99 research outputs found

    Customized Pull Systems for Single-Product Flow Lines

    Get PDF
    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage of that line with each preceding stage; optimization of the corresponding simulation model, however, shows which of these potential control loops are actually implemented. This novel approach may result in one of the classic systems, but it may also be another type: (1) the total line may be decomposed into several segments, each with its own classic control system (e.g., segment 1 with Kanban, segment 2 with Conwip); (2) the total line or segments may combine different classic systems; (3) the line may be controlled through a new type of system. These different pull systems are found when applying the new approach to a set of twelve production lines. These lines are configured through the application of a statistical (Plackett-Burman) design with ten factors that characterize production lines (such as line length, demand variability, and machine breakdowns).Pull production / inventory;sampling;optimization;evolutionary algorithm

    Customized Pull Systems for Single-Product Flow Lines

    Get PDF
    Traditionally pull production systems are managed through classic control systems such as Kanban, Conwip, or Base stock, but this paper proposes ‘customized’ pull control. Customization means that a given production line is managed through a pull control system that in principle connects each stage of that line with each preceding stage; optimization of the corresponding simulation model, however, shows which of these potential control loops are actually implemented. This novel approach may result in one of the classic systems, but it may also be another type: (1) the total line may be decomposed into several segments, each with its own classic control system (e.g., segment 1 with Kanban, segment 2 with Conwip); (2) the total line or segments may combine different classic systems; (3) the line may be controlled through a new type of system. These different pull systems are found when applying the new approach to a set of twelve production lines. These lines are configured through the application of a statistical (Plackett-Burman) design with ten factors that characterize production lines (such as line length, demand variability, and machine breakdowns).

    Fornecimento interno de placas eletrónicas: melhoria dos fluxos de material e informação

    Get PDF
    The present report explains and demonstrates the development of a project that consisted of redefining the internal supply process for electronic boards, as well as transforming the storage and supply system for WIP by changing from the Supermarket concept into FIFO lanes. This project was developed in a company, located in Ovar, that manufactures security and communication systems. Its main goal was the reduction of intermediate stock between internal processes. The methodology used is based on the Action Research, in order to achieve the main purpose of the project. The BPMN and VSM tools were used in the diagnosis phase, so that it would be possible to describe the process, identify improvement opportunities and redefine processes. This was followed by the implementation of the identified changes and the assessment of their impact on the performance of the internal material supply system. The transition of the Supermarket philosophy to a FIFO lane concept led to positive results for the organization, however, it must be highlighted that it was challenging due to the type of production, namely a high-mix and low-volume environment.O presente relatório de projeto é relativo ao trabalho de redefinição do processo de abastecimento de placas eletrónicas, bem como da mudança do sistema de armazenamento e abastecimento de stock intermédio, passando da lógica do Supermercado para um novo conceito designado por FIFO lane. Este projeto, realizado numa empresa responsåvel pela produção de sistemas de segurança e de comunicação, localizada na cidade de Ovar, teve como principal objetivo a diminuição de stock intermédio entre processos internos. A metodologia usada assenta na Investigação-Ação para atingir o objetivo do projeto. Na fase de diagnóstico, recorreu-se principalmente às ferramentas BPMN e VSM para descrever o processo atual, identificar oportunidades de melhoria e redefinir processos e as suas tarefas. Seguiu-se a implementação das mudanças identificadas e a avaliação do impacto das mesmas no desempenho do sistema de fornecimento interno de material. A passagem de Supermercados para FIFO lanes apresentou resultados vantajosos para a organização, no entanto, deve ser realçado que esta mudança foi um desafio devido ao ambiente produtivo de elevada diversidade e reduzido volume.Mestrado em Engenharia e Gestão Industria

    Designing pull production control systems:Customization and robustness

    Get PDF
    In this dissertation we address the issues of selecting and configuring pull production control systems for single-product flowlines. We start with a review of pull systems in the literature, yielding a new classification. Then we propose a novel selection procedure based on a generic system that we test on a case also studied in the literature. We further study our procedure for a variety of twelve production lines. We find new types of pull systems that perform well. Next, we raise the issue of designing pull systems under uncertainty. We propose a novel procedure to minimize the risk of poor performance. Results show that risk considerations strongly influence the selection of a specific pull system

    Modelling and analysis of pull production systems

    Get PDF
    Ankara : Industrial Engineering and the Institute of Engineering and Science of Bilkent Univ., 1995.Thesis (Ph.D.) -- Bilkent University, 1995.Includes bibliographical references.A variety of production systems appearing in the literature are reviewed in order to develop a classification scheme for production systems. A number of pull production systems appearing in the classification are found to be equivalent to a tandem queue so that accurate tandem queue decomposition methods can be used to find the performance of such systems. The primary concern of this dissertation is to model and analyze non-tandem queue equivalent periodic pull production systems. In this research, an exact performance evaluation model is developed for a singleitem periodic pull production system. The processing and demand interarrival times are assumed to be Markovian. For large systems, which are difficult to evaluate exactly because of large state spaces involved, an approximate decomposition method is proposed. A typical approximate decomposition procedure takes individual stages or pairs of stages in isolation to analyze the system and then it aggregates the results to obtain an approximate performance for the whole system. An experiment is designed in order to investigate the general behavior of the decomposition. The results are worth attention. A second aspect of this study is to investigate an allocation methodology to achieve the maximum throughput rate with providing two sets of allocation parameters regarding the number of kanbans and the workload at each stage of the system. Together with some structural properties, the experimental results provide some insight into the behavior of pull production systems and also provide a basis for the proposed allocation methodology. Finally, we conclude our findings together with some directions for future research.Kırkavak, NureddinPh.D

    Robust production & inventory control systems for multi-product manufacturing flow lines

    Get PDF
    The production line of modern multi-product manufacturing with erratic demand profiles shows that the selection and implementation of appropriate production control strategy are an important challenge. Organisations that adopt pull-type production control strategies, such as Kanban control strategy, for multi-product production lines find that is necessary to plan high Kanban card allocations in order to maintain volume flexibility to manage demand variability. This can result in line congestion, long lead times and low throughput rate. A recently proposed shared Kanban allocation policy has the benefit of minimising inventories in the line by allocating Kanbans accordingly and therefore maintains volume flexibility. However, many pull production control strategies that have been shown to be successful in single product manufacturing environments, for instance Kanban, CONWIP and Basestock cannot operate the shared Kanban allocation policy naturally. This Thesis presents a practically applicable modification approach to enable pull production control strategies that are naturally unable to operate in a shared Kanban allocation policy mode to operate it. Furthermore, the approach enables the development of a new pull production control strategy referred to as Basestock Kanban CONWIP control strategy that has the capability to operate the shared Kanban allocation policy, minimising inventory and backlog while maintaining volume flexibility. To investigate the performance of the pull production control strategies and policies, discrete event simulation and evolutionary multi-objective optimisation approach were adopted to develop sets of non-dominated optimal solutions for the experiments. Nelson’s screening and selection procedure were used to select the best pull control strategy and Kanban allocation policy when robustness are not considered. Additionally, Latin hypercube sampling technique and stochastic dominance test were employed for selection of a superior policy and strategy under environmental and system variability. Under non-robust conditions (anticipated environmental and system variability), pull control strategies combined with the shared Kanban allocation policy outperforms pull control strategies combined with dedicated Kanban allocation policy. Conversely, pull control strategies combined with the dedicated Kanban allocation policy outperforms pull control strategies combined with shared Kanban allocation policy when the system is prone to environmental and system variabilities. Furthermore Basestock Kanban CONWIP control strategy outperforms the alternatives in both robust and non-robust conditions

    Just-In-Time in high variety / low volume manufacturing environments.

    Get PDF
    Available from British Library Document Supply Centre-DSC:DXN049763 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    HYBRID FLOW STRATEGIES FOR HIGH VARIETY LOW VOLUME MANUFACTURING FACILITIES TO IMPLEMENT FLOW AND PULL

    Get PDF
    Lean Manufacturing has proven to be a very successful strategy for achieving production efficiencies. The basic elements of lean manufacturing are flow and pull. The traditional methods for establishing flow and pull do not fit well in the realm of high variety low volume manufacturing systems. This thesis provides a general framework for establishing flow and pull in high variety low volume manufacturing systems, through the concept of hybrid flow layouts. The existing analytical procedure for forming hybrid flow layouts is described and a new heuristic procedure, that overcomes some of the limitations of the existing procedure, is proposed. The performance of the new procedure in comparison to the existing procedure is illustrated using a real world case study. Finally, certain practical implementation issues that affect the formation of hybrid flow layouts are provided

    Application of lean scheduling and production control in non-repetitive manufacturing systems using intelligent agent decision support

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Lean Manufacturing (LM) is widely accepted as a world-class manufacturing paradigm, its currency and superiority are manifested in numerous recent success stories. Most lean tools including Just-in-Time (JIT) were designed for repetitive serial production systems. This resulted in a substantial stream of research which dismissed a priori the suitability of LM for non-repetitive non-serial job-shops. The extension of LM into non-repetitive production systems is opposed on the basis of the sheer complexity of applying JIT pull production control in non-repetitive systems fabricating a high variety of products. However, the application of LM in job-shops is not unexplored. Studies proposing the extension of leanness into non-repetitive production systems have promoted the modification of pull control mechanisms or reconfiguration of job-shops into cellular manufacturing systems. This thesis sought to address the shortcomings of the aforementioned approaches. The contribution of this thesis to knowledge in the field of production and operations management is threefold: Firstly, a Multi-Agent System (MAS) is designed to directly apply pull production control to a good approximation of a real-life job-shop. The scale and complexity of the developed MAS prove that the application of pull production control in non-repetitive manufacturing systems is challenging, perplex and laborious. Secondly, the thesis examines three pull production control mechanisms namely, Kanban, Base Stock and Constant Work-in-Process (CONWIP) which it enhances so as to prevent system deadlocks, an issue largely unaddressed in the relevant literature. Having successfully tested the transferability of pull production control to non-repetitive manufacturing, the third contribution of this thesis is that it uses experimental and empirical data to examine the impact of pull production control on job-shop performance. The thesis identifies issues resulting from the application of pull control in job-shops which have implications for industry practice and concludes by outlining further research that can be undertaken in this direction

    Converting activities to processes for operational efficency improvement of a South African agricultural equipment manufacturer

    Get PDF
    Includes bibliographical references.South African agricultural equipment manufacturers face increasing pressures from global competition, in response they have resorted to manufacturing customised machinery in a bid to secure market share. This strategy, while successful, introduces a high degree of product variation and complexity - increasing strain on the manufacturing operation. In response to these strains, manufacturers are placing emphasis on finding new ways to improve manufacturing costs and accelerate product delivery. The objective of this dissertation is to assemble and sequence a practical framework, using commonly available (and established) tools and improvement methodologies, which will allow its user to effectively direct process oriented improvement through analysis and modification of the operations at the activity level. The framework seeks to achieve this by formalising the operating structures already present and subsequently modifying it, in a value driven manner, using lean principles and heuristic methods for the purposes of providing practical, easily integrate-able and affordable solutions aimed at promoting operational excellence while eliminating Lean wastages. Testing conducted showed that regardless of environment lean principles can be successfully adapted to produce significant reductions in lead time and gains in both product flow and overall quality
    • 

    corecore