8 research outputs found

    A Method for Generating Link-Scoped IPv6 Multicast Addresses

    Full text link

    IPv6 Deployment in a Service Provider's Data Center Network

    Get PDF
    Tämä diplomityö on tehty toimeksiantona Capgemini Finland Oy:lle (myöh. Capgemini). Sen tavoitteena on ottaa IPv6-protokolla käyttöön Capgeminin konesaliverkossa niin, että se on saavutettavissa Internetistä IPv4-protokollan lisäksi myös IPv6-protokollalla. Työn ensimmäisessä luvussa kerrotaan lyhyesti siitä, mitkä tämän työn taustat ja tavoitteet ovat sekä minkä ongelman ja osaongelmat se ratkaisee. Toisessa luvussa kerrotaan, mitkä IPv4-protokollan ongelmat ovat ja miksi IPv6-protokolla lopulta korvaa sen. Kolmannessa luvussa esitellään IPv6-protokollaa ja sen tukiprotokollia IETF:n (Internet Engineering Task Force) RFC-dokumenttien (Request For Comments) ja kirjallisuuden pohjalta. Neljännessä luvussa perehdytään lyhyesti IPv6-protokollan tietoturvaan IPv6-käyttöönottoon liittyen ja kerrotaan, millaisia IPv6-transitiomekanismeja on olemassa. Viidennessä luvussa näytetään ensin tyypillinen palvelinkeskuksen konesaliverkon verkkotopologia ja esitellään sen jälkeen Capgeminin konesaliverkon rakenne. Kuudennessa luvussa yhdistetään Capgeminin konesaliverkko Internetiin IPv6-protokollalla ja rakennetaan Capeminin laboratorioon IPv6-testiverkko. Luvussa kehitetään myös konsepti, jolla voidaan provisioida IPv6-protokollalla toimiva www-palvelu Capgeminin konesaliverkossa mahdollisimman helposti ja kustannustehokkaasti. Lopuksi seitsemännessä luvussa käydään läpi IPv6-käyttöönoton tulokset, seuraukset ja siinä esiintyneet haasteet sekä tehdään suunnitelma siitä, mitkä ovat seuraavat askeleet IPv6-protokollan laajemmalle käyttöönotolle Capgeminin konesaliverkossa.This Master's thesis was done for Capgemini Finland Oy (later referred to as Capgemini). The objective of the thesis is to deploy the IPv6 protocol in Capgemini's data center network so that it is reachable from the Internet also via IPv6 in addition to IPv4. In the first chapter of the thesis the background and objectives of the thesis in addition to the problem it solves are discussed. In the second chapter the inadequacy of the IPv4 protocol and the reasons why IPv6 will eventually replace it are explained. In the third chapter the IPv6 base protocol and its supporting protocols are presented based on RFC (Request For Comments) documents published by the IETF (Internet Engineering Task Force) and literature. In the fourth chapter IPv6 security with respect to the IPv6 deployment and IPv6 transition mechanisms are introduced. In the fifth chapter, a typical data center network topology is first shown after which the Capgemini data center network is showcased. In the sixth chapter the Capgemini data center network is connected to the Internet via IPv6 and an IPv6 test network is set up in the Capgemini laboratory. A proof of concept to provision an IPv6 web service in the Capgemini data center network with minimal capital and operational expenditure is also developed. Finally, in the seventh chapter the results, consequences and challenges of the IPv6 deployment are reviewed and a plan is made as to what the next steps for a more comprehensive IPv6 deployment in the Capgemini data center network are

    Universal Smart Grid Agent for Distributed Power Generation Management

    Get PDF
    "Somewhere, there is always wind blowing or the sun shining." This maxim could lead the global shift from fossil to renewable energy sources, suggesting that there is enough energy available to be turned into electricity. But the already impressive numbers that are available today, along with the European Union's 20-20-20 goal – to power 20% of the EU energy consumption from renewables until 2020 –, might mislead us over the problem that the go-to renewables readily available rely on a primary energy source mankind cannot control: the weather. At the same time, the notion of the smart grid introduces a vast array of new data coming from sensors in the power grid, at wind farms, power plants, transformers, and consumers. The new wealth of information might seem overwhelming, but can help to manage the different actors in the power grid. This book proposes to view the problem of power generation and distribution in the face of increased volatility as a problem of information distribution and processing. It enhances the power grid by turning its nodes into agents that forecast their local power balance from historical data, using artificial neural networks and the multi-part evolutionary training algorithm described in this book. They pro-actively communicate power demand and supply, adhering to a set of behavioral rules this book defines, and finally solve the 0-1 knapsack problem of choosing offers in such a way that not only solves the disequilibrium, but also minimizes line loss, by elegant modeling in the Boolean domain. The book shows that the Divide-et-Impera approach of a distributed grid control can lead to an efficient, reliable integration of volatile renewable energy sources into the power grid

    Study of the operation of a network implemented in the ipv6 protocol

    Get PDF
    Internet se ha convertido en un recurso crítico para el funcionamiento de más y más instituciones de diversa naturaleza. Lejos están ya los días en que sólo las empresas relacionadas directamente con las tecnologías de la información eran las únicas para las cuales el acceso a Internet resultaba imprescindible para su operación. Hoy en día instituciones de toda naturaleza y tamaño requieren conectividad global ya sea para proveer servicios a través de Internet, para relacionarse con sus proveedores e incluso para el funcionamiento cotidiano de las operaciones internas. Esto implica que una interrupción en el acceso a Internet supone un alto costo, por lo que existe una fuerte demanda de mecanismos que brinden un alto nivel de tolerancia a fallos en la conexión a Internet. El Protocolo de Internet define como se comunican los dispositivos a través de las redes. La versión 4 de IP (IPv4), que actualmente es predominante, contiene aproximadamente cuatro mil millones de direcciones IP, las cuales no son suficientes para una duración ilimitada. Dicho agotamiento del espacio fue realidad en el 2011. Esto está afectando el negocio de los ISPs existentes, llegando en cierto punto, a la creación de nuevas ISPs. Como una de las consecuencias, puede tener un impacto más profundo en las regiones en desarrollo (África, Asia y América latina/el Caribe) donde no está todavía tan extensa la penetración de Internet. El crecimiento extraordinario de las nuevas tecnologías y, en especial, la implementación del Protocolo IP en su versión 6 (IPv6) abre un enorme abanico de posibilidades, actividades y nuevas formas de comunicarse, trabajar, comprar, relacionarse con otras personas y, en definitiva, desempeñar las tareas cotidianas de nuestra vida. El propósito de este estudio es aportar una serie de conocimientos básicos de carácter técnico, necesarios para conocer IPv6, su funcionamiento y el estado actual de su implementación a nivel mundial para, posteriormente, entrar a conocer los posibles problemas y soluciones, en una red nativa en la Universidad de Pamplona.INTRODUCCION 9 1. PLANTEAMIENTO DEL PROBLEMA 13 1.1. PLANTEAMIENTO 13 1.2. JUSTIFICACIÓN 15 1.3. HIPÓTESIS 16 1.4. OBJETIVOS 16 1.4.1 Objetivo principal 16 1.4.2 Objetivos específicos 17 1.5. METODO 18 2. REVISIÓN DE LITERATURA 19 2.1 Estado del arte TCP/IP. 20 2.1.1 Fuentes Primarias – Trabajos Relacionados. 23 2.1.1.1 Internacional. 23 2.1.1.2 Nacional. 27 2.2 Estado del arte IPv4. 30 2.2.1 Fuentes Primarias – Trabajos Relacionados. 30 2.2.1.1 Internacional. 30 2.2.1.2 Nacional. 34 2.3 Estado del arte IPv6. 35 2.3.1 Fuentes Primarias – Trabajos Relacionados. 35 2.3.1.1 Internacional. 35 2.3.1.2 Nacional. 44 2.4. RFC (Request For Comments) 46 2.4.1 RFC generales 46 2.4.2 RFC Calidad de servicio QoS 53 2.4.3 RFCs Relacionados con calidad de servicio QoS 55 2.4.4 RFC 3775 61 RESULTADOS 63 3. SERVICIOS: LABORATORIOS DE LOS PROTOCOLOS TCP (PROTOCOLO DE CONTROL DE TRANSMISIÓN) E IP (PROTOCOLO DE INTERNET) 63 3.1. SOFTWARE: SISTEMAS OPERATIVOS, APLICACIONES 63 3.1.1 Acceso al servidor Web con direcciones Locales de Sitio 64 3.1.2 Prueba de la comunicación entre dos equipos con IPv6 65 3.1.3 Prueba del servidor Apache httpd-2.2.3 66 3.1.4 Pruebas del servidor DNS 66 3.1.4.1 Comando netstat 67 3.1.4.2 Comando nslookup 67 3.1.5 Prueba de eficiencia de un servidor DNS con direcciones IPv4 e IPv6 68 3.1.6 Pruebas de sockets con direcciones IPv4 e IPv6 70 3.1.7 Criterios de Asignación de Direcciones IPv6 71 3.2. Laboratorio Nº 1: Instalar la Versión 6 de IP en Windows XP 72 3.3. Laboratorio Nº 2: Prueba de la Conectividad entre Hosts Locales del Vínculo 75 3.4. Laboratorio Nº 3: Comunicación a un Servidor Web con Direcciones IPv6 Locales del Sitio 77 3.5. Laboratorio Nº 4: Comunicación Remota con SSH (Protocolo de Intérprete Seguro) entre dos Host con Direcciones IPV6 Locales del Sitio 79 3.6. Laboratorio Nº 5: Configuración de un Servidor DNS (Servicio de Nombres de Dominio) con Direcciones IPV6 Locales Del Sitio 85 3.7. Laboratorio Nº 6: Realización de Sockets bajo JAVA con Direcciones IPV6 Locales del sitio 96 4. IPSec 104 4.1. Descripción del Protocolo IPSec 104 4.1.1 Asociación de Seguridad SA (Security Association) 105 4.1.2 Modos de Operación en IPSEC 106 4.2. Métodos de Seguridad en IPSEC 107 4.3. PRUEBAS REALIZADAS CONFIGURACIÓN No1 108 4.3.1 Configuración General 108 4.3.2 Configuración de IPv6 en un Equipo Red Hat Linux 9 108 4.3.2.1 Configuración IPv6 109 4.3.3 Configuración y Prueba de IPSec para IPv6 113 4.3.3.1 Instalación de Frees/wan 113 4.4. PRUEBAS REALIZADAS CONFIGURACIÓN No2 118 4.4.1 Implementación y medición del tráfico de datos de IPSec en IPv6 118 4.4.2 Dispositivos empleados para la configuración de IPSec en IPv6 119 4.4.3 Tráfico de datos de IPSec en IPv6 120 4.4.3.1 Diseño de la red 120 4.4.3.2 Configuración de la red 120 4.4.3.3 Utilizar IPSec entre dos hosts del vínculo local (FE80) y local de sitio (FC80) 121 4.4.3.4 Cómo configurar las políticas de seguridad IPSec y las asociaciones de seguridad para IPv6 127 4.4.3.5 Captura y análisis de tráfico 127 4.4.3.6 Captura y análisis de tráfico 140 4.4.3.7 Análisis comparativo del tráfico de datos sin IPSEC habilitado 153 4.4.3.8 Análisis comparativo del tráfico de datos con IPSEC habilitado 154 5. QoS 155 5.1 INTRODUCCIÓN 155 5.2 ANTECEDENTES DE DESARROLLO QoS 156 5.2.1 Nacional 156 5.2.2 Internacional 157 5.3. CONCEPTOS GENERALES 158 5.3.1 ICMPv6 159 5.3.3 Calidad de servicio 160 5.3.3.1 Componentes de la calidad de servicio 160 5.3.3.2 Campos de la cabecera IPv6 162 5.3.3.3 Herramienta Oreneta: captura, filtra y representa los flujos en tiempo real 163 5.3.3.3.1 Sincronización de las sondas 163 5.3.3.3.2 Captura pasiva 164 5.3.3.3.3 Filtrado 164 5.3.3.3.4 Representación de los flujos 164 5.4. PRUEBAS DE CALIDAD DE SERVICIO QoS SOBRE UNA RED IPv6 164 5.4.1 Configuración de la red 165 5.4.1.1 Topología 165 5.4.1.2 Configuración de IPv6 165 5.4.1.3 Asignación de direcciones IPv6 167 5.4.1.4 Configuración del router 168 5.4.2 Configuración de Calidad de Servicio 170 5.4.3 Captura y análisis del control de tráfico de datos 176 6. ANÁLISIS DE MOVILIDAD EN EL PROTOCOLO DE INTERNET VERSIÓN 6 (MIPv6) 183 6.1. INTRODUCCIÓN 183 6.2. ESTADO DEL ARTE 183 6.2.1 Movilidad IPv6 (MIPv6) 183 6.3. MOVILIDAD IPv6 188 6.3.1 Terminología de MIPv6 188 6.3.2 Visión general de MIPv6 189 6.3.2.1 Actualización de uniones y reconocimientos 194 6.3.2.2 Actualizando Enlaces 199 6.3.2.3 Detección de movimiento 200 6.3.2.4 Retorno a Home 204 6.3.2.5 Selección de dirección fuente en nodos móviles 206 6.3.2.6 Detección de cambios en el enlace primario 209 6.3.2.7 Que sucede si el agente primario falla? 209 6.3.2.8 Nodos móviles con más de un agente 210 6.3.2.9 Enlaces virtuales primarios 210 6.4. OPTIMIZACIÓN DE RUTA 211 6.4.1 Enviando paquetes optimizados al nodo correspondiente 213 6.4.2 Reconociendo BU´s enviados a nodos móviles 215 6.4.3 Que sucede si el nodo correspondiente falla 216 6.5. COMUNICACIÓN EJEMPLO 217 6.6. SIMULACIÓN 219 6.6.1 El Simulador: Network Simulator 219 6.6.2 Descripción de la herramienta 220 6.6.2.1 Event Scheduler Object 221 6.6.2.2 Network Component object 222 6.6.2.3 Network Setup Helping Module 223 6.6.2.4 Nam (Network Animator) 224 6.6.2.5 Xgraph 225 6.6.3 Instalación del Network Simulator 225 6.6.4 Escenario propuesto 228 6.6.5. Creando la topología 229 6.6.5.1 Creación de la topología de MIPv6 229 6.6.5.2 Finalizando la simulación 230 6.6.6 Corriendo la simulación 231 6.6.7 Trazas 232 7. DISCUSIÓN 234 8. RECOMENDACIONES/CONCLUSIONES 235 9. REFERENCIAS Y BIBLIOGRAFÍA 237 9.1 PRINCIPALES 237 9.2 SECUNDARIAS 237 9.3 DIRECCIONES URL 238MaestríaThe Internet has become a critical resource for the functioning of more and more institutions of diverse nature. Gone are the days when only companies directly related to information technology were the only ones for which Internet access was essential for their operation. Today, institutions of all kinds and sizes require global connectivity, either to provide services through the Internet, to interact with their suppliers and even for the daily functioning of internal operations. This implies that an interruption in Internet access involves a high cost, so there is a strong demand for mechanisms that provide a high level of fault tolerance in the Internet connection. The Internet Protocol defines how devices communicate over networks. IP version 4 (IPv4), which is currently prevalent, contains approximately four billion IP addresses, which are not sufficient for an unlimited duration. This depletion of space was a reality in 2011. This is affecting the business of existing ISPs, reaching a certain point, to the creation of new ISPs. As one of the consequences, it may have a more profound impact in developing regions (Africa, Asia and Latin America / the Caribbean) where Internet penetration is not yet as extensive. The extraordinary growth of new technologies and, especially, the implementation of the IP Protocol in its version 6 (IPv6) opens a huge range of possibilities, activities and new ways of communicating, working, shopping, interacting with other people and, ultimately , carry out the daily tasks of our life. The purpose of this study is to provide a series of basic knowledge of a technical nature, necessary to know IPv6, its operation and the current state of its implementation worldwide, to later learn about possible problems and solutions in a native network at the University of Pamplona

    Allocation Guidelines for IPv6 Multicast Addresses

    No full text

    Encaminhamento multicast em redes IP

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesActualmente a maioria das aplicações que usam Internet baseiam-se no modelo de comunicação ponto-a-ponto. No entanto, os recentes avanços tecnológicos e o aparecimento de aplicações cada vez mais sofisticadas fizeram surgir a necessidade de transmitir informações para grupos de participantes (comunicações ponto-multiponto e multiponto-multiponto), como por exemplo, áudio e vídeo conferência para encontros remotos, programas de entretenimento, entre muitos outros. Por outro lado, a evolução da Internet, actualmente baseada no protocolo IPv4, para o protocolo IPv6, deverá ser feita de uma forma progressiva recorrendo a mecanismos de transição e as comunicações multicast terão que ter em consideração este factor. O IETF (Internet Engineering Task Force) definiu dois modelos de transmissão multicast. Inicialmente foi definido o modelo ASM (Any Source Multicast) e mais recentemente, o modelo SSM (Source Specific Multicast). Actualmente existem soluções protocolares que permitem garantir as comunicações multicast em redes IPv4 e em redes IPv6, usando os dois modelos, mas poucas soluções existem que permitam garantir as comunicações multicast em redes mistas IPv4/IPv6. Do ponto de vista de gestão do encaminhamento, a Internet encontra-se dividida em Sistemas Autónomos (SAs). De entre os vários protocolos de encaminhamento multicast, a família de protocolos PIM (Protocol Independent Multicast) é, actualmente, a mais utilizada pois permite resolver as questões do encaminhamento multicast dentro de um Sistema Autónomo (encaminhamento intra-domínio) e, em alguns casos, entre diferentes Sistemas Autónomos (encaminhamento inter-domínio). Esta dissertação aborda o problema de como providenciar comunicações multicast em redes IPv4, em redes IPv6 e em redes mistas IPv4/IPv6. Na primeira parte, é abordado o endereçamento IP multicast bem como o problema da atribuição e divulgação de endereços. Na segunda parte, são descritos os protocolos IGMP e MLD de adesão a sessões multicast e apresentados cenários práticos que validam os protocolos estudados. Na terceira parte, é abordado o funcionamento dos protocolos de encaminhamento multicast da família de protocolos PIM e apresentados cenários práticos de encaminhamento multicast intra-domínio. Na última parte, são descritos mecanismos de transição e apresentados cenários práticos que permitem comunicações multicast em redes mistas IPv4/IPv6 e finalmente, são estudados os problemas e soluções existentes para o encaminhamento multicast inter-domínio. ABSTRACT: Presently most applications used in the Internet, are based on point-to-point communications. However, the recent technological advances and new sophisticated applications are causing an increasing need to transmit information to groups of participants (multicast communications), such us audio and video conferences used for remote meetings, entertainment programs, etc… Moreover, it is known that the evolution of the current Internet, based on IPv4 protocol, to the future IPv6 Internet will be based on transition scenarios, and multicast should consider this fact. Two models have been proposed by the IETF (Internet Engineering Task Force) for multicast communications. The first one is ASM (Any Source Multicast) model and second one, more recently proposed, is the SSM (Source Specific Model) model. Presently, many solutions exist to support multicast on IPv4 only networks and IPv6 only networks using each of the two models. However, there are not many solutions to support multicast on mix IPv4/IPv6 networks. In the point of view of routing management, the Internet is composed by different Autonomous Systems, each one administrated by an individual network operator. From all available multicast routing protocols, the PIM family of protocols is by far the most used one since it solves the multicast routing problems inside an Autonomous System (intra-domain multicast routing) and also in some cases between different Autonomous System (inter-domain multicast routing). This dissertation addresses the issue of how to provide the support of multicast communications in IPv4 networks, IPv6 networks and mixing IPv4/IPv6 scenarios. First, it analyses multicast IP addressing issues like types and formats, how they are assigned and how they are announced. Next, the IGMP and MLD protocols are described together with a set of laboratory experiments validating how they work. Then, the PIM family of multicast routing protocols is described together with a set of intra-domain laboratory experiments used to validate these protocols. In the last part, a study of available IETF transition mechanisms and a set laboratory scenarios is presented to validate solutions that allows multicast communications in mix IPv4/IPv6 networks and, finally, a study of multicast inter-domain routing issues and available solutions finishes this work

    Management qualitätsbasierter Gruppenkommunikation im Internet

    Get PDF
    Zugangs- und Nutzungskontrolle bei Unicast bedarf allein der Überwachung am Netzeingang. Diese Arbeit entwirft das Verfahren DSMC (Diffserv Multicast), das die für Multicast zusätzlich benötigte Kontrolle im Netzinneren ergänzt. Es erweitert die Paketweiterleitung (MFC) der Router nur gering und ohne Eingriff in das Multicastrouting, unterstützt so alle Multicastroutingprotokolle des Internets und bietet eine skalierbare Signalisierung zur Steuerung durch zentrales Dienstgütemanagement
    corecore