≥ vi(Xi) for

all i ∈ [n]. This is consequence of the fact that the valuation of an agent never decreases
throughout our algorithm. Therefore, our algorithm maintains the welfare of the initial
allocation. Thus, if we choose the initial (1 − ε)-EFX allocation carefully, we can also
guarantee high Nash welfare for our final (1 − ε)-EFX allocation with sublinear many
goods unallocated. To this end, we use an important result from Caragiannis et al. [27]
about determining partial EFX allocations with high Nash welfare in polynomial-time .

Theorem 6.23 ([27]). In polynomial-time , we can determine a partial EFX allocation
X such that NW (X) ≥ 1/(2.88) · NW (X∗) where X∗ is the Nash welfare maximizing
allocation.6

Let X be the partial EFX allocation that achieves a 2.88 approximation of the Nash
welfare. We run our algorithm starting with X as the initial allocation. The final (1− ε)-
EFX allocation with sublinear many unallocated goods is also a 2.88 approximation of
the Nash welfare as the valuations of the agents in the final allocation is at least their
valuations in X. Therefore, we have the following theorem,

Theorem 6.24. In polynomial-time , we can determine a (1− ε)-EFX allocation with

O((n/ε)
4
5) goods unallocated. Furthermore, NW (X) ≥ 1/(2.88) ·NW (X∗).7

6In fact, the result in [27] show the existence of partial EFX allocations that achieve a 1/2 approxi-
mation of the Nash welfare. However, in polynomial-time , one can only find a partial EFX allocation
with a 1/2.88 approximation of the Nash welfare.

7Note that using the existence of partial EFX allocations with 1/2 approximation to Nash welfare,

one can also claim the existence of a (1− ε)-EFX allocation X with O((n/ε)
4
5) goods unallocated such

that NW (X) ≥ 1/2 ·NW (X∗).

93

Chapter 6. Almost EFX Allocations with Sublinear Charity

6.5 Limitations of the Approach from Chapter 5

In Chapter 5, an algorithmic proof to the existence of EFX allocations is shown for three
agents with additive valuations. We briefly sketch the proof technique in Chapter 5 and
then highlight why it does not work for determining a (1− ε)-EFX allocations with just
four agents. Let the three agents be a, b and c and for any allocation X, let φ(X) be the
vector 〈va(Xa), vb(Xb), vc(Xc)〉. The algorithm starts with an empty allocation which
is trivially EFX and as long as there is an unallocated good, the algorithm determines
another EFX allocation X ′ such that φ(X ′) is lexicographically larger than φ(X), i.e.,
either va(X

′
a) > va(Xa) or va(X

′
a) = va(Xa) and vb(X

′
b) > vb(Xb) or va(X

′
a) = va(Xa),

vb(X
′
b) = vb(Xb) and vc(X

′
c) > vc(Xc). We now show that such a technique cannot be

used to show the existence of (1− ε)-EFX allocations for four agents.

Theorem 6.25. There exists an instance I with four agents, {a, b, c, d} with additive
valuations, nine goods {gi | i ∈ [9]} and a partial (1− ε)-EFX allocation X on the goods
∪i∈[8]gi, such that in all complete (1− ε)-EFX allocation, the valuation of agent a will
be strictly less than her valuation in X. This shows that for any complete (1− ε)-EFX
allocation Y , we have φ(X) is lexicographically larger than φ(Y).

We now elaborate the instance used in Theorem 6.25. We remark that our instance
builds on the instance in Chapter 5, that is used to show the existence of a partial
EFX allocation which is not Pareto-dominated by any complete EFX allocation. The
full description of our instance is captured by Table 6.1. We choose our ε � 1. The
sub-instance defined by the agents b, c and d, and the goods ∪i∈[6]gi ∪ g9 is the instance
in Chapter 5 used to show the existence of a partial EFX allocation which is not Pareto-
dominated by any complete EFX allocation. We now specify the allocation X.

Xa = {g7, g8} Xb = {g2, g3, g4}
Xc = {g1, g5} Xd = {g6}

The good g9 is unallocated. We will show that in any complete (1− ε)-EFX allocation,
agent a cannot have both g7 and g8. This would imply that agent a’s valuation in any final
(1− ε)-EFX allocation is strictly less than her valuation in X (as agent a’s valuation for
all goods other than g7 and g8 is zero). We prove this claim by contradiction. So assume
that Y is a complete (1 − ε)-EFX allocation and {g7, g8} ⊆ Ya. Note that vb(g7) = 31,
vc(g7) = 29, and vd(g7) = 19. Since Ya contains at least one other good namely g8, each
of the agents b, c and d need to be allocated bundles that they value at least 31, 29 and
19 respectively.

First, consider the case that g6 ∈ Yb. Then we have vb(Yb) ≥ 34. Now, to ensure
vd(Yd) ≥ 19, we need to allocate g5 and g9 to d, as d values all the other goods zero. We
are left with goods g1, g2, g3 and g4. In order to ensure vc(Yc) ≥ 29, we definitely need
to allocate g1, g3 and g4 to c. Now, even if we allocate the remaining good g2 to b, we
have vb(Yb) = vb({g2, g6}) = 38 < (1− ε) · 40 = (1− ε) · vb({g1, g3}) ≤ (1− ε) · vb(Yc \ g4).
Therefore, b will strongly envy c. Thus g6 /∈ Yb.

If g6 /∈ Yb and vb(Yb) ≥ 31, Yb must contain g3 (the total valuation for b of all the
goods other than g3, g6, g7 and g8 is less than 31). Now we consider some more subcases.

Let us first assume that g1 ∈ Yb. Since Yb already contains g1 and g3, the goods that
can be allocated to c and d are g2, g4, g5, g6, and g9. In order to ensure vc(Yc) ≥ 29 we

94

6.5. Limitations of the Approach from Chapter 5

need to allocate g4, g5, and g9 to c. Now, even if we allocate all the remaining goods (g2
and g6) to d, we have vd(Yd) = vd({g3, g6}) = 20 < (1− ε) · 22 = (1− ε) · vd({g5, g7}) ≤
(1− ε) · vd(Yc \ g4). Therefore, d will strongly envy c.

Thus g1 /∈ Yb. Since neither g1 nor g6 belongs to Yb, the only way to ensure vb(Yb) ≥ 31
is to at least allocate g2, g3, and g4 to b (we can allocate more). Similarly, given that the
goods not allocated yet are g1, g5, g6, and g9, the only way to ensure vc(Yc) ≥ 29 is to
allocate at least g1 and g5 to c. Similarly, the only way to ensure vd(Yd) ≥ 19 now is to
allocate at least g6 to d. Now we only have to allocate g9. We show that adding g9 to
any one of the existing bundles will cause a violation of the (1− ε)-EFX property.

• Adding g9 to Ya: b, c and d strongly envies a as vb(Yb) = 32 < (1 − ε) · 33 =
(1 − ε) · vb({g7, g9}) ≤ (1 − ε) · vb(Ya \ g8). Similarly we have vc(Yc) = 30 <
(1 − ε) · 35 = (1 − ε) · vc({g7, g9}) ≤ (1 − ε) · vc(Ya \ g8) and vd(Yd) = 20 <
(1− ε) · 23 = (1− ε) · vd({g7, g9}) ≤ (1− ε) · vd(Ya \ g8).

• Adding g9 to Yb: c strongly envies b as vc(Yc) = 30 < (1 − ε) · 32 = (1 − ε) ·
vc({g3, g4, g7}) = (1− ε) · vc(Yb \ g2).

• Adding g9 to Yc: d strongly envies c as vd(Yd) = 20 < (1 − ε) · 22 = (1 − ε) ·
vd({g5, g9}) = (1− ε) · vd(Yc \ g1).

• Adding g9 to Yd: b strongly envies d as vb(Ya) = 32 < (1−ε) ·34 = (1−ε) ·vb(g6) =
(1− ε) · vb(Yd \ g9).

This shows that {g7, g8} 6⊆ Ya for any complete (1 − ε)-EFX allocation Y . This
implies that agent a’s valuation in Y is strictly less than her valuation in X, implying
that φ(X) is lexicographically larger than φ(Y). This shows that the approach from
Chapter 5 cannot be generalized to guarantee (1 − ε)-EFX allocation when there are
four or more agents.

95

Chapter 6. Almost EFX Allocations with Sublinear Charity

(1,v1)

(2,v2)

(3,v3)

(˜̀,w1)

(˜̀,w2)

(˜̀,w3)

(`1,y1)

(`2,y2)

(`3,y3)

V1

V2

V3

V˜̀

V`1

V`2

V`3

Figure 6.3: Illustration of the existence of a cycle that visits every part at most once.
We take the instance in Figure 6.2, where there exists a cycle C that visits every part
other than V˜̀ at most once. The edges of the cycle C are light gray color in color. The
figure shows how to obtain a cycle C ′ that visits every part at most once from C. The
edges of C ′ are blue in color. For all i ∈ [3], we replace the subpath in C of the form
(i, vi) → (˜̀, wi) → (i + 1, vi+1) (3 + 1 is to be interpreted as 1) by (i, vi) → (`i, yi) →
(i+ 1, vi+1) to get C ′.

96

6.5. Limitations of the Approach from Chapter 5

g1 g2 g3 g4 g5 g6 g7 g8 g9

a 0 0 0 0 0 0 6 4 0

b 16 4 24 4 0 34 31 0 2

c 10 0 18 8 20 0 29 0 6

d 0 0 0 0 18 20 19 0 4

Table 6.1: An instance where showing that the technique in Chapter 5 cannot be used
to determine (1−ε)-EFX allocations with four agents. In particular, given a (1−ε)-EFX
allocation X and the unallocated good g9, there is no complete (1− ε)-EFX allocation
where the valuation of agent a does not strictly decrease, i.e., in any complete (1−ε)-EFX
allocations Y , we have va(Ya) < va(Xa).

97

Chapter 6. Almost EFX Allocations with Sublinear Charity

98

PART II

Fair and Efficient Allocation of Divisible
Bads

100

CHAPTER 7

Competitive Equilibrium with Divisible
Bads

In this Chapter, we study the existence and computational complexity of competitive
equilibrium with divisible chores (bads) in one of the most fundamental economic model–
the exchange model. The exchange model is like a barter system, where each agent
brings a bundle of chores that needs to be completed and exchanges them with others to
optimize their (dis)utility. For example, a set of university students teaching each other
in a group study, to optimize the time and effort required. A competitive equilibrium is
a set of prices (one for each chore) and an allocation of the chores to the agents where
all chores are completely assigned and each agent gets its most preferred bundle subject
to the price of her initial bundle.

We assume that agents have linear disutility (cost) functions, i.e., the disutility of an
agent is

∑
j dijXij , where dij is the disutility agent i gets from doing a unit amount of

chore j, and Xij indicates the amount of chore j that agent i does. Clearly, an agent can
do a chore within a reasonable amount of time only if she has the skill set required for it.
For example, a professor trained in computer science (CS) can teach a CS course in the
upcoming semester, but may not have skill set to teach a course in music. This essentially
boils down to not allocating certain chores to certain agents. In case of goods, this is
achieved by specifying zero utility values to some items, and its analogue for chores is
specifying infinite disutility. Thus, we allow an agent to have infinite disutility for some
chores, which is unlike the model in [22], where every agent is assumed to have finite
disutility for every chore. We now formally define the Arrow-Debreu model with chores.

7.0.1 Model and Notations

A chore division problem consists of a set of m divisible chores (bads), namely B =
{b1, . . . , bm}, and a set of n agents A = {a1, . . . , an}. Each agent ai has d(ai, bj) ∈ (0,∞]
disutility (pain) for doing unit amount of chore bj .

1 Here, infinite disutility implies that
the agent does not have required skill set to do the chore in a reasonable amount of time.
If agent ai is assigned bundle Xi = 〈Xi1, . . . , Xim〉 ∈ Rm≥0 where Xij is the amount of
chore bj she gets, then her total disutility is di(Xi) =

∑
j∈[m] d(ai, bj) · Xij . We study

the problem under exchange model, where agent ai brings w(ai, bj) amount of chore bj
to be done (by herself or other agents).

Given prices p = 〈p(b1), p(b2), . . . , p(bm)〉 ∈ Rm≥0 for chores, where p(bj) denotes the
payment for doing unit amount of chore bj , agent ai needs to earn

∑
j∈[m]w(ai, bj) ·

p(bj) in order to pay to get her own chores done. In this light, we define the feasi-
ble set of chores that can be allocated to agent ai, at the price vector p, as Fi(p) =

1If d(ai, bj) is zero, then chore bj can be safely assigned to agent ai and can be removed from the
instance.

Chapter 7. Competitive Equilibrium with Divisible Bads

{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥

∑
j∈[m]w(ai, bj) · p(bj)

}
. She can earn this amount by

doing other chores, while minimizing her disutility – this defines her optimal bundle (or
optimal chore set).

OB i(p) = arg max
Xi∈Fi(p)

di(Xi). (7.1)

It is easy to see that in her optimal bundle agent ai gets assigned only those chores
that minimizes her disutility per dollar earned and agent i earns money exactly equal to
the total price of her endowments. Formally, if Xi ∈ OB i(p), then,

∀j ∈ [m], Xij > 0 ⇒ d(ai, bj)

p(bj)
≤
d(ai, bj′)

p(bj′)
∀j′ ∈ [m],

and ∑
j∈[m]

Xij · p(bj) =
∑
j∈[m]

w(ai, bj) · p(bj).

In the above ratios, to deal with zero prices and infinite disutilities we assume that
∞/a > b/0 for any a, b ≥ 0. Clearly, an optimal bundle of an agent contains only those
chores for which she has finite disutility.

Price vector p is said to be at competitive equilibrium (CE) if all chores are completely
assigned when every agent gets her optimal bundle, i.e., Xi ∈ OB i(p) for all i ∈ [n] and∑

i∈[n]Xij =
∑

i∈[n]w(ai, bj), for all j ∈ [m]. It is without loss of generality to assume
that each chore is available in one unit total, i.e. for each bj ∈ B,

∑
i∈[m]w(ai, bj) = 1

(through appropriate scaling of the disutility values). We now formally describe our
problem.

Definition 7.1 (Chore Division in the Arrow-Debreu Model). Given a set of agents
A = {a1, a2, . . . , an}, chores B = {b1, b2, . . . , bm}, disutilities d(·, ·) and endowments
w(·, ·), our goal is to find a price vector p = 〈p(b1), p(b2), . . . , p(bm)〉 ∈ Rm≥0 and allocation
X = 〈X1, X2, . . . , Xn〉, such that

• Every agent gets their optimal bundle: Xi ∈ OB i(p).

• All chores are completely allocated:
∑

i∈[n]Xij =
∑

i∈[n]w(ai, bj) for all bj ∈ B.

Observe that the equilibrium prices are scale invariant: if p is an equilibrium price
vector then so is α · p for any positive scalar α. Furthermore, at equilibrium p(bj) > 0 for
each chore j, otherwise no agent would be willing to do it. A competitive equilibrium
〈p,X〉 has many desirable properties like envy-freeness and Pareto optimality in the chore
division with equal income [22]. Similarly, competitive equilibrium for the exchange model
too satisfies Pareto optimality and weighted envy-freeness2.

Fisher Model and CEEI. The Fisher model is a special case of exchange model,
where instead of the endowment of chores, each agent ai has a requirement of earn-
ing a fixed amount of money e(ai) ≥ 0, i.e., the only change is in the definition of
the feasible set of chores that can be allocated to an agent at a given price vector p,

2Weight of an agent at given prices is the total monetary cost of the chores she brings. Naturally,
higher the cost of her chores (more money she has to earn), larger is her share of disutility.

102

Fi(p) =
{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥ e(ai)

}
. If e(ai) = 1 for all ai ∈ A then resulting

equilibrium is called competitive equilibrium with equal income. Clearly, CEEI is a special
case of the Fisher model. Observe that determining competitive equilibrium in the Fisher
model, can be modeled as determining competitive equilibrium in the exchange model,
by setting w(ai, bj) = e(ai) for each ai ∈ A and bj ∈ B, while keeping the disutility
values as is. Therefore, similar to the case with divisible goods, we have that

CEEI ⊂ competitive equilibrium in the Fisher model ⊂ competitive equilibrium in the
Arrow-Debreu model.

The existence and computational complexity of competitive equilibrium is well-
understood in the case of goods for different utility functions (check Chapter 2). In
case of linear utilities, there is a simple (polynomial-time verifiable) necessary and suffi-
cient condition for checking existence [58, 46], the set of equilibria is convex, and there
are many (strongly) polynomial-time algorithms [66, 95, 50, 49, 63]. For the case of
chores, [22, 23] study the Fisher model (special case of exchange), and they show that
the set of competitive equilibrium could be non-convex. However, despite all these funda-
mental differences to the setting with divisible goods, neither polynomial-time algorithms
nor hardness results have been obtained so far. The first question we consider is:

Question 1. Like in the case of goods, are there polynomial-time verifiable necessary and
sufficient conditions for the existence of a competitive equilibrium in the Arrow-Debreu
model with chores?

Our first result answers the above question negatively. We show that the problem of
checking the existence of a competitive equilibrium is strongly NP-hard.3 This rules out
obtaining polynomial-time verifiable necessary and sufficient condition unless P=NP.4

Therefore, the next best hope is to obtain weakest possible sufficiency conditions that
also capture interesting instances, leading to the next question.

Question 2. Are there polynomial-time verifiable sufficient conditions that guarantee the
existence of a competitive equilibrium with chores? And, can we compute a competitive
division in polynomial-time under them?

Our next set of results addresses the above question. First we show existence under
two conditions. The first condition, known as strong connectivity of the exchange graph,
is an artifact of the exchange model, and is required in case of goods as well [75]; if a set
of agents can consume only a strict subset of the chores that they cummulatively bring
then no prices can ensure demand equals supply. The second sufficiency condition relies
on the structure of the disutility matrix. The second condition dictates that for any two
agents, the sets of chores towards which they have finite disutility is either identical or
disjoint. While this condition is specific to chores, it is simple, polynomial-time verifiable,
and seems to be unavoidable (see Example 7.6).

Next we show that for instances satisfying the sufficiency conditions computing
a competitive equilibrium is PPAD-hard. This comes as a surprise given (strongly)

3We note that our NP-hardness result also holds for the competitive equilibrium with equal incomes
(CEEI) model, which is a special case of Fisher. And, additionally it holds even for constant-approximate
CEEI.

4In turn, the condition for the existence that is polynomial-time checkable may not be unique.

103

Chapter 7. Competitive Equilibrium with Divisible Bads

polynomial algorithms in the case of goods, since both the problems are very similar.
At a high-level, our proof builds on the approaches of [37, 38] that show hardness for
the goods case under more general utility functions exhibiting non-monotonicity. In our
case, we deal with linear disutility functions, which do not have non-monotonicity. We
need to use properties of the chore division problem intricately to construct gadgets and
make them work together, e.g., higher priced chores are more valuable; clearly this is not
possible with goods. To the best of our knowledge, these are the first hardness results for
the chore division problem, and in fact for any economic model under linear preferences.
We now formally describe the results.

7.0.2 Overview of Our Results and Techniques

In this section we discuss the high-level ideas and techniques used to prove our main re-
sults. We first note that in general, a chore division instance may not admit a competitive
equilibrium as demonstrated by the following example.

Example 7.2. There are two agents a1 and a2, and two chores b1 and b2. We have
w(ai, bj) = 1 for all i, j ∈ [2], and d(a1, b1) = d(a2, b1) = 1, and d(a1, b2) = ∞ and
d(a2, b2) = 2. Let p(b1) and p(b2) be the prices of the chores at a competitive equilibrium.

Observe that since d(a1, b2) = ∞, a1 earns her entire money of w(a1, b1) · p(b1) +
w(a1, b2) · p(b2) from b1. Therefore, at a competitive equilibrium, the total price of the
chore b1 is at least the total money earned by a1: (w(a1, b1)+w(a2, b1))·p(b1) ≥ (w(a1, b1)·
p(b1) +w(a1, b2) · p(b2)). This implies that 2 · p(b1) ≥ p(b1) + p(b2), further implying that
p(b1) ≥ p(b2). In that case observe that the disutility to price ratio of b2 is strictly less
than that of b1 for a2: d(a2, b1)/p(b1) = 1/p(b1) < 2/p(b1) ≤ 2/p(b2) = d(a2, b2)/p(b2).
Thus, none of the agents are willing to do chore b2, and therefore it remains unassigned,
a contradiction.

It is well known that in the Arrow-Debreu model, a competitive equilibrium may not
exist while dividing goods as well. In fact, there are polynomial-time checkable necessary
and sufficient conditions for existence of competitive equilibrium with goods. The next
natural question is to obtain similar conditions for the chore division as well. However,
in Section 7.1 we prove the following theorem.

Theorem 7.3. Determining whether an instance I of chore division in the Fisher model
admits a competitive equilibrium is strongly NP-hard.

The above theorem rules out obtaining polynomial-time checkable necessary and
sufficient conditions for existence of competitive equilibrium unless P=NP.5 The next
best hope is to design weakest possible conditions that ensures competitive equilibrium
and captures interesting class of instances. To this end, we derive two conditions.

The first condition is an artifact of the exchange setting, and is required for dividing
goods as well [75, 92]: if a set of agents are interested to consume only a strict subset of
the endowment that they cumulatively own, then no prices can ensure demand equals
supply. We now define a condition that helps us resolve this issue 6. To define the
condition, we first define the economy graph of a given instance of chore division.

5In turn there is no unique condition that ensures CE.
6In fact, Condition 1 is the analogue of the necessary and sufficient condition required for competitive

equilibrium to exist in exchange markets with goods

104

Definition 7.4 (Economy Graph [75]). Given an instance I = 〈A,B, d(·, ·), w(·, ·)〉, an
Economy Graph G = (A,E) is a graph, with vertices corresponding to the agents and
there exists an edge from ai to aj if and only if there exist a chore c ∈ B, such that
w(ai, c) > 0 and d(aj , c) 6=∞.

Now we define the first condition.

Definition 7.5 (Condition 1 [75]). The economy graph of the instance is strongly con-
nected.

Observe that our instance in 7.2 does satisfy Condition 1, yet does not admit a
competitive equilibrium. The primary reason for non-existence of equilibrium in 7.2 is
that sets {b ∈ B | d(a1, b) 6=∞} and {b ∈ B | d(a2, b) 6=∞} are neither same nor disjoint.
Next by generalizing this example we demonstrate that unless the finite disutility chore
sets of any two agents are either identical or disjoint, a competitive equilibrium may not
exist. In particular, given any integer n > 1 andm > 1, we create a chore division instance
with n agents and m chores that satisfies Condition 1, has exactly one agent-chore pair
with infinite disutility, and does not admit a competitive equilibrium.

Example 7.6. There are n agents a1, a2, . . . , an, and m chores b1, b2, . . . , bm. We set
w(ai, bj) = 1 for all i ∈ [n] and j ∈ [m]. So there is a total of n units of each chore
bj, for all j ∈ [m]. Now, we set d(ai, bj) = 1 for all i ∈ [n] and j ∈ [m − 1]. We set
d(ai, bm) = nm for all i ∈ [n− 1] and d(an, bm) =∞.

Since w(ai, bj) = 1, for all i ∈ [n] and j ∈ [m], the instance in Example 7.6 does
satisfy Condition 1 (the economy graph of the instance is a clique). Observe that since all
the agents have the same disutility for the chores ∪j∈[m−1]bj, the prices of all these chores
will be the same at a competitive equilibrium (otherwise some of the chores will remain
unallocated). Therefore, let p be the price of a chore bj for j ∈ [m−1], and p′ be the price
of the chore bm at a competitive equilibrium. Since an has infinite disutility for bm, she
will earn her entire money of

∑
j∈[m]w(an, bj) · p(bj) = (m− 1) · p+ p′ from the chores

in ∪j∈[m−1]bj. Therefore, at a competitive equilibrium, the total price of the chores in
∪j∈[m−1]bj is at least the total money earned by an, i.e., total prices of the chores owned
by agent an, implying that

∑
j∈[m−1]

∑
i∈[n]w(ai, bj)·p(bj) ≥

∑
j∈[m]w(an, bj)·p(bj). This

implies that (m−1) ·n ·p ≥ (m−1) ·p+p′, further implying that (m−1) · (n−1) ·p ≥ p′.
In that case observe that the disutility to price ratio of bm is strictly less than that of
b1 for any agent ai, for i ∈ [n − 1]: d(ai, b1)/p(b1) = 1/p ≤ ((n− 1) · (m− 1))/p′ <
nm/p′ = d(ai, bm)/p(bm). Thus, none of the agents are willing to do chore bm, and it
remains unallocated, a contradiction.

Our next condition is to circumvent the primary issue in Example 7.6 that results
in the non-existence of a competitive equilibrium. To this end, we define the disutility
graph D = (A ∪ B,ED) as the bipartite graph with the set of agents A and the set
of chores B forming the independent sets and there is an edge from an a ∈ A to a
b ∈ B when d(a, b) 6= ∞. Examples 7.2 and 7.6 demonstrate that whenever there is a
connected component D′ of D which is not a biclique, there exists disutility values for
which the instance will not admit a competitive equilibrium. This brings us to our second
sufficiency condition.

Definition 7.7 (Condition 2). The disutility graph is a disjoint union of bicliques.

105

Chapter 7. Competitive Equilibrium with Divisible Bads

We show as the second main result of this chapter, that Conditions 1 and 2 guarantees
the existence of a competitive equilibrium.

Theorem 7.8. A chore division instance satisfying Conditions 1 and 2 admits a com-
petitive equilibrium.

The proof of existence of a competitive equilibrium under these two conditions makes
use of Kakutani as well as Brower fixed-point theorems in non-trivial ways. To start with,
unlike the known existence proofs for the goods setting, the simplex domain of prices
does not seem to suffice here. Secondly, zero priced chores pose the issue of un-defined
demand sets for the agents. We fix this issue by introducing a more complicated domain
of the prices and while maintaining the new price-domain we come up with a novel
Kakutani’s fixed point formulation that invokes Brower’s fixed-point within it. This tool
may be of independent interest to show the existence of equilibrium for other related
settings.

Observe that both conditions 1 and 2 are simple and polynomial-time verifiable.
However, we show that computing a competitive equilibrium for instances that satisfy
Conditions 1 and 2, is PPAD-hard. This is in sharp contrast to the competitive equilib-
rium with goods, where there exists a strongly polynomial algorithm [63] to compute a
competitive equilibrium for instances that satisfy the necessary and sufficient conditions7.

Theorem 7.9. Finding a competitive equilibrium in a chore division instance satisfying
Conditions 1 and 2, is PPAD-hard.

Roadmap of the Chapter. The rest of the chapter is dedicated to proving Theo-
rems 7.3, 7.8 and 7.9. In Section 7.1, we show that the determining whether an arbitrary
instance of chore division admits a competitive equilibrium is NP-hard (proof of Theo-
rem 7.3). Then, in Section 7.2, we show the proof of existence of a competitive equilibrium
in instances satisfying the sufficiency conditions (proof of Theorem 7.8). Finally, in Sec-
tion 7.3, we show the PPAD-hardness of determining a competitive equilibrium on
instances that satisfy the said sufficiency conditions (proof of Theorem 7.9).

7.1 Complexity of Determining the Existence of a Com-
petitive Equilibrium

In this section, we show that determining whether an instance of chore division admits a
competitive equilibrium or not is strongly NP-hard. In fact, we show that even determin-
ing whether the instance admits a good approximation of a competitive equilibrium in the
Fisher model is strongly NP-hard. Now, we formally define the problem of determining
an α-approximate competitive equilibrium in the Fisher model.

Definition 7.10 (α-Competitive Equilibrium in Chore Division in the Fisher Model).
Given a set of agents A = {a1, a2, . . . , an}, chores B = {b1, b2, . . . , bm}, disutilities d(·, ·)
and fixed earnings e(·), our goal is to find a price vector p = 〈p(b1), p(b2), . . . , p(bm)〉 ∈
Rm≥0 and allocation X = 〈X1, X2, . . . , Xn〉, such that

7the condition analogous to our Condition 1

106

7.1. Complexity of Determining the Existence of a Competitive Equilibrium

• Every agent gets their optimal bundle: Xi ∈ OB i(p)
8.

• All chores are almost completely allocated: α ·
∑

i∈[n]w(ai, bj) ≤
∑

i∈[n]Xij ≤
1
α ·
∑

i∈[n]w(ai, bj) for all bj ∈ B.

We show that finding a (1112 + δ)-competitive equilibrium with chores for any δ > 0
in the Fisher model is strongly NP-hard. This will imply that determining a (1112 + δ)-
competitive equilibrium in the exchange setting is also strongly NP-hard. Later, in this
section we also extend the method to show NP-hardness for finding a (1112 +δ)-competitive
equilibrium even in the CEEI setting. In particular, any polynomial-time algorithm that
determines whether an instance admits a (1112 + δ)-competitive equilibrium in the Fisher
model will give a polynomial-time algorithm for 3-SAT.

We quickly recall the 3-SAT problem:

Problem 7.11. (3-SAT)
Given: A set of variables X = {x1, x2, . . . , xn} and a set of clauses C = {C1, C2, . . . , Cm}
where each clause is a disjunction of exactly three literals9.
Find: An assignment A : X → {T, F} such that all the clauses are satisfied10 or output
that no such assignment exists.

Given any instance I = 〈X,C〉 of 3-SAT, we will create an instance E(I) of chore
division such that for any δ > 0, there exists an (1112 + δ)-competitive equilibrium in E(I)
if and only if there exists an assignment A that satisfies all the clauses in C in I. We first
briefly sketch the intuition, before we move to the construction of the gadgets required
for our reduction.

Several Disconnected Equilibria. We sketch a very simple scenario that could arise
in chore division in the Fisher model: Consider an instance with two agents a1 and a2
with a fixed earning of one unit each and two chores b1 and b2. The disutility values are
given below where a1 has a disutility of 1 for b1 and 3 for b2, while a2 has a disutility of
∞ for b1 and 1 for b2.

b1 b2

a1 1 3

a2 ∞ 1

Let p = 〈p(b1), p(b2)〉 be an equilibrium price vector. Also, throughout this section
we use the notation MPBa to denote the minimum pain per buck bundle for agent a at

the prices p: a chore b ∈ MPBa if and only if d(a,b)
p(b) ≤

d(a,b′)
p(b′) for all other chores b′ in the

instance. Observe that this small instance exhibits exactly two competitive equilibria:

8Recall that in the Fisher model, we have a subtle difference in the definition of Fi(p) (and consequently

OB i(p)). We have OB i(p) = arg max
Xi∈Fi(p)

di(Xi), where Fi(p) =
{
Xi ∈ Rm≥0 |

∑
j∈[m]Xij · p(bj) ≥ e(ai)

}
9A literal is a variable or the negation of a variable

10A clause Cr = `1 ∨ `2 ∨ `3, where each `i is a literal, is satisfied if and only if A(`i) = T for at least
one i ∈ [3].

107

Chapter 7. Competitive Equilibrium with Divisible Bads

• The first competitive equilibrium is when both p(b1) and p(b2) are set to 1. Note
that only MPBa1 = {b1} and MPBa2 = {b2}. Thus a1 earns her entire one unit of
money from b1 and a2 earns her entire one unit of money from b2.

• The second competitive equilibrium is when a1 earns from both b1 and b2. For
this we set p(b1) to 1/2 and p(b2) to 3/2. Note that MPBa1 = {b1, b2} and
MPBa2 = {b2}. Under these prices, a2 earns her entire money by doing 2/3 of b2,
and a1 earns her money by doing all of b1 and 1/3 of b2.

Also, observe that there exists no competitive equilibrium at any other set of prices.
This is a striking difference to the scenario with only goods to divide, where all competitive
equilibrium exists at a unique price vector. Now, let us introduce another agent a3 and
another chore b3 in the instance. Let us say that a3 has a fixed earning of one unit, and
both agents a1 and a2 have a disutility of ∞ towards b3. We now discuss two scenarios
that may arise depending on a3’s disutility towards the chores b1, b2 and b3:

(1) a3 has a disutility of 1 towards b3 and b2, and ∞ towards b1.

(2) a3 has a disutility of 1 towards b3,
1
2 towards b1 and ∞ towards b2.

We will now show that, at a competitive equilibrium, in scenario (1), b2 /∈ MPBa1

and in scenario (2), b2 ∈ MPBa1 , suggesting that depending on the valuation of a3, only
one local equilibrium among the agents a1, a2 and chores b1 and b2 is admissible at a
competitive equilibrium. Let p(b1), p(b2) and p(b3) denote the prices of chores at an
equilibrium. Note that since both a1 and a2 have a disutility of ∞ for b3, they only earn
money from b1 and b2. Thus p(b1) + p(b2) ≥ 2. Note that in both scenarios b3 should be
in MPBa3 as a3 is the only agent with finite disutility towards it. Now,

• In scenario (1): Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3)

≤ d(a3,b2)
p(b2)

or equivalently
1

p(b3)
≤ 1

p(b2)
, implying that p(b3) ≥ p(b2). This in turn implies that

p(b2) + 2 ≤ p(b2) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)

≤ p(b1) + p(b2) + p(b3) (as p(b2) ≤ p(b3))
= 3.

Thus we have p(b2) ≤ 1, implying that p(b1) ≥ 1 (as p(b1) + p(b2) ≥ 2). Therefore,
we can conclude that b2 /∈ MPBa1 as the disutility to price ratio of b1 is strictly
less than that of b2 for agent a1.

• In scenario (2): Since b3 ∈ MPBa3 , we have d(a3,b3)
p(b3)

≤ d(a3,b1)
p(b1)

, we have 1
p(b3)

≤ 1
2p(b1)

,

implying that p(b3) ≥ 2p(b1). This in turn implies that

2p(b1) + 2 ≤ 2p(b1) + (p(b1) + p(b2)) (as p(b1) + p(b2) ≥ 2)

≤ p(b1) + p(b2) + p(b3) (as 2p(b1) ≤ p(b3))
= 3.

Thus we have p(b1) ≤ 1
2 , implying that p(b2) ≥ 3

2 . Therefore, the disutility to price
ratio of b2 is at most that of b1 for agent a1 and thus we conclude that b2 ∈ MPBa1 .

108

7.1. Complexity of Determining the Existence of a Competitive Equilibrium

Thus, as mentioned earlier, the valuations of the agents outside the local sub-instance
formed by agents a1, a2 and chores b1, b2, impose a specific local equilibrium (among the
two disjoint local equilibria) in the sub-instance. We will now show that when there are
n such local sub-instances (resulting in 2n disjoint equilibria), finding the correct local
equilibria becomes intractable.

7.1.1 Variable Gadgets

For each variable xi, we introduce two agents ai1 and ai2 and two chores bi1 and bi2. We
set

d(ai1, b
i
1) = 1, d(ai1, b

i
2) = 3,

d(ai2, b
i
1) =∞, d(ai2, b

i
2) = 1.

See Figure 7.1 for an illustration. We set the earnings of both ai1 and ai2 to be one, i.e.,
e(ai1) = e(ai2) = 1. Also, for all i ∈ [n] agents ai1 and ai2 have a disutility of ∞ for all
other goods in the instance (that have been introduced and will be introduced by clause
gadgets in the next subsection).

7.1.2 Clause Gadgets

For each clause Cr = (`i ∨ `j ∨ `k), where `i is either the variable xi or its negation ¬xi,
we introduce four agents nri , n

r
j , n

r
k and nr, and three chores mr

i , m
r
j , and mr

k. We define
the disutility of the agents as follows: For each literal `i, if

• `i = xi, then,

d(nri , b
i
2) = 1 and d(nri ,m

r
i) = ε

d(nr, bi2) = 1 and d(nr,mr
i) = ε.

for some 0 < ε� 1, but 1
ε ∈ O(1).

• `i = ¬xi, then,

d(nri , b
i
1) = 2

3 and d(nri ,m
r
i) = 4ε

3

d(nr, bi1) = 2
3 and d(nr,mr

i) = 4ε
3 .

For all other agents and chores pair, the disutility is∞. See Figure 7.1 for an illustra-
tion. We set e(nri) = e(nrj) = e(nrk) = ε and e(nr) = #(Cr) · (ε2) + #(Cr) · (ε)− ε′, where

#(Cr) is the number of literals in Cr that are not negations of variables and #(Cr) is
the number of literals in Cr that are negations of variables 11, and ε′ < ε

2 (the exact
value of ε′ will depend on δ 12 and will be made clear in the proof of Lemma 7.14). We
make a small claim about the total earning requirements for the agents nri , n

r
j , n

r
k and

nr.

11This implies that #(Cr) + #(Cr) = 3
12Reminder to what δ is: recall that we are trying to show the hardness of determining whether an

instance admits a (11
12

+ δ)-competitive equilibrium or not.

109

Chapter 7. Competitive Equilibrium with Divisible Bads

ai1

ai2

bi1

bi2

1

1

3

aj1

aj2

bj1

bj2

1

1

3

ak1

ak2

bk1

bk2

1

1

3

nri nrj nrkmri mrj mrkε

4ε
3

ε

1
2
3 1

nr

ε
4ε
3

ε
1

2
3

1

Figure 7.1: Illustration of the variable gadgets corresponding to xi, xj and xk, and the
clause gadget Cr = (xi ∨¬xj ∨ xk). The red squared nodes represent the agents and the
green circle nodes represent the chores. Only finite disutility values have been indicated.
The disutility edges from agents in the variable gadgets are outlined by blue edges. The
disutility edges from agents nr` for ` ∈ {i, j, k} are outlined by orange edges and the
disutility edges from agent nr are outlined by black edges. Thicker disutility edges have
a higher disutility than the thinner disutility edges of the same color.

Claim 7.12. For each clause Cr = `i∨`j∨`k in I, we have e(nri)+e(nrj)+e(nrk)+e(nr) =

#(Cr) · (3ε2) + #(Cr) · (2ε)− ε′

Proof. We have,

e(nri) + e(nrj) + e(nrk) + e(nr) = 3ε+ #(Cr) · (ε2) + #(Cr) · (ε)− ε′

= (#(Cr) + #(Cr))ε+ #(Cr) · (ε2) + #(Cr) · (ε)− ε′

= #(Cr) · (3ε2) + #(Cr) · (2ε)− ε′

We now show how to map any allocation in E(I) to an assignment of variables in I.
Consider any money allocation f under some prices p in E(I), i.e., if agent i does Xij

amount of chore j, then f(i, j) = Xij · p(j).

If agent ai1 does some of chore bi2, i.e., f(ai1, b
i
2) > 0, then we set xi to F and if

f(ai1, b
i
2) = 0, then we set xi to T .

We now make some basic observations.

Observation 7.13. Let p be the prices of chores and f be the money allocation corre-
sponding to a competitive equilibrium in E(I). Consider any clause Cr = (`i ∨ `j ∨ `k).
Then,

(1) if `i = xi and f(ai1, b
i
2) > 0 then p(mr

i) ≥ 3ε
2 , and

(2) if `i = ¬xi and f(ai1, b
i
2) = 0, then p(mr

i) ≥ 2ε.

110

7.1. Complexity of Determining the Existence of a Competitive Equilibrium

Proof. We first prove part 1. If f(ai1, b
i
2) > 0, then bi2 ∈MPBai1

, implying that
d(ai1,b

i
2)

p(bi2)
≤

d(ai1,b
i
1)

p(bi1)
. Therefore, we have that p(bi2) ≥

d(ai1,b
i
2)

d(ai1,b
i
1)
· p(bi1) = 3p(bi1). Also, note that since

agents ai1 and ai2 have finite disutility only for chores bi1 and bi2, they will only earn
from chores bi1 and bi2. This implies that p(bi1) + p(bi2) ≥ e(ai1) + e(ai2) = 2. Also, since
p(bi2) ≥ 3p(bi1) we have that p(bi2) ≥ 3/2. Now, observe that the only agents who have
finite disutility towards mr

i are the agents nri and nr. Since `i = xi, both nri and nr have
a disutility of 1 towards bi2 and ε towards mr

i . Therefore, for mr
i to be in either MPBnri

or MPBnr , we need ε
p(mri)

≤ 1
p(bi2)

≤ 2
3 . This implies that p(mr

i) ≥ 3ε
2 .

The proof of part 2 is very similar. Note that agent ai1 has finite disutility only for
chores bi1 and bi2. If f(ai1, b

i
2) = 0, then she only earns her required money of e(ai1) by

doing chore bi1, implying that p(bi1) ≥ e(ai1) = 1. Similar to the proof in part 1, observe
that the only agents who have finite disutility towards mr

i are the agents nri and nr.
Since `i = ¬xi, both nri and nr have a disutility of 2

3 towards bi1 and 4ε
3 towards mr

i .
Therefore, for mr

i to be in either MPBnri
or MPBnr , we need 4ε

3p(mri)
≤ 2

3p(bi1)
≤ 2

3 (as

p(b1i) ≥ 1). This implies that p(mr
i) ≥ 2ε.

Lemma 7.14. If there is no satisfying assignment to the instance I = 〈X,C〉 of 3-SAT,
then E(I) does not admit any (1112 + δ)-competitive equilibrium for any δ > 0.

Proof. We prove by contradiction. Assume otherwise and let p be the equilibrium prices
of chores and f be the corresponding money allocation. Recall the mapping from an
equilibrium allocation to the assignment of variables: For each i ∈ [n], if f(ai1, b

i
2) > 0,

then we set xi to F and if f(ai1, b
i
2) = 0, then we set xi to T . Since I admits no satisfying

assignment, there exists a clause Cr = `i ∨ `j ∨ `k which is unsatisfied. For every literal
`i ∈ Cr such that `i = xi, note that xi is F . Therefore, we have that f(ai1, b

i
2) > 0.

This implies that p(mr
i) ≥ 3ε

2 (by Observation 7.13). Similarly, for every literal `i in Cr
such that `i = ¬xi, note that xi is T . Therefore, we have that f(ai1, b

i
2) = 0, implying

that p(mr
i) ≥ 2ε (by Observation 7.13). We write the price of chore mr

i , p(m
r
i) as

3ε
2 + δ(mr

i) if `i = xi and 2ε + δ(mr
i) if `i = ¬xi, where δ(mr

i) is the deviation of
the price of mr

i from its lower bound. Therefore, we have p(mr
i) + p(mr

j) + p(mr
k) =

#(Cr) · (3ε2) + #(Cr) · (2ε) + δ(mr
i) + δ(mr

j) + δ(mr
k). Note that the only agents who have

finite disutility for chores mr
i , m

r
j and mr

k are the agents nri , n
r
j , n

r
k and nr. However, by

Claim 7.12, we have that e(nri) + e(nrj) + e(nrk) + e(nr) = #(Cr) · (3ε2) + #(Cr) · (2ε)− ε′
which is strictly less that the sum of prices of chores mr

i , m
r
j and mr

k. In particular we
have,

∑
h∈{i,j,k} p(m

r
h) − (

∑
h∈{i,j,k} e(n

r
h) + e(nr)) = ε′ +

∑
h∈{i,j,k} δ(m

r
h). Therefore,

there exists at least one chore mr
h′ with h′ ∈ {i, j, k} such that the difference between

the total price of the chore and the total money earned from the chore by the agents is
ε′+

∑
h∈{i,j,k} δ(m

r
h)

3 ≥ ε′+δ(mr
h′)

3 . Thus, the portion of chore mr
h′ left undone is at least,

=
ε′ + δ(mr

h′)

3 · p(mr
h′)

≥
ε′ + δ(mr

h′)

3 · (2ε+ δ(mr
h′))

(as p(mr
h′) is either 3ε

2 + δ(mr
h′) or 2ε+ δ(mr

h′))

≥ ε′

3 · (2ε)
(as ε′ <

ε

2
).

111

Chapter 7. Competitive Equilibrium with Divisible Bads

Since our reduction works for any choice of ε′ < ε
2 , we can choose an ε′ such that

ε′

(6ε) >
1
12 − δ, implying that we do not have a (1112 + δ)-competitive equilibrium, which is

a contradiction.

Lemma 7.15. If there exists a satisfying assignment to the instance I = 〈X,C〉 of
3-SAT, then E(I) admits a competitive equilibrium.

Proof. Consider any satisfying assignment in I. We now show how to construct the prices
p and the money allocation f corresponding to a competitive allocation. We will ensure
that the agents in the variable gadgets earn only from the chores in the variable gadgets
and the agents in the clause gadgets earn only from the chores in the clause gadgets.

Prices and Allocation of Chores in Variable Gadgets. For each variable xi,

• If xi = T , then we set p(bi1) = 1 and p(bi2) = 1.

• If xi = F , then we set p(bi1) = 1
2 and p(bi2) = 3

2 .

Since the agents in the variable gadgets have finite disutility only for some goods in
the variable gadgets (and have disutility of ∞ for every good in the clause gadget) we
can already define their optimal bundles (MPB bundles). If xi = T , then observe that
MPBai1

=
{
bi1
}

and MPBai2
=
{
bi2
}

. Thus, agent ai1 earns 1 unit of money from doing

chore bi1 entirely and agent ai2 earns 1 unit of money by doing chore bi2 entirely. When
xi = F , then observe that MPBai1

=
{
bi1, b

i
2

}
and MPBai2

=
{
bi2
}

. Thus, agent ai1 earns

1 unit of money from doing chore bi1 entirely and bi2 partly (1/3 of chore bi2) and agent
ai2 earns 1 unit of money by doing chore bi2 partly (2/3 of chore bi2). Now we make an
immediate, simple observation:

Observation 7.16. When xi = T , then f(ai1, b
i
2) = 0 and when xi = F , we have

f(ai1, b
i
2) > 0.

Observe that all the local sub-instances corresponding to the variable gadgets have
cleared. It suffices to show that there exists a competitive equilibrium for local sub-
instances corresponding to the clause gadgets. We now look into the agents and chores
in the clause gadget.

Prices and Allocation of Chores in Clause Gadgets. Consider a clause Cr =
`i ∨ `j ∨ `k. Let Sr ⊆ {`i, `j , `k} be the literals that evaluate to T 13 and Ur ⊆ {`i, `j , `k}
be the set of literals that evaluate to F under the assignment X. Since X is a satisfying
assignment, at least one of the literals will evaluate to T and thus |Sr| ≥ 1 and |Ur| ≤ 2.
Let #(Sr) and #(Ur) be the number of literals in Sr and Ur respectively that are not
negations of variables and similarly let #(Sr) and #(Ur) be the number of literals that
are negations of variables in Sr and Ur respectively. Let αr be a scalar such that

αr · (#(Ur) · 3ε2 + #(Ur) · (2ε)) = |Ur| · ε+ e(nr) (7.2)

13A literal `i = xi evaluates to T if xi is set to T and the literal `i = ¬xi evaluates to T when xi is
set to F .

112

7.1. Complexity of Determining the Existence of a Competitive Equilibrium

We now set the prices of the chores in the clause gadgets. Consider any clause Cr =
`i ∨ `j ∨ `k in I (with Sr and Ur defined appropriately). For every literal `θ ∈ Sr, set,

p(mr
θ) =


ε if `θ = ¬xθ,
ε if `θ = xθ and Ur 6= ∅,
ε+ e(nr)

#(Sr)
if `θ = xθ and Ur = ∅.

For every `θ ∈ Ur, set

p(mr
θ) =

{
αr · (3ε2) if `θ = xθ
αr · (2ε) if `θ = ¬xθ.

We will now show that under the above prices for the chores in the clause gadgets,
we can determine a money flow where all the clause agents earn all of their money from
their optimal bundles and all the clause chores will be completed. We distinguish two
cases, depending on whether Ur = ∅ or not,

Case Ur 6= ∅: In this case, we first observe that αr is strictly larger than 1:

Observation 7.17. We have well defined scalar αr > 1.

Proof. Since we are in the case where Ur 6= ∅, we have #(Ur) · 3ε2 + #(Ur) · (2ε) > 0, thus
αr is well defined. For the claim of the lemma, it suffices to show that |Ur| · ε+ e(nr) >
#(Ur) · 3ε2 + #(Ur) · (2ε). To this end,

|Ur| · ε+ e(nr) = (#(Ur) + #(Ur)) · ε+ e(nr)

= (#(Ur) + #(Ur)) · ε+ #(Cr) · ε2 + #(Cr) · (ε)− ε′ . (7.3)

Since the literals that are not negations of variables in Ur are also not negations of
variables in Cr we have #(Ur) ≤ #(Cr). By a similar argument we also have #(Ur) ≤
#(Cr). Since |Ur| ≤ 2 we also have #(Ur)+#(Ur) < #(Cr)+#(Cr), implying that either
#(Ur) < #(Cr) or #(Ur) < #(Cr). Therefore, we have that #(Cr) · ε2 + #(Cr) · (ε) ≥
#(Ur) · ε2 + #(Ur) · (ε) + ε

2 . Plugging this inequality in (7.3), we have

|Ur| · ε+ e(nr) ≥ (#(Ur) + #(Ur)) · ε+ #(Ur) · ε2 + #(Ur) · (ε) + ε
2 − ε

′

> (#(Ur) + #(Ur)) · ε+ #(Ur) · ε2 + #(Ur) · (ε) (as ε′ < ε
2)

= #(Ur) · 3ε2 + #(Ur) · (2ε) .

We now characterize the optimal bundles (MPB chores) for each agent in the clause
gadget under the set prices.

Observation 7.18. For each literal `θ ∈ Sr, we have mr
θ ∈ MPBnrθ

.

Proof. We consider the cases, whether the `θ = xθ or `θ = ¬xθ.

• `θ = xθ: Note that the only other chore (other than mr
θ) for which agent nrθ has

finite disutility is chore bθ2. Since `θ ∈ Sr, this means that xθ = T and therefore

113

Chapter 7. Competitive Equilibrium with Divisible Bads

we have p(bθ2) = 1 (the way we assigned the prices to the chores in the variable
gadgets). Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
ε

ε

= 1

=
d(nrθ, b

θ
2)

p(bθ2)
.

Therefore mr
θ ∈ MPBnrθ

.

• `θ = ¬xθ: Note that the only other chore (other than mr
θ) for which agent nrθ has

finite disutility is chore bθ1. Since `θ ∈ Sr, this means that xθ = F and therefore
we have p(bθ1) = 1

2 (the way we assigned the prices to the chores in the variable
gadgets). Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
4ε

3ε

=
4

3

=
2

3 · 12

=
d(nrθ, b

θ
1)

p(bθ1)
.

Therefore, mr
θ ∈ MPBnrθ

.

This implies that for all literals `θ in Sr, the agent nrθ will earn her entire money of
ε by doing the chore `θ entirely. Therefore, now we only need to look at the agents nrθ
and chores mr

θ where `θ ∈ Ur. To this end we observe that,

Observation 7.19. For each literal `θ ∈ Ur, we have mr
θ ∈ MPBnrθ

and mr
θ ∈ MPBnr .

Proof. We first show that mr
θ ∈ MPBnrθ

. We make a distinction based on whether `θ = xθ
or `θ = ¬xθ.

• `θ = xθ: In this case we have p(mr
θ) = αr · (3ε2). Note that the only other chore

(other than mr
θ) for which agent nrθ has finite disutility is chore bθ2. Since `θ ∈ Ur,

this means that xθ = F and therefore we have p(bθ2) = 3
2 (the way we assigned the

prices to the chores in the variable gadgets). Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
1

αr
· ε3ε

2

=
1

αr
· 2

3
(7.4)

=
1

αr
·
d(nrθ, b

θ
2)

p(bθ2)

<
d(nrθ, b

θ
2)

p(bθ2)
. (as αr > 1 by Observation 7.17)

114

7.1. Complexity of Determining the Existence of a Competitive Equilibrium

• `θ = ¬xθ: In this case we have p(mr
θ) = αr · (2ε). Note that the only other chore

(other than mr
θ) for which agent nrθ has finite disutility is chore bθ1 (the way we

assigned the prices to the chores in the variable gadgets). Since `θ ∈ Ur, this means
that xθ = T and therefore we have p(bθ1) = 1. Now observe that,

d(nrθ,m
r
θ)

p(mr
θ)

=
1

αr
· 4ε

3 · 2ε

=
1

αr
· 2

3
(7.5)

=
1

αr
·
d(nrθ, b

θ
1)

p(bθ1)

<
d(nrθ, b

θ
1)

p(bθ1)
. (as αr > 1 by Observation 7.17)

Thus, in both cases we have mr
θ ∈ MPBnrθ

.

We will now show that mr
θ ∈ MPBnr as well. We do this by showing that the disutility

to price ratio of the chores mr
θ, when `θ ∈ Ur, is minimum for the agent nr. To this

end, first crucially observe that from (7.4) and (7.5), irrespective of whether `θ = xθ or

`θ = ¬xθ, we have
d(nrθ,m

r
θ)

p(mrθ)
= 1

αr
· 23 . Also, note that the disutility profile agent nr has

for chore mr
θ and the chores in the variable gadget of xθ (bθ1 and bθ2) is identical to the

disutility profile of agent nrθ for the same set of chores. Therefore, for all `θ ∈ Ur we have
d(nr,mrθ)

p(mrθ)
= 1

αr
· 23 (irrespective of whether `θ = xθ or `θ = ¬xθ) which is also strictly less

than both
d(nr,bθ2)

p(bθ2)
and

d(nr,bθ1)

p(bθ1)
. We now look at disutility to price ratio that agent nr has

for chores in Sr. Observe that for all `β ∈ Sr we have p(mr
β) = ε and d(nr,mr

β) ≥ ε (as

the disutility is ε if `β = xβ and is 4ε
3 if `β = ¬xβ). This implies that for all `β ∈ Sr we

have
d(nr,mrβ)

p(mrβ)
≥ 1 > 2

3 >
1
αr
· 23 (as αr > 1 by Observation 7.17). Therefore, the disutility

to price ratio of the chores mr
θ, when `θ ∈ Ur, for agent nr is 1

αr
· 23 which is at most the

disutility to price ratio of all the chores for which nr has finite disutility . Therefore, we
have

⋃
`θ∈Ur m

r
θ ⊆ MPBnr .

Now that we have identified the MPB chores for all the agents in the clause gadgets,
we are ready to show the money flow allocation. We set

f(nrθ,m
r
θ) = ε (for all `θ ∈ Cr)

f(nr,mr
θ) = p(mr

θ)− ε . (for all `θ ∈ Ur)

All agents spend on their corresponding MPB chores. Observe that for all `θ ∈ Sr, the
agents nrθ earn their money of ε by doing chore mr

θ completely. Now, for all `θ ∈ Ur,
the agents nrθ earn their money of ε by doing chore mr

θ partially. The agent nr earns
her entire money by completing whatever is left of the chores in

⋃
`θ∈Ur m

r
θ after agents

∪`θ∈Urnrθ do their share. It only suffices to show that agent nr earns exactly e(nr). To
this end, we observe that the total money earned by nr is

115

Chapter 7. Competitive Equilibrium with Divisible Bads

∑
`θ∈Ur

f(nr,mr
θ) =

∑
`θ∈Ur

(p(mr
θ)− ε)

= αr · (#(Ur) · 3ε2 + #(Ur) · (2ε))− |Ur| · ε
= e(nr) . (by (7.2))

Therefore, we have an allocation where the agents in the corresponding variable
gadgets earn their money by completing the chores in the variable gadgets and the
agents in the clause gadget earn their entire money by completing the chores in the
clause gadgets. This concludes the proof for the case Ur 6= ∅.

Case Ur = ∅: In this case, we have that all the literals in the clause Cr belongs to the
set Sr. Therefore, for all the literals `θ occurring in Cr, we have,

p(mr
θ) =

{
ε if `θ = ¬xθ,
ε+ e(nr)

#(Sr)
if `θ = xθ

Like earlier, we will identify the MPB chores for all the clause gadget agents and then
will outline a money flow allocation where every agent earns all her money and all the
chores are completed. We first look into the agents nrθ. Very similar to Observation 7.18,
we can claim that mr

θ ∈ MPBnrθ
with a very similar argument as the one used in the

proof of Observation 7.18: The agent nrθ has finite disutility only for chores mr
θ and bθ2 if

`θ = xθ, and only for chores mr
θ and bθ1 if `θ = ¬xθ, and the price of the chore p(mr

θ) is
at least ε (it is more if `θ = xθ), while the prices of chores b1θ and b2θ are the same as in
Observation 7.18.

Now, let us consider agent nr. Since the disutility profile of agent nr is identical to
that of nrθ, when restricted to chores bθ1, b

θ
2 and mr

θ, we can conclude that the disutility
to price ratio of mr

θ for nr is at most that of chores bθ1 and bθ2. Now observe that the

disutility to price ratio of all chores mr
θ for nr where `θ = xθ is

d(nr,mrθ)

p(mrθ)
= ε

p(mrθ)
≤ 1 (as

p(mr
θ) = ε+ e(nr)

#(Sr)
), while the disutility to price ratio all chores mr

θ for nr where `θ = ¬xθ
is

d(nr,mrθ)

p(mrθ)
= 4ε

3p(mrθ)
> 1 (as p(mr

θ) = ε). Since nr has finite disutility only for the chores

in the clause gadget of Cr and the chores in the corresponding variable gadgets, we can
claim that

⋃
{θ|`θ=xθ}m

r
θ ⊆ MPBnr . Now, that we have identified the MPB chores for

the agents in the clause gadget, we outline a money flow,

f(nrθ,m
r
θ) = ε (for all `θ)

f(nr,mr
θ) = p(mr

θ)− ε . (for all `θ = xθ)

All the agents spend on their corresponding MPB chores. Observe that for all `θ, the
agents nrθ earn their entire money of ε by doing chore mr

θ (partially if `θ = xθ and
completely when `θ = ¬xθ). The agent nr earns her entire money by completing whatever
is left of the chores in

⋃
{θ|`θ=xθ}m

r
θ. It only suffices to show that agent nr earns exactly

116

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

e(nr). To this end, we observe that the total money earned by nr is∑
{θ|`θ=xθ}

f(nr,mr
θ) =

∑
{θ|`θ=xθ}

(p(mr
θ)− ε)

= #(Sr) ·
(
ε+

e(nr)

#(Sr)
− ε
)

= e(nr).

Therefore, we have an allocation where the agents in the variable gadgets earn their
money by completing the chores in the variable gadgets and the agents in the clause
gadgets earn their entire money by completing the chores in the clause gadgets. This
concludes the proof for the case Ur = ∅.

This brings us to the main result of this section.

Theorem 7.20. Determining an (1112 + δ)-competitive equilibrium, for any δ > 0, in
chore division in the Fisher model is strongly NP-hard.

Proof. Given any instance I = 〈X,C〉 of 3-SAT, in polynomial-time we can construct
an instance E(I) of chore division comprising of all variable gadgets and clause gadgets.
Also, observe all the entries in the disutility matrix d(·, ·) and the money vector e(·) are
constants (Thus all input parameters can be expressed with polynomial bit size in unary
notation). Lemma 7.14 implies that we have a (1112 + δ)-competitive equilibrium only
if I is satisfiable and Lemma 7.15 implies that if I is satisfiable, then E(I) admits a
competitive equilibrium (and thus also a (1112 + δ)-competitive equilibrium).

Remark 7.21. Note that every instance of chore division in the Fisher model 〈A,B, d(·, ·),
e(·)〉, where e(a) is an integer for all a ∈ A, can be transformed into an instance
I ′ = 〈A′, B, d′(·, ·)〉 of chore division in the CEEI model (where e(a) = 1 for all a ∈ A′)
by creating e(a) many identical copies (having the exact same disutility profile) of the
agent a ∈ A (the good set remains unchanged): Every α-competitive equilibrium in I ′

will also be an α-competitive equilibrium in I. Observe that in our instance E(I), we
can scale the earning functions of all the agents by some large scalar γ(ε, ε′) to make
the earnings of the agents integral. Again, since e(a) ∈ O(1) and 1

ε ,
1
ε′ ∈ O(1), we have

|A′| = O(|A|) and all the input parameters of A′ (all entries in the disutility matrix
d′(·, ·)) can be expressed with polynomial bit size in unary notation. Therefore, finding
an (1112 + δ)-competitive equilibrium, for any δ > 0, in chore division in the CEEI model
is also strongly NP-hard.

7.2 Sufficiency Conditions for the Existence of a Compet-
itive Equilibrium

In this section, we show the existence of a competitive equilibrium under the conditions
mentioned in Section 7.0.2. Recall the sufficiency conditions.

Condition 1: The economy graph G of the instance is strongly connected, and

Condition 2: D is a disjoint union of bicliques D1, D2, . . . , Dd for some d ≥ 1.

117

Chapter 7. Competitive Equilibrium with Divisible Bads

Let I denote all the instances of chore division that satisfy Condition 1 and Condition
2. We now show that all instances in I admit a competitive equilibrium. The proof of
existence is very involved and thus we first give a brief overview of the same.

7.2.1 Overview of the Proof

Most equilibrium existence results [80, 8] are based on either Brouwer’s or Kakutani
fixed-point theorems. The Brouwer’s (Kakutani’s) fixed-point theorem says that given a
function (correspondence) φ from D to itself, there exists an x ∈ D such that f(x) = x
(x ∈ f(x)), if f is continuous (has closed graph) and D is convex and compact [25, 68].
Our proof invokes both Brouwer’s and Kakutani’s fixed-point theorems, the former nested
inside the later. This approach may be of independent interest to prove existence in other
settings.

We first briefly discuss why existence proofs for determining a competitive equilibrium
with goods do not easily extend to chores, and this will eventually lead us to the new
approach. Most existence proofs for determining a competitive equilibrium with goods
define a fixed-point formulation on the domain of prices that forms a simplex [8, 75], i.e.,
if there are m goods, then the domain is the simplex ∆m = {p ∈ Rm≥0 |

∑m
j=1 pj = 1}.

Given the prices, it computes optimal bundles of agents and adjusts prices based on
excess demand. At a fixed-point, no change in prices will imply no excess demand, leading
to a competitive equilibrium.

This approach immediately fails for the chore division problem due to the issue of
infeasible optimal bundle: Given a price vector from the simplex domain, if agent ai’s
chore endowment has positive total monetary cost (

∑
j∈[m]w(ai, bj) · p(bj) > 0) while

the chores she is able to do have zero prices (all p(bj) = 0 for all bj s.t. d(ai, bj) is finite),
then there is no way she can earn enough money to pay for her chores, in turn making
the set Fi(p) in (7.1) empty. The reason why this issue does not arise in case of goods is
that, there, the agents are allowed to spend at most the total price of their endowments
(for bads it is at least), thereby reversing the inequality in the definition of the set Fi(p),
which ensures that the all zero vector in Rm≥0 is always a feasible vector.

To resolve the above issue, first we need to work with more involved price domain
that ensures that total monetary cost of the chores and endowments is the same inside
every component of the disutility graph. Recall the bipartite disutility graph D =
(A∪B,ED) where there is an edge (a, b) ∈ ED if and only if d(a, b) 6=∞. Let D1 = (A1∪
B1, ED1), D2 = (A2 ∪B2, ED2), . . . , Dd = (Ad ∪Bd, EDd) be the connected components
of D. Then, our new price domain is,

P =

p ∈ Rm≥0 |
∑
j∈[m]

p(bj) = 1 and
∑
b∈Bk

p(b) =
∑
a∈Ak

∑
j∈[m]

w(a, bj)p(bj) ∀k ∈ [d]


(7.6)

Now observe that if for any agent a ∈ Ak, for some k ∈ [d], the chores she is interested
in (the set Bk), have zero prices, then the total price of her endowment is also zero as
p ∈ P. In this case, agent a need not earn anything. As a result, she does not need to
do any chore and the all zero vector in Rm≥0 is a feasible optimal chore set for agent a.
Therefore, for any price vector p ∈ P, for any agent i, we have that the set Fi(p) is not
empty and neither is the optimal bundle set in (7.1). However, there is still an issue with

118

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

zero prices, a different one: It can be the case that for some component (Ak ∪Bk, EDk),
the prices of all the chores in Bk are zero, and prices of all the chores that agents in
Ak bring are also zero. In that case, the optimal bundle of any agent a ∈ Ak consists
of only the all zero vector because none of them have to earn anything! However, this
will make the optimal bundle set change non-continuously with respect to prices, which
is a major roadblock in proving continuity like property (the closed graph property)
for the fixed-point formulation: for instance consider a simple scenario where there is
a component Dk in the disutility graph comprising of just one agent a and one chore
b. Agent a has some positive endowment of only one chore b′ 6= b, say w(a, b′) = 1 and
w(a, j) = 0 for all other j ∈ B. Now, consider a sequence of price-vectors (pn)n∈N in P,
such that pn(b′) = pn(b) = 1/n. Observe that for every n ∈ N, the optimal bundle of
agent a is Xab = 1 and Xat = 0 for all other t ∈ B, as the only chore a is interested in is
b, and she has to do one unit of b, to earn her money of w(a, b′) · p(b′) = 1 · (1/n) = 1/n.
However, at the limit of the sequence (pn)n∈N, say p∗, we have p∗(b) = p∗(b

′) = 0 and the
only unique optimal bundle for agent a is the all zero vector in Rm≥0. Thus, the optimal
bundle may not change continuously with the price-vectors in P.

To fix the above issue, we define extended optimal bundle set, which is same as the
optimal bundle set of an agent ai ∈ Ak, if the total price of the chores in Bk is strictly
positive, otherwise it is the set of all feasible allocations of chores in Bk. This will help
us ensure continuity of the final correspondence. However, we will have to make sure
that at the fixed-point, the extended optimal bundle is the optimal bundle for every agent
(one way to do this is to ensure that there are no zero prices at the fixed point). For the
allocations, we will work with the following domain: for some sufficiently large constant
C, we define

X = {X ∈ Rmn≥0 | 0 ≤ Xij ≤ C, ∀ai ∈ A,∀bj ∈ B} (7.7)

Then the set of extended optimal bundles of an agent ai ∈ Ak is:

EOB i(p) =

{
{Xi ∈ X | Xij > 0 only if d(ai, bj) 6=∞} if

∑
b∈Bk p(b) = 0,

OB i(p) otherwise.
(7.8)

Fixed-point formulation. The domain of our fixed point formulation is S = P×X. Next,
we define a correspondence φ : S → 2S that is the product of two correspondences
φ1 : S → 2P and φ2 : S → 2X. For a given (p,X) ∈ S, φ(p,X) = φ1(p,X) × φ2(p,X).
Out of these, φ2(p,X) is the set of extended optimal bundles at prices p. Formally,

φ2(p,X) = {X ∈ X | Xi ∈ EOB i(p), ∀ai ∈ A}

The exact formulation of φ1 is involved and requires to invoke Brouwer’s fixed-point
theorem. Therefore, let us first state the properties of φ1 that we need to ensure, and
discuss how they help us map fixed-points of φ to the competitive equilibria of the chore
division instance. For a given (p,X) ∈ S, if p′ ∈ φ1(p,X), then it must be that

• p′ ∈ P and for all components Dk = (Ak ∪ Bk, EDk) of the disutility graph, and
chores bj and bj′ in Bk, where p(bj′) > 0, we have

p′(bj)

p′(bj′)
=

p(bj) + max (
∑

i∈[n]w(ai, bj)−
∑

i∈[n]Xij , 0)

p(bj′) + max (
∑

i∈[n]w(ai, bj′)−
∑

i∈[n]Xij′ , 0)
. (7.9)

119

Chapter 7. Competitive Equilibrium with Divisible Bads

Fixed-points to a competitive equilibrium. Let (p,X) be a fixed-point of φ, i.e., (p,X) ∈
φ(p,X). We first show that at any fixed-point, the prices of all the chores are strictly
positive. To the contrary, suppose p(bj) = 0 for some bj ∈ B, and let bj belong to
componentDk = (Ak∪Bk, EDk) of the disutility graphD. We claim that some component
of D has chores with both zero and positive prices: Either it is Dk itself, or if all the chores
in Dk have zero prices, then using the fact that p ∈ P, we have

∑
ai∈Ak

∑
j∈[m]w(ai, bj) ·

p(bj) =
∑

bj∈Bk p(bj) = 0. This implies that the prices of all the chores owned by agents
in Dk are zero, and some of them must belong to other components due to the strong
connectivity of the economy graph (Condition 1). Recursing this argument, and also using
the fact that sum of all the prices is 1, there must be a component with a zero priced
chore, but the sum of prices of the chores in the component is positive, say component
D` = (A` ∪B`, ED`).

Let b0 and b+ be the chores in D` with p(b0) = 0 and p(b+) > 0. For every agent in
ai ∈ A`, their EOB i(p) = OB i(p), since total price of the chores in B` is positive (by
(7.8)). Since every ai ∈ D` has finite disutility for both b0 and b+ (due to sufficiency
Condition 2), her disutility-per-buck for b0 is strictly more than that for b1. Due to
(7.1), if Xi ∈ OBi(p) then Xib0 = 0 for all i ∈ A`. Since, every agent a /∈ A` have
infinite disutility for b0, we have that Xib0 = 0 for all i ∈ [n]. Since our correspondence
φ satisfies (7.9), and p(b0) = 0 and p(b+) > 0, we have,

0 =
p(b0)

p(b+)
=

p(b0) + max (
∑

i∈[n]w(ai, b
0)−

∑
i∈[n]Xib0 , 0)

p(b+) + max (
∑

i∈[n]w(ai, b+)−
∑

i∈[n]Xib+ , 0)

=
0 +

∑
i∈[n]w(ai, b

0)

p(b+) + max (
∑

i∈[n]w(ai, b+)−
∑

i∈[n]Xib+ , 0)

> 0, a contradiction.

Therefore, at a fixed point, there is no chore with a zero price. Now, we briefly de-
scribe why fixed-point (p,X) correspond to the prices and allocation at a competitive
equilibrium. Let rj(X) denote the amount of the chore bj left undone under X, i.e.,
rj(X) = max (

∑
i∈[n]w(ai, bj)−

∑
i∈[n]Xij , 0). Since all chores have positive price at p,

extended optimal bundle set of every agent is her optimal bundle set (by (7.8)) and
thereby X ∈ φ2(p,X) ensures that Xi ∈ OBi(p) for every agent ai ∈ A. Now we only
need to ensure demand meets supply for every chore. If not, then some chore bj in
component Dk, which is not completed, i.e., rj(X) > 0. Since p ∈ P, we have that the
cumulative price of the endowments of the agents in a component of the disutility graph
equals the total price of the chores in the same component. Since every agent spends on
their optimal bundle, the cumulative price of the endowments of the agents equals the
total earning of that agents in Ak from Bk. Therefore, if one chore bj is underdone, i.e.,
rj(X) > 0, there there exists some other chore bj′ is overdone, i.e., rj′(X) = 0. Again

using (7.9), we have
p(bj)
p(bj′)

=
p(bj)+rj(X)
p(bj′)+rj′ (X) >

p(bj)
p(bj′)+rj′ (X) =

p(bj)
p(bj′)

, a contradiction.

Our next task is to define the correspondence φ1, so that for any given (p,X) ∈ S,
(7.9) holds for every p′ ∈ φ1(p,X), and p′ ∈ P. This in fact is the trickiest part of our
proof and constitutes the main bulk of our efforts.

To get p′ ∈ P, we need to make ensure that the p′ ∈ ∆m, and for every component Dk

of the disutility graph D, total prices of the chores in Dk equals total cost of endowments

120

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

of agents in Dk. To this end, for every chore bj in component Dk, let q(bj) = p(bj)+rj(X),

where rj(X) is the amount of chore bj left undone as defined above, and βj =
q(bj)∑
b∈Dk

q(b) .

Note that for (7.9), we want that for any bj , bj′ ∈ Dk with p(bj′) > 0,
p′(bj)
p′(bj′)

=
q(bj)
q(bj′)

=
βj
βj′

.

Thus, if p̃k =
∑

b∈Dk p(b) then p′(bj) must be βj p̃k. This reduces to one unknown per
component of D, namely p̃k for each k ∈ [d].

Next, we write a system of linear equations to compute p̃k’s such that all the con-
straints of domain P are satisfied. The simplex constraints for the prices in P can be
encoded by ensuring p̃ ∈ ∆d. Next, for each component Dk, the following constraint
imposes total endowment costs of agents in Dk equals total prices of chores in Dk.∑

ai∈Ak

∑
k′∈[d]

∑
bj′∈Bk′

w(ai, bj′) · (βj′ p̃k′) =
∑
bj∈Bk

(βj p̃k)

Let M(β) ∈ Rd×d denote the matrix of this linear system. Then, our goal becomes to
find a vector v ∈ ∆d, in the null space of M(β). It is not obvious why such a vector should
exist. Our high-level approach to show the same is as follows: We can equivalently express
the linear system of equations M(β) · v = 0 as M ′(β) · v = v, where M ′(β) = M(β) + I,
where I is the identity matrix. We show that if we define a function f : Rd → Rd as
f(v) = M ′(β) ·v, then f maps the d-dimensional simplex ∆d to itself (this is non-trivial).
Restricting f to only the simplex, we get a continuous map f : ∆d → ∆d and therefore it
has a fixed-point by the Brouwer’s fixed-point theorem. At every fixed-point v we have
M ′(β) · v = v implying M(β) · v = 0. Since v ∈ ∆d we get the vector we needed.

The above scheme will work if the βjs are well defined. However, for a component
Dk if

∑
b∈Dk q(b) turns out to be zero, then βjs are ill-defined and causes issues with

proving continuity like properties of φ. To handle this, we define a set of permissible βs,
namely,

B =

{
β ∈ Rm≥0 | ∀k ∈ [d],

∑
bj∈Dk βj = 1 if

∑
b∈Dk t(b) = 0

∀bj ∈ Dk, βj =
q(bj)∑
b∈Dk

q(b) otherwise

}
.

And for each β ∈ B, the above process will compute a p′ ∈ φ1(p,X). By construction,
each of these p′’s will satisfy, p′ ∈ P and equation (7.9), as needed. However, it is not
immediate why such a set of p′s will form a convex set, as required to apply the Kakutani’s
fixed point theorem.

In fact, to apply the Kakutani’s fixed-point theorem, we need to show that the above
complex process creates a φ, that has closed graph (continuity-like property), and φ(p,X)
is convex for each (p,X) ∈ S. This again requires involved argument and is formally
proved in Lemmas 7.35 and 7.36 of Subsection 7.2.2. Then, φ is sure to have a fixed-point
which maps to competitive equilibrium as discussed above.

Our proof technique extends to show existence of a competitive equilibrium for chore
division with general convex disutility functions where an agent can do only a subset of
chores and with arbitrary endowments, under similar sufficiency conditions. Thereby, it
extends the existence results of [89, 74] that requires that every agent has finite convex
disutility for all the chores. Thus, our overall approach may be of independent interest
to handle more general problems involving chores.

We now elaborate the proof in the next Subsection.

121

Chapter 7. Competitive Equilibrium with Divisible Bads

7.2.2 Elaborate Proof

Consider any instance I = 〈G,D〉 ∈ I such that G is the economy graph of the instance
and D = ∪i∈[d]Di, where each Di = (Ai ∪Bi, EDi) is a complete bipartite graph, disjoint
from Di′ (i′ 6= i). For ease of notation,

• we represent our set A of n agents as [n] (we write ai as i) and the set B of m
chores as [m] (we write chore bj as j),

• we also write pj to denote the price of chore bj (instead of p(bj)) and wi,j to
represent the agent ai’s initial endowment of chore bj (instead of w(ai, bj)), and

• lastly, we also assume without loss of generality that the total endowment of each
chore is one:

∑
i∈[n]wi,j = 1.

Now, we briefly introduce some basic definitions and concepts required to prove the
existence of a competitive equilibrium.

Normalized Prices and Bounded Allocations. A price vector p = 〈p1, p2, . . . , pm〉
is called a normalized price vector if

• pj ≥ 0 for all j ∈ [m],

•
∑

j∈[m] pj = 1, and

•
∑

i∈Ak
∑

j∈[m]wi,j · pj =
∑

j∈Bk pj for each component Dk in the disutility graph,
i.e., sum of prices of chores in Dk equals the sum of total money of the agents in
Dk.

Let P be the set of all normalized price vectors. We first show that the set P is non-empty.

Observation 7.22. We have P 6= ∅.

Proof. Here we will make use of a general fact that will be useful for a proof later as
well.

Fact 7.23. Let Z ∈ Rn×n be a square matrix such that Zij ≥ 0 for all j 6= i (all the
non-diagonal entries of Z are non-negative) and

∑
i∈[n] Zij = 0 for all j ∈ [n] (column

sums are zero), then there exists a vector t ∈ Rn≥0 such that
∑

i∈[n] ti = 1 and Z · t = 0.

The proof of this fact can be found at the end of this section. Using this fact, we will
outline a proof that P is non-empty. For each component Dk of the disutility matrix,
we pick a chore bk ∈ Bk and we set pj = 0 for all j ∈ Bk \ {bk}. Note that to show
that P is non-empty, it suffices to show that there exists a vector p′ = 〈p′1, p′2, . . . , p′d〉
(intuitively each p′k corresponds to the price of chore bk ∈ Bk, i.e., pbk) such that p′k ≥ 0
for all k ∈ [d],

∑
k∈[d] p

′
k = 1 and we have,∑

i∈Ak

∑
k′∈[d]

wi,bk′ · p
′
k′ − p′k = 0 for all k ∈ [d] (7.10)

Let W be the coefficient matrix of the system of equations in (7.10), i.e., W · p′ = 0
represents the system of equations in (7.10). Observe that Wkk′ =

∑
i∈Ak wi,bk′ if k 6= k′

122

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

and Wkk =
∑

i∈Ak wi,bk − 1. Therefore the non-diagonal entries of W are non-negative
and also note that the column sum is zero:∑

k∈[d]

Wkk′ =
∑
k∈[d]

∑
i∈Ak

wi,bk′ − 1

=
∑
i∈[n]

wi,bk′ − 1

= 1− 1 (total endowment of chore bk′ is one)

= 0.

Therefore W satisfies all the conditions in Fact 7.23. Therefore, by Fact 7.23 there exists
a p′ ∈ Rd≥0, such that

∑
k∈[d] p

′
d = 1 and W · p′ = 0. Therefore, P is non-empty.

Since P is defined by a set of linear equalities and inequalities, P is closed and convex
too. Additionally, since p ∈ Rm≥0 and

∑
j∈[m] pj = 1 for all p ∈ P , P is compact.

An allocation X ∈ Rn×m≥0 , is called a bounded allocation if each Xij (quantifies the

amount of chore j allocated to agent i) is non-negative and is at most m · dmax
dmin

, where
dmax and dmin refer to the largest and smallest finite entry in the disutility matrix. Let
X be the set of all bounded allocations. Observe that the set X is non-empty, convex and
compact. Also, we have that P is non-empty, convex and compact. We define a compact,
convex and non-empty subset of R(m+nm), S =

⋃
p∈P

⋃
X∈X〈p,X〉 14.

Correspondence φ. Our goal is to define a correspondence or equivalently a set valued
function φ : S → 2S , such that φ has at least one fixed point and any fixed point of φ
will correspond to competitive equilibrium. We will first show some properties that if
satisfied by φ, then φ will have at least one fixed point and any fixed point of φ will
correspond to a competitive equilibrium. Then, we will define a φ that satisfies these
properties.

Properties. We first make some basic definitions that will help us to state the prop-
erties. We call a bounded allocation Y ∈ X an extended optimal allocation at the price
vector p if and only if,

• for all i ∈ Ak, we have Yij > 0 only if d(i, j) 6=∞, and

• for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have Yij > 0 only if d(i,j)
pj
≤ d(i,`)

p`
for all

` ∈ [m], and

• for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have
∑

j∈[m] Yij · pj =
∑

j∈[m]wi,j · pj .

Let Xp ⊆ X denote the set of all extended optimal allocations at the price vector p.
Note that in an extended optimal allocation, the only agents that may not get their
optimal bundles (defined in Definition 7.1) are the ones that belong to a component
where the sum of prices of all the chores in the component are zero, as in an extended

14We abuse notation slightly here: 〈p,X〉 refers to the (m + nm)-dimensional vector
〈p1, p2, . . . , pm, X11, X12, . . . , Xnm〉.

123

Chapter 7. Competitive Equilibrium with Divisible Bads

optimal allocation, an agent that belongs to a component where the sum of prices of all
the chores is zero, can be allocated any bundle that does not involve her earning from a
chore with infinite disutility (and not necessarily her optimal bundle). However, if pj > 0
for all j ∈ [m], then every extended optimal allocation is also an optimal allocation
(where every agent receives their respective optimal bundles). Right now, it may not
be immediate that Xp is non-empty. However, we show that this is indeed the case, as
agents are allowed to consume goods to a significant extent (Yij is allowed to be as large
as m · dmax

dmin
).

Lemma 7.24. For all p ∈ P , we have Xp ⊆ X and Xp 6= ∅.

Proof. By definition Xp ⊆ X. Therefore, it suffices to show that it is non-empty. Consider
any p ∈ P . Consider an agent a in the component Dk. Let w(a) =

∑
j∈[m]wa,j · pj . If

w(a) = 0, then we set Yaj = 0 for all j ∈ [m] and we trivially have
∑

j∈[m] Yaj · pj =∑
j∈[m]wa,j · pj = 0 and 〈Ya1, . . . , Yam〉 is an extended optimal bundle for agent a at p

(irrespective of whether
∑

j∈Bk pj > 0 or not). So assume that w(a) > 0. Since p ∈ P ,
we have that the sum of prices of the chores in Dk,

∑
j∈Bk pj =

∑
i∈Ak

∑
j∈[m]wi,j · pj ≥∑

j∈[m]waj · pj = w(a) > 0. This implies that there is at least one chore b in the

component Dk such that pb ≥ w(a)
m . Let b′ be a chore such that d(a, b′) 6= ∞, and

d(a,b′)
pb′
≤ d(a,`)

p`
for all ` ∈ [m]. This implies that d(a,b′)

pb′
≤ d(a,b)

pb
. Therefore, we have that

pb′ ≥
d(a, b′)

d(a, b)
· pb

≥ dmin

dmax
· pb

≥ dmin

mdmax
·w(a).

We set Yab′ = w(a)
pb′

. Observe that Yab′ ≤ m · dmax
dmin

. Therefore, Y is a bounded allocation,

i.e., Y ∈ X. Also, note that agent a earns her entire money of w(a) by doing Yab′ = w(a)
pb′

amount of chore b′ such that d(a, b′) 6=∞, d(a,b′)
pb′

≤ d(a,`)
p`

for all ` ∈ [m]. Thus, Y is an

extended optimal bundle also. Therefore, Xp 6= ∅.

We are now ready to define the properties of φ. For any point 〈p,X〉 ∈ S, consider
any point 〈p′, X ′〉 ∈ φ(〈p,X〉). Then,

• Property P1: X
′ ∈ Xp and p′ ∈ P .

• Property P2: For any two agents i and j that belong to the same component Dk

of the disutility graph D (say i, j ∈ Ak), such that pj > 0, we have

p′i
p′j

=
pi + max (1−

∑
`∈[n]X`i, 0)

pj + max (1−
∑

`∈[n]X`j , 0)
.

.

• Property P3: φ(〈p,X〉) is non-empty and convex.

124

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

• Property P4: φ has a closed graph15.

We will now show that any correspondence φ that satisfies P1, P2, P3 and P4 will have
at least one fixed point and any fixed point will correspond to a competitive equilibrium.
We first show that φ has a fixed point.

Lemma 7.25. Consider any correspondence φ that satisfies properties P1, P2, P3 and
P4. φ has a fixed point.

Proof. By property P1 we have that if 〈p′, X ′〉 ∈ φ(〈p,X〉), then 〈p′, X ′〉 ∈ S (as p′ ∈ P
and X ′ ∈ Xp ⊆ X). Therefore, φ : S → 2S . The set S is non-empty, compact and convex.
Furthermore, by properties P3 and P4, we have that φ(〈p,X〉) is non-empty and convex,
and φ has a closed graph. Therefore, by Kakutani’s fixed point theorem, φ has a fixed
point.

Now we show that any fixed point of a correspondence φ that satisfies properties P1,
P2, P3 and P4 gives a competitive equilibrium.

Lemma 7.26. Consider any correspondence φ that satisfies properties P1, P2, P3 and
P4. Consider any fixed point 〈p,X〉 of φ. Then 〈p,X〉 is a competitive equilibrium.

Proof. Consider any fixed point 〈p,X〉 ∈ φ(〈p,X〉). By property P1, it follows that
X ∈ Xp. As mentioned after that the definition of the extended optimal bundle, if we
have pj > 0 for all j ∈ [m], then each agent gets her optimal bundle in Xp. Therefore,
to show that p and X correspond to a competitive equilibrium, it suffices to show that
pj > 0 for all j ∈ [m] and

∑
i∈[n]Xij = 1 for all chores j ∈ [m]. We first show that pj > 0

for all j ∈ [m]. We prove this by contradiction. Let us assume that there are some chores
with zero prices. But first, we make an observation that if there are some chores with
zero prices, one of the chores will belong to a component, where the sum of prices of all
the chores in that component is non-zero.

Claim 7.27. Let p be any price vector in P . If there exists some chore j such that
pj = 0, then there exists a chore b in the component D` of the disutility graph such that
pb = 0 and

∑
j∈B` pj > 0.

Proof. We prove this claim by contradiction. Assume otherwise: All chores with zero
prices only occur in components where the sum of prices of the chores in the component
is zero. Let D`1 , D`2 , . . . , D`r be the components of the disutility graph where the sum
of prices of all the chores in the component are zero, and there are no chores with zero
prices in the components

⋃
k∈[d]\{`1,...,`r}Dk. Since the economy graph G is strongly

connected (by Condition 1), there is an edge from some agent in
⋃
k∈[r]A`k to some

agent in
⋃
k∈[d]\{`1,...,`r}A`k , say from an agent b′ ∈ A`r′ for some `r′ ∈ {`1, `2, . . . , `r}, to

an agent b̃ ∈ A`r̃ for `r̃ ∈ [d] \ {`1, . . . , `r}. Since the agent b̃ has finite disutility only for
the chores in B`r̃ , we can conclude that there exists a chore c̃ ∈ B`r̃ , such that wb′,c̃ > 0.
Since c̃ ∈ B`r̃ , and there are no chores with zero prices in D`r̃ (by assumption), and
therefore we also have pc̃ > 0. Then, we have

∑
j∈[m]wb′,j · pj ≥ wb′,c̃ · pc̃ > 0, implying

15A correspondence φ : X → 2Y has a closed graph if for all sequences (xn)n∈N and (yn)n∈N, with
(xn)n∈N converging to x and (yn)n∈N converging to y, such that xn ∈ X and yn ∈ φ(xn) for all n, we
have y ∈ φ(x).

125

Chapter 7. Competitive Equilibrium with Divisible Bads

that
∑

i∈A`r′

∑
j∈[m]wi,j · pj > 0. However, since p ∈ P , we have that for component

D`r′ of the disutility graph, the sum of prices of the chores in the component equals
the sum of prices of the chores owned by the agents in the same component, implying∑

j∈B`r′
pj =

∑
i∈A`r′

∑
j∈[m]wi,j · pj > 0, which is a contradiction.

Thus, let b be a chore in the component Dk of the disutility graph such that pb = 0
and

∑
j∈Bk pj > 0. Then, there is at least one chore b′ ∈ Bk such that pb′ > 0. Since Dk

is biclique (by Condition 2), we have that d(i, b′) 6=∞ for all i ∈ Ak. This implies that

for all agents i ∈ Ak, we have d(i,b′)
pb′

< d(i,b)
pb

. Since X ∈ Xp, we have that Xib = 0, for

all i ∈ Ak and also for all i ∈ [n] (as X ∈ Xp and Xib > 0 only if d(i, b) 6= ∞ and for
all agents in [n] \Ak we have d(i, b) =∞), implying

∑
`∈[n]X`b = 0. Since b and b′ both

belong to the same component Dk, and pb′ > 0, by Property P2, we have,

pb
pb′

=
pb + max (1−

∑
`∈[n]X`b, 0)

pb′ + max (1−
∑

`∈[n]X`b′ , 0)

=
0 + 1

pb′ + max (1−
∑

`∈[n]X`b′ , 0)

6= 0

=
pb
pb′
,

which is a contradiction. Thus, none of the chores can have zero prices and therefore, we
have pj > 0 for all j ∈ [m].

We now show that
∑

i∈[n]Xij = 1 for all j ∈ [m]. We prove this also by contradiction.
So assume otherwise and for some chore b ∈ Bk we have

∑
i∈[n]Xib > 1 (or

∑
i∈[n]Xib <

1). Note that, since p ∈ P , for the component Dk of the disutility graph, we have,∑
j∈Bk

pj =
∑
i∈Ak

∑
j∈[m]

wi,j · pj . (7.11)

Also, since X ∈ Xp and every component of the disutility graph has non-zero total price
of the chores in it, for every agent i ∈ Ak, we have

∑
j∈[m]wi,j · pj =

∑
j∈[m]Xij · pj =∑

j∈Bk Xij · pj . Substituting
∑

j∈[m]wi,j · pj as
∑

j∈Bk Xij · pj in (7.11) we have,∑
j∈Bk

pj =
∑
i∈Ak

∑
j∈Bk

Xij · pj

=
∑
i∈[n]

∑
j∈Bk

Xij · pj

=
∑
j∈Bk

pj · (
∑
i∈[n]

Xij) .

Therefore, if
∑

i∈[n]Xib > 1 (or
∑

i∈[n]Xib < 1) for some b ∈ Bk, then there exists

a b′ ∈ Bk such that
∑

i∈[n]Xib′ < 1 (or
∑

i∈[n]Xib′ > 1). This would imply that
pb+max(1−

∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

< pb
pb′

when
∑

i∈[n]Xib > 1 and
pb+max(1−

∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

> pb
pb′

when∑
i∈[n]Xib < 1, which is a contradiction (as

pb+max(1−
∑
`∈[n]X`b,0)

pb′+max(1−
∑
`∈[n]X`b′ ,0)

= pb
pb′

if 〈p,X〉 is a

fixed point by property P2).

126

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

Now, it suffices to show that there exists a correspondence φ that satisfies all the
four properties to show the existence of competitive equilibrium for every instance I ∈ I.
To this end, we first define a correspondence φ and show that it satisfies all the four
properties.

Finding a Correspondence φ that Satisfies all the Properties. Given a p ∈ P
and X ∈ X, we define the vector q(p,X) = 〈q1(p,X), q2(p,X), . . . , qm(p,X)〉 such that

qj(p,X) = pj + max (1−
∑
i∈[n]

Xij , 0) (7.12)

We now introduce a variable βj(p,X) for each chore j ∈ [m]. Let β(p,X) = 〈β1(p,X),
β2(p,X), . . . , βm(p,X)〉. We now outline some constraints that β(p,X) must satisfy. We
have,

βj(p,X) ≥ 0 ∀ j ∈ [m], (7.13)∑
j∈Bk

βj(p,X) = 1, ∀ k ∈ [d], (7.14)

βj(p,X) =
qj(p,X)∑

j′∈Bk qj′(p,X)
∀ j, k, s.t. j ∈ Bk, and

∑
j′∈Bk

qj′(p,X) > 0. (7.15)

Let B(p,X) be set of all β(p,X) that satisfy the system of linear equalities and
inequalities in (7.13), (7.14) and (7.15). We now show that B(p,X) is non-empty, convex
and compact.

For each β(p,X) ∈ B(p,X), we introduce a system of linear equations with a variable
p̃k for each component Dk of the disutility graph D. Let p̃ = 〈p̃1, p̃2, . . . , p̃d〉 (recall that
d is the number of components of the disutility graph). We now outline a system of linear
equations that needs to be satisfied by a vector p̃. As of now, let us think of each p̃k as
the sum of prices of the chores in the component Dk and βj(p,X) · p̃k as the price of
each chore j ∈ Bk. With these price meanings in mind, for each component Dk of D, we
write the equation (variables being

⋃
k∈[d] p̃k) that represents the price of the cumulative

endowments of the agents of the component equals the total prices of the chores in the
same component. ∑

i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · βj(p,X) · p̃k − p̃k = 0. (7.16)

We represent the system of equations in (7.16) as

M(β(p,X)) · p̃ = 0 . (7.17)

We now make some observation about the non-negativity of the non-diagonal entries
and the zero column sums of the matrix M(β(p,X)).

Observation 7.28. We have M(β(p,X))kk′ ≥ 0 as long as k 6= k′ (every non-diagonal
entry of M(β,X) is non-zero) and

∑
k∈[d]M(β(p,X))kk′ = 0 for all k′ ∈ [d] (column

sums are zero).

127

Chapter 7. Competitive Equilibrium with Divisible Bads

Proof. We first carefully look at any column M(β(p,X))∗k′ of M(β(p,X)). Note that
for all k 6= k′, we have, M(β(p,X))kk′ =

∑
i∈Ak

∑
j∈Bk′

wi,j · βj(p,X). We have Mkk =∑
i∈Ak

∑
j∈Bk wi,j · βj(p,X)− 1. Therefore, every non-diagonal entry in M(β(p,X)) is

non-negative. Now we just need to show that 1T ·M(β(p,X))∗k′ = 0. Observe,

1T ·M(β(p,X))∗k′ =
∑
k∈[d]

∑
i∈Ak

∑
j∈Bk′

wi,j · βj(p,X)− 1

=
∑
j∈Bk′

βj(p,X) ·
∑
k∈[d]

∑
i∈Ak

wi,j − 1

=
∑
j∈Bk′

βj(p,X) ·
∑
i∈[n]

wi,j − 1

=
∑
j∈Bk′

βj(p,X)− 1

= 0.

This shows that 1T ·M(β(p,X)) = 0T .

We first make some observations about the solution to the system of equations
in (7.17) (and consequently (7.16)). Observe that M(β(p,X)) satisfies all the conditions
in Fact 7.23. Therefore, we have the following Observation.

Observation 7.29. For each β(p,X) ∈ B(p,X), there exists a vector p̃ ∈ Rd≥0, such
that

∑
j∈[d] p̃j = 1 and M(β(p,X)) · p̃ = 0.

We are now ready to define the correspondence. Given any 〈p,X〉 ∈ S, we determine
the vector q(p,X) as in (7.12). Let B(p,X) be the set of all β(p,X) that satisfy the set
of linear equalities and inequalities in 7.13, 7.14 and 7.15. For each β(p,X) ∈ B(p,X), let
P̃ (β(p,X)) ⊆ Rd≥0 be the set of all vectors that satisfy the conditions in Observation 7.29.

We now define the set P (β(p,X)) ⊆ Rm≥0 as,

P (β(p,X)) =
{
p ∈ Rm≥0 | pj = βj(p,X) · p̃k where chore j ∈ Bk and p̃ ∈ P̃ (β(p,X))

}
(7.18)

Given any 〈p,X〉 ∈ S, we define

φ(〈p,X〉) =
{
〈p,X ′〉 | p ∈ P (β(p,X)) and β(p,X) ∈ B(p,X) and X ′ ∈ Xp

}
. (7.19)

For the rest of this section, we will now show that φ satisfies properties P1, P2, P3

and P4.

φ satisfies properties P1, P2, P3 and P4. Now that we have defined the correspon-
dence, we prove that it satisfies all the necessary properties. To this end consider a point
〈p′, X ′〉 ∈ φ(〈p,X〉).

Lemma 7.30 (Property P1). Let 〈p′, X ′〉 ∈ φ(〈p,X〉). We have X ′ ∈ Xp and p′ ∈ P .

128

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

Proof. We need to show that p′ ∈ P and X ′ ∈ Xp ⊆ X. Note that by the definition of φ
we have X ′ ∈ Xp ⊆ X. Therefore, we only need to show that p′ ∈ P . Given p and X, let
q(p,X) be the vector obtained as in (7.12) and let B(p,X) be the set of all β(p,X) ∈ Rm
that satisfy the set of linear inequalities and equalities in 7.13, 7.14 and 7.15. By the
definition of the correspondence φ (Equation 7.19), we have that p′ ∈ P (β′(p,X)) for
some β′(p,X) ∈ B(p,X). Equation 7.18 implies that for each chore j ∈ Bk, we have
p′j = β′j(p,X) · p̃k, where p̃ ∈ P̃ (β′(p,X)). Now we make three claims which show that
p′ ∈ P .

Claim 7.31. We have p′j ≥ 0 for all j ∈ [m].

Proof. Let us consider any chore j that belongs to the component Dk of the disutility
graph. We have,

p′j = β′j(p,X) · p̃k.

β′(p,X) satisfies the system of linear inequalities in 7.13 and thus β′j(p,X) ≥ 0. Also,

p̃ ∈ P̃ (β′j(p,X)) and by the definition of P̃ (β′(p,X)) and Observation 7.29 we have that
p̃k ≥ 0. Thus p′j ≥ 0.

Claim 7.32. We have
∑

j∈[m] p
′
j = 1.

Proof. We have, ∑
j∈[m]

p′j =
∑
k∈[d]

∑
j∈Bk

β′j(p,X) · p̃k

=
∑
k∈[d]

p̃k ·
∑
j∈Bk

β′j(p,X).

Since β′(p,X) satisfies the set of linear equalities in (7.14), we have that
∑

j∈Bk β
′
j(p,X) =

1. Therefore, we have
∑

j∈[m] p
′
j =

∑
k∈[d] p̃k. Since p̃ ∈ P̃ (β′(p,X)), by definition of

P̃ (β′(p,X)) and Observation 7.29, we have that
∑

k∈[d] p̃k = 1 and thus
∑

j∈m p
′
j = 1.

Claim 7.33. For each component Dk of the disutility graph, we have
∑

i∈Ak
∑

j∈[m]wi,j ·
p′j =

∑
j∈Bk p

′
j.

Proof. We have,∑
i∈Ak

∑
j∈[m]

wi,j · p′j =
∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′j(p,X) · p̃k′ .

p̃ ∈ P̃ (β′(p,X)), and by definition of P̃ (β′(p,X)), p̃ satisfies (7.17) and therefore also (7.16).
Thus, we have

∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′j(p,X) · p̃k′ = p̃k. Therefore, we have∑
i∈Ak

∑
j∈[m]

wi,j · p′j = p̃k

=
∑
j∈Bk

β′j(p,X) · p̃k (as
∑
j∈Bk

β′j(p,X) = 1 by (7.14))

=
∑
j∈Bk

p′j .

129

Chapter 7. Competitive Equilibrium with Divisible Bads

This shows that p′ ∈ P and completes the proof.

Lemma 7.34 (Property P2). Let 〈p′, X ′〉 ∈ φ(〈p,X〉). For any two agents i and j that
belong to the same component Dk of the disutility graph D, such that pj > 0, we have
p′i/p

′
j =

(
pi + max (1−

∑
`∈[n]X`i, 0)

)
/
(
pj + max (1−

∑
`∈[n]X`j , 0)

)
.

Proof. Consider any 〈p′, X ′〉 ∈ φ(〈p,X〉). By the definition of the correspondence φ
(Equation 7.19), we have that p′ ∈ P (β′(p,X)) for some β′(p,X) ∈ B(p,X). Equation 7.18
implies that for each chore j ∈ Bk, we have p′j = β′j(p,X) · p̃k, where p̃ ∈ P̃ (β′(p,X)).

Let i, j be two chores in the component Dk of the disutility graph such that pj >
0. Since pj > 0, we have that qj(p,X) = pj + max (1 −

∑
`∈[n]X`j , 0) > 0. There-

fore,
∑

j′∈Bk qj′(p,X) > 0. This implies that for all j ∈ Bk, we have β′j(p,X) =
qj(p,X)/(

∑
j′∈Bk qj′(p,X)). Therefore we have,

p′i
p′j

=
β′i(p,X) · p̃k
β′j(p,X) · p̃k

=
β′i(p,X)

β′j(p,X)

=
qi(p,X)

qj(p,X)

=
pi + max (1−

∑
`∈[n]X`i, 0)

pj + max (1−
∑

`∈[n]X`j , 0)
. (by definition of q(p,X) in (7.12))

Lemma 7.35 (Property P3). φ(〈p,X〉) is non-empty and convex.

Proof. We first show that Xp is convex. Consider Y ∈ Xp and Y ′ ∈ Xp. Let Y ′′ =
λ · Y + (1 − λ) · Y ′ for some λ ∈ [0, 1]. First observe that 0 ≤ min(Yij , Y

′
ij) ≤ Y ′′ij ≤

max (Yij , Y
′
ij) ≤ m · dmax

dmin
. Therefore, Y ′′ ∈ X. Now to show that Y ′′ ∈ Xp, we need to

show that,

(1) for all i ∈ Ak, we have Y ′′ij > 0 only if d(i, j) 6=∞, and

(2) for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have Y ′′ij > 0 only if d(i,j)
pj
≤ d(i,`)

p`
for all

` ∈ [m], and

(3) for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have
∑

j∈[m] Y
′′
ij · pj =

∑
j∈[m]wi,j · pj for

all i ∈ [n].

To this end, note that for all i ∈ Ak, both Yij and Y ′ij are positive, only if d(i, j) 6= ∞.
Therefore, Y ′′ij > 0 only if d(i, j) 6= ∞. Similarly, for all i ∈ Ak, where

∑
j∈Bk pj > 0,

both Yij and Y ′ij are positive, only if d(i,j)
pj
≤ d(i,`)

p`
for all ` ∈ [m]. Therefore Y ′′ij > 0 only

if d(i,j)
pj
≤ d(i,`)

p`
for all ` ∈ [m].

130

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

Lastly, for all i ∈ Ak, where
∑

j∈Bk pj > 0, we have,∑
j∈[m]

Y ′′ij · pj =
∑
j∈[m]

(λ · Yij + (1− λ) · Y ′ij) · pj

= λ · (
∑
j∈[m]

Yij · pj) + (1− λ) · (
∑
j∈[m]

Y ′ij · pj)

= λ ·
∑
j∈[m]

wi,j · pj + (1− λ) ·
∑
j∈[m]

wi,j · pj

=
∑
j∈[m]

wi,j · pj .

Thus, Y ′′ ∈ Xp. Therefore, Xp is convex. By Lemma 7.24, we have that Xp is non-empty
as well. Therefore Xp is convex and non-empty.

Let P ′ =
{
p | p ∈ P (β(p,X)) for β(p,X) ∈ B(p,X)

}
. We now show that P ′ is con-

vex and non-empty. By Observation 7.29, we have that for each β(p,X) ∈ B(p,X),
P̃ (β(p,X)) 6= ∅ and by definition of P (β(p,X)) (Equation 7.18), we have that P (β(p,X))
is also non-empty. Therefore, P ′ is also non-empty. Now we show that P ′ is convex as well.
To this end, consider two price vectors t and t′ in P ′ or equivalently t ∈ P (β(p,X)) and
t′ ∈ P (β′(p,X)). To show convexity of P ′, it suffices to show that λ ·t+(1−λ) ·t′ ∈ P ′ for
all λ ∈ [0, 1] or equivalently λ · t+ (1−λ) · t′ ∈ P (β′′(p,X)) for some β′′(p,X) ∈ B(p,X).
To this end, we observe that for each chore j in the component Dk of the disutility
graph, we have tj = βj(p,X) · sk, where s ∈ P̃ (β(p,X)), and t′j = β′j(p,X) · s′k, where

s′ ∈ P̃ (β′(p,X)). We now define the vectors β′′(p,X) and t′′ ∈ Rm as follows: For each
chore j in component Dk of the disutility graph, we define

β′′j (p,X) =


λ·βj(p,X)·sk+(1−λ)·β′j(p,X)·s′k

λsk+(1−λ)·s′k
if sk 6= 0 or s′k 6= 0

βj(p,X) otherwise,

and

t′′j = β′′j (p,X) · s′′k,

where s′′ = (λ · s+ (1− λ) · s′). We first prove that t′′ = λ · t+ (1− λ) · t′: Consider any
j ∈ Bk. If both sk and s′k are zero, then s′′k = λ · sk + (1− λ) · s′′k = 0. Therefore, we have

t′′j = β′′j (p,X) · s′′k
= 0

= βj(p,X) · sk + β′j(p,X) · s′k (as sk = s′k = 0)

= λ · tj + (1− λ)t′j

When at least one of sk or s′k is non-zero, then s′′k = λ · sk + (1− λ) · s′k 6= 0 and we have,

t′′j = β′′(p,X) · s′′k

=
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λsk + (1− λ) · s′k
· (λsk + (1− λ) · s′k)

= λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k
= λ · tj + (1− λ) · t′j .

131

Chapter 7. Competitive Equilibrium with Divisible Bads

Now it suffices to show that β′′(p,X) ∈ B(p,X) and s′′k ∈ P̃ (β′′(p,X)) as this will imply
that λt+ (1− λ)t′ = t′′ ∈ P (β′′(p,X)) for some β′′(p,X) ∈ B(p,X). We first show that
β′′(p,X) ∈ B(p,X). Since sk, s

′
k, βj(p,X), and β′j(p,X) are non-negative and λ ∈ [0, 1],

we have that β′′j (p,X) ≥ 0 for all j ∈ [m] and thus β′′(p,X) satisfies the linear inequalities
in 7.13.

Now we show that β′′(p,X) satisfies the linear equalities in 7.14. To this end, for any
component Dk of the disutility graph. If sk = s′k = 0, then we have β′′j (p,X) = βj(p,X)
for all j ∈ Bk. Therefore, we have

∑
j∈Bk β

′′
j (p,X) =

∑
j∈Bk βj(p,X) = 1 (as β(p,X) ∈

B(p,X)) and we are done. If one of sk or s′k is non-zero, we have,

∑
j∈Bk

β′′j (p,X) =
∑
j∈Bk

λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k
λ · sk + (1− λ) · s′k

=
λ · sk ·

∑
j∈Bk βj(p,X) + (1− λ) · s′k ·

∑
j∈Bk β

′
j(p,X)

λ · sk + (1− λ) · s′k

=
λ · sk + (1− λ) · s′k
λ · sk + (1− λ) · s′k

= 1

Finally, we show that β′′(p,X) satisfies the linear equalities in 7.15. To this end, consider
any component Dk such that

∑
j′∈Bk qj(p,X) > 0. In this case, we have βj(p,X) =

β′j(p,X) = qj(p,X)/(
∑

j′∈Bk qj′(p,X)). Now, if sk = s′k = 0, then we have β′′j (p,X) =
βj(p,X) = qj(p,X)/ (

∑
j′∈Bk qj′(p,X)) and we are done. If one of sk or s′k is non-zero

we have,

β′′j (p,X) =
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λ · sk + (1− λ) · s′k

=
λ · qj(p,X)∑

j′∈Bk
qj′ (p,X) · sk + (1− λ) · qj(p,X)∑

j′∈Bk
qj′ (p,X) · s

′
k

λ · sk + (1− λ) · s′k

=
qj(p,X)∑

j′∈Bk qj′(p,X)
·
λ · sk + (1− λ) · s′k
λ · sk + (1− λ) · s′k

=
qj(p,X)∑

j′∈Bk qj′(p,X)
.

Thus β′′(p,X) ∈ B(p,X). Now, it only suffices to show that s′′ ∈ P̃ (β′′(p,X)). Recall that
to show that s′′ ∈ P̃ (β′′(p,X)), we need to show that s′′k ≥ 0 for all k ∈ [d],

∑
k∈[d] s

′′
k = 1,

and for all k ∈ [d], we have,∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · β′′j (p,X) · s′′k′ − s′′k = 0

To this end, we first note that since s ∈ P̃ (β(p,X)), we have that

• sk ≥ 0 for all k ∈ [d],

•
∑

k∈[d] sk = 1, and

132

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

•
∑

i∈Ak
∑

k′∈[d]
∑

j∈Bk′
wi,j · βj(p,X) · sk′ − sk = 0 for all k ∈ [d].

Analogous conditions are also satisfied by s′ as it belongs to P̃ (β′(p,X)). Now, observe
that s′′k = λ · sk + (1− λ) · s′k ≥ 0 as both sk and s′k are non-negative. Similarly,∑

k∈[d]

s′′k = λ ·
∑
k∈[d]

sk + (1− λ) ·
∑
k∈[d]

s′k

= λ · 1 + (1− λ) · 1 = 1.

Finally, we show that
∑

i∈Ak
∑

k′∈[d]
∑

j∈Bk′
wi,j · β′′j (p,X) · s′′k′ − s′′k = 0. To this end, let

K = {k | k ∈ [d] and s′′k > 0}. Note that it suffices to show
∑

i∈Ak
∑

k′∈K
∑

j∈Bk′
wi,j ·

β′′j (p,X) · s′′k′ − s′′k = 0 for all k ∈ [d]. Also, for all k ∈ K, we have sk = s′k = 0 as
well. Therefore, we also have

∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · βj(p,X) · sk′ − sk = 0 and∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · β′j(p,X) · s′k′ − s′k = 0 for all k ∈ [d]. Now note that for all

k ∈ [d], we have,∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · β′′j (p,X) · s′′k′ − s′′k

=
∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j ·
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

λsk + (1− λ) · s′k
· s′′k′ − s′′k

=
∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j ·
λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k

s′′k
· s′′k − s′′k

=
∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · (λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k)− s′′k

=
∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · (λ · βj(p,X) · sk + (1− λ) · β′j(p,X) · s′k)− (λ · sk + (1− λ) · s′k)

= λ ·
(∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · βj(p,X) · sk − sk
)

+ (1− λ) ·
(∑
i∈Ak

∑
k′∈K

∑
j∈Bk′

wi,j · β′j(p,X) · s′k − s′k
)

= 0 + 0 = 0.

Therefore s′′ ∈ P̃ (β′′(p,X)).

Therefore, we have that both the sets P ′ and Xp are non-empty and convex. thus,
φ(〈p,X〉) is also non-empty and convex as it is the Cartesian product of P ′ and Xp.

Lemma 7.36 (Property P4). φ has a closed graph.

Proof. Consider a sequence (〈pn, Xn〉)n∈N that converges to 〈p∗, X∗〉 and 〈pn, Xn〉 ∈ S
for all n. Similarly, consider the sequence (〈rn, Y n〉)n∈N that converges to 〈r∗, Y ∗〉, such
that 〈rn, Y n〉 ∈ φ(〈pn, Xn〉) for all n. To show that φ has a closed graph, we need to
show that 〈r∗, Y ∗〉 ∈ φ(〈p∗, X∗〉). To show that, 〈r∗, Y ∗〉 ∈ φ(〈p∗, X∗〉), we need to show,

(1) r∗ ∈ P (β(p∗, X∗)), for some β(p∗, X∗) ∈ B(p∗, X∗), and

(2) Y ∗ ∈ Xp∗ .

133

Chapter 7. Competitive Equilibrium with Divisible Bads

Proving r∗ ∈ P (β(p∗, X∗)), for some β(p∗, X∗) ∈ B(p∗, X∗): We first outline the
necessary and sufficient condition for any vector p′ to be in P (β(p,X)), as this will be
useful for our proof.

Observation 7.37. p′ ∈ P (β(p,X)) if and only if

(1) p′ ∈ P , and

(2) for each chore j in component Dk, we have p′j = βj(p,X) ·
∑

j∈Bk p
′
j.

Proof. We first show the “if” direction. To show that p′ ∈ P (β(p,X)), it suffices to show
that for each chore j ∈ Bk, we have p′j = βj(p,X) · p̃k, such that p̃ ∈ P̃ (β(p,X)). For each
component Dk of the disutility graph, let p̃k =

∑
j∈Bk p

′
j . Observe that for each chore

j ∈ Bk we have p′j = βj(p,X) · p̃k. It now suffices to show that p̃ = 〈p̃1, p̃2, . . . , p̃d〉 ∈
P̃ (β(p,X)). To this end, observe that p̃k =

∑
j∈Bk p

′
j ≥ 0 as p′j ≥ 0 for all j ∈ [m] (as p′ ∈

P). Furthermore,
∑

k∈[d] p̃k =
∑

j∈[m] p
′
j = 1 (as p′ ∈ P). Now, to show p̃ ∈ P̃ (β(p,X)),

it suffices to show that p̃ satisfies the system of equations in (7.17) or equivalently those
in (7.16). To this end, since p′ ∈ P , for each component Dk we have,∑

i∈Ak

∑
j∈[m]

wi,j · p′j =
∑
j∈Bk

p′j .

Or equivalently, ∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · p′j =
∑
j∈Bk

p′j .

Substituting every p′j as βj(p,X) · p̃k where chore j is in the component Dk we have,∑
i∈Ak

∑
k′∈[d]

∑
j∈Bk′

wi,j · βj(p,X) · p̃k′ = p̃k .

Therefore, p̃k satisfies (7.16). Thus p̃ ∈ P̃ (β(p,X)).
Now we show the “only if” direction. So assume p′ ∈ P (β(p,X)). Then, by Claims 7.31, 7.32

and 7.33 we have that p′ ∈ P . Also by the definition of P (β(p,X)), we also have that
there exists a vector p̃ = 〈p̃1, . . . , p̃d〉 such that for all j ∈ [m] we have p′j = βj(p,X) · p̃k
where Dk is the component in the disutility graph containing chore j. So it just suffices
to show that p̃k =

∑
j∈Bk p

′
j for all k ∈ [d]. To this end, observe that,∑

j∈Bk

p′j =
∑
j∈Bk

βj(p,X) · p̃k

= p̃k ·
∑
j∈Bk

βj(p,X)

= p̃k. (as β(p,X) satisfies 7.14)

We are now ready to show that r∗ ∈ P (β(p∗, X∗)) for some β(p∗, X∗) ∈ B(p∗, X∗).
r∗ is the limit of the sequence (rn)n∈N, p∗ is the limit of the sequence (pn)n∈N, and X∗

is the limit of the sequence (Xn)n∈N . Since for all n, 〈rn, Y n〉 ∈ φ(〈pn, Xn〉), we can

134

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

conclude that each rn ∈ P . Since the set P is compact (and therefore closed), we have
that r∗ ∈ P as well. Now, by Observation 7.37, it suffices to show that for each chore j
in component Dk, we have r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ for some β(p∗, X∗) ∈ B(p∗, X∗).

To this end, we first define a vector β(p∗, X∗) ∈ B(p∗, X∗) and then we show that indeed
r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ .

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) > 0, we set βj(p

∗, X∗) =
qj(p

∗, X∗)/(
∑

j′∈Bk qj′(p
∗, X∗)).

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) = 0 and

∑
j′∈Bk r

∗
j′ > 0, we set

βj(p
∗, X∗) = r∗j/(

∑
j′∈Bk r

∗
j′).

• For all chores j ∈ Bk such that
∑

j′∈Bk qj′(p
∗, X∗) = 0 and

∑
j′∈Bk r

∗
j′ = 0, we set

βj(p
∗, X∗) = 1/|Bk|.

It can be verified that β(p∗, X∗) satisfies all the linear inequalities and equalities
in 7.13, 7.14 and 7.15. Therefore, we have β(p∗, X∗) ∈ B(p∗, X∗). Now it just suffices to
show that r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ . To this end, observe that for all chores j ∈ Bk

such that
∑

j′∈Bk qj′(p
∗, X∗) = 0, we already have that r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ : For

a chore j ∈ Bk, where
∑

j′∈Bk r
∗
j′ > 0, we have r∗j′ =

(
r∗j/(

∑
j′∈Bk r

∗
j′)
)
· (
∑

j′∈Bk r
∗
j′) =

βj(p
∗, X∗) · (

∑
j′∈Bk r

∗
j′). Similarly, for a chore j ∈ Bk where

∑
j′∈Bk r

∗
j′ = 0, we have

r∗j′ = 0 = (1/|Bk|) · 0 = βj(p
∗, X∗) · (

∑
j′∈Bk r

∗
j′).

Therefore, it only suffices to show r∗j = βj(p
∗, X∗) ·

∑
j′∈Bk r

∗
j′ for chores j, such that

j ∈ Bk and
∑

j′∈Bk qj′(p
∗, X∗) > 0. To this end, consider any chore j ∈ Bk, such that∑

j′∈Bk qj′(p
∗, X∗) > 0. Let δ =

∑
j′∈Bk qj′(p

∗, X∗) > 0 and let 0 < ε� δ/(2n ·m). Let
S∗ ⊆ S be the set of all points 〈p′, X ′〉 ∈ S, that have a distance of at most ε from
〈p∗, X∗〉. Observe that for any 〈p′, X ′〉 ∈ S∗ we have,∑

j′∈Bk

qj′(p
′, X ′) =

∑
j′∈Bk

(
p′j′ + max (1−

∑
i∈[n]

X ′ij′ , 0)
)

≥
∑
j∈Bk

(
(p∗j′ − ε) + (max (1−

∑
i∈[n]

X∗ij′ , 0)− nε)
)

=
∑
j′∈Bk

(
p∗j′ + max (1−

∑
i∈[n]

X∗ij′ , 0)
)
−
∑
j′∈Bk

(n+ 1)ε

≥
∑
j′∈Bk

qj′(p
∗, X∗)− 2nmε

= δ − 2nmε

> 0.

Thus, for all 〈p′, X ′〉 ∈ S∗, we have
∑

j′∈Bk qj′(p
′, X ′) > 0, implying that for all β(p′, X ′) ∈

B(p′, X ′) we have βj(p
′, X ′) = qj(p

′, X ′)/(
∑

j′∈Bk qj′(p
′, X ′)). Since,

∑
j′∈Bk qj′(p

′, X ′) >
0 for all 〈p′, X ′〉 ∈ S∗, we have that βj(p

′, X ′) is well defined and continuous for all
〈p′, X ′〉 ∈ S∗. We define fj(r, p,X) = rj − βj(p,X) ·

∑
j′∈Bk rj′ . Since βj(p,X) is well

defined and continuous for all 〈p,X〉 ∈ S∗, we have that fj(r, p,X) is well defined and
continuous for all 〈p,X〉 ∈ S∗ and r ∈ P .

Now, consider any 0 < ε� δ/(2nm). Since the sequences (rn)n∈N and (〈pn, Xn〉)n∈N
converge to r∗ and 〈p∗, X∗〉 respectively, there exists a n′(ε) ∈ N such that for all n > n′(ε),

135

Chapter 7. Competitive Equilibrium with Divisible Bads

we have |r∗ − rn| < ε and |〈p∗, X∗〉 − 〈pn, Xn〉| < ε. In that case, for all n > n′(ε),
we have 〈pn, Xn〉 ∈ S∗. Therefore, fj(r

n′(ε)+n, pn
′(ε)+n, Xn′(ε)+n) is well defined for all

n ∈ N. We define a new sequence (hn)n∈N, such that hn = fj(r
n′(ε)+n, pn

′(ε)+n, Xn′(ε)+n).
Since fj(r, p,X) is well defined and continuous for all 〈p,X〉 ∈ S∗ and r ∈ P , and
〈pn′(ε)+n, Xn′(ε)+n〉 ∈ S∗ and rn

′(ε)+n ∈ P for all n ∈ N, we have that the limit of the
sequence (hn)n∈N is h∗ = fj(r

∗, p∗, X∗). Again, since rn ∈ P (β(pn, Xn)) for all n ∈ N,

we have by Observation 7.37 that hn = fj(r
n′(ε)+n, pn

′(ε)+n, Xn′(ε)+n) = r
n′(ε)+n
j −

βj(p
n′(ε)+n, Xn′(ε)+n) ·

∑
j′∈Bk r

n′(ε)+n
j′ = 0 for all n ∈ N. Therefore, the limit of the

sequence (hn)n∈N is h∗ = 0. This implies that fj(r
∗, p∗, X∗) = 0, further implying that

r∗j −βj(p∗, X∗) ·
∑

j′∈Bk r
∗
j′ = 0. Thus, we have r∗j = βj(p

∗, X∗) ·
∑

j′∈Bk r
∗
j′ for all chores

j, such that j ∈ Bk, where
∑

j′∈Bk qj′(p
∗, X∗) > 0.

Proving Y ∗ ∈ Xp∗: To show Y ∗ ∈ Xp∗ , we need to show that

(1) Y ∗ ∈ X,

(2) for all i ∈ Ak, we have Yij > 0 only if d(i, j) 6=∞,

(3) for all i ∈ Ak, where
∑

j∈Bk p
∗
j > 0, we have Yij > 0 only if d(i,j)

p∗j
≤ d(i,`)

p∗`
for all

` ∈ [m], and

(4) for all i ∈ Ak, where
∑

j∈Bk p
∗
j > 0, we have

∑
j∈[m] Yij · p∗j =

∑
j∈[m]wi,j · p∗j for

all i ∈ [n].

Since 〈rn, Y n〉 ∈ φ(〈pn, Xn〉) for all n, we have that Y n ∈ X for all n. Since X is
compact (and therefore closed), we have that Y ∗ ∈ X as well.

We show part 2 by contradiction. Assume that there exists an i ∈ Ak, where Y ∗ij =
δ > 0, and d(i, j) =∞. Since the sequence (Y n)n∈N converges to Y ∗, we know that for
every ε > 0, there exists an n′(ε) ∈ N be such that for n > n′(ε) we have |Y ∗ij − Y n

ij | < ε.
Choosing a ε� δ, we can ensure that |Y ∗ij − Y n

ij | < ε, implying that Y n
ij ≥ δ − ε > 0 for

all n > n′(ε). Therefore Y n
ij > 0 for all n > n′(ε) (while d(i, j) =∞) which contradicts

the fact that Y n ∈ X.
We show part 3 by contradiction. Consider any agent i ∈ Ak, where

∑
`∈Bk p

∗
` > 0.

Since
∑

`∈Bk p
∗
` > 0, the chore j such that d(i,j)

p∗j
is minimum has price p∗j > 0. So

for contradiction, let us assume that Y ∗ij′ = β > 0, and d(i,j′)
p∗
j′

> d(i,j)
p∗j

(1 + δ) for some

δ > 0. Since the sequence (Y n)n∈N converges to Y ∗ and pn converges to p∗, we know
that for every ε > 0, there exists an n′(ε) ∈ N be such that for n > n′(ε) we have
|Y ∗ij − Y n

ij | < ε and |p∗j − pnj | < ε for all j ∈ [m]. For a sufficiently small ε > 0, we can

ensure that Y ∗ij′ ≥ β− ε > 0 and d(i,j′)
pn
j′

> d(i,j)
pnj

, contradicting the fact that Y n ∈ Xpn for

all n > n′(ε).
Finally, we prove part 3 by contradiction. Assume that

∑
j∈[m]wi,j · p∗j −

∑
j∈[m] Y

∗
ij ·

p∗j = δ for some non-zero δ. Since the sequence (Y n)n∈N converges to Y ∗ and pn converges
to p∗, we know that for every ε > 0, there exists an n′(ε) ∈ N be such that for n > n′(ε)
we have |Y ∗ij − Y n

ij | < ε and |p∗j − pnj | < ε for all j ∈ [m]. Therefore, by choosing a
sufficiently small ε we can ensure that

∑
j∈[m]wi,j · pnj −

∑
j∈[m] Y

n
ij · pnj 6= 0, for all

n > n′(ε), which contradicts the fact that Y n ∈ Xpn for all n > n′(ε).

136

7.2. Sufficiency Conditions for the Existence of a Competitive Equilibrium

We are now ready to state the main result of this section

Theorem 7.38. Every instance I ∈ I admits a competitive equilibrium.

Proof. We defined a correspondence φ that satisfies properties P1, P2, P3 and P4 by
Lemmas 7.30, 7.34, 7.35 and 7.36. By Lemma 7.25 we have that any correspondence that
satisfies the properties P1, P2, P3 and P4 has a fixed point. Finally, by Lemma 7.26,
any fixed point of this correspondence will correspond to a competitive equilibrium in
I. Therefore, our correspondence φ has at least one fixed point and this fixed point
corresponds to a competitive equilibrium.

Proof of Fact 7.23: Recall Fact 7.23.

Fact. Let Z ∈ Rn×n be a square matrix such that Zij ≥ 0 for all j 6= i (all the non-
diagonal entries of Z are non-negative) and

∑
i∈[n] Zij = 0 (column sums are zero), then

there exists a vector t ∈ Rn≥0 such that
∑

i∈[n] ti = 1 and Z · t = 0.

Proof. Let λ � max i,j∈[n](|Zij |). Let Z ′ = 1
λZ. Observe that every t that satisfies

Z ′ · t = 0, also satisfies Z · t = 0 and vice versa. Also, each entry in the matrix Z ′ has
absolute value is less than one. Let Z ′′ = (Z ′ + I) where I is the identity matrix. Note
that every entry in the matrix Z ′′ is non-negative. Also every t that satisfies Z ′′ · t = t,
also satisfies Z ′ · t = 0 and therefore also satisfies Z · t = 0 and vice versa. From here on,
we will be dealing with the following system of equations

Z ′′ · t = t . (7.20)

We first observe that the matrix Z ′′ is column stochastic: For all j ∈ [n], we have

∑
i∈[n]

Z ′′ij =
∑
i∈[n]

(
1

λ
· Zij + Iij)

=
∑
i∈[n]

1

λ
· Zij + 1

= 0 + 1 (Column sums are zero in Z)

= 1 .

Now, let ∆n =
{
r ∈ Rn≥0 |

∑
j∈[n] rj = 1

}
be the n dimensional simplex. Observe that

the set ∆n is non-empty, convex and compact. We first make a small claim.

Claim 7.39. Let r′ = Z ′′ · r. If r ∈ ∆n then r′ ∈ ∆n.

Proof. Since every entry in the matrix Z ′′ and every component of the vector r is non-
negative, we also have that every component of r′ is also non-negative: r′j ≥ 0 for all

137

Chapter 7. Competitive Equilibrium with Divisible Bads

j ∈ [d]. Now observe that∑
j∈[n]

r′j = 1T · r′

= 1T · Z ′′ · r
= 1T · r (as Z ′′ is column stochastic)

=
∑
j∈[m]

rj = 1.

Thus, r′ ∈ ∆n.

We define f : ∆n → ∆n such that f(r) = Z ′′ · r. Observe that f is also continu-
ous. Thus, by Brouwer’s fixed point theorem there is a t ∈ ∆n, such that f(t) = t or
equivalently Z ′′ · t = t.

7.3 PPAD-Hardness of Determining a Competitive Equi-
librium

In this section, we show that chore division is intractable even for the instances that
satisfy Conditions 1 and 2 mentioned in Section 7.2. We show that it is PPAD-hard to find
a competitive equilibrium on instances that satisfy Conditions 1 and 2 in Section 7.2. We
will show that any polynomial-time algorithm that determines a competitive equilibrium
on instances that satisfy Conditions 1 and 2, will yield a polynomial-time algorithm to
find an equilibrium in a normalized polymatrix game. The normalized polymatrix game
is known to be PPAD-hard [38].

A polymatrix game is represented by a game graph where each node is a player who
plays a two-player game with each of her neighbors. She has to play the same strategy
with each of her neighbors and her payoff is the sum of the payoffs on each of her incident
edges. If there are n players and each of them has exactly two strategies to choose from,
then such a game can be represented by 2n× 2n matrix. When thought of it as n× n
block matrix, where each block is 2× 2 matrix, then (i, j)th block is the payoff matrix
of player i for the game on edge (i, j). Formally,

Problem. (Normalized Polymatrix Game) [38]
Given: A 2n× 2n rational matrix M with every entry in [0, 1] and Mi,2j−1 + Mi,2j = 1
for all i ∈ [2n] and j ∈ [n] .
Find: Equilibrium strategy vector x ∈ R2n

≥0 such that x2i−1 + x2i = 1 and

xT ·M∗,2i−1 > xT ·M∗,2i + 1
n =⇒ x2i = 0.

xT ·M∗,2i > xT ·M∗,2i−1 + 1
n =⇒ x2i−1 = 0.

where M∗,k represents the kth column of the matrix M.

Given an instance I = 〈M〉 of the polymatrix game, we construct an instance E(I)
of chore division. We show that E(I) satisfies Conditions 1 and 2 in Section 7.2 and
therefore admits a competitive equilibrium. Then, we show how to obtain an equilibrium

138

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

vector x ∈ R2n
≥0 from the prices of the chores in E(I) at a competitive equilibrium

in polynomial-time . This would imply the PPAD-hardness of finding a competitive
equilibrium even under the sufficiency conditions.

The key properties that our hard instance E(I) exhibits are pairwise equal endow-
ments, fixed earning, price equality, price regulation and reverse ratio amplification (we
will give a precise definition of these properties in Subsection 7.3.1). These techniques
(constructing hard instances exhibiting these properties) have been used earlier to prove
PPAD-hardness for determining a competitive equilibrium in the exchange model with
goods when agents have constant elasticity of substitution (CES) utilities [38] and even
for the Fisher model with goods when agents have separable piecewise linear concave
(SPLC) utilities [39]. However, the challenge is to construct these gadgets and make
them work together only using linear disutility functions; as clearly this is not possible
in case of goods, when agents have linear utility functions.

7.3.1 Creating the Instance E(I)

We elaborate our construction and proof of reduction: We first introduce all agents and
chores. Thereafter, we define the disutility matrix and endowment matrix and show that
our instance satisfies the sufficiency conditions mentioned in Section 7.2, and therefore
admits a competitive equilibrium. Then, we show that our instance exhibits the four
properties of pairwise equal endowments, fixed earning, price equality, price regulation and
reverse ratio amplification, and thus in polynomial-time we can construct the equilibrium
strategy vector x for I from any competitive equilibrium in E(I).

7.3.2 Agent and Chore Sets

We define the set of K = 2c · dlog(n)e many sets of chores, where c = 4 (observe crucially
that K is even),

Bk =
{
∪i∈[2n]bki

}
for all k ∈ [K],

and K many sets of agents

Ak =


{
∪i∈[2n]a1i

}
∪
{
∪i∈[2n]a′i

}
when k = 1,{

∪i∈[2n]aki
}
∪
{
∪i∈[n]aki

}
when 2 ≤ k ≤ K − 1,{

∪i,j∈[2n]aKi,j
}
∪
{
∪i∈[n]aKi

}
when k = K.

We now define the disutility matrix and the endowment matrix of the instance.

Disutility Matrix and the Disutility Graph. The disutility graph of our instance
will be a disjoint union of complete bipartite graphs. We now describe the disutility
matrix: We define only the disutility values in the matrix that are finite (the disutility of
all agent-chore pair not mentioned should be assumed to be∞). For all k ∈ [K], for each
pair of chores bk2i−1 and bk2i, there are a set of agents that have finite disutility towards
them and have infinite disutility towards all other chores; Additionally, these agents
also happen to be either in Ak or Ak−1 (indices are modulo K). Thus, each component
in the disutility graph comprises of the chores bk2i−1 and bk2i and the agents that have

139

Chapter 7. Competitive Equilibrium with Divisible Bads

finite disutility towards them. We now outline these agents and their disutilities for every
k ∈ [K]. To define the finite entries in the disutility matrix, we introduce the scalars
1
n3c = α1, α2, . . . , αK such that each αi+1 = 3

2 ·αi for all i ∈ [K− 1]. Before we define the
disutility matrix, we make an obvious claim about the scalars αi for all i ∈ [K], which
will be useful later,

Claim 7.40. We have nc · α1 < αK ≤ 1
nc .

Proof. We first show the lower bound. We have αK = (32)K−1 ·α1 = (32)2cdlog(n)e−1 ·α1 >

2c log(n) · α1 = nc · α1. Similarly, for the upper bound, we have, αK = (32)K−1 · α1 =

(32)2cdlog(n)e−1 · α1 < 22c log(n) · α1 = n2c · α1 = 1
nc (as α1 = 1

n3c).

We now define the disutility matrix:

• k = 1: For each i ∈ [n], we first define the disutilities of the agents that have finite
disutility for chores b12i−1 and b12i. For each i ∈ [n] we have,

d(aKi′,2i−1, b
1
2i−1) = (1− α1) and d(aKi′,2i−1, b

1
2i) = (1 + α1) for all i′ ∈ [2n]

d(aKi′,2i, b
1
2i−1) = (1 + α1) and d(aKi′,2i, b

1
2i) = (1− α1) for all i′ ∈ [2n]

d(a′2i−1, b
1
2i−1) = (1− α1) and d(a′2i−1, b

1
2i) = (1 + α1)

d(a′2i, b
1
2i−1) = (1 + α1) and d(a′2i, b

1
2i) = (1− α1).

Therefore, for each i ∈ [n], we have a component D1
i in the disutility graph which is

a complete bipartite graph comprising of agents
{
∪i′∈[2n]aKi′,2i−1

}⋃{
∪i′∈[2n]aKi′,2i

}
⋃{

a′2i−1, a
′
2i

}
and chores

{
b12i−1, b

1
2i

}
(see Figure 7.2 (left subfigure) for an illus-

tration).

• 2 ≤ k ≤ K: For each i ∈ [n] we have,

d(ak−12i−1, b
k
2i−1) = (1− αk) and d(ak−12i−1, b

k
2i) = (1 + αk)

d(ak−12i , bk2i−1) = (1 + αk) and d(ak−12i , bk2i) = (1− αk)
d(aki , b

k
2i−1) = (1− αk) and d(aki , b

k
2i) = (1− αk) .

Therefore, for every k such that 2 ≤ k ≤ K, for each i ∈ [n], we have a connected
component Dk

i in the disutility graph which is a complete bipartite graph com-

prising of agents
{
ak−12i−1, a

k−1
2i , aki

}
and chores

{
bk2i−1, b

k
2i

}
(see Figure 7.2 (right

subfigure) for an illustration).

It is clear that the disutility graph is a disjoint union of complete bipartite graphs, namely,
the union of Dk

i for all i ∈ [n] and k ∈ [K]. Therefore,

E(I) satisfies Condition 2 in Section 7.2.

140

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

aK
1,(2i−1)

aK
n,(2i−1)

aK
1,(2i)

aK
n,(2i)

a′2i−1

a′2i

b12i−1

b12i

D1
i

ak−1
2i−1

ak−1
2i

aki

bk2i−1

bk2i

Dk
i

Figure 7.2: Illustration of the disutility graph corresponding to the disutility matrix:
On the left, we have the component D1

i , and on the right we have Dk
i when 2 ≤ k ≤ K.

The edges are colored in order to also encode the disutility matrix. The thin blue edges
from agents to chores depict a disutility of 1− α1 for D1

i (left), and 1− αk for Dk
i when

2 ≤ k ≤ K (right). Similarly, the thick blue edges from agents to chores depict a disutility
of 1 + α1 for D1

i (left) and 1 + αk for Dk
i (right).

141

Chapter 7. Competitive Equilibrium with Divisible Bads

Endowment Matrix. All agents in Ak have endowments of chores only in Bk for
all k ∈ [K]. We only mention the non-zero agent-chore endowments (all agent-chore
endowments not mentioned are zero).

• k = 1: For each i ∈ [2n] we have,

w(a1i , b
1
i) = n.

Also, for each i ∈ [n] we have

w(a′2i−1, b
1
2i−1) = w(a′2i−1, b

1
2i) =

1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i−1)

w(a′2i, b
1
2i−1) = w(a′2i, b

1
2i) =

1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i).

• 2 ≤ k ≤ K − 1: For each i ∈ [n], we have,

w(ak2i−1, b
k
2i−1) = n and w(ak2i, b

k
2i) = n

w(aki , b
k
2i−1) = δk and w(aki , b

k
2i) = δk ,

where δk = n·αk
2 . The reason behind the exact choice of the value of δk will become

explicit when we show that our instance satisfies the reverse ratio amplification
property in Section 7.3.3. As of now, the reader is encouraged to think of it just
as a small scalar.

• k = K: For each i ∈ [n] we have,

w(aK2i−1,j , b
K
2i−1) = M2i−1,j and w(aK2i,j , b

K
2i) = M2i,j for all j ∈ [2n]

w(aKi , b
K
2i−1) = δK and w(aKi , b

K
2i) = δK ,

where δK = n·αK
2 (the reason behind the choice of value will become explicit in

Section 7.3.3).

Strongly Connected Economy Graph. We now show that the economy graph G
of our instance is strongly connected. For ease of explanation, we introduce the notion
of economy graph of components W = ([d], EW), where there is an edge from i ∈ [d] to
j ∈ [d], if and only if, there is an agent a ∈ Di that has a positive endowment of some
chore in b ∈ Dj . We now make a claim that strong connectivity of W implies strong
connectivity of the economy graph G.

Claim 7.41. If W is strongly connected then G is also strongly connected.

Proof. Consider any two agents a and a′. Let a ∈ Di and a′ ∈ Dj .
16 Consider any chore

b that agent a has a positive endowment of and let Di′ be the component in the disutility
graph that contains b.17 Then since Di′ is a biclique in our instance, every agent in Di′

16Note that j could also be equal to i
17Again, i′ could also be equal to i

142

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

has finite disutility for the chore b. Therefore, every agent in Di′ is reachable from a
with an edge in the economy graph G. Now, since W is strongly connected, there is
a path from `1 → `2 → · · · → `k from i′ = `1 to j = `k. Let a`r be the agent in the
component D`r , that has a positive endowment of some chore in the component D`r+1

for all r ∈ [k − 1]. Again, since each D`r is a biclique, every agent in D`r has a finite
disutility for every chore in D`r . Thus, there is an edge in the economy graph G from
a`r to every agent in D`r , in particular there is an edge between a`r and a`r+1 in G.
Thus, we have a path a → a`1 → · · · → a`k−1

→ a′ in G. Therefore, if W is strongly
connected, then there is a path between any two agents in G, implying that G is also
strongly connected.

Form here on, we show that W is strongly connected. Observe that the disutility
graph consists of connected components Dk

i for k ∈ [K] and i ∈ [n]. Also observe that
every component Dk

i in the disutility graph comprises of exactly two chores bk2i−1 and

bk2i. Therefore, to show that there exists an edge from component Dk′
i′ to Dk

i in W , it
suffices to show that Dk′

i′ contains agents that own parts of chores bk2i−1 and bk2i. We now
outline the edges in our exchange graph (see Figure 7.3):

• For all i ∈ [n], and 2 ≤ k ≤ K there is an edge in W from Dk
i to Dk−1

i : Dk
i contains

the agents ak−12i−1 and ak−12i that own parts of chores bk−12i−1 and bk−12i respectively (see
Figure 7.3).

• For all i ∈ [n], there is an edge in W from D1
i to DK

j for all j ∈ [n]: Consider any

j ∈ [n]. Observe that the component D1
i contains the agents aK2j−1,2i and aK2j,2i and

the agents aK2j−1,2i and aK2j,2i own parts of chores bK2j−1 and bK2j respectively (see
Figure 7.3).

Observe that all nodes are reachable from any D1
i (i ∈ [n]). Also, from any arbitrary

Dk′
i′ , the node D1

i′ is reachable and since every node is reachable from D1
i′ , every node

is also reachable from Dk′
i′ as well. Therefore, the economy graph of components W , is

strongly connected. Therefore, by Claim 7.41 we have that,

E(I) satisfies Condition 1 in Section 7.2.

Thus, E(I) satisfies Conditions 1 and 2 in Section 7.2 and therefore admits a compet-
itive equilibrium. Let p(bki) denote the price of any chore bki at a competitive equilibrium.
We now prove that our instance satisfies the required properties of pairwise equal endow-
ments, price equality, fixed earning, price regulation and reverse ratio amplification.

7.3.3 E(I) Satisfies All the Properties

Pairwise Equal Endowments. Here, we show that for all i ∈ [n] and for all k ∈ [K]
the total endowment of bk2i−1 equals the total endowment of bk2i and the total endowments
of each chore in E(I) is O(n).

Lemma 7.42. For all i ∈ [2n], the total endowments of chores bk2i−1 and bk2i is

(1) n+ n · (1− αK), if k = 1. In particular, a′2i−1 and a′2i together, own n · (1− αK)
units of chores bk2i−1 and bk2i each.

143

Chapter 7. Competitive Equilibrium with Divisible Bads

D1
1 DK1 DK−1

1
D2

1

D1
i DKi DK−1

i
D2
i

D1
n DKn DK−1

n D2
n

Figure 7.3: Illustration of the strong connectivity of the economy graph of components
of our instance. Observe that all nodes are reachable from any D1

i (i ∈ [n]). Also, from
any arbitrary Dk′

i′ , the node D1
i′ is reachable and since every node is reachable from

D1
i′ , every node is also reachable from Dk′

i′ as well. Therefore, the economy graph of
components is strongly connected.

144

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

(2) n+ δk, if 2 ≤ k ≤ K.

Proof. When k = 1, the only agents that have positive endowments of b12i are a12i (has
an endowment of n) , a′2i (has an endowment of 1

2 · (1−αK) · (2n−
∑

j∈[2n] Mj,2i)) and

a′2i−1(has an endowment of 1
2 · (1 − αK) · (2n −

∑
j∈[2n] Mj,2i−1)). Therefore, the total

endowment of b12i from the agents a′2i and a′2i−1 is

=
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i) +
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i−1)

=
1

2
· (1− αK) · (4n−

∑
j∈[2n]

(Mj,2i + Mj,2i−1)).

Recall that Mj,2i + Mj,2i−1 = 1. Therefore, the total endowment of b12i from the agents
a′2i and a′2i−1 is

=
1

2
· (1− αK) · (4n− 2n)

= (1− αK) · n.

Therefore, the total endowment of chore b12i is n+ n · (1− αK). A similar argument will
show that the total endowment of chore b12i−1 is also n + n · (1 − αK) and that agents
a′2i−1 and a′2i together, own n · (1− αK) units of it.

When 2 ≤ k ≤ K − 1, the only agents that have positive endowments of bk2i are
ak2i (has an endowment of n) and aki (has an endowment of δk). Therefore, the total
endowment is n+ δk. A similar argument will show that the total endowment of chore
bk2i−1 is also n+ δk.

When k = K, the only agents that have positive endowments of bK2i are the agents
aK2i,j (has an endowment of M2i,j) for all j ∈ [2n] and the agent aKi (has an endowment

of δK). Therefore, the total endowment of chore bK2i is

=
∑
j∈[2n]

M2i,j + δK

=
∑
j∈[n]

(M2i,2j−1 + M2i,2j) + δK

=
∑
j∈[n]

1 + δK

= n+ δK

A similar argument will show that the total endowment of chore bK2i−1 is also n+ δK .

Price Equality. Here we will show that the sum of prices of chores b12i−1 and b12i equals
that of bK2i−1 and bK2i . Let us define

πki = p(bk2i−1) + p(bk2i), ∀i ∈ [2n], k ∈ [K] .

Since the prices corresponding to a competitive equilibrium is scale-invariant, we can
assume without loss of generality that π11 = 2. We now state the main lemma of price
equality:

145

Chapter 7. Competitive Equilibrium with Divisible Bads

Lemma 7.43. For all i ∈ [n] and for all k ∈ [K], we have πki = 2.

Proof. We show this in two steps: First we show that π1i = πki for all k ∈ [K]. Then we
show that π1i = 1

n

∑
j∈[n] π

K
j for all i ∈ [n], implying that π1i = π1j for all i, j ∈ [n]. Since

for all i ∈ [n] and k ∈ [K], πki = π1i and π1i = π11, we will have that πki = π11 = 2.
We first show π1i = πki for all k ∈ [K]: Consider any k ∈ [2,K] and any i ∈ [n]. Observe

that the agents ak−12i−1, a
k−1
2i , aki and chores bk2i−1, b

k
2i form the connected component Dk

i

in the disutility graph. This implies that the agents ak−12i−1, a
k−1
2i and aki earn all of their

money at a competitive equilibrium from chores bk2i−1 and bk2i. Now, note that aki owns
δk units of both bk2i−1 and bk2i only and has finite disutility only for chores bk2i−1 and bk2i.
Therefore, at a competitive equilibrium, aki has to earn δk · πki money from chores bk2i−1
and bk2i, to pay for her endowments. Thus, the total money the agents ak−12i−1 and ak−12i earn

from chores bk2i−1 and bk2i is the total price of these chores remaining after aki earns her
share of δk ·πki , which is (n+ δk) ·πki − δk ·πki = n ·πki (as the total endowment of each bk2i
and bk2i−1 is n+ δk for all k ∈ [2,K] by Lemma 7.42). At a competitive equilibrium, the

total money earned by the agents ak−12i−1 and ak−12i should be equal to the total prices of

chores they own (n units of bk−12i−1 and bk−12i respectively). Thus we have, n · πk−1i = n · πki .
This implies that,

πki = πk−1i = · · · = π1i .

We now show that π1i = 1
n

∑
j∈[n] π

K
j : This time, we look into the connected component

D1
i of the disutility graph. We can claim that the agents ∪j∈[2n]aKj,2i−1, ∪j∈[2n]aKj,2i and the

agents a′2i−1 and a′2i earn all of their money at a competitive equilibrium from chores b12i−1
and b12i. Observe that both agents a′2i−1 and a′2i own some units of chores b12i−1 and b12i only.
Since the only chores towards which a′2i−1 and a′2i have finite disutility are also b12i−1 and
b12i, we can conclude that at a competitive equilibrium, to pay for their endowments, agents
a′2i−1 and a′2i, together earn n·(1−αK)·π1i amount of money from chores b12i−1 and b12i (as
from Lemma 7.42, statement 1, we have that a′2i−1 and a′2i together own n ·(1−αK) units
of both chores b12i−1 and b12i). Thus, the total money agents ∪j∈[2n]aKj,2i−1 and ∪j∈[2n]aKj,2i
earn at a competitive equilibrium is the total prices of chores b12i−1 and b12i minus the
total money earned by agents a′2i−1 and a′2i: (n+n ·(1−αK)) ·π1i −n ·(1−αK) ·π1i = n ·π1i .
At a competitive equilibrium, the total money that these agents earn must equal the total
prices of chores they own. Recall that each agent aK`,`′ owns M`,`′ units of bK` . Therefore,
we have

n · π1i =
∑
j∈[2n]

Mj,2i · p(bKj) +
∑
j∈[2n]

Mj,2i−1 · p(bKj)

=
∑
j∈[2n]

(Mj,2i + Mj,2i−1) · p(bKj)

=
∑
j∈[2n]

p(bKj) (using Mj,2i−1 + Mj,2i = 1)

=
∑
j∈[n]

πKj

This implies that π1i = 1
n

∑
j∈[n] π

K
j .

146

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

Fixed Earning. Here, we show that in every competitive equilibrium, the earning of
each agent a′i for i ∈ [2n] is fixed.

Lemma 7.44. For all i ∈ [2n], we have that the earning of agent a′i is (1− αK) · (2n−∑
j∈[2n] Mj,i).

Proof. Let i = 2i′. Then agent a′2i′ owns 1
2 · (1−αK) · (2n−

∑
j∈[2n] Mj,2i′) units of both

chores b12i′−1 and b12i′ . Since the earning of any agent at a competitive equilibrium equals
the sum of prices of chores she owns, we have that the earning of agent 2i′ is

=
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · (p(b12i′−1) + p(b12i′))

=
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · π1i′

=
1

2
· (1− αK) · (2n−

∑
j∈[2n]

Mj,2i′) · 2 (by Lemma 7.43).

= (1− αK) · (2n−
∑
j∈[2n]

Mj,2i′).

Similarly, when i = 2i′ − 1 we can show that the total earning of agent a′2i′−1 is (1 −
αK) · (2n −

∑
j∈[2n] Mj,2i′−1). Thus the total earning of any agent a′i in a competitive

equilibrium is (1− αK) · (2n−
∑

j∈[2n] Mj,i).

Price Regulation. Here, we show that for all k ∈ [K] and i ∈ [2n] the ratio of the
prices of chores bk2i−1 and bk2i is bounded.

Lemma 7.45. For all k ∈ [K] and for all i ∈ [n], we have 1−αk
1+αk

≤ p(bk2i−1)

p(bk2i)
≤ 1+αk

1−αk .

Proof. We prove the lower bound (1−αk
1+αk

≤ p(bk2i−1)

p(bk2i)
) by contradiction. The proof for the

upper bound is symmetric. So assume that 1−αk
1+αk

>
p(bk2i−1)

p(bk2i)
. In that case, none of the

agents in the connected component Dk
i will do any part of chore bk2i−1 (as the disutility

to price ratio of bk2i−1 will be strictly more than that of bk2i). Since all the other agents
have a disutility of ∞ for bk2i−1, it will remain unallocated. Therefore, the current prices
for chores are not the prices corresponding to a competitive equilibrium, which is a
contradiction.

Reverse Ratio Amplification. Lastly, we show the property that when the price of
chore bki is at a limit, then the price of chore bk+1

i is at the opposite limit, i.e., when
p(bki) = 1 + αk, then we have p(bk+1

i) = 1 − αk+1 and similarly when p(bki) = 1 − αk,
then we have p(bk+1

i) = 1 + αk+1.

Lemma 7.46. For all 1 ≤ k < K and i ∈ [n], we have that,

(1) if
p(bk2i−1)

p(bk2i)
= 1−αk

1+αk
, then

p(bk+1
2i−1)

p(bk+1
2i)

=
1+αk+1

1−αk+1
, and

147

Chapter 7. Competitive Equilibrium with Divisible Bads

(2) if
p(bk2i−1)

p(bk2i)
= 1+αk

1−αk , then
p(bk+1

2i−1)

p(bk+1
2i)

=
1−αk+1

1+αk+1
.

Proof. We just show the proof of part 1. The proof for part 2 is symmetric. Let us assume

that
p(bk2i−1)

p(bk2i)
= 1−αk

1+αk
. By Lemma 7.43, we have that πki = p(bk2i−1)+p(bk2i) = 2. Therefore,

p(bk2i−1) = 1− αk and p(bk2i) = 1 + αk. Observe that agent ak2i owns n units of chore bk2i
and has finite disutility only for the chores bk+1

2i−1 and bk+1
2i (ak2i belongs in the connected

component Dk+1
i). Since at a competitive equilibrium, the total earning of agent ak2i

equals the sum of prices of chores she owns, we have that ak2i earns n · p(bk2i) = n(1 +αk)
amount of money from chores bk+1

2i−1 and bk+1
2i . We claim that it suffices to show that

ak2i earns some of her money from the chore bk+1
2i−1: This would immediately imply that

d(ak2i,b
k+1
2i−1)

p(bk+1
2i−1)

≤ d(ak2i,b
k+1
2i)

p(bk+1
2i)

, further implying that
p(bk+1

2i−1)

p(bk+1
2i)

≥ 1+αk+1

1−αk+1
. However, by Lemma 7.45,

we have that
p(bk+1

2i−1)

p(bk+1
2i)

≤ 1+αk+1

1−αk+1
, and thus we can conclude that

p(bk+1
2i−1)

p(bk+1
2i)

=
1+αk+1

1−αk+1
.

For the rest of the proof, we show that ak2i earns positive amount of money from chore
bk+1
2i−1. We prove this by contradiction. So let us assume that ak2i earns all her money of

n · p(bk2i) = n · (1 + αk), only from chore bk+1
2i . We will now show that the current prices

of chores are not the prices corresponding to a competitive equilibrium by distinguishing
between two cases,

• p(bk+1
2i) = 1 + x for some x > 0: In this case, we have p(bk+1

2i−1) = 1 − x (as

πk+1
i = 2) and therefore p(bk+1

2i) > p(bk+1
2i−1). Observe that in this case, agent ak+1

i

will also earn all of her money of δk+1 · (p(bk+1
2i−1) + p(bk+1

2i−1)) = 2δk+1 from bk+1
2i

only (as the disutility to price ratio of bk+1
2i is strictly smaller than that of bk+1

2i−1).

Therefore, we have that the total money agents ak2i and ak+1
i earn from bk+1

2i is,

= 2δk+1 + n · (1 + αk)

= 2δk+1 + n · (1 +
2

3
· αk+1) (as αk+1 =

3

2
· αk)

= n · (1 +
2

3
· αk+1 +

2δk+1

n
)

= n · (1 +
2

3
· αk+1 + αk+1) (as δk+1 =

n

2
· αk+1)

> n · (1 +
3

2
· αk+1 +

α2
k+1

2
) (as αk+1 �

1

3
by Claim 7.40)

= n · (1 +
αk+1

2
) · (1 + αk+1)

= (n+ δk+1) · (1 + αk+1) (as δk+1 =
n

2
· αk+1),

which is a contradiction, as the total price of bk+1
2i is at most (n+ δk+1) · (1 +αk+1)

(there is a total endowment of n+δk+1 for chore bk+1
2i by Lemma 7.42, and p(bk+1

2i) ≤
1 + αk+1).

• p(bk+1
2i) = 1− x for 0 ≤ x < αk+1: Since the total endowment of bk+1

2i is n+ δk+1

148

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

by Lemma 7.42 and p(bk+1
2i) = 1− x, the total price of chore bk+1

2i is,

= (n+ δk+1) · (1− x)

≤ (n+ δk+1)

< (n+
4

3
δk+1)

= n · (1 +
4δk+1

3n
)

= n · (1 +
2αk+1

3
) (as δk+1 =

n

2
· αk+1)

= n · (1 + αk) (as αk+1 =
3

2
· αk),

which is the total money that agent ak2i earns from bk+1
2i , which is a contradiction.

149

Chapter 7. Competitive Equilibrium with Divisible Bads

Since K is even, a repeated application of Lemma 7.46 will yield the following lemma,

Lemma 7.47. We have,

(1) if
p(b12i−1)

p(b12i)
= 1−α1

1+α1
, then

p(bK2i−1)

p(bK2i)
= 1+αK

1−αK , and

(2) if
p(b12i−1)

p(b12i)
= 1+α1

1−α1
, then

p(bK2i−1)

p(bK2i)
= 1−αK

1+αK
.

Now that we have shown that our instance satisfies the desired properties of price
equality, fixed earning, price regulation and reverse ratio amplification, we are ready
to outline how to determine the equilibrium strategy vector x for the instance I of the
polymatrix game, given the competitive equilibrium prices of the instance E(I) of chore
division:

xi =
p(bKi)− (1− αK)

2 · αK

It is clear that given the prices of chores at a competitive equilibrium, the equilibrium
strategy vector can be obtained in linear time. We will now show that x is the desired
equilibrium strategy vector for instance I of the polymatrix game.

Lemma 7.48. x = 〈x1, x2, . . . , x2n〉 is an equilibrium strategy vector for the polymatrix
game instance I.

Proof. First, observe that since our instance satisfies the price equality (Lemma 7.43)
and price regulation (Lemma 7.45) we have that for all i ∈ [2n], 1−αK ≤ p(bKi) ≤ 1+αK .
Therefore, for all i ∈ [2n] xi ≥ 0 . Furthermore, for all i ∈ [n] we have x2i−1 + x2i =
p(bK2i−1)+p(b

K
2i)−2(1−αK)

2·αK = 2αK
2αK

= 1 (as our instance satisfies price equality: by Lemma 7.43

we have p(bK2i−1)+p(bK2i) = 2). Now we will show that if xT ·M∗,2i > xT ·M∗,2i−1+ 1
n , then

x2i−1 = 0. The proof for the other symmetric condition will be similar. So let us assume
that xT ·M∗,2i > xT ·M∗,2i−1+ 1

n . Observe that the agents that have a disutility of 1−α1

towards chore b12i are
{
∪j∈[2n]aKj,2i

}
∪a′2i. Observe that at a competitive equilibrium, the

total earning of the agents
{
∪j∈[2n]aKj,2i

}
∪ a′2i equals the sum of prices of chores they

own, which is,

=
∑
j∈[2n]

Mj,2i · p(bKj) + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i) (by Lemma 7.44)

=
∑
j∈[2n]

Mj,2i · (2αK · xj + (1− αK)) + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i) (substituting p(bKj))

=
∑
j∈[2n]

2αK · xj ·Mj,2i + (1− αK) ·
∑
j∈[2n]

Mj,2i + (1− αK) · (2n−
∑
j∈[2n]

Mj,2i)

= 2αKx
T ·M∗,2i + 2n · (1− αK).

Similarly, the total earning of the agents that have a disutility of 1−α1 towards b12i−1 is
2αKx

T ·M∗,2i−1 + 2n · (1− αK). Observe that the agents with disutility 1− α1 towards
b12i can earn all of their money only from the chores b12i or b12i−1 (as these are the only

150

7.3. PPAD-Hardness of Determining a Competitive Equilibrium

chores towards which they have finite disutility). Also note that both chores b12i−1 and
b12i have the same total endowment which is n + n · (1 − αK) by Lemma 7.42(part 1).
Now if, the agents with disutility 1 − α1 towards b12i earn all of their money, entirely

from b12i (they earn nothing from b12i−1), then we will have p(b12i) ≥
2αKx

T ·M∗,2i+2n·(1−αK)
n+n·(1−αK)

and p(b12i−1) ≤
2αKx

T ·M∗,2i−1+2n·(1−αK)
n+n·(1−αK) . Since, xT ·M∗,2i > xT ·M∗,2i−1 + 1

n . we have

p(b12i) > p(b12i−1)+ 1
n ·

2αK
n+n·(1−αK) > p(b12i−1)+ αK

n2 . Again, since αK
n2 � α1 (by Claim 7.40),

we have that
p(b12i)

p(b12i−1)
> 1+α1

1−α1
, which is a contradiction as our instance satisfies price-

regulation property (by Lemma 7.45). Therefore, the agents that have a disutility of
1 − α1 towards b12i should also earn their money from b12i−1. But this is only possible

if
p(b12i)

p(b12i−1)
= 1−α1

1+α1
. Since our instance also satisfies the reverse ratio amplification, by

Lemma 7.47 we have that
p(bK2i)

p(bK2i−1)
= 1+αK

1−αK . Since p(bK2i) + p(bK2i−1) = 2 by price equality

property (Lemma 7.43), we have that p(bK2i−1) = 1− αK . Therefore, we have

x2i−1 =
(1− αK)− (1− αK)

2 · αK
= 0.

A very similar argument will show that when xT ·M∗,2i−1 > xT ·M∗,2i +
1
n , then x2i = 0.

Thus, x = 〈x1, x2, . . . , xn〉 is an equilibrium strategy vector for the polymatrix game
I.

Thus, this immediately implies the main result of this section.

Theorem 7.49. Let I be the set of all instances that satisfy Conditions 1 and 2 in
Section 7.2. Chore division is PPAD-hard even when restricted to the set of instances I.

Proof. We bring all the points together. Normalized polymatrix game is PPAD-hard [38].
Given an instance I of the normalized polymatrix game, in polynomial-time we can
determine the instance E(I). E(I) satisfies the sufficiency conditions mentioned in
Section 7.2 and therefore admits a competitive equilibrium. Given the equilibrium prices
for E(I), in polynomial-time we can determine the equilibrium strategy vector for the
polymatrix game. Therefore, chore division is PPAD-hard even on instances that satisfy
the sufficiency conditions in Section 7.2.

151

Chapter 7. Competitive Equilibrium with Divisible Bads

152

CHAPTER 8

Outlook

In this thesis, we studied fair and efficient allocation of indivisible goods and divisible
bads.

While studying the setting of indivisible goods, our focus was to determine the ex-
istence of good relaxations of EFX allocations with high Nash welfare. In Chapter 3,
we showed that even when agents have general valuation functions, we can determine a
partial EFX allocation such that no agent envies the set of unallocated goods and less
than n goods remain unallocated. Our algorithm starts with any partial EFX allocation
and iteratively transforms the existing partial EFX allocation into a better EFX alloca-
tion, namely a partial EFX allocation that Pareto-dominates the previous partial EFX
allocation until the aforementioned properties are satisfied. Furthermore, in Chapter 4,
we show that by cleverly choosing the first partial EFX allocation, our algorithm gives
all the aforementioned guarantees with high Nash welfare. Although, the results in Chap-
ters 3 and 4 showed the existence of almost EFX allocations with high Nash welfare,
the problem of determining complete EFX allocations still remained highly non-trivial.
In Chapter 5, we were able to prove the existence of EFX allocations when there are
three agents with additive valuations through a very involved procedure. Quite recently,
Berger et al. [21] built on the techniques developed in Chapter 5 to show the existence
of EFX allocations with at most one unallocated good when there are four agents with
additive valuations. Thus, the recent works on complete EFX allocations when there is
a small number of agents show that substantially improving the upper bounds on the
number of unallocated goods in Chapter 3 will be non-trivial. In Chapter 6, we showed
that when agents have additive valuations, we can determine a (1− ε)-EFX allocation
for any ε ∈ (0, 1/2] with sublinearly many unallocated goods and high Nash welfare. We
achieved this by reducing the problem of finding EFX allocations with sublinear charity
to a combinatorial graph problem, which might be of independent interest.

Despite all the results presented in this thesis, the EFX eistence problem still remains
open, even when there are just four agents. In Chapters 5 and 6, we also showed that
the techniques developed in this thesis are not sufficient (at least in their current form)
to answer the EFX existence question for arbitrary agents. However, we believe that our
positive results on the existence of EFX allocations when there are three agents and
the existence of good relaxations of EFX allocations may allow us to hope that EFX
allocations always exist, at least when agents have structured valuation functions like
additive valuation functions. A rudimentary stepping stone would be to give a simpler
proof to the existence of EFX allocations when there are three agents with additive
valuations (the proof in Chapter 5). To be more precise, given a partial EFX allocation
X and an unallocated good g, is there a simpler way to determine an EFX allocation X ′

such that φ(X ′) > φ(X) for some integral and upper-bounded function φ? It might help
to impose further constraints on our allocation space: For instance, in all the existence
proofs in this thesis, we transformed a partial EFX allocation X to a “better” partial

Chapter 8. Outlook

EFX allocation X ′ when some properties were not satisfied. It might help to maintain a
Pareto-optimal partial EFX allocation (instead of any arbitrary partial EFX allocation),
and whenever there is an unallocated good, we transform the current Pareto-optimal
partial EFX allocation into a “better” Pareto-optimal partial EFX allocation. Note that
if we could maintain this invariant, then none of the update rules from Section 5.2 of
Chapter 5 would not be required, as they crucially use the fact that the current partial
EFX allocation is not Pareto-optimal. However, the stronger invariant also requires
update rules different from those used in Section 5.3 of Chapter 5. There is a subtlety
here that may need clarification: In Chapter 2, we show the instance described by Plaut
and Roughgarden [84], where no EFX allocation is Pareto-optimal. However, the instance
is degenerate, i.e., there are two distinct sets of goods that are valued equally by an agent.
However, in Chapter 5, we show that w.l.o.g., we can assume that our instances are
non-degenerate. Therefore, we believe that investigating the existence of Pareto-optimal
EFX allocations in non-degenerate instances could be a concrete starting point to answer
the EFX existence question for four or more agents.

The existence of EFX allocations remains the primary open problem in the study
of discrete fair division. However, there are some other problems which may be more
tractable. One avenue may be to show the existence of EFX allocations when agents
have more general valuation functions than additive valuation functions. Quite recently,
Berger et al. [21] show that with subtle changes, our proof can be used to show the
existence of EFX allocations when there are three agents with nice cancellable valuations.
A valuation v is a nice cancellable valuation if it is non-degenerate (v(A) 6= v(B) for all
A 6= B) and for all sets A,B ⊆M and g ∈M \ (A∪B), v(A∪{g}) > v(B ∪{g}) implies
v(A) > v(B). It would be interesting to find an existence proof or a counterexample in
the three-agent setting when agents have submodular or subadditive valuation functions.
Another direction for further research is to seek better approximation guarantees for
Nash welfare maximization when agents have submodular valuations. In Chapter 4, we
improve the approximation ratio from O(n log(n)) to O(n). However, the best known
lower bound is e/(e− 1) ≈ 1.58 [59], i.e., there is a gap of Ω(n) between the upper and
lower bounds, that can be closed by future work.

In the fair and efficient allocation of divisible bads, the best division for chores, just
like for goods, is arguably the one based on competitive equilibrium with equal incomes
(CEEI). Although both settings (goods and bads) seem similar at a high level, the seminal
work of Bogomolnoia et al. [22] shows that CEEI with bads exhibits far less structure than
that with goods (several disconnected equilibria, exponentially many equilibrium prices).
Despite all these algorithmic challenges, neither any hardness result nor a polynomial
time algorithm is known. In Chapter 7, we study the chore division problem in the classic
linear Arrow-Debreu setting (or equivalently the linear exchange setting), where a set
of agents want to divide their divisible chores (bads) amongst themselves to minimize
their disutilities (costs). The Arrow-Debreu setting is a generalization of the CEEI
setting. Our results on the computational complexity of the Arrow-Debreu setting with
chores are in sharp contrast to the results known for goods. We proved that determining
whether an arbitrary instance admits a competitive equilibrium is NP-hard, while in the
Arrow-Debreu setting with goods, there is a necessary and sufficient condition for the
existence of a competitive equilibrium, which is polynomial time verifiable. Furthermore,
we formulated simple and natural polynomial-time verifiable sufficiency conditions and

154

show the existence of competitive equilibrium under these conditions. We explained why
the fixed-point formulation used to show the existence of competitive equilibrium in the
goods setting does not extend to our setting, and we overcame this obstacle through a
novel fixed-point formulation which is significantly more involved. Finally, we proved
that even for instances that satisfy our sufficiency conditions, determining a competitive
equilibrium is PPAD-hard. To the best of our knowledge, these were the first hardness
results for any economic model under linear preferences.

Although our hardness results were the first hardness results for any economic model
with chores, the complexity of determining a CEEI with chores is still open, which should
be of interest to the fair division community. In a very recent paper [32], we were able
to show the PPAD-hardness of determining a CEEI with chores, when agents have more
general disutility functions (separable, piecewise linear, convex disutilities). However,
the problem remains unsolved for agents with linear disutility functions. Additionally,
our results only showed PPAD-hardness and we do not see an immediate way to adapt
our fixed-point formulation to show PPAD-membership1. A PPAD-membership result
would settle the complexity of chore division in the Arrow-Debreu setting and therefore
provides another interesting opportunity for further research.

Further Avenues. Most of the questions discussed in this thesis assume that all
agents are equally entitled. However, several real-world scenarios require division of
items among agents with unequal entitlements. Thus, asymmetric fair division is a
relevant direction for future research. While there has been some work on asymmetric
fair division [56, 29, 14, 12, 9], the asymmetric variants of EFX have not been studied
to the best of our knowledge. We believe that study of asymmetric EFX and relaxations
would require significantly different techniques than the ones developed in this thesis.
The crucial differnce lies in the meaning of envy : in the symmetric case, an agent i
envies j if i prefers j’s bundle to her own, while in the asymmetric case, an agent i
envies j because she feels that j gets more than what she (agent i) believes is j’s fair
share, meaning that i may not prefer j’s bundle to her own but still envy j. This makes
several basic protocols like envy-cycle-elimination that are used heavily in symmetric fair
division unusable. We suspect that asymmetric EFX may not exist in general, but good
approximations of the asymmetric EFX should be feasible and is a fruitful direction for
further investigation.

Another interesting but understudied avenue is two sided fairness. A two sided market
consists of two sets of agents and the agents in one set have preferences over the agents
in the other. There are several real-life two sided markets that require fair division.
For instance, hosts and guests on Airbnb, drivers and riders in Uber etc.. In contrast
to the one-sided markets (the ones we have considered in this dissertation) that are
inherently decentralized, most of the two sided markets are operated by centralized
electronic platforms (Airbnb matching hosts and guests, Uber matching drivers and
riders) and thus provide more scope of employing the fair division protocols. We are
aware of only two papers [65, 83] that consider two sided fairness and we believe that
there is substantial room for future research.

Finally, we feel that it would be great to investigate the applications and significance

1Computation of fixed-points of polynomial piecewise linear functions is in PPAD [54]

155

Chapter 8. Outlook

of the classic fairness concepts and tehniques in all domains that aim for collective
decision making involving a set of agents that have preferences.

156

Bibliography

[1] www.spliddit.org.

[2] www.fairoutcomes.com.

[3] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844–856, 1995.

[4] G. Amanatidis, G. Birmpas, and V. Markakis. Comparing approximate relaxations of
envy-freeness. In Proceedings of the Twenty-Seventh International Joint Conference
on Artificial Intelligence, (IJCAI), pages 42–48, 2018.

[5] G. Amanatidis, E. Markakis, and A. Ntokos. Multiple birds with one stone: Beating
1/2 for EFX and GMMS via envy cycle elimination. Theor. Comput. Sci., 841:94–
109, 2020.

[6] N. Anari, S. O. Gharan, A. Saberi, and M. Singh. Nash Social Welfare, Matrix
Permanent, and Stable Polynomials. In 8th Innovations in Theoretical Computer
Science Conference (ITCS), pages 1–12, 2017.

[7] N. Anari, T. Mai, S. O. Gharan, and V. V. Vazirani. Nash social welfare for
indivisible items under separable, piecewise-linear concave utilities. In Proc. 29th
Symp. Discrete Algorithms (SODA), pages 2274–2290, 2018.

[8] K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy.
Econometrica, 22(3):265–290, 1954.

[9] H. Aziz, H. Chan, and B. Li. Weighted maxmin fair share allocation of indivisible
chores. In IJCAI, pages 46–52. ijcai.org, 2019.

[10] H. Aziz and S. Mackenzie. A discrete and bounded envy-free cake cutting protocol
for any number of agents. In FOCS, pages 416–427. IEEE Computer Society, 2016.

[11] H. Aziz and S. Mackenzie. A discrete and bounded envy-free cake cutting protocol
for four agents. In STOC, pages 454–464. ACM, 2016.

[12] H. Aziz, H. Moulin, and F. Sandomirskiy. A polynomial-time algorithm for com-
puting a pareto optimal and almost proportional allocation. Oper. Res. Lett.,
48(5):573–578, 2020.

[13] E. B. Budish and E. Cantillon. The multi-unit assignment problem: Theory and
evidence from course allocation at harvard. American Economic Review, 102, 2010.

[14] M. Babaioff, T. Ezra, and U. Feige. Fair-share allocations for agents with arbitrary
entitlements. CoRR, abs/2103.04304, 2021.

www.spliddit.org
www.fairoutcomes.com

Bibliography

[15] S. Barman, U. Bhaskar, A. Krishna, and R. G. Sundaram. Tight approximation
algorithms for p-mean welfare under subadditive valuations. In ESA, volume 173 of
LIPIcs, pages 11:1–11:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[16] S. Barman, A. Biswas, S. K. K. Murthy, and Y. Narahari. Groupwise maximin fair
allocation of indivisible goods. In AAAI, pages 917–924. AAAI Press, 2018.

[17] S. Barman and S. K. Krishnamurthy. On the proximity of markets with integral
equilibria. In Proc. 33rd Conf. Artif. Intell. (AAAI), 2019.

[18] S. Barman, S. K. Krishnamurthy, and R. Vaish. Finding fair and efficient allocations.
In Proceedings of the 19th ACM Conference on Economics and Computation (EC),
pages 557–574, 2018.

[19] S. Barman and R. G. Sundaram. Uniform welfare guarantees under identical
subadditive valuations. In IJCAI, pages 46–52. ijcai.org, 2020.

[20] X. Bei, J. Garg, M. Hoefer, and K. Mehlhorn. Computing equilibria in markets with
budget-additive utilities. In Proc. 24th European Symp. Algorithms (ESA), pages
8:1–8:14, 2016.

[21] B. Berger, A. Cohen, M. Feldman, and A. Fiat. (Almost full) EFX exists for four
agents (and beyond). CoRR, abs/2102.10654, 2021.

[22] A. Bogomolnaia, H. Moulin, F. Sandomirskiy, and E. Yanovskaia. Competitive
division of a mixed manna. Econometrica, 85(6):1847–1871, 2017.

[23] A. Bogomolnaia, H. Moulin, F. Sandomirskiy, and E. Yanovskaia. Dividing bads
under additive utilities. Social Choice and Welfare, 52(3):395–417, 2019.

[24] S. J. Brams and A. D. Taylor. Fair division - from cake-cutting to dispute resolution.
Cambridge University Press, 1996.

[25] L. E. J. Brouwer. Über abbildung von mannigfaltigkeiten. Mathematische annalen,
71(1):97–115, 1911.

[26] E. Budish. The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.

[27] I. Caragiannis, N. Gravin, and X. Huang. Envy-freeness up to any item with
high Nash welfare: The virtue of donating items. In Proceedings of the 20th ACM
Conference on Economics and Computation (EC), pages 527–545, 2019.

[28] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang.
The unreasonable fairness of maximum Nash welfare. In Proceedings of the 17th
ACM Conference on Economics and Computation (EC), pages 305–322, 2016.

[29] M. Chakraborty, A. Igarashi, W. Suksompong, and Y. Zick. Weighted envy-freeness
in indivisible item allocation. In AAMAS, pages 231–239. International Foundation
for Autonomous Agents and Multiagent Systems, 2020.

158

Bibliography

[30] B. R. Chaudhury, Y. K. Cheung, J. Garg, N. Garg, M. Hoefer, and K. Mehlhorn.
On fair division for indivisible items. In Proceedings of the 38th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 25:1–25:17, 2018.

[31] B. R. Chaudhury, J. Garg, P. McGlaughlin, and R. Mehta. Dividing bads is harder
than dividing goods: On the complexity of fair and efficient division of chores. CoRR,
abs/2008.00285, 2020.

[32] B. R. Chaudhury, J. Garg, P. McGlaughlin, and R. Mehta. Competitive allocation
of a mixed manna. In Proc. 32nd Symp. Discrete Algorithms (SODA), 2021.

[33] B. R. Chaudhury, J. Garg, and K. Mehlhorn. EFX exists for three agents. In EC,
pages 1–19. ACM, 2020.

[34] B. R. Chaudhury, J. Garg, K. Mehlhorn, R. Mehta, and P. Misra. Improving EFX
guarantees through rainbow cycle number. CoRR, abs/2103.01628, 2021.

[35] B. R. Chaudhury, J. Garg, and R. Mehta. Fair and efficient allocations under
subadditive valuations. In AAAI, 2021 (To appear).

[36] B. R. Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa. A little charity
guarantees almost envy-freeness. In Proceedings of the 31st Symposium on Discrete
Algorithms (SODA), pages 2658–2672, 2020.

[37] X. Chen, D. Dai, Y. Du, and S. Teng. Settling the complexity of Arrow-Debreu equi-
libria in markets with additively separable utilities. In Proc. 50th Symp. Foundations
of Computer Science (FOCS), pages 273–282, 2009.

[38] X. Chen, D. Paparas, and M. Yannakakis. The complexity of non-monotone markets.
Journal of the ACM (JACM), 64(3):1–56, 2017.

[39] X. Chen and S. Teng. Spending is not easier than trading: On the computational
equivalence of Fisher and Arrow-Debreu equilibria. In Proc. 20th Intl. Symp. Algo-
rithms and Computation (ISAAC), pages 647–656, 2009.

[40] Y. K. Cheung, R. Cole, and N. Devanur. Tatonnement beyond gross substitutes?
Gradient descent to the rescue. In Proc. 45th Symp. Theory of Computing (STOC),
pages 191–200, 2013.

[41] B. Codenotti, S. V. Pemmaraju, and K. R. Varadarajan. The computation of market
equilibria. SIGACT News, 35(4):23–37, 2004.

[42] R. Cole and V. Gkatzelis. Approximating the nash social welfare with indivisible
items. SIAM J. Comput., 47(3):1211–1236, 2018.

[43] V. Conitzer, R. Freeman, and N. Shah. Fair public decision making. In Proc. 18th
Conf. Economics and Computation (EC), pages 629–646, 2017.

[44] D. Conlon and A. Ferber. Lower bounds for multicolor ramsey numbers. Advances
in Mathematics, 378:107528, 2021.

159

Bibliography

[45] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

[46] N. Devanur, J. Garg, and L. Végh. A rational convex program for linear Arrow-
Debreu markets. ACM Trans. Econom. Comput., 5(1):6:1–6:13, 2016.

[47] N. Devanur, C. Papadimitriou, A. Saberi, and V. Vazirani. Market equilibrium via
a primal–dual algorithm for a convex program. J. ACM, 55(5), 2008.

[48] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

[49] R. Duan, J. Garg, and K. Mehlhorn. An improved combinatorial polynomial algo-
rithm for the linear Arrow-Debreu market. In Proc. 27th Symp. Discrete Algorithms
(SODA), pages 90–106, 2016.

[50] R. Duan and K. Mehlhorn. A combinatorial polynomial algorithm for the linear
Arrow-Debreu market. Inf. Comput., 243:112–132, 2015.

[51] L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American Mathe-
matical Monthly, 68(1):1–17, 1961.

[52] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The Pari-Mutuel
method. Ann. Math. Stat., 30(1):165–168, 1959.

[53] P. Erdös and G. Szekeres. A combinatorial problem in geometry. Compositio
mathematica, 2:463–470, 1935.

[54] K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput., 39(6):2531–2597, 2010.

[55] R. Etkin, A. Parekh, and D. Tse. Spectrum sharing for unlicensed bands. In In
Proceedings of the first IEEE Symposium on New Frontiers in Dynamic Spectrum
Access Networks, 2005.

[56] A. Farhadi, M. Ghodsi, M. T. Hajiaghayi, S. Lahaie, D. M. Pennock, M. Seddighin,
S. Seddighin, and H. Yami. Fair allocation of indivisible goods to asymmetric agents.
J. Artif. Intell. Res., 64:1–20, 2019.

[57] I. Fisher. Mathematical Investigations in the Theory of Value and Prices. PhD
thesis, Yale University, 1891.

[58] D. Gale. The linear exchange model. Journal of Mathematical Economics, 3(2):205–
209, l976.

[59] J. Garg, P. Kulkarni, and R. Kulkarni. Approximating Nash social welfare under
submodular valuations through (un)matchings. In SODA, 2020. To appear.

[60] J. Garg and P. McGlaughlin. Computing competitive equilibria with mixed manna.
In Proceedings of the 19th International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020, pages
420–428, 2020.

160

Bibliography

[61] J. Garg, P. McGlaughlin, and S. Taki. Approximating maximin share allocations. In
Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA), volume 69,
pages 20:1–20:11, 2019.

[62] J. Garg and S. Taki. An improved approximation algorithm for maximin shares. In
EC, pages 379–380. ACM, 2020.

[63] J. Garg and L. A. Végh. A strongly polynomial algorithm for linear exchange
markets. In STOC, pages 54–65. ACM, 2019.

[64] M. Ghodsi, M. T. Hajiaghayi, M. Seddighin, S. Seddighin, and H. Yami. Fair
allocation of indivisible goods: Improvements and generalizations. In Proceedings
of the 19th ACM Conference on Economics and Computation (EC), pages 539–556,
2018.

[65] S. Gollapudi, K. Kollias, and B. Plaut. Almost envy-free repeated matching in
two-sided markets. In WINE, volume 12495 of Lecture Notes in Computer Science,
pages 3–16. Springer, 2020.

[66] K. Jain. A polynomial time algorithm for computing the Arrow-Debreu market
equilibrium for linear utilities. SIAM J. Comput., 37(1):306–318, 2007.

[67] K. Jain and V. Vazirani. Eisenberg-Gale markets: Algorithms and game-theoretic
properties. Games Econom. Behav., 70(1):84–106, 2010.

[68] S. Kakutani. A generalization of Brouwer’s fixed point theorem. Duke mathematical
journal, 8(3):457–459, 1941.

[69] S. Khot and A. K. Ponnuswami. Approximation algorithms for the max-min alloca-
tion problem. In APPROX-RANDOM, volume 4627 of Lecture Notes in Computer
Science, pages 204–217. Springer, 2007.

[70] E. Lee. APX-hardness of maximizing Nash social welfare with indivisible items. Inf.
Process. Lett., 122:17–20, 2017.

[71] H. Lefmann. A note on ramsey numbers. Studia Sci. Math. Hungar, 22(1-4):445–446,
1987.

[72] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair alloca-
tions of indivisible goods. In Proc. 5th Conf. Economics and Computation (EC),
pages 125–131, 2004.

[73] P. Manurangsi and W. Suksompong. Closing gaps in asymptotic fair division. CoRR,
abs/2004.05563, 2020.

[74] A. Mas-Colell. Equilibrium theory with possibly satiated preferences. In M. Majum-
dar, editor, Equilibrium and Dynamics: Essays in Honor of David Gale. Macmillan
Press, 1982.

[75] R. Maxfield. General equilibrium and the theory of directed graphs. J. Math.
Econom., 27(1):23–51, 1997.

161

Bibliography

[76] L. McKenzie. On equilibrium in graham’s model of world trade and other competitive
systems. Econometrica, 22(2):147–161, 1954.

[77] L. W. McKenzie. On the existence of general equilibrium for a competitive market.
Econometrica, 27(1):54–71, 1959.

[78] H. Moulin. Fair division in the internet age. Annual Review of Economics, 11, 2019.

[79] M. Naor, L. J. Schulman, and A. Srinivasan. Splitters and near-optimal derandom-
ization. In Proceedings of IEEE 36th Annual Foundations of Computer Science,
pages 182–191. IEEE, 1995.

[80] J. Nash. Non-cooperative games. Ann. Math., 54(2):286–295, 1951.

[81] E. Nenakov and M. Primak. One algorithm for finding solutions of the arrow-debreu
model. Kibernetica, 3:127–128, 1983.

[82] J. Orlin. Improved algorithms for computing Fisher’s market clearing prices. In
Proc. 42nd Symp. Theory of Computing (STOC), pages 291–300, 2010.

[83] G. K. Patro, A. Biswas, N. Ganguly, K. P. Gummadi, and A. Chakraborty. Fairrec:
Two-sided fairness for personalized recommendations in two-sided platforms. In
WWW, pages 1194–1204. ACM / IW3C2, 2020.

[84] B. Plaut and T. Roughgarden. Almost envy-freeness with general valuations. SIAM
J. Discret. Math., 34(2):1039–1068, 2020.

[85] J. W. Pratt and R. J. Zeckhauser. The fair and efficient division of the winsor
family silver. Management Science, 36(11):1293–1301, 1990.

[86] A. D. Procaccia. Thou shalt covet thy neighbor’s cake. In IJCAI, pages 239–244,
2009.

[87] A. D. Procaccia. Technical perspective: An answer to fair division’s most enigmatic
question. Commun. ACM, 63(4):118, Mar. 2020.

[88] A. D. Procaccia and J. Wang. Fair enough: Guaranteeing approximate maximin
shares. In Proc. 15th Conf. Economics and Computation (EC), pages 675–692, 2014.

[89] W. Shafer and H. Sonnenschein. Equilibrium in abstract economies without ordered
preferences. Journal of Mathematical Economics, 2(3):345–348, 1975.

[90] H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

[91] W. Stromquist. Envy-free cake divisions cannot be found by finite protocols. Elec-
tron. J. Comb., 15(1), 2008.

[92] V. Vazirani and M. Yannakakis. Market equilibrium under separable, piecewise-
linear, concave utilities. J. ACM, 58(3):10, 2011.

[93] T. W. Vossen. Fair allocation concepts in air traffic management. PhD thesis,
University of Maryland, College Park, 2002.

162

Bibliography

[94] L. Walras. Éléments d’économie politique pure, ou théorie de la richesse sociale
(Elements of Pure Economics, or the theory of social wealth). Lausanne, Paris, 1874.
(1899, 4th ed.; 1926, rev ed., 1954, Engl. transl.).

[95] Y. Ye. Exchange market equilibria with Leontief’s utility: Freedom of pricing leads
to rationality. Theoret. Comput. Sci., 378(2):134–142, 2007.

[96] Y. Ye. A path to the Arrow-Debreu competitive market equilibrium. Math. Prog.,
111(1-2):315–348, 2008.

163

	Introduction
	Background and Preliminaries
	Fair and Efficient Allocation of Divisible Goods.
	Fair and Efficient Allocation of Indivisible Goods.
	Fair and Efficient Allocation of Divisible Bads

	I Fair and Efficient Allocation of Indivisible Goods
	EFX Allocations with Bounded Charity
	EFX with Bounded-Charity.
	Additive Valuations: Implications for Other Notions of Fairness

	Efficient EFX Allocations
	Additive Valuations
	Subadditive Valuations

	EFX Allocations for Three Agents
	Notation and Tools
	Existence of EFX: Three sources in the Envy-Graph
	Existence of EFX: Two sources in the Envy-Graph
	Limitations of the Approach from Chapter 3

	Almost EFX Allocations with Sublinear Charity
	Notation and Tools
	Relating the Number of Unallocated Goods to the Rainbow Cycle Number
	Bounds on the Rainbow Cycle Number
	Finding Efficient (1-)-EFX Allocations with Sublinear Charity
	Limitations of the Approach from Chapter 5

	II Fair and Efficient Allocation of Divisible Bads
	Competitive Equilibrium with Divisible Bads
	Complexity of Determining the Existence of a Competitive Equilibrium
	Sufficiency Conditions for the Existence of a Competitive Equilibrium
	PPAD-Hardness of Determining a Competitive Equilibrium

	Outlook

