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Abstract

MODELLING AND ANALYSIS 

OF
PULL PRODUCTION SYSTEMS

Nureddin Kirkavak 

Ph.D. in Industrial Engineering 

Supervisor: Cemal Dinger, Associate Professor

July 1995

A variety of production systems appearing in the literature are reviewed in order 
to develop a classification scheme for production systems. A number of pull 
production systems appearing in the classification are found to be equivalent 
to a tandem queue so that accurate tandem queue decomposition methods can 
be used to find the performance of such systems. The primary concern of this 
dissertation is to model and analyze non-tandem queue equivalent periodic pull 
production systems.

In this research, an exact performance evaluation model is developed for a single

item periodic pull production system. The processing and demand interarrival 

times are assumed to be Markovian. For large systems, which are difficult to 
evaluate exactly because of large state spaces involved, an approximate decom
position method is proposed. A typical approximate decomposition procedure 
takes individual stages or pairs of stages in isolation to analyze the system and



then it aggregates the results to obtain an approximate performance for the whole 
system. An experiment is designed in order to investigate the general behavior 
of the decomposition. The results are worth attention.

A second aspect of this study is to investigate an allocation methodology to 
achieve the maximum throughput rate with providing two sets of allocation pa
rameters regarding the number of kanbans and the workload at each stage of the 
system. Together with some structural properties, the experimental results pro
vide some insight into the behavior of pull production systems and also provide 
a basis for the proposed allocation methodology.

Finally, we conclude our findings together with some directions for future re
search.

Keywords: Production/Inventory Systems, Performance Evaluation, Markov Pro

cesses, Approximate Decomposition, Throughput Maximization, Workload-Kanban 

Allocation.
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ö z e t

ÇEKME TIPI ü r e t im  SİSTEMLERİNİN 
MODELLENMESİ VE ANALİZİ

Nureddin Kırkavak 

Endüstri Mühendisliği Doktora 

Tez Yöneticisi; Doç. Dr. Cemal Dinçer 

Temmuz 1995

Üretim sistemlerine yönelik bir sınıflandırma sistemi geliştirmek amacıyla litera
türde yer alan çok değişik tipte üretim sistemleri incelendi. Ele alınan üretim 
sistemleri içinde yer alan Çekme Tipi Üretim Sistemlerinin büyük bir çoğunluğu 
seri akışlı kuyruk modellerine eşdeğer bulundu. Bu nedenle, bu tip eşdeğer sistem
lerin performans değerlendirmesinde, oldukça iyi sonuç veren, seri akışlı kuyruk 
modelleri için geliştirilmiş, çözüm tekniklerinden yararlanılabilir. Bu araştırma 
çalışmasının en temel amacı eşdeğer olmayan Çekme Tipi Periyodik Üretim Sis
temlerinin modellenmesi ve analizidir.

Bu çalışmada. Tek Ürünlü Çekme Tipi Periyodik Üretim Sistemleri için bir per
formans değerlendirme modeli geliştirildi. Üretim sistemi içindeki parça işleme ve 
talebin varış ara zamanları Markof özelliklidir. Durum uzayının büyüklüğünden 
dolayı tam olarak çözümlenemeyecek kadar büyük sistemler için yaklaşık sonuç 
veren bir ayrıştırma yöntemi geliştirildi. Bu tip yaklaşık sonuç veren ayrıştırma 
yöntemleri, üretim aşamalarını birer birer ele alarak sistemi parçalara ayırırlar. 
Daha sonra da, elde edilen sonuçları bir araya getirerek tüm sistemin perfor
mansını bulurlar. Önerilen yaklaşık çözüm yönteminin genel doğruluk seviyesini 
belirlemek amacıyla, sonuçlan oldukça olumlu bir nümerik deney gerçekleştirildi.
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Çalışmanın ikinci bölümünde, üretim hızının, üretim aşamalarına dağıtılacak iş 
yükü ve ara-stok kapasitelerini belirleyen parametrelere en uygun değerlerin bu
lunması suretiyle, maksimizasyonuna yönelik bir dağıtım metodolojisi üzerinde 
çalışıldı. Yapılan yoğun deneysel çalışmalar sonucunda, bulunan bir takım yapısal 
özelliklere ek olarak. Çekme Tipi Üretim Sistemlerinin genel işleyişi ile ilgili bilgi 
elde edilerek, bir dağıtım metodolojisi önerildi.

Çalışmanın sonunda ise, yapılan tüm işler özetlenerek, ileriki araştırma çalışma
larına yönelik çeşitli noktaların üzerinde duruldu.

Anahtar kelimeler: Üretim/Envanter Sistemleri, Performans Değerlendirme, Mar- 

kof Süreçleri, Yaklaşık Ayrıştırma, Üretim Hızı Maksimizasyonu, Iş Yükü ve Ara- 

Stok Dağıtımı.
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Chapter 1

Introduction

The traditional approach in production system design has been to assume a 
deterministic world in which the impact of variability on performance can be 
resolved by providing adequate surplus capacity. It is assumed that production 
managers would take the necessary steps in order to eliminate the sources of 
variability, using the approaches of simplification, standardization and control. 
However, in reality a few manufacturing industries use sufficiently stable processes 
for this approach to work well. New processes and new products continually 
appear and coping with the resulting uncertainties becomes the most important 

concern of production managers.

Since the seventies discrete event simulation has been extensively used in mod
elling the production systems to assess the impact of variability and to explore 
various ways of coping with the change and uncertainty. Apart from the problems 
of validating, large and complex simulation models often result in limited insight 
into the factors determining the behavior of the system. So in recent years there 
have been considerable development in using queuing theory to model produc
tion systems. These queuing models can often be used for performance evaluation 
and comparison of designs of production systems both in comparing alternative
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configurations and in selecting best parameter values.

1.1 Production System s

Production systems consist of materials, work areas and storage areas. Materials 
flow from one storage area to a work area and after they are placed in another 
storage area. There is a storage area and work area combination through which 
materials enter and another storage area and work area combination through 
which they leave the production system. The times, that materials spend in 
work areas are random. This randomness may be due to random processing 
times or random failure and repair events. Storage areas can hold only a finite 
amount of materials. The work areas are usually called machines. In general, it is 
assumed that the machines are never allowed to be idle while they have materials 
to work on and there is space at storage areas in which to put the materials they 
have worked on. Storage areas are often called buffers. The materials, in general 
consist of discrete parts.

The production systems, in which each part travels the same sequence of machines 

and buffers, are called production lines. In the language of queuing theory, a 
production line can be represented as a finite buffer tandem queuing system. In 
that case, machines are called servers, storage areas are called queues and discrete 
parts are called customers or jobs (See Figure 1.1).

There have been many researchers in this field, and almost as many different sets 

of notation. In a finite buffer tandem queuing system, like the one in Figure 1.1, 
servers are numbered from 1 to N, where N  is the number of servers in the 
system. There are N  queue-server couples in which queue Qi feeds the server Si. 
Job arrivals to the system are placed at the first queue, Qi. The arrived jobs are 

processed sequentially at each server up to the last server, Sni after which they 
leave the system. All the jobs have to be processed on all the servers. A great
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Figure 1.1: Arrangement of servers (Sj: j = l,2,...,N) with finite capacity 
queues {Qj : j  =  1 ,2,..., N) in a tandem queueing system.

deal of additional notation is defined throughout the text and a list is given at 
the end of the text.

In the majority of studies on production systems reported in the literature, the 
goal has been primarily to calculate the maximum rate of flow of material through 
the system. The maximum flow rate of materials is often called production ra te or 
throughput. In the production research literature, other performance measures, 
especially the average amount of materials in the buffers, are also important.

Like all types of mathematical models, the models of production systems are 
compromises between reality and tractability. But, the use of results that are 
based on simplifications of reality is essential in the design and implementation 

of large and complex production systems.

1.2 O utline of the Thesis

There are many different kinds of production systems, and many different kinds 
of models in the literature. The purpose of this study is first to overview a vari
ety of production systems appearing in the literature to develop a classification 
scheme for production systems. Therefore, in the next chapter the distinguishing 
literature on production systems is briefly reviewed and a unifying classification
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scheme for production systems with respect to design and operating characteris
tics is proposed.

In the rest of the study, we consider modelling and analysis of a non-tandem- 

queue (NTQ) equivalent periodic pull production system. It is a periodically 
controlled serial production system in which a single-item is processed at each 
stage with an exponential processing time to satisfy the Poisson finished product 
demand. The exact performance evaluation model of this system, using discrete
time Markov processes, is given in Chapter 3. Note that, these systems are 

difficult to evaluate exactly because of large state spaces involved, an approxi

mate solution method is also proposed. In addition, the results of a numerical 
experiment is reported in order to investigate the accuracy level of the approxima
tion. A resource allocation problem, related with allocation of both the workload 
and kanbans in pull production systems, is defined in Chapter 4. Together with 

some structural properties of such systems, the experimental results that form 

a basis for the proposed allocation methodology concludes the chapter. In the 
last chapter of the text, the major contributions of this dissertation research and 
some further research directions are discussed.



Chapter 2

Performance Evaluation of 
Production Systems: A Review

In the last decade, there have been numerous attempts for modelling production 
systems as queueing systems for the purpose of understanding their behavior. 
So far, the models in the literature usually involved single-product systems with 
single or multiple stages for tractability purposes. Cases with multiple products, 

although closer to reality, proved to be quite difficult to tackle analytically. A 
production system is usually viewed as an arrangement of production stages in 
a particular configuration, where each stage consists of a single workstation or 
several identical workstations in parallel. These workstations may consist of 

workers, machines and work-in-process materials.

Performance evaluation in general is concerned with finding out how well the sys
tem is functioning provided that certain policies and parameters are set. Typical 
performance measures for the evaluation of production systems are throughput, 
average inventory levels, utilizations, customer service levels and average flow 

times among others. In obtaining these measures, when analytical, techniques
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become insufficient often numerical techniques, such as simulation or approxima
tions could be used.

An important part of production research literature appeared in the area of pro
duction lines. During the last thirty years, performance evaluation models have 
been developed for many different types of production lines using exact and ap
proximate approaches.

2.1 Basic Terminology

To avoid ambiguity throughout the text, we specify below the usage of some 
key terms. Our usage of these terms conforms closely to that in the production 
literature.

Raw M aterial; A raw material is a distinct commodity that is supplied to the 
system, but not processed in the system yet.

Raw M ateria l Supply: It is the process through which the raw materials are 

supplied to the system.

O peration : An operation is an elemental task which requires resources such as 
materials, machines, tools, fixtures and labor.

C om ponent: It is used to identify a part, subassembly or assembly on which 
some operations are performed in the system.

P ro d u c t: Any commodity produced for sale. Associated with each product, 
there is a set of operations and a precedence relationship that may constrain the 
sequence in which those operations can be executed in the system. A component 
on which all required set of operations are performed is called a product (finished 
component).
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Finished Product Demand: It is the need for a particular product. The 
demand could come from any number of sources, i.e. customer order, branch 
warehouse, spare part, forecast or the next production stage.

Item: Item is an inclusive term to denote any distinct product produced or pur
chased by the system, that is, an end product, assembly, subassembly, component 
or raw material.

Machine: A machine is an appliance or mechanical device by which some oper
ations are performed on materials.

Fixtures and Tools: In some production systems, the materials are required 
to be fitted on some fixtures before they are released into the system. Because, 
without those fixtures the operations could not be accomplished on materials. 
Also, a machine is required to be equipped with some special tools in order to 
execute a set of operations.

Buffer: Buffer is a storage area for some physical commodities to be placed in.

Workstation: It is a specific production facility, consisting of labor, machine 
and buffer, which can be considered as one unit for purposes of planning and 

scheduling.

Stage: A stage is a set of workstations grouped together to operate more ef
ficiently, either because of some shared resources or because of the dependency 
relcitions of some operations.

Tandem Line: A serial arrangement of stages is called a tandem line in which 
all items are processed at all stages of the system with a unique sequence of flow.

Flowshop: Flowshop is a tandem line in which the flow of materials is uni

directional but, there are alternative stages for some set of operations to be 

performed on.



Jobshop: It is an arbitrary arrangement of stages in which each item receives 
processing in a variety of orders, from one stage to another.

2.2 Characteristics of Production System s
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In this section, we informally discuss some of the features, attributes and prop
erties of production systems in order to develop a framework for classification.

N on—perishab ility : In the literature we survey, the material in buffers is as
sumed to be non-perishable. That is, it does not decay or loose value, no matter 
how long it waits in the buffers.

Failures and R epairs: Failures and repairs are related to the machines in the 
system. When a failure occurs at some machine in the system, it may not process 
any material until it is repaired and operational again. A variety of assumptions 
about the conditions under which a failure may occur and after a repair how the 
operation is continued, the time until the next failure, the time to repair a failure, 
and so forth, are considered in the literature [7, 33, 39, 50, 54, 55, 114]. Note 
that, a machine which cannot fail is called a reliable machine or otherwise, an 
unreliable machine.

P aralle l W orkstations: Production stages are built with workstations in par
allel for two reasons: either to achieve a greater production rate or to achieve a 

greater reliability [5, 33, 52, 53, 88].

U p, Down and O peration  Tim es: The productive time between two failures 
of a machine is called the up-time and consequently the non-productive time 

spend for the repair of the machine is called the down-time [39, 40]. On the 
other hand, an operation time is the time required to execute a single operation. 

In this respect, it is assumed that an up-time period is composed of operation 
times of parts processed in the duration between two consecutive failures.
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Synchronous /  Asynchronous Production: In most real systems, the ma
chines are not constrained to start and stop their operations at the same instant. 
Even the stages have fixed and equal cycle time (the time required to accom
plish the operations at each stage), uncertain failure and repair times can lead to 
asynchronous operations.

Blocking, Starvation and Decoupling: The presence of buffers between the 
stages allows them to start and stop independently, as long as the intermedi
ate buffers are neither empty nor full. With the asynchronous flow of material 
throughout the system, some buffers might become empty or some buffers might 
become full. Consequently, the production is delayed at some stages because 
of starvation and blocking. A stage is starved when there is no material to be 
processed in the buffer and it is blocked when there is no space in the buffer to 
put the material it has processed. In this respect, the function of a buffer is to 
decouple production stages [12, 16, 24, 31, 39, 76].

Discrete /  Continuous Production: The production process through which 
a system produces discrete units of a product is called discrete, otherwise it is 
continuous. In a discrete production environment, individual items are treated, 
and each requires a non-zero. Unite amount of processing time at each stage. 
On the other hand, systems that treat continuous material, share some charac
teristics, such as the stages can fail and finite buffers can become empty or full 
synchronously, hence the disturbances are propagated and as a consequence the 
system waste significant amount of production resources [33, 52, 53]. Automo
bile industries and oil refineries are good examples for discrete and continuous 

production environments, respectively.

Saturated /  N on-saturated Systems: Materials arrive at and leave a produc
tion system in a variety of different ways. In reality, it is always possible that some 
raw materials are absent or some finished product buffers are full in the system. 
Because, for some reasons, the shipments of those raw materials and finished prod
ucts are failed. However, in the literature, it is almost always assumed that the
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first stage is never starved and the last is never blocked [7, 12, 33, 39, 49, 50, 69]. 
Such systems are called saturated systems. This assumption is appropriate for 
addressing the most important performance issue which is the throughput of a 
production system without considering the environmental (external) uncertain
ties. But, in a production environment uncertainties in raw material supply and 
finished product demand are essential. To represent a system with uncertain raw 
material supply as a saturated system, an additional dummy production stage is 
attached prior to the first stage of the system. A similar approach could also be 
applicable in formulating a production system with uncertain finished product 
demand as a saturated system. That means, an unsaturated system with some 
external uncertainties can equivalently be represented by a saturated system.

E quivalence of Two Q ueueing System s: For two particular queuing systems 
to be equivalent to each other, they must have the same joint queue length 
distribution [16, 23, 73, 76]. This is simply because most of the key performance 
measures are obtained using the joint queue length distribution.

Scrap /  Rew ork of M aterial: Scrapping refers to the rejection of bad compo
nents which are out of specifications with no possibility to recover the material. 
When such a bad component is rejected, it leaves the system [56, 115]. But, in 
some cases, bad components could be returned to production process by some 
rework on that material [115]. This rework could be either a set of last operations 
to be re-executed or it could be totally a new set of operations.

A ssem bly /  D is-assem bly  O perations: In a production line with man
ufacturing operations, each stage feeds a single buffer and each buffer feeds 

a single stage. However, in an assembly operation, several components from 
two or more buffers are assembled together to produce a single component. 
On the other hand, in a dis-assembly operation, a single component is sepa
rated into several components. A production system in which some stages per

form assembly or dis-assembly type of operations is called an assembly system 

[12, 13, 36, 40, 52, 53, 91, 107].
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Split /  Merge Configurations: Split is the configuration in which several 
workstations are supplied through a single buffer and merge is the configuration 
in which several workstations supply a single buffer [5, 33, 40, 91, 107].

S et-up  Tim es and Batch Sizes: Set-up time is the time needed to prepare 
a set of machines by attaching the proper tooling in order to execute a set of 
production processes. This preparation is required to be executed when the set 
of operations is changed. In a single product system, once the set-ups are done 
the production continues, so that the set-up times could be ignored. But, in a 
multi product system, every time a machine takes a different product to process 
with a different set of operations, a set-up is required. In order to minimize, the 
lost production during these set-up times, the products are processed in batches 
[1, 6, 21, 22, 60,116]. The production batch size is the amount of a particular item 
that is produced once a set-up is done. On the other hand, in order to minimize 
the cost of material handling in the system, the materials are transferred from 
one stage to another in quantities of transfer batch sizes.

Production Scheduling: There are various levels of scheduling within a pro
duction system. In general, determining when and in which sequence to produce 
is referred to as production scheduling. To achieve this a desired start or comple
tion time is established for each operation in order to satisfy the finished pi’oduct 
demand on time while minimizing the operating costs.

Stockout /  Backorder /  Lost Sales: Stockout is the lack of materials or 
components which are needed to be on hand in stocks. An immediate demand 
against a finished product whose inventory is insufficient to satisfy the demand, 

could be either backordered or lost [3, 6, 11, 24, 60, 70, 93, 107, 116].

Reversibility: The production system obtained from the original system by 
reversing the direction of material flow is called a reversed system. The property 
that the production rate of the reversed system is the same as that of the original 

system is called reversibility [31, 67, 72, 103, 111].



CHAPTER 2. PRODUCTION SYSTEMS: A Review 12

D uality : The duality is related with the idea of equivalence between flow of 
material in one direction and the empty containers in the opposite direction
[43]. Note that, in some systems, the behavior of parts in the reversed system 
is the same as the behavior of empty containers in the original system. Also, a 
starvation in the reversed system corresponds to blocking in the original system, 
and vice-versa. As a result, the steady-state joint distribution of parts in the 
reversed system is exactly the same as the steady-state joint distribution of empty 
carriers in the original system. This equivalence implies that the original system 
is reversible.

Bowl Phenom enon: It refers to the increase in production rate obtained by 
unbalancing a production system such that the operation time increases progres
sively on either side of the central stage(s) or alternatively the buffers in the 
middle get more and the buffers at the ends get less storage space [29, 37, 49, 51, 
67, 74, 81, 84, 86, 104].

O pera ting  Policy: An operating policy is a set of rules and procedures through 
which the operation of, the system is controlled. In most of the studies, it is 
assumed that machines are not allowed to be idle if they can be operated. That 
is, whenever a production stage is neither blocked nor starved, it is executing 
some operations. In this respect, the description of how the system starts and 
stops production is closely related with the operating policy of the system. There 
is a variety of policies, such as push, pull or conwip [26, 30, 35, 45, 83, 95, 105].

P ush  System : The system that authorizes the production in advance of physical 
demand called a push system. In a push system, the demand for finished product 

and the demand for materials in-process at each stage are forecasted. Then, a 
release date for each material is computed considering the expected flow time 
(lead time) up to the final stage. Based on this plan, the materials are released 
into the system from the first stage and then, these in-process materials are 

pushed through the stages up to the final stage.
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Pull System : Pull systems trigger a production order when the inventory is 
physically removed from the buffer stock. That is, the amount and time of 
material flow in the system are determined by the rate and time of the actual 
consumption in buffers. In pull production systems, materials are pulled from 
one stage to another to meet the finished product demand at the last stage on 
time [11, 17, 26, 28, 34, 61, 62, 70, 90, 102].

K anban  System : It is an information system for the management of materials 
in a production system. It acts as the nervous system of a pull production 
system whose functions are to direct the materials through the stages and to 
pass information as to what and how much to produce through the use of kanbans 
(cards) [62, 101].

Conwip System : It is a hybrid push-pull based production system in which 
the level of work-in-process materials is kept constant [36, 55, 96]. Under con
wip operating policy, only the first stage is operated as a pull system; then the 
work-in-process materials are pushed between stages without any buffer space 
limitation up to the final stage, as it is in a push system. Note that, a conwip 
production system operates as a closed queueing network model in which the 
same number of jobs are circulating around the system.

2.3 A Classification of Production System s

There have been many alternative forms of production system described in the 

literature. Unfortunately, the diversity of these descriptions has made it difficult 
to organize and synthesize these research studies. To overcome this problem, 
a large number of articles related with production systems has been considered 
and a classification scheme is developed. Most of the differentiating attributes 
contributing to the classification of production systems are discussed in the pre
vious sections. They are similar to the studies reported in the literature (See
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Aneke and Carrie [9], Berkley [16, 18], Bitran and Dasu [20], Buxey, Slack and 
Wild [25], Buzacott and Shanthikumar [27], Dallery and Gershwin [32], Kalkunte, 
Sarin and Wilhelm [59], Stidham And Weber [100], and Sarker [85] for alternative 
classification and review of the research studies on production systems).

2.3.1 D eterm inistic vs Stochastic System s

The production systems could be classified into two categories according to the 
way they are formulated:

• Deterministic, or

• Stochastic.

The nature of system parameters is very important in developing a model in order 
to evaluate the performance of a production system. If all the parameters of the 
system are assumed to be deterministic, then the model to be developed for a 
deterministic system  could be generative. Note that, a generative model is capa
ble of finding the best values for various system parameters in order to optimize 
a given set of performance measures of the system. Price, Gravel and Nsakanda 
[82] reviewed a variety of optimization models for kanban-based production sys
tems covering tandem production lines, bottleneck workstations, assembly cind 
jobshop production.

Bitran and Chang [19] developed a mathematical programming model of a flow- 

shop structured deterministic production system in order to optimize the op
erating costs. The system they utilized in their study is a Kanban-type pull 
production system. One of the major problem in such systems is to determine 
the number of kanbans (buffer capacity) required to achieve a predetermined 

level of system performance (See Bard and Golany [14]). In another, study, Li 
and Co [65] proposed a dynamic programming model for the formulation of the
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same problem for multi-stage multi-period deterministic production systems. 
Determination of lot sizes in a deterministic production environment is another 
problem issue. Philipoom, Rees, Taylor and Huang [79] and Luss and Rosen- 
wein [66] utilized similar integer programming approaches in order to minimize 
inventory holding costs subject to capacity availability and the required mix of 
items.

In a production environment, the following items are usually assumed to be the 
major source of randomness:

• raw material supply,

• production process,

— human interventions,

— defective production,

— failures and repairs,

• finished product demand.

If at least one of the parameters of the system inherits randomness, then the 
model to be developed becomes evaluative. That is, an evaluative model can 
only compute the performance of the system given the pre-determined values 
of the system parameters. In this respect, almost all of the queueing models of 

production systems are assumed to be evaluative.

The nature of the system parameters is assumed to be either stationary or non- 
stationary with respect to time scale. In terms of modelling and analysis, dealing 
with stationary-deterministic parameters is the easiest and dealing with non- 
stationary stochastic parameters is the most difficult one.

Production systems with stationary stochastic demand and production processes 

received a great attention in the production research literature. In most of the
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analytical models (e.g. Altiok and Stidham [7], Brandwajn and Jow [24], Hillier 
and Boling [47], Karmarkar and Kekre [60], Mitra and Mitrani [70], Siha [90], 
Springer [97], and Wang and Wang [107]), the Poisson demand arrivals and expo
nential processing times are simplifying assumptions that preserve the Markovian 
property, even if it leads to pessimistic results on performance of the system.

Since, the coefficient of variation is more important parameter than the shape of 
the processing time distribution in affecting the performance of the production 
system (as it is reported in Hillier and So [49]), the phase-type distributions 
could be used for approximating more general distributions (See Altiok [2]). The 
attempt by Yao and Buzacott [113] to transform a queueing network with general 
processing times into an approximately equivalent exponential network is another 
approximation approach through exponentialization. As a consequence, Altiok 
[3, 4], Altiok and Stidham [7], Berkley [17], De Roster [33], and Hillier and So [50] 
utilized phase-type distributions for processing times in their models in order to 
represent more general processing time distributions.

On the other hand, Gershwin [39, 40] utilized non-exponential distributions in 
his model. The processing times were deterministic and workstations are subject 
to failures. He assumed that, time to failure and repair time were geometrically 

distributed.

2.3.2 M anufacturing vs A ssem bly /D is-assem bly  System s

The operations involved in the production process could have some degree of 

complications;

• Manufacturing-type operation,

• Assembly-type operation,

• Disassembly-type operation.
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A manufacturing type of operation is involved with a production process in which 
one unit of material is withdrawn from the buffer for processing and after com
pletion one unit of material is sent to the buffer. In most of the analytic studies 
in the literature, manufacturing type of operations are utilized since it is the sim
plest type of operation to be formulated mathematically. A production system 
in which all operations are of this type is called a manufacturing system.

In an assembly type of operation, the availability of all assembly parts is neces
sary at the feeding buffers in order to start the involved assembly process. This 
way, an assembly operation produces one unit of assembled component by with
drawing the required number of assembly parts from buffers. On the other hand, 
an operation that produces more than one unit of material from one unit of input 
material is called a dis-assembly type of operation. An assembly system is a pro
duction system in which some assembly and/or dis-assembly type of operations 
are performed (See Baker, Powell and Руке [12, 13], Gershwin [40], Hodgson and 
Wang [52, 53], Smith and Daskalaki [91], and Wang and Wang [107]).

2.3.3 S ingle-Stage vs M ulti-S tage System s

A production system is usually assumed to be composed of several stages in 
tandem. In each stage, a set of production operations is to be executed through 
the use of some machines, fixtures and tools in order to produce the finished 
product. The network configuration of a production system regarding the stages 

could be either:

• Single-stage, or

• Multi-stage.

Although, developing a single-stage model of a production system is almost un
realistic, in the literature researchers have continually developed such models
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mainly for two reasons.

First, a single-stage model is easier to formulate and solve, because it has less 
number of parameters than a multi-stage model. For multi-stage production 
systems with complicated characteristics that are analytically intractable to for
mulate and solve, the analysis of a single-stage model may provide helpful insights 

(See Altiok [3], Altiok and Shiue [6], Bitran and Tirupati [22], and Zipkin [116]).

Second, a single-stage model is mostly utilized in an approximate decomposition 
technique which is applicable for multi-stage production systems. In a typical 
decomposition approach, all production stages are analyzed separately, then the 
results are aggregated with resolving the inter-relation between the stages in order 
to obtain the overall performance of the whole system. For most of the production 
systems studied in the literature, an exact decomposition could not be possible. 
In case of an approximate decomposition, the trade-off between the precision of 
the results and the complexity of the computations becomes important. There 
is a considerable amount of literature on the performance evaluation of multi
stage tandem production lines through the use of approximate decomposition 
techniques, e.g. Altiok [4], Berkley [17], Brandwajn and Jow [24], Gershwin [39], 
Hillier and Boling [47], Hong, Glassey and Seong [54], and Springer [97].

Note that, a multi-stage system in which alternative routes for materials are 
allowed with utilizing split/merge configurations is called a fiowshop. Allowing 
this type of configuration in production systems increases the scheduling flexibil
ity especially in case of machine failures. Altiok and Perros [5], De Roster [33], 
Gershwin [40], and Smith and Daskalaki [91] developed efficient approximate 
decomposition techniques for production systems in fiowshop configuration.

Although, the computational complexity remains feasible even for large-scale sys
tems through the use of such approximate techniques, the well-known queueing 
models of serial production systems could be exactly evaluated up to three stages 
in tandem (See Altiok and Stidham [7], Badinelli [11], Deleersnyder et al. [34],
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and Muth and AlkafF [75]).

On the other hand, the jobshop configuration is the most difficult case for mod
elling and analysis. Dealing with every possible route between stages complicates 
the formulation of the system. In a jobshop system, several different products are 
assumed to be processed using the same facilities. This causes another complex
ity in modelling and formulation of the jobshop production system with including 
the related scheduling issues. So, there is no analytically tractable multi-item 
jobshop model reported in the literature beyond a few studies formulating the 
system under very restrictive assumptions (See Akyildiz and Huang [1], Bitran 
and Tirupati [21], and Zipkin [116]).

2.3.4 S ingle-Item  vs M ulti-Item  System s

The production systems could be classified into two categories according to the 
number of products produced in the system;

• Single-item, or

• Multi-item.

In a single-item system, there is only one finished product to be processed in the 
system. The set of operations to be executed at each stage is unique. For that 
reason, the set-ups required at each stage in order to start production are done 
once and for all. Modelling a single-stage system with a single demand arrival 

and production processes is easier relative to a multi-item system in which there 
are set-ups and production batches to be scheduled.

With respect to modelling and analysis, the assumption of producing single item 
with random operation times is not so unrealistic. Because, the random behav
ior of operation times could be accepted as an alternative representation of the
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variation of operation times from one product to the other in a multi-item en
vironment. But, a multi-item model with assuming zero set-up times between 
different operations and one unit batch sizes might be unrealistic to some extend. 
In spite of this, a tremendous number of single-item performance evaluation mod
els with random processing times is developed in the literature (See Altiok [4], 
Altiok and Stidham [7], Badinelli [11], Brandwajn and Jow [24], De Koster [33], 
Deleersnyder et al. [34], Hillier and Boling [47], Hillier and So [50], Mitra and 
Mitrani [69, 70], Muth and Alkaff [75], Springer [97], Wang and Wang [107]).

Producing more than one product introduces some resource sharing issues at 
workstations which process more than one product. Then, the terms set-up and 
batch size (in order to minimize the lost productive times due to set-ups) come 
into the scene and complicate the formulation and analysis of the system. In 
recent years there have been considerable developments in modelling multi-item 
production systems analytically. Akyildiz and Huang [1], Altiok and Shine [6], 
Bitran and Tirupati [21, 22], Karmarkar and Kekre [60], and Zipkin [116] devel
oped multi-item queueing models for production systems either for single-stage 
or for more general network configurations under some restrictive assumptions.

Note that, if two different production processes producing two different items have 
no interactions on production resources during the whole production process, then 
the system could be evaluated using two single-item models separately.

2.3.5 Reliable vs Unreliable System s

In a production system;

• the production facilities could be either;

— Reliable (machines cannot fail), or

-  Unreliable (machines can fail).
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• the production operations could be either;

— Reliable (no defective parts produced), or

— Unreliable (with scrap or rework).

The reliability issue primarily refers to the production facilities in the system. 

Since, tracking of these failures and repairs in the system complicates the formu
lation and analysis, a lot of studies reported in the literature deals with reliable 
production systems in which machines cannot fail (See Baker, Powell and Руке
[12], Berkley [17], Brandwajn and Jow [24], Buzacott, Price and Shanthikumar 
[28], Hillier and Boling [47], Mitra and Mitrani [69, 70], Muth [71], Siha [90], 
Springer [97], and Wang and Wang [107] for reliable systems).

Some of the studies in the literature are focused on time to failure and repair time 
distributions. The most common and analytically more tractable assumption is, 
these distributions are exponential, as in the studies of Altiok and Stidham [7], 
De Koster [33], Hong, Glassey and Seong [54], and Hopp and Spearman [55]. In 

the literature, there are few analytical models with non-exponential failures and 

repairs. The analytical model studied by Gershwin [39, 40] is an example for 
non-exponential (geometrically distributed) failures and repairs.

The operation .times could be alternatively defined in terms of operation com
pletion times in order to incorporate both the variability in operation times and 

unreliability due to failures and repairs at machines and defectives in the produc
tion process (See Altiok [3, 4], Altiok and Stidham [7], and Hillier and So [49, 50]). 
Altiok and Stidham [7] further utilized a two-stage phase-type distribution which 
is an exact representation of the distribution of operation completion time of parts 

in a system of exponential servers subject to exponential failures and repairs.

In another view, reliability may refer to production operations. An operation 
which yields scrap or requires rework of material could be defined as an unreliable 
operation (See Jafari and Shanthikumar [56] and Yu and Bricker [115]). Almost
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all of the studies in the literature deal with reliable systems in which non-defective 
parts are produced.

2.3.6 Push vs Pull System s

The production systems could be classified into following categories according to 
the control strategies utilized;

• Push,

• Pull, or

• Hybrid.

The modelling and analysis of production systems within the framework of push 
control strategy received a great attention in the production literature (See Buza- 
cott [26], Deleersnyder et al. [35], Руке and Cohen [83], and Spearman and 
Zazanais [95]). In push systems, the independent demand for finished products 

and the dependent demand for materials in-process at each stage are forecasted. 
Then, a release date for each material in-process is computed considering the 
expected flow time (lead time) up to the final stage. Materials Requirements 
Planning (MRP) makes it possible to construct a time-phased requirements plan 
for this system. Based on this plan, the materials are released into the system 
from the first stage and then, these in-process materials are pushed through the 
stages up to the final stage. So, any workstation operating in a push system 
could not stay idle if the input queue is not empty. These systems are controlled 

through the work-in-process (WIP) inventories in the system. Thus an incorrect 
forecast or drastic changes in demand, in most cases, are overcome by the in- 
process inventories including the safety stocks which can result in unnecessarily 
high carrying costs. This is because of the difficulties faced during the renewal 

of the production plan for each process and for each part in the system.
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After 1970s, the Just-In-Time (JIT) philosophy has been introduced into the 
production literature and it has produced an alternative production control sys
tem (Kanban System) as offspring. The basic tenets of the JIT philosophy are 
the elimination of waste ( in terms of materials, manpower, productive time, en
ergy etc.), participation of employee in decision-making to improve productivity, 
participation of supplier for reduced lead-times and total quality control. To a 
certain extent, JIT has come to refer to all that is good in production. Golhar 
and Stamm [42] offer a comprehensive review of the JIT literature and provide a 
framework for classifying the related JIT literature.

The first successful example of development and implementation of JIT concept 
as a material management system has been reported by Sugimori et al. [101] at 
Toyota whose production system is actually operated by means of kanbans. The 
kanban material management system is well described by Sugimori et al. [101] 
and Kimura and Terada [62]. It acts as the nerve of the JIT production system 
whose functions are to direct in-process materials just-in-time to the workstations 
and to pass information as to what and how much to produce.

When the JIT philosophy is applied to a material management system, it is 
called a pull system, which means that the amount and time of material flow are 
determined by the rate and time of the actual consumption. In pull production 
systems, the kanban system pulls in-process materials from one workstation to 
another to meet the demand at each workstation at the right time. There are 

many alternative forms of pull production control in practice; Badinelli [11], 
Berkley [17], Buzacott [26], Buzacott, Price and Shanthikumar [28], Deleersnyder 
et al. [34], Golhar and barker [41], Karmarkar and Kekre [60], Mitra and Mitrani 
[69, 70], barker and Parija [87], biha [90], and Tayur [102, 103]. However, the 
common thread that distinguishes the pull system from conventional push method 

of production control is the existence of finite buffers for in-process materials and 
the triggering process for workstations to start and stop producing depends on 
the inventory level of the succeeding buffer stock.
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Some implementations of pull production systems utilize two-card while others 
use only one card or some of them use computerized systems (no card at all). See 
Berkley [17], Karmarkar and Kekre [60], Kimura and Terada [62], and Sugimori 
et al. [101] for two-card; Deleersnyder et al. [34], Karmarkar and Kekre [60], 

Mitra and Mitrani [69, 70], and So and Pinault [93] for single-card; and Kim 
[61] for computerized kanban systems. In a computer-controlled pull production 
system, all of the transactions within the system can be collected and recorded 
automatically and instantaneously, so that, the continuous monitoring of the 
whole system could be possible. However, in a two-card kanban system, the 
production kanban cards serve as work orders to replace the empty containers of 
finished items withdrawn from the output buffer stock of the workstation and the 
withdrawal kanban cards act as material requisitions to the input buffer stock of 
the workstation. Finally, in single-card systems in which the workstations are 
physically located close together so that the material handling function between 
the workstations could be ignored and only the production kanbans are utilized.

Generally, each one of the push and pull type control strategies is thought to have 
both advantages and disadvantages. In this respect, there is a great potential in 
developing a system that possesses the benefits of both pull and push systems 
and can be used in a wide variety of production environments. There are several 
hybrid control strategies reported in the literature, i.e. Deleersnyder et ah [35], 
Duenyas and Hopp [36], Hodgson and Wang [52, 53], Hopp and Spearman [55], 
and Spearman, Woodruff and Hopp [96]. Among those the most well-known is 
the conwip (constant work-in-process) control strategy which is first introduced 
by Spearman, Woodruff and Hopp [96].

2.3 .7  Periodic vs Continuous R eview  System s

In the context of the classical inventory theory, the production systems are clas
sified according to the management and control of work-in-process inventories 
as;
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• Continuous review, or

• Periodic review.

In order to support decision making in inventory management and production 
control, a production system is to be reviewed and the status of the system should 
be monitored. According to the characteristics of the production system and the 
conditions of the environment, this review process is done either periodical or 
continuous basis.

In a periodic review system, the status of materials flow and the production at ail 
stages are reviewed at regular intervals. The material withdrawals and all other 
production activities start immediately after the review as decided with respect to 
the status of the system. The time required for the review and decision making 
process is generally assumed to be negligible. The periodic review models of 
production systems mostly developed for the analysis of pull systems (See Berkley 
[17], Deleersnyder et al. [34], and Kim [61]).

The continuous review production systems have been investigated by many re
searchers (See Altiok [3], Altiok and Shiue [6], Badinelli [11], and So and Pinault 
[93]). Note that, in almost all of the tandem queueing models of production 
systems it is assumed that the system is reviewed continuously.

Srinivasan and Lee [98] studied a production system in which the time inter
val between two successive reviews is a random variable following an arbitrary 
distribution. Under a cost structure which includes set-up, holding and backo
rder costs, they obtained the optimal policy by minimizing the expression for the 

expected cost per unit time.

2.3.8 Instantaneous vs P eriod ic/B atch  Order System s

In a production system, the following types of items are assumed to be ordered;
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• Raw materials and parts to be purchased from outside vendors,

• Work-in-process materials to be handled between stages,

• Work-in-process materials to be processed at each stage,

• Finished products to be shipped to the customers.

In most of the analytical models reported in the production literature the raw 
material supply is assumed to be infinite. Because of this, the orders related with 
raw materials and parts to be purchased from outside vendors are considered to 
be external to the system.

The ordering policy of a production system in order to replenish the orders for 
production, material handling and finished product shipment is another feature 
in the context of classification:

• Instantaneous ordering,

• Periodic ordering (fixed period, T  time units; variable quantity of items 

ordered),

• Batch ordering (fixed quantity, Q units of items ordered; variable period 
length).

In this respect, almost all of the tandem queueing models of production systems 
are instantaneous order systems (See Altiok and Stidham [7], Brandwajn and 
.low [24], Gershwin [39], Hillier and Boling [47], Mitra and Mitrani [69, 70], and 

Springer [97]).

There are relatively few analytical studies in the literature that investigates pe
riodic or batch ordering policies since, dealing with periodic or batch orders in a 

production system is more difficult to formulate and analyze (See Berkley [17], 
Bitran and Tirupati [22], Karmarkar and Kekre [60], and Kim [61]).
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As the physical distance between workstations increases, the instantaneous trans
fer of materials from one stage to the other becomes impractical. For these situ
ations, the solution is to perform the material handling operations periodically. 
When material handling operations are carried out periodically, each workstation 
must have both an input and an output buifer stock. Within the period, material 
requirements of a workstation are satisfied from its input buffer stock and the 
processed items are placed in its output buffer stock. At the end of the period, 
either all of the processed items collected at the output buffer of a workstation 
or some of the processed items depending on the size of a transfer batch are 
transferred to the input buffer of the next workstation in the production route. 
Further in order to minimize material handling costs, the handling of materials 
could be made in batches.

2.3.9 Conclusion

So far, a number of major attributes of production systems are examined and 
most of the distinguishing analytical studies in production literature are reviewed 
in order to build the framework for a classification scheme.

Illustratively, Hillier and Boling [47] have reported one of the pioneering studies 
on finite queues in series with exponential service times. Brandwajn and Jow 
[24], and Springer [97] studied the same system to improve both the accuracy 
and the complexity of the computations. Next, Altiok and Stidham [7], and 
Hong, Glassey and Seong [54] extended this work with including exponential 
failures and repairs for the servers. On top of this unreliability, split and merge 
configurations are allowed in a model for continuous production environments in 
De Foster [33]. On the other hand, Gershwin [39] studied a tandem queueing 
system in which service times are deterministic but servers subject to geometric 
failures and repairs. Further, in order to generalize the service times, Altiok [4], 
and Hillier and So [50] utilized phase-type distributions in their models.
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This way, a production system could be well described by identifying the at
tributes discussed in the previous sections, hence one can compare the results of 
the related research studies.

There has been a significant accumulation in the literature on tandem queuing 
models of production lines within the last thirty years. Various design and oper
ating aspects of these systems have been studied. Some of the emerging design 
problems in the literature are workload and buffer capacity allocation for 
which no simple solutions exist in non-trivial cases. The exact analysis mostly 
focused on the special structure of the underlying Markov chains and solves the 
associated Chapman-Kolmogorov balance equations for the steady state proba
bilities [7, 11, 34, 47, 75].

As the state space of the system under study increases, the use of exact methods 
becomes computationally infeasible because of the magnitude of computational 
effort and the computer space requirements. The only remaining viable approach 
for the analysis of large-scale systems appears to be the use of approximation 
techniques. In an approximate analysis the system is decomposed into smaller 
(one or two-node) subsystems which are analyzed in isolation and then relates 
them to each other in an iterative manner to obtain the performance measures 

of the whole system [4, 17, 24, 33, 39, 47, 54, 97, 107].

2.4 P ull Production System s: A review

In practice, there are many alternative forms of pull production systems which 
differ in some design and operating characteristics [18]. Among others the well 
known pull systems are the kanban-controlled pull production systems. Some 
of the kanban implementations utilize two-cards while others use only one card 
for the flow of information through the stages of the system related with the 
production and material requisitions.
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The simplest form of kanban production control system has a fixed order quan
tity of one unit and is called a base stock system. There exists a single inventory 
buffer between each workstation. The maximum inventory level permitted in 
this intermediate buffer is called the base stock level. Each time the downstream 
workstation (the one being closer to final demand) requires work-in-process ma
terial, it withdraws one unit from the intermediate buffer. Production of one unit 
is then triggered at the upstream workstation since the inventory level falls below 
the base stock level. Production stops (workstation is blocked) when the inven
tory level of the buffer reaches the base stock level. Note that, the downstream 
workstation pulls the required amount of materials which are processed at the 
upstream workstation.

The base stock system defined above operates exactly the same as a tandem 
queue with communication-system blocking. This type of blocking means an 
upstream workstation is not allowed to start processing a material until space is 
available in the intermediate buffer. Recall that, there is another type of blocking 
mechanism that is called production-system blocking. It occurs when, at the mo
ment of process completion in the upstream workstation the intermediate buffer 
is full. See Onvural and Perros [76] on the equivalencies of blocking mechanisms 
in queueing networks.

Many of the kanban systems described in the production literature are equivalent 
to a tandem queue [16, 18]. Berkley [16] showed when and how tandem queueing 
models can be used to obtain the performance measures of kanban-controlled pull 
production lines. He showed that a two-card kanban-controlled production line 
is equivalent to a tandem queue, with communication-system blocking, if and 
only if the two-card kanban-controlled production line is operated with a fixed 
order quantity of one or with a fixed order cycle time of zero (see Figure 2.1). 

He also gave some numerical examples to demonstrate this equivalence relation 
of two-card systems and tandem queues. The Markov chain model, the states 
and the corresponding steady-state balance equations of the tandem queues were 
generated following the procedure by Hillier and Boling [47].
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Figure 2.1: Tandem arrangement of workstations (Wj: j  = 1 , 2 , iV) in a two-card kanban- 
controlled pull production line. Each workstation has both an input material 
queue and an output material queue, (Jj" and QJ“*, respectively. In the context 
of Kanban System, Kj  refers to the number of production kanbans and A'j" refers 
to the number of withdrawal kanbans at stage j.

Using the classification scheme, a pull production system;

• having stationary stochastic demand arrival and production processes,

• producing single-item with manufacturing-type operations,

• with a configuration of multi-stages in tandem and where each stage com
posed of a single machine,

• with instantaneous transfer of work-in-process materials between stages,

• monitoring the status of the system with a continuous review policy, and

• releasing instantaneous production orders at times when items are with

drawn from the related buffers.

is said to be equivalent to a tandem queue as stated by Berkley [16]. He has 
introduced a classification as either tandem queue (TQ) equivalent or not in his
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study. For TQ equivalent pull production systems, any decomposition approxi
mation existing in the literature developed for tandem queues are well applicable. 
There are very accurate tandem queue approximation procedures in which the 
relative error on performance measures is less than one percent. Buzacott, Price 
and Shanthikumar [28], Mitra and Mitrani [69, 70], Siha [90], So and Pinault 
[93], and Wang and Wang [107, 108] developed such TQ equivalent models of 
pull production systems. Note that, tandem queues can also be used to obtain 
upper bounds for the production rates and the work-in-process inventory levels 
of NTQ equivalent pull production systems [16].

Mitra and Mitrani [69] described an evaluative model for a single-card kanban 
system equivalent to a tandem queue (see Figure 2.2). The finished products 
were assumed to be immediately withdrawn from the system. In another study 
of Mitra and Mitrani [70], that is the second in a publication series on a particular 
scheme of coordination between production cells, an exogenous demand process 
was introduced so that, the first study turned out to be a special case correspond
ing to heavy demand arrivals. Analyzing the sample path descriptions of both 
cases, they also showed that systems under consideration become equivalent to a 
tandem queue when the input material queues are eliminated.

So and Pinault [93] alternatively decomposed the production line into individual 
M/M/1 queues with bulk service in estimating the amount of buffer stocks needed 
at each station in order to meet a predetermined level of performance (average 
percentage of backlogged demand). The analysis of the individual workstations 
were then combined using a heuristic procedure to approximate the performance 
of the entire system. They also reported that since workstations were assumed to 
have an infinite supply of raw materials, the proposed method is only valid when 
the number of kanbans is sufficiently large to prevent workstations from star

vation. Buzacott, Price and Shanthikumar [28] considered a kanban-controlled 
serial pull production line. They proposed simple approaches for approximating 
the performance of the system and also provided some insights into behavior of 
the system.
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Figui'e 2.2: Single-card kanban-controlled pull production line is a tandem arrangement 
of workstations in which there is only an output material queue for each work
station.

Wang and Wang [107. 108] developed a Markov model for determining the num
ber of kanbans required in a serial JIT production system, in which assembly and 
dis-assembly type of operations were allowed. By evaluating Markov chains for 
alternative number of production kanbans, they found a solution that minimizes 
total inventory holding and shortage costs. Since the order points were assumed 
to be one, the system could be operated with only one withdrawal kanban between 
each pair of vyorkstations. They also proposed a decomposition approximation in 
which the workstations were assumed independent. Jordan [58] modeled work
station interdependence by formulating a two-stage line as a continuous-time 
Markov chain to determine the profit maximizing number of kanbans.

Siha [90] developed a continuous time Markov model for pull production systems 
in order to analyze some allocation patterns of kanban capacity and mean pro
duction time over the workstations of the system. The results were contradictory 
with some of the findings in the literature where the bowl pattern is suggested. 
However, some design guidelines are reported that could be useful in applications.
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Recently, Berkley [17] introduced a decomposition approximation using imbedded 
Markov chains for kanban-controlled pull production lines with periodic material 
handling and Erlang processing times. In these systems, the number of with
drawal kanbans required is a direct function of material handling frequency or 
the withdrawal cycle time. In his study, several examples were given to show how 
the approximation could be used to find the required number of kanbans, the re
quired withdrawal cycle time or both. Tayur [102, 103] developed some structural 
cind theoretical results that characterize the dynamics of kanban-controlled se
rial lines and provided insight into their behavior and helped greatly in order 
to reduce the effort required in a simulation study. Based on these results, he 
developed a heuristic for the allocation of kanbans to a balanced line.

It was generally thought that kanban-controlled pull production systems are not 
applicable to multi-item jobshop environments. However, Gravel and Price [44] 
showed how the kanban method of control can be adapted to a multi-item job- 
shop environment. They illustrated the adaptation with examples drawn from a 
pilot study. Before the implementation stage, they extensively tested the system 
through the use of a simulation model. As a result, actual performance of the 
system indicated that both WIP inventories and cycle times are reduced. The 
reduction of production lead time allows inventories to be reduced without in
curring high stockout costs. For a pull production system operating in a varying 
demand environment lead time reduction is crucial. Karmarkar and Kekre [60] 
studied the effect of batch sizing policy on the production lead times and hence 
on the inventory levels and on the performance of the system. They utilized 
approximate Markovian models in formulating a two-stage multi-item Kanban 

system.

Buzacott [26] developed a linked queuing network model to describe the behav
ior of a kanban-controlled production system. He pointed out that kanban- 
controlled systems can be shown to be particular cases of a more general in
ventory level triggered approach to production control in multi-stage systems.
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Altiok [4] considered a single-stage pull system within the context of single facil
ity production/inventory system with an (R,r) continuous inventory policy. This 
particular policy, indicates that the workstations start producing as soon as the 
stock on-hand drops to r and it continues producing until the stock on-hand 
reaches R. On the other hand, Badinelli [11] presented a descriptive model for 
steady-state performance of a serial inventory system in which each facility fol
lows a continuous-review pull policy under stochastic demand. In the model of 
this serial inventory system, the popular kanban control system was represented 
by a conventional (Q,R) policy, in which each downstream facility orders a fixed 
amount, Q, from the upstream facility whenever the inventory position at the 
intermediate buffer reaches a reorder point, R.

In a JIT production environment, a supplier is expected to frequently deliver 
goods in small lot-sizes. Many suppliers are responding to this by producing 
goods in big lots and carrying excess finished good inventories. There is a few 
analytical studies directed to examine the economic impact of such supply strate
gies. Golhar and barker [41] developed a general cost model considering both sup
plier (of raw material) and buyer (of finished products) sides. They determined 
an optimal ordering policy for procurement of raw materials, and a production 
batch size to minimize the total cost. Then, in a further study barker and Parija 
[87] developed a mathematical model to find optimal batch size for a JIT pro
duction system operating under a fixed-quantity, periodic delivery policy. The 
system they considered procures raw materials from suppliers, processes them 
and finally it delivers the finished products demanded by outside buyers at fixed 
interval points in time.

A variety of approaches reviewed in this section are analytical studies dealing with 
mathematical models of performance evaluation in stochastic pull production 
systems. In most of the studies, uncertainties such as the variability in processing 
and demand inter-arrival times are assumed to be exponential. Most of the 
researchers proposed an approximate decomposition procedure for large-scale 
systems.
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2.5 P otential Research Area

In the recent years, with parallel to the developments in manufacturing and com
puter technology, classical production facilities are being replaced by advanced 
systems and the companies have entered into a new age of global competitiveness. 
Because of the scarcity of world’s natural resources, it becomes necessary to look 
for ways of improving productivity and reducing costs through a system of waste 
elimination. One such system is the JIT production system in which the waste 
is greatly reduced by adapting to changes. Thus, having all processes produce 
the necessary parts at the necessary time and having on hand only the minimum 
stock needed to hold the processes together. The pull production system is a way 
of implementing the JIT principles, with the finished product ‘pulled’ from the 
system at the actual demand rate. Since production systems generally suffer from 
demand, production and supply fluctuations, a stochastic model might facilitate 
the design and operation of such systems.

There has been a number of attempts in the literature to develop analytical mod
els for the performance evaluation of stochastic pull production systems. Most 
of the existing studies address TQ equivalent systems. In the light of the pro

posed classification scheme, there are numerous NTQ equivalent pull production 
systems to be considered in a research study: •

• periodic review systems with:

— exponential/non-exponential distributions,

— periodic/batch transfer of in-process materials,

— batch ordering.

• continuous review systems with:

— non-exponential distributions,

— batch transfer of WIP,

— batch ordering.
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• multi-item multi-stage systems with:

— non-zero setup times,

— priority scheduling.

The major decisions for pull production systems are concerned with the allocation 
of workload (operations) to workstations, the determination of the number of 
kanbans between workstations and the production/transfer batch sizes.

As a result, modelling and analysis of pull production systems would attract more 
attention from researchers in a number of directions, especially with approximate 
evaluation methods handling more general inventory level triggered multi-stage 
multi-item pull production systems.



Chapter 3

Model Development: Periodic 
Pull Production Systems ^

In the context of operational design, the periodic review and periodic material 
handling issues are the widely encountered characteristics in practice for pull 
production systems [61]. In such periodic pull production systems, the transfer of 
WIP inventories between stages and the release of collected kanbans as production 

orders to workstations are initiated at the beginning of the periods. In this 
study we investigate the steady-state behavior of a NTQ equivalent periodic 
pull production system. To this end it is formulated as a discrete-time Markov 
process. Note that, a discrete-time model can satisfactorily approximate the 
continuous model by sufficiently squeezing the time periods.

In this chapter, we developed the exact and approximate analytical models for 
performance evaluation of periodic pull production systems. The system we con
sidered is described in the following section. Then in the next section, the for
mulation of the production system under consideration together with some key 

performance measures is presented. The third section is for the development of

^This chapter draws heavily on the (forthcoming) paper of Kirkavak and Dinger [63].

38
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an approximate model that decomposes the system into individual single-stage 
systems and aggregates the single-stage results to obtain the performance of the 
whole system. In the fourth section, the results of a numerical experiment on 
the accuracy level of the approximation is summarized. Finally, we conclude the 
chapter with a discussion on the applicability of both exact and approximate 
performance evaluation models.

3.1 D escription of the System

This basic production system consists of N  stages in tandem (see Figure 3.1). At 
each stage there is only one workstation processing a single-item, so that the term 
“stages” and “workstations” could be used interchangeably. Wj{\ < j  < N)  rep
resents workstations. At any workstation Wj, there are two stocks Q)” and 

respectively for storing incoming and outgoing WIP inventory items at worksta
tion Wj. W\ is responsible for the first operation of the item, converting raw 
material R M  (or alternatively denoted by component Co stored in stock 
into component C*i (stored in stock (^i“  ̂ till the end of the period then instanta
neously transferred to stock Q'^)· Wj {2 < j  < N  — 1) converts component Cj-i 
(from stock Qj^) into component Cj (stored in till the end of the period 
then instantaneously transferred to stock Finally, Wn performs the final
operation of the item, converting component Cw-i (from stock into finished 
product F P  (could be alternatively denoted hy Cm and stored in Q°m* till the end 
of the period then instantaneously transferred to Qpp or alternatively Qm+i )·

The maximum number of items allowed in stocks and Qj+i is Kj which is 
the maximum capacity of buffer space allocated for component Cj at workstation 
Wj. Note that, / f  (0 < I p  < Kj^i)  and (0 < < Kj) denote the
level of WIP inventories at stocks and Qp*' (1 < j  < N), respectively. 
Consider the total number of component Cj items between workstations Wj and 

Wj+i, then the inequality for the level of WIP inventories at stocks Qp*' and
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Figure 3.1; Kanban-controlled periodic pull production line.

Qj+i'i + Ij+i ^  holds for all stages. However, at the finished product 
stock Qfp (or alternativelj' Q^+i) backordering is allowed up to a maximum 
allowable amount of Bpp. The inventory level at finished product stock is Ipp 

(or alternatively —Bpp < < K n ).

For simiDlification, the rate of supply of R M  is assumed to be infinite. Since 
a kanban-controlled pull production system typically operates with small lot 
sizes, it is assumed that one kanban corresponds to one item of inventory in this 
formulation. The analysis can be easily extended to cover the systems operating 
with lot sizes greater than one at a cost of dimensionality problem in evaluating 

transition matrices.

In these periodic pull systems, the production is only initiated just for the re
plenishment of items removed from the buffer stocks during the material handling 
and inventory review period of T  time units (transfer/review cycle time). That 

is workstation Wj produces components Cj in order to maintain the inventory 

level of stock (Jj+i at Kj.  Without loss of generality, the production system is 
assumed to have the same transfer/review cycle times among all stages.
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At the end of period k, first the components collected at outgoing stocks 
units of component Cj) are transferred to incoming stocks Qj+i in the context 
of material handling function. Then, in the context of production/inventory 
control function, the total number of kanbans released as production orders to 
start production of components Cj at workstation Wj for the period k+1 becomes 
Kj — Ij'^i{k + 1). Note that, the time convention used in this study is beginning of 
period in evaluating any state parameter of the system. But, Ij^*(k) denotes the 
inventory level at stock at the end of the period k, since all output buffers 
are empty at the beginning of any period.

The two sources of uncertainty considered in the production system are the de
mand and processing time variability. The demand for the finished product E P  
arrives with exponentially distributed inter-arrival times to the buffer stock Qf p - 

The mean inter-arrival time of the demand is (1/A) time units. Although back
ordering is allowed, an arriving finished product demand finding an amount of 
Bpp backordered F P  items (that means, or alternatively Ipp is equal to 
—Bpp) is lost. The processing times are assumed to be exponentially distributed. 
The mean processing time at workstation Wj  is ( l /gj )  time units. For simplifi
cation, the workstations are assumed to be reliable. As a result, there are -|-1 
stochastic processes involved in the formulation of the system.

3.2 Exact Performance Evaluation M odel

3.2.1 The Formulation o f the system

Satisfied/backordered finished product demand during a period. Con

sidering the Poisson demand arrival process for finished product FP,  {Â d (0> 
t > 0}, and the satisfied/backordered demand during period k, Ds{k) (0 < 

Ds{k) < Ifp{^) +  Bfpi because of backordering), the probability distribution is:
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Ds{k) =  (fg I I p p i k ) , Bpp\  =

(\T)4 _ XT 
dV. ^

<¿»-1

0 ^  < Ippik) +  Bpp

1 ~ ^  =  Ipp{k) + Bpp
1=0

Production during a period. Considering the production/inventory control 
system, the production orders to be released for period k are determined at the 
beginning of the period k. After the periodic transfer of WIP inventory at the end 
of the period k — 1, at the last stage the backordered items are delivered and their 
kanban cards are taken out of the system. Note that, for each backordered finished 
product demand an additional production kanban is inserted at the final stage in 
order to produce one more unit in the next period. A production order which is 
a total number of production kanbans collected till the end of the period — 1 
(including the additional kanbans for backordered items at the final stage) and are 
still waiting for production is released at workstation Wj for producing component 
Cj in period k. This sum of all undelivered production orders at workstation Wj 
at the beginning of period k becomes Kj — Ij'^^(k). This targeted amount of 
production could be achieved if there is sufficient amount of component Cj-i at 
workstation Wj. That is, if Kj — Ij'li{k) < Ij"'{k) + Wp{k)  where Wp{k)  is equal 
to one if workstation Wj is busy processing component Cj-\ at the beginning of 
period A;, to zero if the workstation Wj is idle at the beginning of period k. 
The target production, Oj{k), is then adjusted according to the availability of 
component Cj-i at the beginning of period k as:

0,{k)  = min{A',· -  +  w p ( k ) } ,  l < j < N .

On the other hand, the actual amount of production during period k at worksta
tion Wj is referred as Pj{k) (0 < Pj{k) < Oj{k)). Considering the exponential
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production process of component Cj at workstation Wj, the probability distribu
tion of producing Pj{k) units of component Cj during period k is:

Pi(k) = p" I 0,{k)

-njT
•nPl ®

= <

0 < < Oj(k)

1 -  E  pj = Oj{k)
l-O

S ta tes  of th e  system . The state of workstation Wj at the beginning of period 
k can be described by a pair of system parameters, [Pp{k)^ W°'^{k)), where 0 < 
If"{k) < Kj-\·, Wp{k)  e {0,1} and moreover, ¡'¡"{k) +  Wj'^{k) < Kj- \ .  Then, 
the state of the whole system at the beginning of period k can be satisfactorily 
described by 2 * parameters:

• WIP inventory levels, 2 < j  <
(since is assumed to be infinite /{"(/j) is deleted),

• state of the machines, W°^{k), I < j  < N,

• FP inventory level, Ippik),
{—Bpp < Ipp{k) < K m, since backordering is allowed at Q f p ).

In our discrete-time Markov process model, the state of the periodic pull pro

duction system at the beginning of period k is simply denoted by:

S[k) = [Wr{k), I i \ k ) ,  W r{k ) ,  I ^ k ) ,  W t { k ) , ..., 4"(A:), W?nk),  Ipp{k)]

It should be noted that the size of the state space, S, is not simply the mul
tiplication of the numbers of possible states for workstations and buffer stocks.



CHAPTER 3. PERIODIC PULL PRODUCTION SYSTEMS 44

because some combinations of workstation and buffer stock states cannot occur 
simultaneously.

£ = { S{k): W°^{k) G {0,1}, 1 < j  < yV,
0 < < /iTj-i, 2 < j  < N, —Bpp < Ippik) < K n '·,

Wf^ik) + li^(k) < A V i, 2 < i  < yV }

|£| = 2 .
N
n ( 2  * /'iTj-i +  1)
i-2

* {Bpp + 1 + K m)

The size of the state space given above could also be reduced by a factor of two in 
practice, because workstation Wi could never be starved since the raw material 
supply is infinite. The one-step transition equations, determining the system 

state S{k) are as follows:

• W orkstation status:

W°'^{k) =
1 i f  P f ^ { k - l ) < K i  

0 i f

1 i f

W p ik )  = <

Wf^^k -  1) =  1 and Pj{k -  1) = 0
or

W p {k  -  1) = 0 and Oj{k -  1) > 0 and Pj{k -  1) = 0

0 i f

or
0 < Pj{k -  1) < Oj{k -  1)

Wf^ik  — 1) =  0 and Oj{k — 1) = 0 

or
p,{k - 1) = o , ( k  - 1)

2 < j <  N.



CHAPTER 3. PERIODIC PULL PRODUCTION SYSTEMS 45

• Inventory  sta tus:

Ii-{k) = If^{k -  1) +  w p { k  -  1) +  Pj.i{k  -  1) -  {Pj{k -  1) +  W9-{k))

2 < j < N ,

lFp{k) = Ipp{k -  1) + PN{k -  1) -  Ds{k — 1).

T he system  s ta te  tran sitio n . All alternative transitions from <S(& — 1) to S{k) 
can be found by enumerating all possible values of iV+1 stochastic processes. The 
entries of the resulting one-step transition probability matrix M,  of size |£’|x|£ |̂, 
are therefore given as follows:

N
m [ S { k  -  1),S ( k ) ]  a n k  -  l ) ) P  [ D s { k  -  1) =  I I p p ( k  -  1), B p p ]  JJ  P  [ P j ( k  -  1) = p? | O j { k  -  1)]

P ( k - i ) e n

where

11 =  { P { k - l )  =  [ P i ( k - l ) , . . . , P p ( k - l ) , D A k - l ) ]  :

0 < P j { k  -  1) < O j { k  -  1), 1 < i  < N,

0 <  Ds{k — 1)  <  Ippik  — 1)  -l· Bpp  ) .

a p { k - i ) )  =
1 if P { k  — 1) cause a transition from S ( k  — 1) to S { k )  

0 otherwise

T he lo n g -te rm  behavior of th e  system . In this formulation, the limiting 
distribution of the states of the system if, of size |£’|, could be found (if it exists) 
by solving the stationary equations of the Markov chain under consideration with 
the boundary condition imposed:

TT M  ■= V and if e ^ =  1
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where e is a row vector with all elements equal to one, ir is the unique solution 
of the above transition and the boundary equations. A discussion on variety of 
methods to compute the stationary probabilities of large Markov chains could be 
find in [15, 80].

3.2.2 K ey Performance M easures

In this section, a brief discussion about the information that can be extracted 
from the model will be given.

Mean throughput rate. Considering the long-term behavior of the system, the 
throughput rates of the workstations are equal to each other because of the conser
vation of material flow in the system. The mean throughput rate of workstation 
Wj is denoted by MTRj and defined as the expected number of component Cj 
items produced per unit time.

• The mean throughput rate of the system is:

MTR = MTRyv = MTR;v-i = · · · = MTR2 = MTRi

where

MTRj = <

1 A'l O,

yJ=0iO=0p;=0
E  E  E  = p ' I i  = 1

E E E E (f) = = =
¿0=0 uî =0i°ĵ j=0p°j=z0

•2< j  < N - I

A'n -1  1 K t j  On  0

E E E E P l l j v  — ’ n A Y n "  =  ^ n N f p  =  i p p ]  P [ P / v  =  P u  I O n ]
i^ = 0  t® p  = - B f p  pj ,=0

j  = N
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M ean u tiliza tion  of w orkstations. Although the long-term mean throughput 
rates of the workstations are equal, the utilization of workstations M Uj could be 
different because the production rates of workstations may be different.

• The mean utilization of workstation Wj is:

M TR, M TR
MU,· = --------- -----------

Mj l ĵ

M ean inventory  levels. According to the above formulation of the system, 
there are N buffer stocks under consideration, 2 < j  < + 1. These
measures of performance could be analyzed in several ways:

• The mean inventory level at at the beginning of period is:

K,-}-l
M BI, =  j :  !»/>(/;" = i“i

•;=o •

• The mean inventory level at Qj" end of the period before the transfer
of WIP inventory from to is:

 ̂ E  E  E  E - pj) = b V i ] = pj Ioj] 2 < j< N

MEIj = <
:0 w;9zz0i;o ,̂=op0=o

Kn F P

E max{0
= -Bfp d°=0

i  = /7 + 1
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• The mean inventory level at QJ" during the period:

A'y_i 1 Kj

E  E  E  Lh = h>d
t9=0 u/9=Ot9 =0j j j + i

n ^  „ M T T P , (p °) -  M T T P , (p° -  1)

p? = l

MI,·.  <

PUf P =  i°Fp]
t‘0 =0FF

E! (‘FP + 1 ~ <̂s)
,0̂  M T T D ,(d ° )  -  M TTD.<(d° -  1)

d5=i

2<j<N

j = N + I

where

MTTP,(p°) =
/ p-1_______ + / T -̂4_______

i)  -  1)! J t (p  ̂ -  1)!

p° = 0

1 < p°

2 < j < N

MTTD,(d°) =

d? =  0

pT \(4)tO°s-U _ f
[ J o  c P - 1 !  A

o o

T ^:::---- 1 < d°
T (do -  1)!

In the context of cost evaluation model, one of the above three values of inven
tories could be utilized in computing the mean inventory carrying cost of the 

system. But in our further analysis in this research, the time-mean value of 

inventories will be used.
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M ean backorder level. According to formulation in which backordering is 
allowed at finished product level, Qpp is under consideration. This measure of 
performance could again be analyzed in several ways:

• The mean backorder level at Q f p  at the beginning of period is:

M BB =  ¿  ~i%pP[lFP = i%]
i °pp = -B pp

• The mean backorder level at Qfp at the end of the period before the transfer 
of WIP inventory from to Qfp is:

Km î pp+Bpp
M EB = É  E  — min{0, i^p -

i % p = - B p p  d%=Xi
P [lF P ^i% ] P[Ds=dIl\lFP.BFp]

The mean backorder level at Qfp during the period:

A'a ip p + Bp p

]VIB = ^  P [ I p p  — Îf p ]
i%p =  - B p p

E
dO=l

-  min{0, î FP +  1 -  MZIP^v-3
-  MTTD,(c/° -  1)

In the context of cost evaluation model, one of the above three values of backo
rders could be utilized in computing the mean backordering cost of the system. 
But in our further analysis in this research, the time-mean value of inventories 

will be used.

M ean service level. The current periodic formulation considers a system in 
which the aim of the production is to satisfy the stochastic finished product
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demand on time. But, because of the uncertainty in both the production and 
demand arrival processes, backordering and lost sales are also allowed in the 
system. A demand for finished product arriving at times when Qpp is empty 
is backordered up to a maximum level of Bpp. Finally, the arrivals finding an 
amount of Bpp finished products backordered, are lost. Because of this, there 
is a number of performance measures available in determining the mean service 

level of the system.

• The mean demand rate satisfied on time:

MDR. = A X: E  S{i^pp-d^,>0} P[Ipp = z%] P[D, =
= d°=0

• The mean demand rate backordered:

Kn °̂fp+Bfp
MDR,/, = A · £  ^  6 { - B F P < i % - , f , < 0 ]  P [ l F P = i U P l D . = J i ]

i%p=-Bpp 0

The mean demand rate lost:

A'n  B p p - l

MDR;oii=.A X) X  P[If p - i%] P [D s^  cii]
i ° P P = - B p p  d ° —-'X)

= A -  MDR, -  MDRfe/,

where i { E }  =
1 if i? is true 
0 otherwise

and E ={ P p p - c f , < - B p p ) .
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Mean backorder tim e. An arrived finished product demand is backordered, if 
the finished product inventory level at stock Qpp is less than zero. Backordering 
is continued until a maximum allowable level Bpp is reached. The mean waiting 
time for these backordered finished product demand items is another performance 
measure to be considered in this formulation.

• The mean backorder time at stock Qpp is:

M BT =
MB

M DR•b/o

Probabilities related with the periodic control of the system . The pro
duction system formulated in this study is a periodic review -  instantaneous 
order system. In this respect, it is essential to define several probabilities directly 
related with the length of the control period T.

• The probability of achieving production objective Oj at workstation Wj at 

the end of the period is:

1 A'l

E  E  =  * 2] P[Pi = 0 i  I O i ] j  = 1
w°=0i°=0

PAPO, = <
iO=0 w°=OiÔ ,=0

2 < j  < N -  I

y ^  — w^ Îjrp — î p] P[Pn — Oj\j I Om]
¿5̂ =0 ŵ ĵ =0î j,p = -Bpp

j  = N
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The probability of no material handling between workstations Wj and VFj+i 
at the end of the period is:

1 Ki
E E P[wr = = i$l P[Pi = 010,1 j  = 1

=0 ¿2 =0

E  E  E  Plii" = w?" = -fSi = ·■?«) PiPi = 0 10,1
PNOM/H, = < i°.=0 w°=0i°_^_^=0

2 < i  < -  1

^'n-1 1 Kf̂
E E  E  Iff = i%p] P[Pn  = 0 | Oyv]

i%=0 w%=0i°j^p=-BFP

j  = N

So far in this section, we describe a numerous performance measures for the exact 
evaluation of periodic pull production system considered in this study. The list of 
performance measures might be enriched by adding several others, but we assure 
that the ones considered in this section form a fundamental subset. One could 
also define a unique performance measure to represent the profitability of the 
system as a whole.

3.3 Approxim ate Performance Evaluation M odel

The approximation method decomposes the production system into several indi
vidual subsystems: starting with the last stage, each of the stages is approximated 
by a single stage model with an appropriately revised material supply,, production 
and demand arrival functions. This decomposition procedure is repeated several 

times in order to adequately approximate the selected performance measures of 

the production system as a whole.
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Figure 3.2: An isolated single-stage pull production subsystem Zj.

3.3.1 Isolated S ingle-stage S ub -system

Our goal is to approximate the whole production system given in Figure 3.1 by 
a sequence of isolated single-stage sub-systems, 2j 1 < j  < N  (see Figure 3.2), 

where:

• the input material, component C j-i, is supplied from input stock

• the production of component Cj, is initiated for the replenishment of items 

withdrawn from input stock

The first and the last sub-systems are atypical, since in the first sub-system the 
raw material input is assumed to be infinite and in the last stage Poisson demand 

arrivals for finished product is external to the system.

S ta te s  of th e  su b -sy stem . The state of sub-system Zj at the beginning of 

period k can be described by a pair of system parameters, Ij^^{k)). In
our formulation, the state of the isolated single-stage periodic pull production



CHAPTER 3. PERIODIC PULL PRODUCTION SYSTEMS 54

sub-system at the beginning of period k is denoted by:

The one-step transition equations, determining the state of the sub-system re
mains the same as in the exact model.

S ta te  tran s itio n  of th e  sub -system . All alternative transitions from Szj{k — 
1) to Szj{k) can be found by enumerating all possible realizations of related 
random variables; Ij”’{k — 1), Pj{k — 1), — 1), Pj^\{k — 1) and If\.2{k — 1).
The entries of the resulting one-step transition probability matrix Mzj are given 

as follows:

1 A'2

Y  -  1) = << I'Tik -1) = ¿»]*
tx;O = 0iO=0 pj=0 pO = 0

P [ P i ( k - l )  = p < l \ 0 i ( k - l ) ] P [ P 2 { k - l )  = p ° \ 0 2 { k - l ) ]  3 = 1

K j - I  1 ¡ < j + i  O j ( , k - l ) O j + i ( k - i )

Y Y i2 Y Y =
.o=0u-o ,̂=o.o ,̂=o p9=o p9 ,̂=o

P[Pj(k -  1) =  p° I 0, (k  -  l ) ]P [P 2 + i  (/: -  1) =  p“+ i  I O j+ i (k -  1)]

2<j < N - I

A'at-1  O N ( k - l )  I p p  + B p pY Y Y P̂ N̂(̂ -U = i°N]P[PN{k-U=P°N\ON{k-l)]*
’n=° p%=°

P[Ds{k -  1) =  (¿5 I ^Fp(k -  1 ) ,P f p ] j =  N

w here 4>{·) - <

1 if  th e  rea liza tion s o f  th e  re la ted  ran d om  variables 

cause  a tra n sitio n  from  Sz^ [k — \)  to  Szj [k)

0 otherw ise.
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T he lo n g -te rm  behavior. In this formulation, the limiting distribution of 
the states of the j th  sub-system could be found (if it exists) by solving the 
stationary equations of the Markov chain under consideration with the following 
boundary condition imposed:

Irzj Mzj -  vzj and 7T2, e-̂  =  1

where e is a row vector with all elements equal to one, î Zj is the unique solution 
of the above transition and the boundary equations.

3.3.2 D ecom position  M ethod

Our proposed decomposition method is based on the formulation of isolated 
single-stage sub-system given in the previous section. The aim is to represent 
the whole production system by a sequence of isolated single-stage periodic pull 
production sub-systems, where the streams of raw material and demand for com
ponent Cj to be produced at sub-system Zj are provided by sub-systems Z j-\  
and ^ j+ i, respectively (see Figure 3.3). The parameters of these isolated subsys
tems must be coordinated in such a way that the performance characteristics of 
the resulting sequence are as close as possible to those of the production system 
as a whole.

While decomposing the whole production system, we start with the last sub
system, Z n , and work backwards till we reach the first sub-system with consid

ering infinite supply of raw material at all input buffer stocks, Q'·", in order to ini
tialize the steady-state probabilities of states of all decomposed sub-systems. In 
this backward initialization pass, the starvation of all sub-systems is ignored and 

only blocking is considered. Then, two consecutive passes, backward and forward 

passes, are executed iteratively until obtaining a satisfactory level of approxima
tion in evaluating the performance measures of the whole production system.
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Figure 3.3: Model of the production sy.stem constituted from models of isolated single-stage 
sub-systems. R M S { o o )  denotes the infinite supply of raw material and F P D  
P [ D , ]  denotes the external finished product demand.

The level of approximation is determined by the deviation between throughput 
rates of the sub-systems at consecutive iterations. During these iterations, both 
starvation and blocking of sub-systems are considered. It is important to note 
that the marginal (with respect to the state of the whole system) probabilities 
used in the formulation of isolated sub-system still involve no approximation if 
they are computed exactly. More precisely, the steps summarizing the iterative 

decomposition approach are as follows:

Step 0. Initialization. Compute an initial approximation for the limiting dis
tribution of the states of the system utilizing a backward pass, with 
assuming all input buffer stocks are full at the beginning of every 
period.

Set iteration index, / <— 0,
Set = Kj-i] = 1, for j  = 2,.., iV + 1,
Set sub-system (stage) index, y <— iV,
Set the level of approximation (e 10“®).
Backward loop. For j  := N  downto 1

Compute one-step transition probabihty matrix,
Obtain the solution,



CHAPTER 3. PERIODIC PULL PRODUCTION SYSTEM S 57

Step 1. Iterations. At iteration /, solve each sub-system, Zj for j  — 
twice; both in backward and forward passes.

Set I <— / 1,
Backward loop. For j  := N  downto 1

Compute one-step transition probability matrix,
in

Obtain the solution,
Compute mean throughput rate, MTR^*’̂

Forward loop. For j  := 2 to N
Compute one-step transition probability matrix,

-»in ^Obtain the solution,
Compute mean throughput rate, MTR^·^^

Step 2. Stopping Criteria. If the maximum absolute deviation of mean through
put rates of the sub-systems between backward and forward passes is 
less than a given threshold value, stop. Otherwise continue iterations 
at Step 1.

if max I MTR^'’̂ - MTR^^^ I < eih) then2<j<N
Compute the performance measures of the system 
and stop;

■ otherwise go to Step 1.

We do not have a proof of convergence for this method. However, in practice, in 
the many examples we have examined, the method has always converged within 
a reasonable number of iterations (low 10s), only moderately dependent on the 
number of stages. In an experiment in which 625 three-stage production systems 
are evaluated by executing an average of approximately 28 single-stage eval
uations in order to obtain an acceptable level of approximation accuracy. As a 

result, the computational complexity of our approach grows relatively moderately 

(but more than linearly) with the number of stages in the system.
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3.3.3 K ey Perform ance M easures

In this section, a brief discussion about the information that can be extracted 
from the approximation model will be given.

• The mean throughput rate of sub-system is denoted by M TR^j and 
defined as the expected number of component Cj items produced per unit 
time. The approximated mean throughput rate of the whole system is:

A M TR = MTR^;, «  MTR2;,_, Si · · · M TRs, «  MTR^,

where

È  É É  (§) =  ¿S] P[Pi =  P? I
w° = 0i°z=0p̂ =0 

Kj.i 1 K, Oj

j = 1

E E E E (f) = = =
MTRs.. -  <!

2 < j < N - l

K/v-1 1 K/v Ofsj Q
L E  E E nÙN=i%,ŵ’̂ = <,ipp = Pj.p]P[PM = p%\Or,]

¿̂  = 0 w%=0î p,p = -BFP P%=0
j = N •

• Although the long-term mean throughput rates of the sub-systems are 
assumed to be equal, the utilization of workstation at sub-systems MUs^ 
could be different because the production rates of the sub-systems may be 
different. The approximated mean utilization of workstation Wj is:

AA.TTT A/TTT MTRs, AMTRAMUj = MU 2, = --------- ^ --------------
N N
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• There are N  buffer stocks to be considered, Q'·", 2 < j  < N  + l /m  the con
text of inventory control system. The approximated mean inventory level 
at Q'p during the period is:

1

A M l j  =

E  E  E
t9=o iuP=o i9 , ,  =0J 3 J + l

Kf̂

, n ^  n M T T P ,(p °) -  M T T P ,(p ° -  1)(h” -  o.) + ^  (O, +1 -  pO)------ -------------- iYi— 1
pO = l

P[/fp = i%p] g  ^  _  ,0 )  M T T D . ( c i ° ) - M T T D , ( c f ° - l )

d“ = i

2 < j < A

J = iV + 1

• According to formulation in which backordering is allowed at finished prod
uct level, Qfp is under consideration. The approximated mean backorder 
level at Qfp during the period is:

A M B =  ^  P[lFP =  î FFPl
’’FP =-Bfp

+ Bpp·’ ppt^FP
-m in{0,z^p 4 - 1 -

MTTD,(d°) -  MTTD,(d° -  1)

¿0=1

• A demand for finished product arriving at times when Qfp  is empty is 
backordered up to a maximum level of Bpp- Then, the arrivals finding an 
amount of B fp  finished products backordered, are lost. Because of this, 
there is a number of performance measures available in determining the 
approximated mean service level of the system.
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— The approximated mean demcind rate satisfied on time:

A M D R , = A 2  PlIjrp = z°rp] P[Ds =
i%p =  - B F p  dO=0

— The approximated mean demand rate backordered:

Kpf ipp +  Bpp

AMDRk/o  =  A £  6{ -Bpp  < < 0} P[Ipp = ¿°p] P[D, = d°]
i p̂p =  — Bpp d^=0

-  The approximated mean demand rate lost:

Km Bpp-l
AMDR,,,i = A X; H^Fp-d°  < - B f p } P[Ifp = *%] P[Ds = d“]

i p p - - B p p  d° = - o o

= A -  AM DR, -  AMDR,b/o

• An arrived finished product demand is backordered, if the finished product 

inventory level at stock Qpp is less than zero. Backordering is continued 
until a maximum allowable level B fp is reached. The approximated mean 

backorder time at stock Qfp is:

AM BT =
AM B

AMDR,b/o
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• The production system formulated in this study is a periodic review -  in
stantaneous order system. Several performance probabilities are directly 
related with the control of the system with a control period length of T  
time units.

— The approximated probability of achieving production objective Oj at 
workstation Wj at the end of the period is:

1 Ki
E  E  = ¿2] P[Pi = 0 i  I Oi] 3 = 1

W°=0i°=0

E  E  E  i ’l i f  = w?” = ’»".-'Si = •?+ii PiPi = o , 10,1
APAPOi = { i°-0 w°=0ij_̂ _̂ =0

2< j  < N - 1

E E  E  Pl^N = iN, Ifp  = i%p] P[Pn  = On  \ On ]
i^=0 V J ^ = 0  i ^ p p ~ ~ PF P

j  = N

The approximated probability of no material handling between work

stations Wj and Wjjf-i at the end of the period is:

1 A'lE E = <  4” = *2] p[P\ = 01 Oi]
U;0=0 !°=0

Kj-l  1 Kj

APNOM/H^ = <
E E E = =
¿P=0 w°=0 ¿5+1=0

2 < i  < iV -  1

' e  E  E  Wn  = I f p  =  ipp] P[Pn  =  0 | On ]
i% =0 w l f= 0  i ° p p = - B F P

j  = N
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So far in this section, we describe the approximate computation of performance 
measures which are introduced in the exact evaluation model of the periodic pull 
production system.

3.3.4 A pproxim ation

There are some long-term probabilities utilized both in the computation of one- 
step transition matrix and approximated performance measures which are suc
cessively estimated by the iterative decomposition method. The following ap
proximations in estimating these probabilities are required:

1. The joint probability, used in the computation of one-step transition matrix 
of single-stage sub-systems {Zj, 2 < j  < N  — 1), is approximated as the 
product of two probabilities, i.e., / j” is assumed to be independent of

and ^ 2·

P(/·” =  i", / j î ,  = «  p [/j” = i»i P iw ^:, =

The probabilities P[/j" = î ] and / j+2 =  ïj-1-2] obtained
from thé solutions of sub-systems, Zj^i and respectively (Figure 3.3).

2. The joint probability, used in the computation of performance measures 
after obtaining solutions to single-stage Markov chain models, is approxi
mated as the product of two probabilities, i.e., / j” is assumed to be inde

pendent of and

= г°, «  P[li^ = г°] P [W p = t.°, i j l ,  =

The probabilities P j/j” = and P [W ^  =  w'·, Ij^^ = are obtained 
from the solution of sub-systems, Z j-i  and Zj, respectively (Figure 3.3).
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3.4 Num erical Experim entation

The exact performance evaluation model of the basic periodic pull production 
system is developed using Pascal programming language and some special data 
structures. In solving one-step transition matrices, sparse matrix solver which is 
coded in C programming language is utilized in order to increase the computa
tional efficiency of the exact solution technique. It could be efficiently evaluated 
only up to three stages in tandem because of the dimensionality problem inher
ited in the exact model of the system through the use of discrete-time Markov 
processes. See Table A.l in the Appendix for the dimensional properties of tran
sition matrices of various production systems. The use of special data structures 
in the code of exact model becomes effective when there are three or more stages 
in the system. But, it is not computationally efficient to solve the exact model of 
such large systems. In this regard, the approximate decomposition method seems 
promising. The approximate decomposition procedure described in the previous 
section is also implemented using Pascal programming language.

An experiment is designed in order to investigate the general behavior and the 
accuracy level of the single-stage approximate decomposition procedure. A three 
stage periodic pull production system is selected, because it is the largest system 
that the solution of the exact model is computationally efficient. In the context 
of this experiment, 625 different three stage systems were solved both using the 
exact and the approximate solution techniques. The range of system parameters 
are as follows:

• Mean arrival rate of FP demand, A = 0.25,0.50,1.00,2.00,4.00,

• Number of kanbans at each stage, K  — 2 ,3,4,5,6,

• Mean production rate at each stage, g = where p is the demand load 
(traffic intensity of the queuing system), p = 0.50,0.60,0.70,0.80,0.90,

• Length of the transfer/review period, T  = 0.25,0.50,1.00,2.00,4.00.
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The above pull systems consider single product with a Poisson demand which 
arrives at the third (last) stage of the system with a mean rate of A. The de
mand arrivals during the times the finished product buffer Qfp is empty are lost 
(backordering is not allowed). At each stage of the system, the processing times 
are exponential with the same mean l//j, and the number of kanbans allocated 
are equal to K.  The status of the system is reviewed periodically with a period 
length of T.  The production and material withdrawal orders are released at the 
beginning of periods. It is assumed that the raw material supply for the first 
stage is infinite and the material handling times between stages are zero.

The mean throughput rate is selected as a primary measure of performance for 
this experiment. All comparisons are based on this measure. Numerical experi
ence suggests that when the mean throughput rates of the workstations converge 
to a unique solution during the iteration process, it agrees closely with the exact 
model. The percent absolute errors between the exact and the approximate mean 
throughput rates is computed as follows:

% Absolute Error =
A M T R  -  M T R

M T R
* 100

See Table 3.1 for the frequency distribution of percent absolute errors obtained 
from the results of the experiment. The cumulative relative frequency of having at 
most 3% average absolute error is about 0.7. Only 10% of the approximate eval
uations result in an absolute error which is greater than 5%. In this experiment, 

the overall average and the maximum of percent absolute errors between M T R  
and A M T R  is about 2.5 and 12.5, respectively. The effect of system parameters 
on the accuracy level of approximate decomposition technique is summarized by 
the use of some sub-averages given in Table 3.2. Note that, all of detailed results 

related with this experiment for three-stage systems could be found in Tables 

A.2, A.3, A.4, A.5 and A.6 in the Appendix.
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Table 3.1: The summary report on percent absolute errors between the exact and the ap
proximate mean throughput rates of the evaluated systems is given below. The 
frequency and the cumulative frequency distributions are given in order to clarify 
the variation of the percent absolute errors.

Frequency Distribution of Percent Absolute Errors

Class
Intervals Frequency

Relative
Frequency

Cumulative
Frequency

Cumulative
Relative

Frequency
[0,1 ) 244 0.39040 244 0.39040
[1 ,2 ) 108 0.17280 352 0.56320
[2,3) 83 0.13280 435 0.69600
[3,4) 67 0.10720 502 0.80320
[4,5) 51 0.08160 553 0.88480
[5,6) 12 0.01920 565 0.90400
[6,7) 18 0.02880 583 0.93280
[7,8) 0.01440 592 0.94720
[8,9) 0.00960 598 0.95680.

[9,10) 0.00480 601 0.96160
[1 0 , 1 1 ) 0.01440 610 0.97600
[1 1 ,1 2 ) 0.00000 610 0.97600
[12,13) 15 0.02400 625 1.00000

It is observed that the effect of the number of kanbans at each stage is very 
important in the accuracy of the approximation technique. When there are odd 
number of kanbans at each stage, the average of percent absolute errors seems 
to be greater than the case of even number of kanbans at each stage. But, for 
the case of increasing number of kanbans the average of percent absolute errors, 

although fluctuating within an acceptable range, is decreasing in the limit. This 
is as expected, because with increasing the number of kanbans at each stage the 
dependence between production stages is decreased and this makes it possible 
to estimate those unknown joint probabilities better in the approximation. As a 

result, the accuracy level is improved with increasing number of kanbans.
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Table 3.2: Average percent absolute errors between the exact and the approximate solutions 
of the systems evaluated in the experiment with respect to the variation in system 
parameters.

Averages of Percent Absolute Errors

Arrival A = 0.25 A = 0.50 A = 1.00 A = 2.00 A = 4.00
Rate 2.27178 2.13-558 2.30268 2.57028 2.98307

K  = 2 K  = 3 = 4 K  = b K  = 6
2.50787 4.66253 1.61783 2.36287 1.11229

Kanban
Number

Demand
Load

p = 0.50 p = 0.60 p = 0.70 p =  0.80 p = 0.90
1.62224 1.84171 2.25427 2.88278 3.66239

Period
Length

T = 0.25 T = 0.50 T  = 1.00 T = 2.00 T = 4.00
2.30264 2.12503 2.29008 2.56435 2.98128

On the other hand, the demand arrival rate, the demand load (traffic intensity) 
and the transfer/review period length have similar effect on the approximation of 
the production system. While keeping the number of kanbans at some level, an 
increase in these parameters result in an increase in the utilization of the system 
and consequently the dependence between production stages is also increased. 
As a result, this increase in dependencies cause more errors in estimating those 

unknown joint probabilities.

Generally speaking, it is accepted that the error level of an approximation tech
nique should not exceed 3%. In this regard, the proposed approximate decom
position technique with an absolute error of 2.45% on the average could be used 
for the evaluation of NTQ equivalent periodic pull production systems.



Chapter 4

Operating Characteristics: The 
Allocation Problem

The design of tandem production systems has been well studied in the production 
research literature with the primary focus being on how to improve their eihciency. 
Considering the large costs cissociated with these systems, a slight improvement 
in efficiency can lead to very significant savings over the life of the production 
system. Division of work among the workstations and allocation of buffer storage 
capacity between workstations are two critical design factors that have attracted 
the attention of many researchers and system designers. For a survey of the 
research in this area, see Sarker [85].

4.1 R eview  of Previous R esults

One significant aspect of production line design is the so-called line balancing 
problem, i.e. allocating the total work content as evenly as possible to work
stations and maximizing the utilization through minimizing idle times as well. 
The solution of line balancing problem specifies a system configuration capable of

67



CHAPTER 4. THE WORKLOAD L· BUFFER ALLOCATION 68

producing a specified amount of finished product with minimum resource require
ments. The operation times can be either deterministic or stochastic. However, 
line balancing techniques are based on the assumption of deterministic operation 
times. In practice, a perfect balance of workload may be impossible even with 
deterministic operation times, since, in most cases, equal allocation of total work 
content to workstations may be prevented by precedence and technological con
straints, and continuous indivisibility of operations. In production systems with 
stochastic operation times, the balance of workload is attained through allocating 
the total work content evenly to the workstations based on the means of opera
tion times. However, the balance of stochastic operation times may be impossible 
due to different variability of operation times at different workstations.

It is intuitively plausible that the variation in the operation times would decrease 
the mean production (throughput) rate of the system. This can happen in two 
ways; due to blocking and/or starvation. When there is considerable variabil
ity in the operation times at some respective workstations, a perfectly balanced 
production line may not be optimal. Previous work on optim al allocation of 
workload to production lines has found that, under certain assumptions, the 
mean throughput rate of a finite buffer production line is maximized by deliber
ately unbalancing the workload of the line in an appropriate way. In particular, 
the optimal allocation of work follows a “bowl phenomenon” whereby the cen
ter workstations are given preferential treatment (less workload) over the other 
workstations towards the beginning and the ending workstations; see Hillier and 
Boling [46, 48]. The analogous result of Stecke and Morin [99] is that the mean 
throughput rate of an infinite buffer production line is maximized by balancing 
the workload assigned to workstations. In other words, as buffer capacities in

creases, the degree of unbalance in the optimal workload decreases, until in the 

limit, a balanced allocation is optimal.

Hillier and Boling [48] reported that the improvement in mean throughput rate 
due to unbalancing grows up to 1.37% for a six workstation serial production line. 
On the other hand. Magazine and Silver [67] developed an approximation that
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suggests the improvement from unbalancing is no larger than 1.65% for expo
nential operation times, regardless of the number of workstations in the system. 
One of the main insight emanating from these studies is that balanced systems 
give acceptable performance and further improvements in mean throughput rate 
can be made by unbalancing. However, the gains obtained from unbalancing are 
relatively small — on the order of 1%. The works of El-Rayah [37] and So [92] 
indicated that the bowl phenomenon is robust. That is, as long as the balance 
of workload is changed in the direction indicated by the bowl phenomenon, the 
mean throughput rate function is almost flat near the maximum. On the other 
hand, if the production line is unbalanced in a substantially different direction, 
the mean throughput rate decreases quite rapidly.

Muth and Alkaff [74] examined three stage serial production systems in a more 
general analytical setting in order to give the mean throughput rate as a function 
of several system parameters, subject to certain constraints. Rao [84] considered 
the generalization where the coefficient of variation of operation times are dif
ferent for different workstations. The results found by Rao [84] indicated that 
unbalancing a serial production system can lead to substantial improvements in 
mean production rate when the variability of the stages differ from one to another. 
Optimum unbalancing could possibly be achieved by carrying out alternately the 

following two steps:

1. Workload from interior stages should be transferred to the exterior ones,

(Bowl Phenomenon),
2. Workload from more variable stages should be transferred to less variable ones,

(Variability Imbalance).

Step 1 is more important when the differences in the coefficient of variation of the 
stages are generally less than 0.5 while Step 2 predominates when they exceed 

0.5. Then, Wolisz [109] showed that the idea of assigning less workload to more 
variable workstations is false for coefficient of variation greater than one.
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For lines longer than three stages and for non-exponential distributions, analytic 
approaches are quite limited, and some studies have used simulation to study 
the workload allocation problem under more general conditions. Payne, Slack 
and Wild [77] simulated production lines with different patterns of processing 
time variances and observed that a great deterioration in the performance occurs 
either when processing time variances are increased, or when buffer capacities are 
highly restricted.

In a similar problem, Yamazaki, Sakasegawa and Shanthikumar [111] investigated 
the optimal ordering of workstations that maximizes the mean throughput rate 
of the system. Based on some theoretical and extensive empirical results, they 
proposed two rules for ordering workstations. The first rule recommends arrang
ing the two worst workstations (apart from each other as far as possible) as the 
first and the last workstations. A worst workstation refers to the one either with 
the slowest production rate or with the most variable operation time. The second 
rule arranges the remaining workstations according to the bowl phenomenon.

All of the above studies have assumed that the production system has a serial 
structure. Baker, Powell and Руке [13] have investigated the behavior of assem

bly systems in which two or more parts are produced at component lines and put 
together at an assembly workstation at the end. Their basic finding is that the 
assembly workstation in a balanced system is intrinsically a bottleneck. Villeda, 
Dudek and Smith [106] studied an assembly system in which three serial lines 
(each one composed of three workstations) merge at one assembly workstation 
which is operating as a pull system. They considered normal processing times 
with several coefficients of variation. They reported that mean throughput rate 
is maximized by assigning decreasing amounts of work closer to assembly work
station at which the mean processing time was fixed.

The effect of bowl phenomenon has been extensively studied in conventional type 

push production systems, however, studies exploring its effects and validity on
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pull production systems are rare. The simulation studies made so far show con
flicting results. In the simulation experiments performed by Meral [68], the bowl 
phenomenon is not confirmed for idealized just-in-tim e production systems. She 
found that balancing strategies are always superior to the unbalancing strategies 
based on bowl phenomenon. On the contrary, Villeda, Dudek and Smith [106] 
analyzed a just-in-tim e production system by investigating several unbalancing 
methods and they claimed that the only method giving a consistent improve
ment in the mean throughput rate of the system was the “high-medium-low” 
(decreasing) allocation. They also reported that the mean throughput rate with 
unbalanced workstations were always superior to the perfectly balanced configu
rations. On the other hand, Sarker and Harris [86] claimed that they observed 
the effect of bowl phenomenon on a just-in-tim e production system.

What ever the case, looking from a labor relations point of view, there may be 
difficulties in assigning significantly different workloads to different workstations. 
This raises the question as to whether there might be other ways of achieving 
this improvement in mean throughput rate by giving preferential treatment to the 
critical workstations without significantly unbalancing the workloads. One way 
of doing this is to provide such critical workstations with more buffer storage 
capacity than the other workstations. As surveyed by Sarker [85] various re
searchers have considered the general question of optimal allocation of buffer 
storage capacity in a variety of contexts. In the analogy to workload allocation 
problem there is a critical difference that the buffer allocation decision variables 
are discrete (integer) variables whereas the workload allocation decision variables 
are formulated as continuous variables in the previous studies.

Most of the research on buffer allocation has focused on analytical models of small 
systems simplified with restrictive assumptions [46, 74]. For larger systems, ana
lytical approximations or simulation models have been utilized [12, 31]. Conway 
et ai. [31] examined serial production systems via simulation. They found that 
buffers between workstations increase the production capacity of the system but 
the returns are reduced sharply with increasing inventory holding costs. They
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also noted that the positioning as well as the capacity of the buffers are important. 
El-Rayah [.38] utilized a computer simulation model to investigate the effect of 
unequal allocation of buffer capacity on the efficiency with an experiment limited 
to small production lines. He observed thcit the lines in which the center work
stations are assigned larger buffer storage capacity than the ending workstations 
(inverted bowl phenomenon) are better (with respect to mean throughput rate) 
than the other unbalanced configurations. But, according to their experiment 
the inverted bowl configuration yielded more or less a similar mean throughput 
rate to that of a balanced line depending upon the total buffer storage capacity.

Hillier and So [49] studied the effect of the variability of processing times on 
the optimal allocation of buffer storage capacity between workstations. They 
concluded that either the center workstations or the workstations with high vari
ability should be given more buffer storage capacity. Consequently, an inverted 

bowl phenomenon prevails regarding the optimal allocation of buffer storage ca
pacity. In another study, Hillier and So [50] utilized an exact analytical model to 
conduct a detailed study of how the length of machine up and down times and in
terstage buffer storage capacity can effect the mean throughput rate of production 
lines with more than three stages. They developed a simple heuristic to estimate 
the amount of buffer storage capacity required to compensate for the decrease 
in mean throughput rate due to machine breakdowns. Sheskin [89] offered some 
guidelines for the allocation of buffer storage capacity in serial production lines 
subject to random failure and repair. If all machines have the same reliability, 
he maximized the mean throughput rate by allocating the buffers as nearly as 
possible equal in size. In case when the machines have different reliabilities, he 
proposed allocating more buffer storage capacity to less reliable machine. This 

intuitive result is also supported by Soyster, Schmidt and Rohrer [94].

.Jafari and Shanthikumar [57] proposed a heuristic solution to determine the op
timal allocation of a given total buffer storage capacity among workstations of



CHAPTER 4. THE WORKLOAD &: BUFEER ALLOCATION 73

a serial production line. Their approximate solution is based on a dynamic pro
gramming model with an approximate procedure to compute the mean through
put rate of the line.

Smith and Daskalaki [91] have developed a design methodology for buffer stor
age capacity allocation within assembly lines to approximately solve the optimal 
buffer allocation problem by maximizing mean throughput rate while minimizing 
holding and buffer storage costs. Baker, Powell and Руке [12] have examined the 
effect of buffers on the efficiency of systems in which two serial lines merge at an 
assembly workstation. They have concluded that small buffers are sufficient to 
regain most of the lost production capacity and buffer space should be allocated 
equally among the workstations.

So far, we review the researchers that proposed rules for allocating buffers to 
maximize the mean throughput rate in serial production lines operating with push 
control strategy. In contrast, Andijani and Clark [8] investigated the optimal 
allocation of buffers (kanbans) in a pull system by considering both the mean 
throughput rate and the WfP inventories in the maximized objective function. 
Recently, Askin, Mitwasi and Goldberg [10] utilized a continuous time, steady- 
state Markov model in determining the optimal number of kanbans to use for 
each part type at each workstation in a just-in-tim e production system. Their 
objective was to minimize the sum of inventory holding and backorder costs. 
Results indicated a need for increased safety stocks, for systems where many part 
types are produced in the same workstation.

Tayur [102,103] developed some theoretical results — reversibility and dominance 

— that characterize the dynamics of kanban-controlled manufacturing systems. 
His study also provided some insights into the behavior of those systems and 
greatly reduced the simulation efforts required in an investigation.

The characterization of the optimal allocation of scarce resources in a produc

tion system requires further investigation with alternate models and techniques
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through which the results may fit real-life better [51]. One direction is to try 
non-exponential processing times with different variations or another direction is 
to broaden the allocation problem by combining the decisions on buffer storage 
capacity allocation with workload allocation.

4.2 General Behavior of Periodic P ull System s

The production system considered here in order to investigate the impacts of 
system parameters on the mean throughput rate is a single-item multi-stage 
stochastic periodic pull production system. The system is given in Figure -3.1 
and all descriptive and modelling details are given in the previous chapter.

There are N  production stages in series. Ecich production stage in the system is 
represented by a workstation with a processing rate of pj, an input buffer stock 
of capacity Kj~i  and an output buffer stock of capacity Kj.  Production kanbans 
authorize the production of components at a workstation acting as open work or
ders to be filled within the transfer/review period of T  time units. The movement 
of materials at the end of the periods from the output buffer stock of a work
station to the input buffer stock of the succeeding workstation is controlled by 
withdrawal kanbans. In effect, the kanbans “pull” the loaded containers through 
the system just in time to meet the demand at each production stage and finally 
the customer orders. The external demand for finished product is assumed to be 

Poisson with a rate of A.

The significance of this part is to provide an understanding into how these systems 
work, in particular to the effects of some significant system parameters on the 
mean throughput rate. These results may also provide some heuristic support 
for stochastic optimization of large-scale systems.

In a serial periodic pull production system  with an infinite supply of 
raw material to the first stage and subject to stochastic demand for
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finished p ro d u c t a t the  last stage:

RESU LT 1: Increasing the number of identical stages in series, with keeping all 
other system parameters the same, decreases the mean throughput rate of the 
system. See Figure A.l in the Appendix.

Suppose there is only one stage in the system (original system). Then, 
an identical stage is added in series (modified system). Considering 
the second stage of the modified system, if all the other system pa
rameters are the same, except that the first stage of the modified 
system has an infinite production rate, then both systems have the 
same mean throughput rate; otherwise original system has a greater 
mean throughput rate than the modified system. Using the same ar
guments, it is straightforward to show that the mean throughput rate 

decreases with increasing the number of identical stages in series. □

RESU LT 2: Increasing the demand arrival rate of finished product, with keeping 
all other system parameters the same, increases the mean throughput rate of the 

system. See Figure A.2 in the Appendix.

Supposé there is a single-stage system (original system) producing 
items in order to meet the demand arrivals with a rate of A'. Then, 
the demand arrival rate is increased to X" for the modified system.
Since A' < A", the mean number of demand arrivals during a period 
and consequently the mean of the targeted value of production during 

a period is also increased in the modified system relative to the original 
system. This concludes that the mean throughput rate is increased 
with increasing the rate of demand arrivals. The extension of this 

result for multi-stage systems is straightforward. □

RESU LT 3; Increasing the length of the transfer/review period, with keeping
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all other system parameters the same, decreases the mean throughput rate of the 
system. See Figure A.3 in the Appendix.

Suppose, there is a multi-stage system (continuous system) produc
ing items with a continuous review -  instantaneous order policy in 
which the transfer/review period length, T', tends to zero. Whenever 
a demand arrives to the system, a production kanban is immediately 
released at the last stage in order to trigger the production process 
and the triggering process propagates up to the first stage instanta
neously. Also, whenever a part is processed at any workstation it is 
immediately released to the succeeding stage for the remaining oper
ations to be done.

On the other hand, let a non-zero transfer/review period length of 
T" for the periodic system. Since, in periodic systems both the re
view and the decisions are made on periodical basis, the collected 
production kanbans and the parts processed at workstations should 
wait until the end of the period. This makes the periodic system more 
stationary and less reactive to demand variations than the continuous 

system.

Also concentrating on the last stage of the system, with increasing the 
transfer/review period length and keeping the buffer stock capacity 
of finished product inventory at the same level, the mean number of 

arrivals during a period and as a consequence the mean number of 
demand lost during a period are increased. This concludes that the 
mean throughput rate is decreased with increasing the transfer/review 

period length. □

RESU LT 4: Increasing the total work content to he allocated to the stages of 
the system, with keeping all other system parameters the same, decreases the 
mean throughput rate of the system. See Figure A.5 in the Appendix.
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Suppose there is a single-stage system (original system) with the to
tal work content of l/fi'. Then, the total work content is increased to 
1 / fj," for the modified system. Since < 1//i" and > /i", the pro
duction rate of the modified system is less than the original system and 
consequently the mean throughput rate of the modified system is de
creased. Considering a two stage system, let the total work content is 
increased from {Ij Hi + l /  1x2) to (1/yCii-fl/yci2+some additional work).
If the additional work is assigned to the first stage then the production 
rate of the first stage and consequently the component supply rate to 
the second stage slows down. This increases the starvation probability 
and decreases the production rate of the second stage also. Finally, 
with the additional work assigned to the first stage the mean through

put rate of the whole system is decreased. Otherwise, if the additional 
work is assigned to the second stage then the production rate of the 
second stage and consequently the mean throughput rate of the whole 
system slows down. As a result, the assignment of additional work to 

any stage will slow down the mean throughput rate. Using the same 
arguments, it is straightforward to show this for systems having three 
or more stages in tandem. This concludes that the mean throughput 
rate is decreased with increasing total work content to be assigned to 

the production stages. □

RESU LT 5: Increasing the total number of kanbans to be allocated to the stages 
of the system, with keeping all other system parameters the same, increases the 

mean throughput rate of the system. See Figure A.6 in the Appendix.

Suppose there is a single-stage system (original system) with the to
tal number of kanbans, K'. Then, the total number of kanbans is 

increased to K"  for the modified system. Since K ' < K " , the num
ber of demand lost during a period in the modified system is less 
than the original system and consequently the mean throughput rate
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of the modified system is increased. Considering a two stage sys
tem, let the total number of kanbans is increased from (Ki -1- K 2) 
to (Ki -f K 2 + 1). If the additional kanban is assigned to the first 
stage then the production rate of the first stage and consequently the 
component supply rate to the second stage increases. This decreases 
the starvation probability and increases the production rate of the 
second stage. Finally, with the additional kanban assigned to the 
first stage the mean throughput rate of the whole system is increased. 
Otherwise, if the additional kanban is assigned to the second stage 
then the mean number of demand lost during a period decreases and 
as a consequence the mean throughput rate of the whole system in
creases. As a result, the assignment of additional kanban to any stage 
will increase the mean throughput rate. Using the same arguments, 
it is straightforward to show this for systems having three or more 
stages in tandem. This concludes that the mean throughput rate is 
increased with increasing total number of kanbans to be allocated to 

the production stages. □

RESU LT 6: Increasing the maximum level of allowed backorders, with keeping 
all other system parameters the same, increases the mean throughput rate of the 

system. See Figure A.4 in the Appendix.

Suppose there is a single-stage system (original system) producing 
items in order to meet the demand arrivals with allowing a maxi
mum of Bpp items backordered. Then, the maximum level of allowed 
backorders is increased to Bpp items for the modified system. Since 
B'pp < Bpp,  some of the demand lost in the original system, will not 
be lost in the modified system and will be satisfied after some delay. 
This in turn, increases the mean throughput rate of the modified sys
tem relative to the original system because allowing more backorders 
acts as increasing the finished product buffer storage capacity. The
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extension of this result for multi-stage systems is straightforward. □

After a brief discussion about the impact of system parameters on the mean 
throughput rate of the system, it appears that we must progress to the integra
tion of all system parameters simultaneously in the setting of a scarce resource 
allocation problem. That is, given a set of parameters, the problem is to deter
mine the best choice of these parameters in order to optimize the performance of 
the system.

4.3 Statem ent of the Problem

Other than the integration of two allocation problems, the basic model utilized 
here is essentially the same as the previous studies in the literature. The sys
tem consists of N  production stages corresponding to N  workstations in series. 
Suppose that the set of all i^roduction operations required to transform a raw 
material into a finished product (which is also called the total work content) re
quires a total of T W C  time units. That is, the sum of processing times at all 
stages, is TW C . On the other hand, the total number of kanbans
available for buffer storage in the system (excluding the input buffer stock of the 
first stage), is T N K  which corresponds to the maximum number of
in-process materials and finished product allowed in the system at any instant.

The primary measure of performance of the system is assumed to be the mean 

throughput rate MTR(VV,^), where W  = ( l // / i, l/ytt2, ···, 1 /^n ) represents the 
allocation of workload to workstations and K = {Ki, K 2·, ··■, Kj\f) represents the 
allocation of kanbans between workstations.

The basic problem is to find the allocation vectors W and fC which maximizes 

MTR(VV,/c) subject to workload and kanban constraints. In the below formu
lation of the problem, the parameters N , T W C  and T N K  are fixed constants.
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whereas the Hj are continuous and the Kj are integer decision variables:

m axim ize  MTR(>V,yC)

subject to

N

Z  1/f‘i = TWC
i = l

N

J 2 k , = t n k
3=i

l/Hj > 0, Kj > 0 and Kj integer fo r  j  =  1 , 2,

The above optimization model can be viewed as a linearly constrained mixed inte
ger non-linear programming problem, where the non-linear function MTR(VV, 
cannot be expressed explicitly. Even if the processing and demand inter-arrival 
times are assumed to be exponential, the limitation imposed by the number of 
kanbans will cause the output process not to be Poisson. For this reason closed 
form solutions for the stationary probabilities of the system are not available and 
numerical methods should be used.

The evaluation of M TR(VV,^) for any given VV and K involves formulating the 
underlying queuing process as a finite state, discrete time Markov chain, and then 
using an appropriate numerical procedure (such cis the Gauss-Seidel method) to 
solve the resultant system of linear equations to obtain the stationary distribution 
of the system. Unfortunately, the number of states in the state space of the 

involved Markov chain, and so the number of equations to be solved, grows very 
rapidly with N, Kj  and Epp. Recall that, the size of the state space:
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N

n ( 2  * / i i - i  +  1)
J=2

* {Bpp +  1 +  A ;v)

heavily depends on the number of stages in the system, maximum buffer storage 
capcicities and the maximum level of backorders allowed. For many of the cases 
considered in this study, this number is in the thousands. This rapid growth 

imposes definite limits on the size of the problem that will be computationally 
tractable.

For the allocation of workload and kanban, there are several empirically observed 
properties which are first reported by Hillier and Boling [46] in serial production 
lines. As summarized below, subsequent studies in the literature have supported 

the validity of these properties as well.

• Reversibility: The mean throughput rate of the system is the same if the 
allocations are reversed, that is:

MTR(VV,-^) = MTR(VV',.C')

for any arbitrary allocation of workload W  — (1//Ui, I j  H2,····, 1/jW/v), its mir
ror image is W  — ( l / /2;v, ···? l//“i) and for any arbitrary allocation
of kanban (buffer storage capacity) K =  {I<i, I<2, I<n ), its mirror image 

is =

• Symmetry: The optimal allocation of both workload and kanban (buffer 
storage capacity) which maximizes the mean throughput rate is symmetric, 

that is:

1/^ij = l//^]V+i-j and Kj = f  or j  = 1,2,

• Monotonicity (or Bowl Phenomenon): The workstations receive a decreas
ing amount of workload or an increasing amount of buffer storage capacity 
as they get closer to the center of the production line, that is:
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-  in terms of workload allocation:

fo r  2 < j < r f ] ,

l / f i j  < l / i T j + i  for  [ y j  <  j  <  — 1 or

— in terms of kanban allocation:

Kj-i  < Kj for  2 < i < f f ] ,

Kj > for

None of these properties has been proven yet. However, note that the reversibility 
property immediately implies that if the optimal solution is unique then it must 
satisfy the symmetry property.

It is empirically shown that the number of serious candidates to be an optimal 
allocation is generally small. The number of feasible allocations that need to be 
evaluated can be reduced greatly by using two key theoretical results, reversibility 

and the concavity of the mean throughput rate function with respect to allocation 
of both workload and buffer storage capacity [102, 103, 110 , 112].

4.4 Experim ental Study

These structural results together with the performance of balanced systems (more 
or less similar to unbalanced systems within 1 or 2 percent of the optimal) imply 
that an optimal allocation could be found in some neighborhood of a balanced 
allocation. Therefore, rather than using an optimum seeking search procedure, 
an enumeration approach is to be used in this study. An unbalancing measure 

which shows the degree of imbalance in an arbitrary allocation is to be defined 

as follows:
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• For the allocation of workload:

max ( 1 / / J , j )  -  min (1 /u,·)
n r  _

where T W C  is assumed to be equal to * 10 * (10 * t° is the average
processing time for each stage) and is the elemental operation time.

For the allocation of kanban:

DIk — max (Kj) — min (KA  
l<i<^  ̂ Kj<7V''<3<N

An experiment is designed in order to investigate the optimal allocation of both 

workload and kanban in multi-stage single-item pull production systems in which 
the Poisson demand arrives at the last stage with a mean rate of A. The demand 
arrivals during the times the finished product buffer is empty are lost (back
ordering is not allowed, Bpp = 0). At each stage of the system, the processing 
times are exponential with the mean 1/fj.j where l /nj  = T W C  and the
number of kanbans allocated is Kj  where Kj = T N K .  The status of the 
system is reviewed periodically with a period length of T.  The production and 
material withdrawal orders are released at the beginning of periods. It is also 
assumed that the raw material supply for the first stage is infinite and the material 
handling times between stages are zero.

In the context of this experiment, 48 two-stage systems, 36 three-stage systems 

and 20 four-stage systems are evaluated. The framework of the experiment is as 

follows:
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• CASE I: Two-stage systems (see Table A.7 in the Appendix),

— Mean demand arrival rate is fixed,
A = 1.0,

— Total work content is set equal to three different levels,
TW C  = 1.0,1.50,2.0,
corresponding to three different levels for the demand load, 
p =  0.50,0.75,1.0,

— Total number of kanbans is varied from 2 to 9,
T N K  = 2 ,3 ,4 ,5 ,6,7 ,8,9,

— Length of the transfer/review period is set to two different values,
T  = 0.0001,1 .0, where T = 0.0001 approximates the continuous review 
instantaneous order pull system,

— The maximum allowable value for the degree of imbalance is less than 
or equal to 5, that is DI ĵj < 5 and Dlk < 5.

» CASE II: Three-stage systems (see Table A.14 in the Appendix),

— Mean demand arrival rate is fixed,

A = 1.0,

— Total work content is set equal to three different levels,

TW C  = 1.50,2.25,3.0,
corresponding to three different levels for the demand load,

/9 = 0.50,0.75,1.0,

— Total number of kanbans is varied within two disjoint sets,

TiV/i = 3 ,4 ,5  and 12,13,14,

— Length of the transfer/review period is set to two different values,
T = 0.0001,1.0, where T  — 0.0001 approximates the continuous review 
instantaneous order pull system,

— The maximum allowable value for the degree of imbalance is less than 

or equal to 5, that is DI^u < 5 and DIk < 5.
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• CASE III: Four-stage systems (see Table A .21 in the Appendix),

— Mean demand arrival rate is fixed,
A = 1.0,

— Total work content is set equal to two different levels,
T W C  = 2.0,4.0,
corresponding to two different levels for the demand load,
/9 =  0.50,1.0,

— Total number of kanbans is varied from 4 to 8,
T N K  = 4 ,5 ,6,7 ,8,

— Length of the transfer/review period is set to two different values,
T = 0.0001,1.0, where T = 0.0001 approximates the continuous review 
instantaneous order pull system,

— The maximum allowable value for the degree of imbalance is less than 
or equal to 4, that is DIu, < 4 and D R  < 4.

In order to obtain the general behavior of the systems in some neighborhood 
of balanced allocations, 960 two-stage, 18786 three-stage and 26040 four-stage 
M T R  functions are evaluated by solving the involved one-step transition matri
ces obtained from discrete-time Markov chain models of these systems.

4.5 Em pirical Results

We will present our findings on the optimal allocation of workload and kanban 

by focusing on two-, three- and four-stage pull production lines, respectively. 

In the context of the designed experiment 104 different systems are evaluated in 
500 (on the average) different configurations. Because of the huge amount of raw 
I/O data (input: 462,234 data items and output: 995,334 data items), we will 
briefly discuss some of the findings on various summarizing tables given in the
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Appendix. The analysis of the output data is composed of three phases; empirical 
observations, factorial regression models and optimal allocations.

4.5.1 Em pirically Observed Properties

Throughout the experiments, according to optimal allocation results the proper
ties — reversibility, symmetry and monotonicity (or Bowl Phenomenon) — are 
not verified. The periodic pull production system  modeled and analyzed in 
this thesis is not reversible. The stages closer to the finished product demand 
require more resources (more production rate and/or more buffer storage capac
ity) relative to the stages closer to raw material supply. This is because of our 
infinite assumption of raw material supply to the first stage.

Then, the empirical results show that the optimal allocation is not sym m et
ric. The optimal allocation in general follows a pattern of decreasing workload 
and increasing kanban allocation towards the end of the production line. See 
Tables A.12 , A.13, A.19, A.20 and A.27 in the Appendix. As a result, the bowl- 
phenomenon is not observed in these periodic pull production lines. Although we 
have evaluated all possible allocations within the limitations on and DK, 
giving preferential treatment to center workstations does not yield better mean 
throughput rates than we found by giving preferential treatment to the ending 
stages which are closer to finished product demand.

In the correlation analysis of the M TR and its independent factors (input param
eters defining the Vv'hole system) this result is also verified. Mean throughput rate 
of the system is negatively correlated with T W C  and positively correlated with 
T N K  as it is intuitively clear. See Tables A.8, A.9, A.15, A.16, A.22 and A.23 
in the Appendix. As it is observed from the tables, the correlation coefficients 
of both the amount of workload and the number of kanbans allocated to stages 
is monotone increasing towards the end of the production line. Thus, the prefer
ential treatment should be focused on the last stages whose allocation variables
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are the most significantly correlated to M TR. See Table A.9 for the correlation 
coefficients of Ah and K 2 as —0.0062 and 0.6157, respectively. Although, T N K  
is positively correlated with M TR , small negative correlation of Ah is simply be
cause of Ah + Ah = T N K .  This means that increasing the number of kanbans in 
the first stage directly decreases the number of kanbans in the second (last) stage. 
Since, the production capacity lost due to decreasing the number of kanbans in 
the second stage is significantly greater than the production capacity gained due 
to increasing the number of kanbans in the first stage, the correlation coefficient 
of Ah is turned out to be negative. A similar effect is also observed in Table A.23 
for four stage systems.

On the other hand, concavity is the only property of mean throughput rate 
function observed empirically in all cases. It is very difficult to visualize the 
concavity of M T R  function of systems with three or more stages on a three- 
dimensional graph. See as an example of the mean throughput rate function of 
a two-stage periodic pull system around the balanced allocation in Figure 4.1.

In periodic systems, with decreasing the transfer/review period length T,  the 
mean throughput rate is increased. Thus, the mean throughput rate of a system 
controlled periodically is always lower than its continuous counterpart. See Table 
4.1 for the average M T R  of the systems evaluated within the experiment. But, 
on the other hand, the periodic systems carry less inventory than the continuous 
systems. There is a trade-off between throughput and the inventory depending 
on the transfer/review period length so that one cannot prefer continuous control, 
simply that the system could produce more relative to its periodic counterpart, 
without further analysis of the cost structure.

4.5.2 Factorial R egression M odels

The amount of output data obtained throughout the experiment is very targe so 
that one cannot simply analyze the whole data and point out some rules for the
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Table 4.1: The average of MTR and MI in pull production systems eval
uated within the experiment in order to show the effect of pe
riodicity.

TWO-STAGE CONTINUOUS PERIODIC
PULL approximated
SYSTEMS by r  = 0.0001 with T = 1.0
Average M T R 0.7616201 0.5824245
Average M Ii 2.2732480 1.7347790
Average M I2 1.8009655 1.0638895

THREE-STAGE
PULL
SYSTEMS

CONTINUOUS 
approximated 
by T = 0.0001

PERIODIC 

with T = 1.0
Average M T R 0.7954141 0.6550668
Average M Ii 2.9106434 2.3480141
Average M I2 2.5148292 1.7338911
Average M I3 2.2493926 1.4087271

FOUR-STAGE
PULL
SYSTEMS

CONTINUOUS
approximated 
by T = 0.0001

PERIODIC 

with T - 1.0
Average M T R 0.6174996 0.3612814
Average M Ii 1.2935214 0.9473989
Average M I2 1.1551158 0.7760223
Average M I3 1.0443473 0.5891467
Average M I4 0.8920616 0.4006487

optimal allocation of workload and kanban in pull production systems. In order 

to summarize the output data some regression models are utilized.

In this regression analysis, there is a single dependent variable (or response) 
MTR(VV,/o), that depends on 2* Af independent (or regressor) variables VV and 
/c. The relationship between these variables is characterized by a mathematical 
model. The regression model is fit to the output data obtained from the designed



CHAPTER 4. THE WORKLOAD k  BUFEER ALLOCATION 89

experiment. However, the true functional relationship between the response and 
the regressors is unknown.

Linear Factorial Regression Model:
N

+  X] dAl¡j-i +  ^  a^j^iKi
i=l

N

i = l

Here, we like to determine the linear relationship between the single response 
variable and the regressor variables. The unknown parameters in the above linear 
factorial regression model are called regression coefficients and the method of 
least squares is used to estimate them. Some of the statistical measures showing 
how well the linear factorial regression model fits the data for two-stage, three- 
stage and four-stage pull systems is summarized in Tables A.10, A.17 and A.24, 
respectively, in the Appendix. The linear factorial regression model fits better 

to data of continuous pull systems than the data of periodic pull systems. One 
of the most important'measures, R-square, showing the proportion of variability 
in the data explained or accounted for by the regression model is above 0.8 for 
continuous pull systems and 0.6 for periodic pull systems. Another measure, 

mean square error, showing the average error per data point of the regression 
model is around 0.01. These are quite satisfactory results for linear factoricil 

regression model.

The least square solution of coefficient estimates are given in Tables A.1 1 , A.18 
and A.25 for two-stage, three-stage and four-stage systems, respectively, in the 
Appendix. The significance of these linear models is that the coefficient estimates 

point the stage where the preferential treatment (less workload and more kanban) 

should be focused.

• Two-stage systems: See Table A. 11 in the Appendix, for the coefficient 
estimates of linear factorial regression model, oj > and az < a^. This 
means that, in order to increase mean throughput rate of the system allocate 
less workload and more kanban to the second stage than the first stage.



CHAPTER 4. THE WORKLOAD k  BUFFER ALLOCATION 90

1 P«'oc‘»JC«on Sy«tWml^)5;;i i?'

' > r '>i. -. '-Is»̂ / If̂ V̂'

 ̂ -'•p •-i’;

\ r-i’' '/-«'V'«- '-x*: -Ai ^:'< >1

' ‘..i '--' v:-., : < - . -  
WorklCK^d A llo o c it lo n  î L^AA ' 9A$4'Li·'··̂
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Figure 4.1: The mean throughput rate function in a two-stage periodic pull pro
duction system. The function is concave with respect to both allocation 
of workload and kanbans. In the contour plot, the maximum is at the 
quadrant in which the second stage gets less workload and more number 
of kanbans.

(Fixed parameters of the two-stage system: mean demand arrival rate 
A = 1.0; transfer/review period length T = 1 .0; total work content 
TIVC = 2.0; total number of kanbans T N K  = 10).
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• Three-stage systems: See Table A. 18 in the Appendix, for the coefficient 
estimates of linear factorial regression model, ai > 02 > 03 and 04 < 05 < 
ae. This means that, in order to increase mean throughput rate of the 
system a decreasing workload and an increasing kanban allocation should 
be utilized. The most critical stage that requires preferential treatment is 
the last stage.

• Four-stage systems: See Table A.25 in the Appendix, for the coefficient 
estimates of linear factorial regression model, ai > 02 > 03 > 04 and 
a ,5 < uq < ar < Us· This means that, in order to increase mean throughput 
rate of the system a decreiising workload and an increasing kanban alloca
tion should be utilized. The most critical stage that requires preferential 
treatment is the last stage.

Q u ad ra tic  Factorial Regression M odel:

N  N

i= l 2=1

N

E
2=1

N  N

j - i  j= l

N  N+EE 0-N+i,N+jKiKj
¿=1 j = i

Response surface methodology is a collection of mathematical and statisticcil 
techniques that are useful for the modelling and analysis of problems in which 
a response, like mean throughput rate M T R , is influenced by several variables, 
like workload and kanban allocations W and /c, and the objective is to optimize 
the response. If the fitted surface is an adequate approximation of the response 
function, then analysis of the fitted surface will be approximately equivalent to 
analysis of the actual system. Since the form of the relationship between the 
response and the independent variables is unknown, a low-order (second order) 
polynomial is employed. The method of least squares is again used to estimate 
the regression coefficients. The quadratic factorial regression model better fits 
the data than the linear model in terms of all statistical measures considered.
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R”S(ju3.rG is abovG 0.9 and 0.8 for continuous and periodic pull systems, respec
tively. Mean square error is reduced to 0.005. But, on the other hand, individual 
interpretation of regression coefficients with the inclusion of second order terms 
becomes meaningless. See Table 4.2 for the increase in number of terms to be 
utilized in a third order polynomial relative to linear and quadratic models.

Table 4.2; The number of terms utilized in factorial regression models de
veloped for pull production systems evaluated within the ex
periment in order to summarize the huge amount of output 
data.

Size of Factorial Regression Models

Factorial Regression Models
Number
2-stage

of Regres 
3-stage

sion Terms 
4-stage

M T R l j w X )
M T R ^ , ( W , K )
M T R f J w X )

5
15
35

7
28
84

9
45

165

M T R l J W , ^ )
A . r r · )

4.5.3 Optim al A llocations

Throughout this experiment an overall average of 1.35% improvement is obtained 

in the mean throughput rate over the balanced (as possible as) systems. Note 
that, in the design of experiment, there are several cases in which the total number 
of kanbans cannot be equally allocated to the stages in the system. In such cases, 
a composite measure of the degree of imbalance in both allocation of workload 

and kanban is defined as:
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D I = yV2
1_\ _  ( TW C  ^  W

h t “ )  [ N
+

[ T N K  ^  \  f T N K  ^

¿=1

This aids to find the most closely balanced configuration with maximized mean 
throughput rate. The level of the average improvement obtained is similar to the 
results reported in the literature. The results regarding the optimal allocation 
of both workload and kanban in pull production systems summarized in Tables 
A.12 , A.13, A.19, A.20 and A.27, and a brief evaluation is as follows:

• General Rule: Select kanbans to allocate first. Allocate kanbans in a 
m onotone increasing pattern in which first stage gets less kanban 
than the last stage of the system . A llocate workload in a mono
tone decreasing pattern in which first stage gets more workload 
than the last stage of the system .

• Exceptions: If T N K  is low, then the effect of one unit of irribalance in 
the allocation of kanban is high. That is, giving one kanban to any stage 
results in high preferment to that stage, instead of taking some amount of 
this effect back, some extra workload could be transferred to that stage. As 
a result, in such cases an increasing pattern of workload may give the best 

performance.

• Continuous vs Periodic: The number of exceptions increases with the num
ber of stages in the system and also with increasing the length of trans- 

fer/review period.

Note that, kanban allocation variables are discrete. On the other hand, although 
workload allocation variables were assumed continuous in the formulation, they 
are made discrete as multiples of elemental task time to in the context of the 
experiment. This also causes some exceptions in the optimal allocation of work

load.
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4.6 A llocation M ethodology

The allocation methodology we propose utilizes an evaluative modelling ap
proach. The evaluation of mean throughput rate, M TR(VV,^), for any given 
W  and 1C involves formulating the system as a finite state, discrete time Markov 
process and then using an appropriate technique to solve the resultant system of 
linear equations to obtain the stationary distribution of the system. The objec
tive of the allocation methodology is to achieve the maximum mean throughput 
rate of the system with providing the best set of parameters regarding the alloca
tion of total work content and the total number of kanbans among workstations. 
In this respect, the process through which the best set of allocation decisions 
generated is semi-generative.

Our proposed allocation methodology can be outlined as follows:

1 . Allocate the number of kanbans to workstations as equal as possible,

2. Allocate the amount of workload to workstations as equal as possible,

•3. If the resulting configuration is a pure balanced allocation, 
then all stages are identical to each other.
In such a system the last stage which produces the finished product becomes 
the bottleneck because the other stages on top of their buffer stocks utilize 
the intermediate buffers of stages up to last stage as extra stocks.
So, the system should be configured in such a way that all stages should be 
bottleneck (critical) at the same instant.

4. Either the resulting system has to possess imbalances because of indivisi
bility of the operations and precedence relations or not, depending on the 
total number of kanbans to be allocated, giving more preferential treatment 

to the last stage might improve the M TR . That is:
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(a) If T N K  is low,

i. allocate the kanbans as equal as possible,
if balanced allocation is not possible then allocate more kanban 
to the last stage(s),

ii. select a pattern (decreasing, balanced or increasing) for the allo
cation of workload depending on the effect of imbalance in the 
allocation of kanban.

(b) Otherwise, if T N K  is sufficient,

i. select a monotone increasing pattern for kanban allocation with 
special emphasis given to the last stage, 

ii. select a monotone decreasing pattern for workload allocation in 
which the first stage gets more workload than the last stage.

Note that, decreasing the workload and increasing the number of kanbans 
in a system have similar effect on mean throughput rate. In this respect 
they are treated as substitute of each other.



Chapter 5

Conclusion L ·  Further Research 
Directions

This chapter provides a brief summary of the contributions of this dissertation 
research and addresses a wide range of directions for future research.

5.1 Contributions

A variety of production systems appearing in the literature is overviewed and 
a classification scheme is developed. Most of the approaches considered in the 
review are analytical studies dealing with mathematical performance evaluation 
models of stochastic production systems. Uncertainties such as the variability 
in processing and demand inter-arrival times are generally assumed to be expo
nential and the researchers proposed approximate decomposition procedures for 
large-scale systems.

There has been a number of attempts in developing analytical models for the 
performance evaluation of kanban-controlled stochastic pull production systems.

96



Majority of the existing models address tandem queue equivalent systems. In the 
light of the proposed classification scheme, there are a lot of non-tandem-queue 
equivalent pull production systems to be considered:

• Periodic review systems with:

-  exponential/non-exponential distributions,

-  periodic/batch transfer of in-process materials,

-  batch ordering.

• Continuous review systems with:

-  non-exponential distributions,

-  batch transfer of in-process materials,

-  batch ordering.

• Multi-item systems with:

-  non-zero setup times,

-  priority scheduling.
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While increasing the complexity of the systems to be modeled by introducing 
some of the above characteristics such as order and transfer batches, set-up 
times and priorities, the feasibility of the exact evaluation of systems having more 
than one-stage decreases. That is, a multi-stage model with some of the above 
characteristics becomes both analytically and computationally intractable. For 
those systems, the only feasible approach is to develop approximate evaliuition 

techniques with an acceptable level of accuracy.

A periodic review -  instantaneous order /  periodic transfer system is selected as 
the base system to start a research on modelling and analysis of non-tandem- 
queue equivalent pull production systems. This base system is formulated as a
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discrete time Markov process. Because of the dimensionality problem inherited 
in the exact solution technique, the base system could exactly be evaluated up 
to five stages in tandem and the solution of the model remains computationally 
feasible by the use of special data structures and a sparse matrix solver which 
could be obtained from NETLIB via internet.

An approximate decomposition approach is developed to handle larger systems 
which are analytically intractable. Approximation is demonstrated on our base 
system in which the arrival and the production processes are both Markovian. 
The proposed approximate decomposition approach generates results which are 
quite close to the exact solution in an experiment designed for three-stage sys
tems. The average percent absolute error which is the measure used in compar
ison is less than 2.5. Note that, the approximate decomposition approach has 
not been tested for larger systems. For this reason, we have limited experience 
about the accuracy level and the convergence properties of the approximation 
technique. However, in the many examples we have examined, the method has 
always converged within a reasonable number of iterations, only moderately on 
the number of stages. Since, there is no similar approximation method for peri
odic pull production systems, and exact solution of larger s}^stems is formidable, 
simulation remains to be the only tool to be used for comparing the results of 
the approximate decomposition technique.

The extensions of the approximate decomposition technique to cover unreliable 
machines are straightforward. In terms of configuration of network, the approxi
mation could be extended to cover periodic pull production systems in flow-shop 
configuration by formulating the split and merge sub-systems.

The design of tandem production systems has been well studied in the production 
research literature with the primary focus being on how to improve their efficiency. 
Considering the large costs associated with these systems, a slight improvement 
in efficiency can lead to very significant savings over the life of the production 
system. Division of work among the workstations and allocation of buffer storage
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capacity between workstations are two critical design factors that have attracted 
the attention of many researchers.

Another contribution of this dissertation study is to provide an understanding 
into how these periodic pull systems work, in particular under the effects of some 
system parameters;

• the number of stages in the system (N),

• the external demand arrival rate (A),

• the transfer/review period length (T),

• the total work content (TWC),

• the total number of kanbans (TNK) ,

• the maximum level of allowed backorders (Bfp),

on the mean throughput rate of the system. These theoretical results that char
acterize the dynamics of these pull systems can provide some heuristic support 
in the analysis of large-scale pull production systems.

Except for the integration of two allocation problems, the basic model utilized 
in this study is essentially the same as the previous studies in the literature. 
The basic problem is to find the allocation vectors W  and tC which maximize 

M TR(W ,/C) subject to workload and kanban constraints.

An experiment is designed in order to investigate the optimal allocation of both 
workload and kanban in two-stage, three-stage and four-stage systems. The re
sults do not support the properties — reversibility, symmetry and monotonicity 
— in periodic pull production systems. Similar to the results reported by Villeda, 

Dudek and Smith [106], a decreasing workload and an increasing kanban alloca
tion strategy gives always a consistent improvement (1-to-lO percent relative to
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balanced allocation) in the mean throughput rate. That is, the stages closer to 
demand are intrinsically bottleneck in a balanced system and requires preferential 
treatment (less workload and more buffer storage capacity) over the other stages.

5.2 Future Research D irections

At the end, there are several future research directions emanating from this dis
sertation research study as such:

• further investigation of the base system:
In order to improve the overall accuracy level of the approximation, a fur
ther study could be the development and analysis of a two—stage decom
position technique. This type of approximation might lower the absolute 
errors on perforrnance measures since one of the approximated probability 
utilized in the decomposition technique could be exactly evaluated. On the 
other hand, the computation requirements of a two-stage decomposition 
are increased both in terms of memory and cpu time.

In another research, with the opportunity of parallel computing, the level of 
accuracy in approximate decomposition technique could be investigated for 
larger system s having five or more stages in tandem. If it could be 
possible to evaluate such larger systems efficiently, then with some further 
experimentation the findings related with the problem of optimal allocation 
of workload and kanban could be more generalized.

The objective in the workload and kanban allocation problem could be gen
eralized from throughput maximization to cost m inim ization or profit 
maximization. Then, an optimal seeking solution procedure should be 
implemented as another future research study. The definition of the cost 
model and the development of an optimal seeking solution procedure give 
the opportunity to investigate several trade-offs, for example between
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backorders and finished product inventories. In another study, it could be 
possible to investigate conditions under which a periodic control policy is 
better than a continuous one or vice versa.

• extensions to the current formulation of the base system:
By formulating the split and the merge sub-system s, the model could 
be extended to cover production systems in flow-shop configuration.

Another future research could be based on the interaction of the variation 
coming from the stochastic processes and several discrete distributions 
with different levels of variation could be used in the formulation.

With the inclusion of an external raw material supply function in
a further study, the base system might become more realistic. Then, the 
effect of external raw material supply function on the performance of the 
system could be investigated.

• further investigation of the extended systems:
In a series of related research study, the analysis on both approximation 
and optimal allocation problems could be extended to cover these systems. 
If the exact performance evaluation model of the extended systems become 
computationally intractable, then a discrete—tim e simulation model 
should be developed in order to carry on the analysis. •

• formulation and analysis of new systems:
With the insight gained in this study, developing both exact and approxi
mate performance evaluation models for m ulti-item  m ulti-stage peri
odic pull production system s could be an interesting future research. 
Note that, when there are more than one item in the system, because of 

some shared resources, set-up times and scheduling priorities the formula
tion becomes complicated. The use of vacation queues could be helpful in 
the development of the approximate model.
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Modelling and analysis of pull production systems would attract more atten
tion from researchers in a number of directions, particularly with approximate 
evaluation methods handling more general inventory level triggered multi-stage 
multi-item pull production systems.
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m Z j [ S z j ( ^  - O ne step  tran sition  p rob ab ility  iromSzj(k -  1) to  Szj(k) m atrix  e lem en t
M O ne step  tran sition  m atrix m atrix

O ne step  tran sition  m a trix  o f  2 j m atrix

M^z] O ne step  tran sition  m atrix  o f  Z j  a t itera tio n  1 m atrix

M B M ean backorder level a t Q p p perform ance m easure
M Ij M ean inventory level o f perform ance m easure
M U j M ean u tiliza tio n  o f W j perform ance m easure
M B B M ean p eriod  b eg in n in g  backorder lev e l a t Q p p perform ance m easirre
М В Т M ean backorder tim e at Q p p perform ance m easure
M E B M ean p eriod  end in g  backorder leve l a t  Q p p perform ance m easure

M T R M ean throu gh p u t rate  o f  th e  sy stem perform ance m easure

M B I j M ean p eriod  b eg in n in g  in ven tory  leve l o f perform ance m easure

M E Ij M ean p eriod  end in g  in ven tory  level o f  Qy^ perform ance m easure

M T R j M ean throu gh p u t rate  o f  W j perform ance m easure

M D R , M ean d em an d  rate sa tisfied  on  tim e perform ance m easure

M D R b /o M ean d em and  rate backordered perform ance m easure

M D R /o 5 t M ean d em and  rate lost perform ance m easure

M T R 2 · M ean throu gh p u t rate o f Z j perform ance m easure

M TR^^ M ean throu gh p u t rate o f  Z j  in  backw ard pass perform ance m easure

Ы Т Щ . M ean throu gh p u t rate  o f Z j  in  forw ard pass perform ance m easure

Ш Т К . д /th -o r d e r  factoria l regression  m o d el o f  M T R regression  m o d el

M T T P _,{p p M ean tim e to  process p® nu m ber o f  C j  a t W j in term ed ia te  m easure

M T T D ,(d ° ) M ean tim e to  arrival o f nu m ber o f F P  d em an d in term ed ia te  m easure

A verage p rod u ction  rate  per  sta g e sy stem  param eter

\ j t l A verage processing  tim e per  sta g e sy stem  param eter

M ean p rod u ction  rate  at W j sy stem  param eter

M ean p rocessin g  tim e at W j sy stem  param eter

N N um ber o f stages (w ork sta tion s) in  th e  sy stem sy stem  p aram eter

N D { t ) , t > 0  :S to ch a stic  dem and  arrival process sto ch a stic  process

N p . { t ) , t > 0  1S toch astic  p rod u ction  process a t W j  ;sto ch a stic  p rocess

O j { k )  1P rod u ction  ob jec tiv e  o f  W j  a t the  b eg in n in g  o f  p eriod  k  irandom  variable

Pj  ‘Mumber o f Cj  processed  at W j  irealization

f  (C ollection o f  AT -f- 1 random  variab les ŝector

P [ .]  1Probability  fu n ction  1h n c tio n

P , ( k )  I'dumber o f  Cj  processed  at W j  w ith in  p er iod  k  i'andom  variab le

P A P O j  IProbability o f ach iev in g  p ro d u ctio n  o b je c tiv e  a t W j  jperform ance m easure

P N O M / H j  IProbability o f no m ater ia l h a n d lin g  at W j  jperformance m easure
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N o ta tio n E x p la n a tio n R em ark

TT L im itin g  prob ab ilities o f  s ta te s  o f the  sy stem vector

4 ] L im itin g  p rob ab ilities o f  s ta te s  o f th e  Z j vector

Q O rder q u a n tity sy s tem  p aram eter

Q j In pu t qu eu e o f Sj sy s tem  d escrip tion

Q f p F in ish ed  p rod u ct sto ck  or a ltern a tiv ely sy s te m  d escrip tion

Q f In pu t sto ck  o f  Wj sy s tem  d escrip tion
Q q u t O u tp u t sto ck  o f  W j sy s tem  d escrip tion

i Q , R ) In ven tory control p o licy sy s tem  param eter

P D em a n d  load  (traffic in te n sity ) sy s tem  param eter

TZ F easib le  se t for rea liza tio n  o f  TV +  1 random  variables se t

R M R aw m ater ia l, or a ltern a tiv e ly  C q sy s tem  d escrip tion

( R , r ) Inventory contro l p o licy sy s tem  param eter

S 3 Server j  in  a  tan d em  line sy s tem  d escrip tion

S { k ) S ta te  o f  th e  sy stem  a t th e  b eg in n in g  of p eriod  k vector

S ta te  o f  Z j  a t th e  b eg in n in g  o f per iod  k vector

t T im e variable con tin u ou s vcU’iable

E lem en ta l o p era tio n  tim e sy s tem  param eter

T T ran sfer /rev iew  p er io d  len g th  in tim e u n its sy s tem  param eter

T N K T ota l N u m ber o f K anb ans to  b e  a llo ca ted  to  w ork station s sy s tem  p aram eter

T W C T ota l W ork C on ten t to  be a llo ca ted  to  w orkstation s sy s tem  param eter

S ta tu s  o f  W j rea liza tio n

vv W orkload a llo ca tio n  vector vector

W j W ork sta tion  j  in  th e  sy s tem sy s tem  d escrip tion

W f ’̂ (k) S ta tu s  o f W j  a t th e  b eg in n in g  o f p er iod  k
J

e ith er  p rocessin g  a co m p o n en t or not ran d om  variable

S u b -sy stem  j  in  th e  sy s tem sy s tem  d escrip tion

\ * \ A b so lu te  value fu n ctio n

M C ardinality , the  nu m ber o f d istin ct e lem en ts in fu n ctio n

L»J G reatest in teger  sm aller  th a n  the  argum ent fu n ctio n

r*i S m a llest in teger  greater  th a n  the  argum ent fu n ctio n

5 [.] In d ica tor  o f a  g iven  co n d itio n fu n ctio n

»/'[·] In d ica tor  o f a  tra n sitio n  from  one sta te  to  the  other fu n ctio n

i [ · ] In d ica tor  o f a  tra n sitio n  from  one s ta te  to  th e  o th er fu n ctio n
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A PPEN D IX

Tcible A .l:  The dimensional properties of transition matrices of various periodic pull pro
duction systems in which no backordering is allowed:

-  the number of non-zero elements,

-  the number of total elements, \£\x\£\^

-  the sparsity and density, (%).

In single-stage systems, increasing the number of kanbans increases the density 
of the transition matrix. On the other hand, for multi-stage systems, the density 
of the transition matrix decreases with increasing either the number of kanbans 
or the number of stages.

The number Single Stage Two Stage Three Stage
of Non-zeros Total Non-zeros Total Non-zeros Total

kanbans/stage Sparsity Density Sparsity Density Sparsity Density
1 3 2x2 16 6x6 72 18x18

25.00 75.00 .55.56 44.44 77.78 22.22
2 7 3x3 86 15x15 769 75x75

22.22 77.78 61.78 38.22 86.33 13.67
3 13 4x4 286 28x28 4,180 196x196

18.75 81.25 63.52 36.48 89.12 10.88
4 21 5x5 727 45x45 15,875 405x405

16.00 84.00 64.10 35.90 90.32 9.68
5 31 6x6 1,556 66x66 47,748 726x726

13.89 86.11 64.28 35.72 90.94 9.06
6 43 7x7 2,9.56 91x91 121,819 118.3x1183

12.25 87.75 64.30 35.70 91.29 8.71
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T&blc A .2. Mean throughput rates obtained from both the exact and the approximate so
lution techniques are given below. The system parameters are in the range: 
transfer/review period length T  -  0.25, mean demand arrival rate A =  
(0.25,0.50,1.00,2.00,4.00), mean production rate // =  - ,  where the demand 
load p  -  (0.50,0.60,0.70,0.80,0.90) and number of kanbans K  = (2 ,3 ,4 ,5 ,6).

p =  0 .50 T  =  0 .25
D em an d
Arrival

R ate

N um ber o f K anbans a llo c a ted  at each  sta g e
A =  2 A =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .21070 0.20624 0 .23098 0.22995 0 .23948 0 .24056 0 .24512 0 .24547 0 .24770 0 .2 4 7 8 0
A =  0 .5 0 0 .41460 0.40624 0 .46072 0 .45701 0 .48090 0 .47976 0.48966 0.49031 0.49511 0 .4 9 5 3 0
A =  1.00 0.79731 0 .78537 0 .90845 0.90085 0 .95662 0 .95329 0 .97876 0 .97766 0.98884 0 .98918
A =  2 .00 1 .45217 1.45224 1.74637 1.73590 1.88056 1.87370 1.94250 1 .93939 1.97179 1.97068
A =  4 .00 2.35895 2.43495 3 .10761 3.12902 3.54494 3 .5 4 2 9 7 3 .77462 3 .76939 3.88931 3 .88601

p =  0 .6 0 T  =  0 .25  I
D em a n d
A rrival

R ate

N um ber o f  K anbans a llo c a ted  at each stage
K  =  2 A' =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .20048 0.19334 0 .2 2 2 9 7 0 .21938 0 .23419 0 .23292 0 .23925 0.24031 0 .24396 0 .24444
A =  0 .5 0 0 .39408 0 .38099 0 .44376 0 .43575 0 .46833 0 .46418 0.48128 0 .47969 0 .48745 0 .48835
A =  1.00 0 .75700 0 .73758 0 .87339 0 .85823 0 .92996 0 .92103 0.95982 0.95525 0 .97623 0 .97435
A =  2 .00 1.37935 1.36973 1.67499 1.65332 1.82282 1.80605 1.90006 1.89005 1.94224 1 .93703

1 A =  4 .0 0 2 .25607 2.32175 2 .98409 2 .99264 3.42504 3 .41020 3.67531 3 .65846 3.81474 3 .8 0 2 7 9

p =  0 .7 0  1[ T  =  0 .25
D em an d
Arrival

R ate

N um ber o f K anbans a llo ca ted  at each  sta g e
A  =  2 A  =  3 A  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A -  0 .25 0 .19047 0 .18050 0 .21391 0.20715 0.22665 0.22251 0.23382 0 .23200 0 .23936 0 .2 3 8 0 7
A =  0 .50 0 .37409 0 .35598 0 .42513 0.41142 0 .45249 0 .44325 0 .46850 0 .4 6287 0 .47908 0 .47540
A =  1.00 0.71791 0 .69049 0 .83554 0.81032 0 .89713 0 .87877 0 .93299 0 .92078 0.95504 0 .9 4756
A =  2 .00 1.30877 1.28854 1.59890 1.56284 1.75376 1.72136 1.84233 1.81832 1.89606 1.87990
A =  4 .00 2 .15464 2.20778 2 .85273 2.84548 3 .28673 3.25311 3 .54880 3 .51136 3 .70819 3 .6 7696

1 p =  0 .8 0 1 T =  0 .25  1

D em an d
Arrival!

R ate

N u m ber o f K anbans a llo ca ted  at each sta g e
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A -  0 .25 0 .18059 0 .16816 0.20431 0 .19406 0 .21770 0 .20991 0.22590 0 .22049 0 .23220 0 .22791
A =  0 .50 0 .35495 0 .33106 0 .40589 0.38551 0.43451 0 .41809 0 .45247 0 .43977 0 .46443 0 .45495
A =  1.00 0.68061 0 .64536 0 .79606 0 .75983 0 .85978 0 .82880 0.89918 0 .87439 0.92534 0 .9 0 6 1 9
A =  2.00 1.24152 1.21055 1.52058 1.46882 1.67613 1.62405 1.77063 1.72545 1.83223 1 .79557
A =  4 .0 0 2 .05695 2.09640 2.71841 2.69359 3 .13523 3 .07888 3 .39775 3 .33248 3 .56800 3 .5 0607

1 p =  0 .9 0 T  =  0 .25  II

D em an d
Arrival

R ate

N um ber of <anbans a llo ca ted  at each stage
A  =  2 A  =  3 A  =  4 A  =  5 A  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .17153 0 .15659 0 .19456 0 .18089 0 .20834 0.19615 0 .21704 0.20671 0.22294 0 .2 1446
A =  0 .5 0 0 .33684 0.30944 0 .38618 0 .35952 0 .41463 0 .39076 0 .43329 0 .41230 0.44614 0 .4 2 8 0 7
A =  1.00 0.64541 0 .60298 0.75641 0 .70940 0.81932 0 .77498 0 .85954 0.81985 0 .88749 0 .85253
A =  2 .00 1.17811 1.13694 1.44235 1.37533 1.59299 1.52068 1.68767 1.61858 1.75210 1.68911
A =  4 .0 0 1.96413 1.98954 2.58490 2.54215 2.97626 2.89658 3.22821 3.13331 3 .39780 3 .30056
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Table A.3: Mean throughput rates obtained from both the exact and the approximate so
lution techniques are given below. The system parameters are in the range: 
transfer/review period length T  =  0.50, mean demand arrival rate A = 
(0.25,0.50,1.00,2.00,4.00), mean production rate // =  —, where the demand 
load p  =  (0.50,0.60,0.70,0.80,0.90) and number of kanbans K  =  (2 ,3 ,4 ,5 ,6).

D em an d
Arrival

R ate

N um ber o f  K anbans a llo ca ted  at each sta g e
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .20710 0 .20312 0 .23036 0 .22850 0 .24045 0 .23988 0 .24483 0 .2 4516 0.24756 0.24765
A =  0 .50 0 .39856 0 .39268 0 .45423 0.45042 0 .47786 0 .47665 0.48821 0 .4 8883 0 .49442 0 .49459
A =  1.00 0 .72604 0.72612 0 .87319 0.86795 0.94011 0 .93685 0 .97096 0 .96970 0.98490 0 .98534
A =  2 .00 1 .17948 1.21748 1.55381 1.56451 1 .77247 1 .77148 1.88731 1.88469 1.94466 1.94301
A =  4 .00 1.67347 1.72371 2.29519 2 .40578 2.88705 2.94586 3 .3 1 3 8 7 3 .3 4416 3.60493 3 .61569

p =  0 .6 0 T  =  0.501
D em an d
Arrival

R ate

N um ber o f K anbans a llo c a ted  at each  sta g e
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .19689 0 .19050 0 .22188 0 .21788 0 .23340 0 .23209 0 .24064 0 .23984 0.24373 0 .24417
A =  0 .50 0.37841 0 .36879 0 .43670 0.42912 0.46466 0 .46051 0.47931 0 .4 7763 0.48811 0 .48717
A =  1.00 0.68964 0.68487· 0 .83750 0 .82666 0 .91126 0 .90302 0 .94980 0 .94502 0 .97112 0.96851
A =  2.00 1.12802 1.16087 1.49204 1.49632 1.71252 1 .70510 1.83765 1 .82923 1.90737 1.90140
A =  4 .00 1.62249 1.68039 2 .23990 2.33743 2.80742 2 .85913 3 .22657 3 .24972 3.51994 3 .5 2487

1 p =  0 .70  1[ r  =  0 .50  II
D em an d
Arrival

R ate

N um ber o f  K anbans a llo c a ted  at each  sta g e
K  =  2 A =  3 K  =  4 K  =  5 A  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0.18692 0 .17799 0 .21256 0.20571 0.22625 0 .22162 0.23425 0 .23143 0.23901 0 .23770
A =  0 .50 0 .35888 0 .34524 0 .41769 0 .40516 0 .44857 0 .43938 0 .46649 0 .46039 0.47752 0 .47378
A -  1.00 0 .65436 0 .64427 0.79941 0.78142 0.87688 0 .86068 0 .92117 0 .9 0916 0.94803 0.93995
A =  2.00 1.07731 1 .10389 1 .42637 1.42274 1.64337 1.62656 1.77436 1 .75568 1.85803 1.83848
A =  4 .00 1 .56507 1.62938 2.17393 2.25766 2.71357 2 .75537 3 .11800 3 .1 3108 3.40804 3 .40282

p =  0 .80 r  =  0.501

D em an d
Arrival

R ate

N um ber o f Kcinbans a llo c a ted  at each  sta g e
A' =  2 K  =  3 K  =  4 K  =  5 A  =  6

M T R A M T R ^ T R T A M T R M T R A M T R T M T R A M T R M T R A M T R
A -  0 .25 0 .1 7 7 3 7 0 .16598 0.20281 0.19275 0.21708 0 .20904 0 .22596 0 .21988 0.23173 0 .22748
A =  0 .50 0 .34024 0 .32268 0.39794 0.37992 0 .42977 0 .41440 0.44941 0 .4 3720 0 .46267 0 .45309
A =  1.00 0 .62074 0 .60528 0.76025 0.73441 0 .83800 0 .81202 0.88531 0 .86273 0 .91612 0 .89778
A =  2.00 1.02846 1 .04820 1.35918 1 .34680 1.56759 1 .53944 1 .69887 1.66624 1.78397 1.75304
A =  4.00 1 .50693 1 .57473 2 .10194 2.17178 2.61061 2.64041 2.99307 2.99344 3.27172 3 .25220

p =  0 .90 T  =  0 .50  1
D em an d
Arrival

R ate

N um ber o f <anbans a llo ca ted  at each  sta g e
A  =  2 A  =  3 A  =  4 A  =  5 A  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .16833 0 .15472 0 .19296 0.17976 0.20712 0 .19538 0.21650 0 .20615 0 .22284 0 .21403
A =  0 .50 0 .32265 0 .30149 0 .37816 0 .35470 0 .40959 0 .38749 0 .42966 0 .4 0993 0 .44367 0 .42627

A =  1.00 0 .58906 0 .56847 0 .72113 0 .68766 0 .79646 0 .76034 0 .84383 0 .80929 0 .87600 0.84455
A =  2 .00 0 .98206 0 .9 9477 1 .29243 1 .27107 1.48811 1 .44829 1.61408 1 .56666 1.69888 1.65028
A =  4 .00 1.45102 1.51912 2 .02729 2.08350 2 .50260 2 .51929 2.85725 2 .84336 3 .11634 3 .08056
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Table A.4. Mean throughput rates obtained from both the exact and the approximate so
lution techniques are given below. The system parameters are in the range: 
transfer/review period length T  =  1.00, mean demand arrival rate A =  
(0.25,0.50,1.00,2.00,4.00), mean production rate fi =  where the demand 
load p  =  (0.50, 0.60, 0.70,0.80,0.90) and number of kanbans K  =  (2,3,4, 5, 6).

p -  0 .50 T  -  1.00
D em an d
Arrival

R ate

N um ber o f K anb ans a llo ca ted  at each stage
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .1 9928 0 .19634 0 .22695 0.22521 0 .23893 0 .23832 0 .24410 0.24441 0.24721 0 .24729
A =  0 .50 0 .36302 0 .3 6 3 0 6 0 .43652 0.43398 0 .47006 0 .46842 0 .48548 0.48485 0.49245 0 .4 9 2 6 7
A =  1.00 0 .58972 0 .60874 0.77690 0.78225 0 .8 8617 0 .88574 0.94356 0 .94235 0 .97213 0 .97150
A =  2 .00 0 .83674 0 .86186 1.14760 1.20289 1.44352 1.47293 1.65691 1.67208 1.80241 1.80784
A =  4 .0 0 0 .98075 0 .98364 1.31368 1.45601 1 .88349 1 .90520 2.21964 2 .32114 2 .64377 2.69544

p =  0 .60 T  -  1.00
D em an d
Arrival

R ate

N um ber of K anb ans a llo c a ted  at each stage
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0.18921 0 .1 8439 0 .21822 0 .21456 0 .23233 0 .23026 0 .23966 0.23881 0 .24318 0 .24359
A =  0 .50 0 .34482 0 .34243 0 .41869 0.41333 0 .45563 0 .45151 0 .47490 0.47251 0.48531 0 .48426
A =  1.00 0 .56401 0 .58044 0.74600 0 .74816 0 .85621 0 .85255 0.91875 0.91462 0 .95355 0 .95070
A =  2 .00 0 .81125 0 .8 4 0 1 9 1.11995 1.16871 1 .40370 1 .42957 1.61328 1.62486 1.75994 1.76244
A =  4 .00 0 .97812 0 .9 8 1 3 7 1.31070 1.44966 1 .86718 1 .89219 2 .20373 2 .29903 2.60843 2 .66342

p =  0 .70 T  -  1.00

D em an d
Arrival

R ate

N um ber o f K anbans a llo ca ted  a t each stage
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .17944 0 .17262 0.20873 0 .20258 0 .22413 0 .21969 0.23300 0 .23019 0 .23876 0 .23689
A =  0 .50 0 .32714 0 .32214 0 .39965 0.39071 0 .43836 0 .43034 0 .46046 0 .45458 0 .47401 0 .4 6997
A =  1.00 0 .53864 0 .55194 0 .71317 0 .71137 0.82164 0 .81328 0 .88718 0.87784 0.92702 0 .91924
A =  2 .00 0 .7 8253 0 .81469 1.08696 1.12883 1.35678 1.37769 1.55900 1.56554 1.70399 1.70141
A -  4 .00 0.97251 0 .97665 1.30465 1.43760 1 .83810 1.86904 2 .17533 2.26205 2 .55507 2 .61195

p =  0 .80 T  =  1.00

D em an d
Arrival

R ate

N um ber o f K anbans a llo c a ted  at each  stage
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R n M T R T A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .17012 0 .16134 0 .19887 0 .18996 0 .21473 0 .2 0720 0.22471 0 .21860 0 .23118 0 .22655
A =: 0 .5 0 0 .31034 0 .30264 0 .38007 0.36720 0 .41900 0 .40601 0.44260 0 .43136 0 .45797 0 .44889
A =  1.00 0 .5 1 4 2 3 0 .5 2410 0.67959 0 .67340 0 .7 8376 0 .76972 0.84941 0 .83312 0 .89193 0 .87652
A =  2.00 0 .7 5 3 4 7 0 .7 8736 1.05096 1.08589 1.30529 1.32021 1.49652 1.49672 1.63584 1.62610
A =  4 .00 0 .9 6318 0 .96894 1.29494 1.41947 1.79793 1 .83620 2.13491 2.21185 2.48906 2 .54359

p =  0 .90 T  =  1.00 II

D em an d
Arrival

R ate

N um ber o f K anbans a llo ca ted  at each stage
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M ^rR A M T R
A =  0.25 0 .1 6 1 2 6 0 .15074 0 .18903 0.17735 0 .20472 0 .19375 0.21471 0.20496 0.22174 0 .21313
A =  0 .5 0 0.29451 0 .28423 0.36051 0.34383 0 .39818 0 .38017 0.42188 0.40464 0 .43793 0 .42228
A =  1.00 0 .49102 0 .49738 0.64619 0.63554 0 .74405 0 .72415 0.80701 0.78333 0.84941 0 .82514
A =  2 .00 0.72551 0 .75956 1.01365 1.04175 1.25130 1.25965 1.42861 1.42168 1.55815 1 .54028
A =  4 .00 0.95001 0 .95823 1.28149 1.39600 1 .75096 1 .79570 2.08494 2.15174 2.41452 2 .46250
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TciIdIg a .5. Mean throughput rates obtained from both the exact and the approximate so
lution techniques are given below. The system parameters are in the range: 
transfer/review period length T  =  2.00, mean demand arrival rate A =  
(0.25,0.50,1.00,2.00,4.00), mean production rate /j. =  where the demand 
load p  = (0.50, 0.60, 0.70,0.80,0.90) and number of kanbans K  =  (2, 3,4, 5, 6).

1 p =  0 .50 1 T  =  2.00 II
D em an d
A rrival

R ate

N um ber o f  K anbans a llo ca ted  at each  sta^ e
K  =  2 A = 3 A  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .18147 0 .18153 0 .21826 0 .21699 0.23503 0.23421 0 .24274 0 .24242 0 .24623 0 .24633
A =  0 .50 0 .29486 0 .30437 0 .38843 0.39113 0.44308 0 .44287 0 .47178 0 .4 7 1 1 7 0 .48606 0.48575
A =  1.00 0 .41837 0 .43093 0 .57379 0 .60144 0.72176 0.73646 0 .82845 0 .83604 0 .90120 0 .90392
A =  2 .00 0.49037 0.49182 0 .65684 0 .72800 0.94175 0.95260 1.10981 1.16057 1.32188 1.34772

1 A =  4 .00  1 0 .49983 0.49985 0 .66647 0 .74946 0.99832 0 .99859 1 .16510 1.24668 1.49142 1.49309

p =  0 .60 T  =  2.001
D em an d
A rrival

R ate

N um ber o f K anbans a llo ca ted  at each  sta g e
K  =  2 K  =  3 A' =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .17238 0 .17122 0.20934 0 .20666 0.22782 0 .22576 0 .23745 0 .23626 0.24265 0.24213
A =  0 .5 0 0 .28199 0.29022 0 .37300 0 .37408 0.42811 0.42628 0 .45938 0 .45731 0.47678 0 .47535
A =  1.00 0.40562 0 .42010 0 .55996 0 .58436 0.70185 0 .71478 0.80661 0 .81243 0 .87997 0.88122
A =  2.00 0.48906 0 .49069 0.65535 0 .72483 0 .93359 0.94609 1 .10186 1.14952 1.30421 1.33171
A -  4 .00 0.49983 0 .49985' 0 .66646 0 .74945 0.99829 0.99856 1 .16506 1 .24659 1 .49117 1.49288

1 p =  0 .70 ■' T  =  2.00 II

D em an d
Arrival

R ate

N um ber o f K anbans a llo ca ted  at each  sta g e
K  =  2 K  =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0.16357 0 .16107 0.19982 0 .19535 0 .21918 0 .21517 0 .23023 0 .2 2729 0 .23689 0.23499
A --- 0 .5 0 0.26932 0 .27597 0 .35656 0 .35568 0.41082 0 .40664 0.44355 0 .43892 0.46344 0 .45962
A =  1.00 0.39127 0.40734 0 .54348 0.56442 0 .67838 0.68884 0 .77948 0 .7 8 2 7 7 0 .85200 0.85070
A =  2 .00 0.48626 0 .48832 0 .65233 0 .71880 0.91905 0 .93452 1.08766 1.13102 1.27754 1 .30597
A =  4 .00 0.49982 0 .49983 0.66644 0 .74939 0.99811 0.99840 1 .16487 1 .24617 1.49002 1.49193

f p =  0 .80  1[ T  =  2.00 ]

D em an d
Arrival

R ate

N u m ber o f  Kanbcms a llo ca ted  at each  sta g e
K  =  2 K  =  3 I< =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R T A M T R M T R A M T R
A =  0.25 0.15514 0.15132 0.19004 0 .18360 0.20945 0.20301 0.22122 0 .21568 0.22898 0.22445
A =  0 .50 0.25710 0.26205 0 .33978 0 .33670 0.39188 0.38486 0 .42466 0 .4 1656 0.44596 0 .43826
A =  1.00 0 .37673 0 .39368 0 .52548 0.54295 0.65265 0.66010 0 .74826 0 .74836 0.81792 0.81305
A =  2.00 0.48159 0 .48447 0 .6 4747 0.70973 0.89896 0.91810 1.06744 1.10593 1.24453 1.27180
A =  4 .0 0 0.49976 0 .49979 0 .66638 0.74921 0.99751 0.99790 1 .16428 1.24492 1.48670 1.48925

p =  0 .90 T  =  2 .00 II

D em an d
A rrival

R ate

N um ber of <anbans a llo ca ted  at each  sta g e
K  =  2 K  =  3 A' =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .14723 0.14212 0 .18026 0 .17192 0.19904 0 .19008 0 .21090 0 .20232 0.21889 0.21114

A =  0 .50 0.24551 0 .24869 0 .32310 0 .31777 0.37201 0 .36207 0 .40350 0 .39166 0 .42466 0 .41257

A =  1.00 0.36275 0 .37978 0 .50682 0 .52087 0 .62564 0 .62982 0.71431 0 .71084 0 .77908 0.77014

A =  2.00 0.47500 0.47911 0 .64074 0 .69800 0.87548 0.89785 1.04247 1.07587 1.20726 1.23125

A =  4 .00 0 .49963 0 .49966 0 .66620 0 .74875 0 .99610 0.99672 1.16290 1.24217 1.47968 1.48369
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Table A.6: Mean throughput rates obtained from both the exact and the approximate so
lution techniques are given below. The system parameters are in the range: 
transfer/review period length T  =  4.00, mean demand arrival rate A =  
(0.25,0.50,1.00,2.00,4.00), mean production rate yu =  - ,  where the demand 
load p  — (0.50,0.60, 0.70,0.80,0.90) and number of kanbans K  = (2,3,4,5,6).

p =  0 .50 T  =  4 .00  II
D em an d N um ber o f K anbans a llo c a ted  at each  sta g e
A rrival K =  2 A =  3 K =  4 K =  5 K =  6

R ate M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .14742 0 .15218 0.19421 0.19556 0 .22154 0 .22144 0 .23589 0 .23559 0 .24303 0 .24288
A =  0 .50 0 .20918 0 .21546 0 .28689 0.30072 0.36086 0 .36823 0 .41420 0 .41802 0 .45060 0 .45196
A =  1.00 0 .24519 0.24591 0 .32841 0.36400 0 .47087 0 .47630 0.55491 0 .58029 0.66095 0 .67386
A =  2.00 0.24992 0.24992 0 .33323 0.37473 0.49916 0 .49929 0 .58254 0.62334 0.74571 0 .74655
A =  4 .00 0 .25000 0 .25000 0 .33333 0 .37500 0.50000 0 .5 0000 0 .58333 0 .62500 0 .75000 0 .7 5000

p =  0 .6 0 T  =  4 .00  I
D em an d
Arrival

R ate

N um ber o f K anbans a llo c a ted  at each  sta g e
K  =  2 A =  3 K  =  4 K  =  5 K  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0 .14100 0.14511 0 .1 8647 0 .18704 0.21400 0 .21314 0 .22960 0.22865 0 .23839 0 .23767
A =  0 .5 0 0.20281 0.21005 0 .27998 0.29218 0.35091 0 .3 5739 0 .40331 0.40621 0.43995 0.44061
A =  1.00 0 .24453 0 .24534 0 .32767 0.36241 0.46680 0 .47305 0 .55093 0 .57476 0.65211 0 .66585
A =  2.00 0.24991 0 .24992 0 .33323 0 .37472 0 .49914 0 .49928 0.58252 0 .62330 0.74559 0 .74644
A =  4 .00 0 .25000 0 .25000 0 .33333 0.37500 0.50000 0 .5 0000 0 .58333 0 .62500 0.75000 0 .75000

p =  0.70 T  =  4 .00
D em and
Arrival

R ate

N um ber o f K anbans a llo c a ted  at each  sta g e
A  =  2 A  =  3 A  =  4 A  =  5 A  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0 .25 0.13465 0 .13799 0 .17828 0 .17784 0 .20538 0 .20332 0.22171 0 .21946 0.23172 0.22981
A =  0 .5 0 0 .19562 0 .20367 0 .27173 0.28221 0.33919 0 .34442 0 .38974 0 .39139 0 .42597 0.42535
A =  1.00 0 .24313 0 .24416 0 .32616 0.35940 0.45953 0 .46726 0 .54383 0.56551 0 .63877 0 .65299
A =  2.00 0.24991 0.24992 0.33322 0 .37470 0.49905 0 .49920 0 .58243 0 .62309 0.74501 0 .74596
A -  4 .0 0 0 .25000 0 .25000 0 .33333 0.37500 0.50000 0 .5 0000 0 .58333 0 .62500 0.75000 0 .75000

II p =  0 .80  II . T =  4 .00  1
D em an d
Arrival

R ate

N um ber o f K anbans a llo ca ted  at each sta g e
I< =  2 A  =  3 A  =  4 A  =  5 A  =  6

M T R A M T R r M T R T A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0 .12855 0.13102 0 .1 6986 0 .16835 0.19591 0 .19243 0 .21233 0 .20828 0.22294 0 .21913
A =  0 .5 0 0 .18836 0.19684 0 .26273 0 .27147 0.32631 0 .33005 0.37411 0 .37418 0.40894 0 .40653
A =  1.00 0 .24079 0 .24223 0 .32373 0.35487 0.44948 0 .45905 0 .53372 0 .55296 0.62225 0 .63590
A =  2.00 0 .24988 0 .24989 0 .33318 0.37460 0 .49876 0 .49895 0 .58213 0 .62246 0.74335 0 .74463
A =  4 .0 0 0 .25000 0 .25000 0 .33333 0.37500 0.50000 0 .50000 0 .58333 0 .62500 0 .75000 0 .75000

II p =  0 .9 0  1[ T  =  4 .00  1

D em an d
Arrival

R ate

N um ber o f  K anbans a llo ca ted  at each  sta g e
A  =  2 A  =  3 K  =  4 A  =  5 A  =  6

M T R A M T R M T R A M T R M T R A M T R M T R A M T R M T R A M T R
A =  0.25 0.12275 0 .12435 0 .16153 0.15888 0.18599 0 .18104 0 .20173 0 .19583 0 .21233 0 .20628
A =  0 .50 0 .18138 0 .18989 0 .25341 0 .26044 0 .31282 0.31491 0 .35714 0.35542 0.38953 0 .3 8507
A =  1.00 0 .23750 0 .23956 0 .3 2037 0.34900 0.43774 0 .44893 0 .52123 0.53794 0.60362 0.61562
A =  2 .00 0.24981 0 .24983 0 .33310 0 .37437 0.49805 0 .49836 0.58145 0 .62108 0.73984 0.74185
A =  4 .0 0 1 0 .25000 0 .25000 0 .33333 0.37500 0.50000 0 .50000 0 .58333 0 .62500 0.74999 0 .74999
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Mean "Throughput Rate

Figure A.ll Increasing the  num ber o f  id en tica l sta g es in  series, decreases th e  m ean  throu gh p u t rate of 
the sy stem  w ith  a decreasing rate.

(F ixed  param eters o f the system : m ean  d em an d  arrival rate A =  1.0; tran sfer/rev iew  period  
len g th  T  =  1.0; m ean  p rod u ction  rate a t each  sta g e  ^ =  1.0; num ber o f  kanbans at each  
stage  A' =  1; m axim u m  level for a llow ed backorders B p p  =  0.)

Mean Throughput Rato

F i g u r e  A . 2l in creasin g  m ean  dem and  arrival rate  o f fin ish ed  prod u ct, increases the m ean th rou gh p u t rate  
o f the sy stem  w ith  a decreasing  rate.

(F ixed  param eters o f the system : nu m ber o f sta g es in the sy stem  N  =  3; tran sfer/rev iew  
p eriod  len gth  T  =  1.0; m ean  p ro d u ctio n  rate  at each stage  pL =  1.0; num ber o f  kanbans at 
each stage  A' =  1; m axim um  leve l for allow ed backorders B p p  = 0.)
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Mean Throughput Rate

Figure A.3: in crea sin g  the  len g th  o f the tran sfer/rev iew  period , decreases the m ean  th rough pu t rate o f  
the  sy stem  w ith  a decreasing rate.

(F ix ed  param eters o f  the system : num ber o f s ta g es in  the sy stem  N  =  3; m ean dem and  
arrival rate  A =  1.0; m ean  prod u ction  rate at each sta g e  fi =  1.0; num ber o f kanbans at each  
sta g e  K  =  1; m ax im u m  level for allow ed backorders B p p  =  0.)

Mean Throughput Rate

Figure A.4.* Increasing th e  m axim u m  level for allow ed backorders, a sy m p to tica lly  increases the m ean  
th rou gh p u t rate o f  the system .

(F ix ed  param eters o f the system : num ber o f sta g es in th e  sy stem  N  =  3; m ean  dem and  
arrival rate A =  1.0; tran sfer/rev iew  p eriod  len g th  T  =  1.0; m ean  p rod u ction  rate at each  
sta g e  It =  1.0; num ber of kanbans at each stage  K  = 1 . )
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Mean Throughput Rate

FigUrG A.5.' Increasing to ta l work con ten t, decreases the  m ean  th rough pu t rate o f the sy stem  w ith  a 
decreasing  rate.

(F ix ed  param eters o f the system : num ber o f sta g es in  the  sy stem  N  =  3; m ean  dem and  
arrival rate A =  1.0; tran sfer/rev iew  p eriod  len g th  T  = 1.0; num ber o f kanbans at each stage  
K  =  1; m axim iu n  level for allow ed backorders B p p  = 0.)
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Mean Throughput Rate

Figure A.6: Increasing total number of kanbans, increases the mean throughput rate of the 
system with a decreasing rate.

(Fixed parameters of the system: number of stages in the system N  =  3; mean 
demand arrival rate A =  1.0; transfer/review period length T  = 1.0; mean 
production rate at each stage /z = 1.0; maximum level for allowed backorders 
B f p  — 0.)
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Table A.7: Experimental framework designed for investigat
ing the workload and kanban allocation problem 
in two-stage pull systems. The first term in each 
cell denotes the number of possible kanban alloca
tions and the second term denotes the number of 
possible workload allocations with degree of im
balance is less than or equal to 5 (that means both 
DI^ < 5 and DIk < 5).

EXPERIMENTAL FRAMEWORK

DEMAND ARRIVAL RATE
A = 1.0

CONTINUOUS
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0

T N K
TW C TW C

1.00 1.50 2.00 1.00 1.50 2.00
2 1x5 1x5 1x5 1x5 1x5 1x5
3 2x5 2x5 2x5 2x5 2x5 2x5
4 3x5 3x5 3x5 3x5 3x5 3x5
5 4x5 4x5 4x5 4x5 4x5 4x5
6 5x5 5x5 5x5 5x5 5x5 5x5
7 6x5 6x5 6x5 6x5 6x5 6x5
8 5x5 5x5 5x5 5x5 5x5 5x5
9 6x5 6x5 6x5 6x5 6x5 6x5

TOTAL: 960 M T R  evaluations
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Table A.8: The independent factors determining the mean 
throughput rate of a two-stage pull system.

A -  Demand Arrival Rate
Level(s):

1.0000

Transfer/Review Period Length
Level(s):

0.0001
1.0000

TW C  -  Total Work Content
TW C  = l//ii + l/i 2̂

Level(s): Workload Allocation Variables: l /^ i ,  l/y«2
1.0000 0.4000, 0.4500, 0.5000, 0.5500, 0.6000
1.5000 0.6000, 0.6750, 0.7500, 0.8250, 0.9000
2.0000 0.8000, 0.9000, 1.0000, 1.1000, 1.2000

T N K -  Total Number of Kanbans
T N K = + 1<2

Level(s): Kanban Allocation Variables: Ki, K 2

2 1
3 1,2
4 1,2,3
5 1,2,3,4
6 1,2,3,4,5
7 1,2,3,4,5,6
8 2,3,4,5,6
9 2,3,4,5,6,7
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Table A.9: Correlation analysis of the factors af
fecting the mean throughput rate of a 
two-stage system.

CORRELATION ANALYSIS

Factors

Dependent Factor: M T R
CONTINUOUS 

approximated by 
T = 0.0001

PERIODIC 
with 

T = 1.0

TW C -0.6491 -0.3037
l//^i
l //̂ 2

-0.5202
-0.6229

-0.2540
-0.2808

T N K 0.5295 0.6933
Ki
I<2

-0.0062
0.6157

0.2188
0.5793
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Table A. 10: The summary of factorial regression models between the independent fac
tors and the mean throughput rate of a two—stage pull system.

FACTORIAL REGRESSION MODELS

CONTINUOUS PERIODIC
approximated by with

T = 0.0001 T = 1.0
Linear Quadratic M TR M TR Quadratic Linear

Mean 0.7616 0.7616 0.7616 0.5831 0.5831 0.5831
St. deviation 0.1322 0.1408 0.1427 0.1813 0.1742 0.1430
Variance 0.0175 0.0198 0.0204 0.0329 0.0304 0.0205
CV 17.3547 18.4893 18.7359 31.0944 29.8799 24.5277
Skewness 0.0290 -0.1113 -0.2307 0.0552 0.3057 -0.2017
Kurtosis -0.5507 -0.6135 -0.8185 -1.1406 -0.7358 -0.5792
Minimum 0.4500 0.4107 0.4269 0.2830 0.2452 0.2232
Maximum 1.0842 1.0419 0.9907 0.9411 1.0049 0.8900
Cork coefficient 0.9263 0.9868 1.0000 1.0000 0.9609 0.7888
R-square 0.8580 0.9739 1.0000 1.0000 0.9234 0.6222
SS (error) 1.3850 0.2550 0.0000 0.0000 1.2059 5.9478
MS (error) 0.0029 0.0005 0.0000 0.0000 0.0026 0.0125
F-Value 717.5100 1237.2100 00 00 400.4200 195.5900
DF 4 14 480 480 14 4
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Table A .ll: The estimated values of the parameters used in factorial regression models 
for the mean throughput rate of a two-stage pull system.

FACTORIAL REGRESSION MODELS

COEFFICIENT ESTIMATES
CONTINUOUS 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0
Terms Linear Quadratic Linear Quadratic
ao

a i  * 1/yUi

«2 * l//i2
«3 * A i  
a.i * K 2

0.8546672130
-0.15648618.53
-0.2968350647
0.0189694592
0.0577509472

0.6718958945
0.0020344691

-0.3237805074
0.0109085469
0.1725336646

0.3743663323
-0.1114317500
-0.1580442500
0.0495299637
0.0780968651

0.1192727596
0.0034219975
0.0267544172
0.0862142283
0.1508285408

« 1,1 * I / â i * I / â i 

« 1,2 * 1 / au * 1 /Ai2 

« 1,3 * 1 / â i * A'l 

« 1,4 * 1 / â i * A '2 

«2,2 * i/ fJ '2  * I//W2 

« 2,3 * 1 /Ai2 * A'l

«2,4 * 1/Ai2 * A'2 
a:i,3 * K i *  K i  
a3,4 * I i \  * /i'2 
(¿4,4 * A'2 * A'2

-0.1618412765
0.138.3963978
0.0285080909

-0.0292585430
-0.0464140861
-0.0077.537412
0.0034130208

-0.0023813099
0.0024579544

-0.0144679059

-0.0578698268
0.0850718074
0.0141196606

-0.0414995780
-0.0498246548
-0.0325046974
-0.0208720188
-0.0128808434
0.0252641979

-0.0133012905
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Tiiblc A. 12; Optirnal workload and kanban allocation results obtained through.
enumerating the allocation vectors around balanced allocation of 
two-stage pull systems in order to maximize the mean throughput 
rate (MTR).

(Fixed parameters of the two-stage system: mean demand arrival 
rate (A) = 1.0; transfer/review period length T = 0.0001).

TWO-STAGE CONTINUOUS PULL SYSTEMS 
(Approximated by T = 0.0001)

OPTIMAL UNBALANCED ALLOCATION • BALANCED
TWC l/i^i 1/H2 TN K  Ki A'2 M TR M TR
2.0000 1.2000 0.8000 2 1 1 0.4560 0.4444
2.0000 1.1000 0.9000 3 1 2 0.5661 0.5641
2.0000 1.2000 0.8000 4 2 2 0.6209 0.6133
2.0000 1.1000 0.9000 5 2 3 0.6724 0.6705
2.0000 1.1000 0.9000 6 3 3 0.7054 0.7003
2.0000 1.1000 0.9000 7 3 4 0.7348 0.7340
2.0000 1.1000 0.9000 8 4 4 0.7573 0.7543
2.0000 1.0000 1.0000 9 4 5 0.7767 0.7767
1.5000 0.9000 0.6000 2 1 1 0.5388 0.5233
1.5000 0.9000 0.6000 3 1 2 0.6781 0.6741
1.5000 0.8250 0.6750 4 1 3 0.7451 0.7204
1.5000 0.8250 0.6750 5 2 3 0.8004 0.7953
1.5000 0.8250 0.6750 6 2 4 0.8402 0.8190
1.5000 0.8250 0.6750 7 3 4 0.8690 0.8635
1.5000 0.8250 0.6750 8 3 5 0.8946 0.8771
1.5000 0.8250 0.6750 9 3 6 0.9126 0.9060
1.0000 0.6000 0.4000 2 1 1 0.6514 0.6315
1.0000 0.6000 0.4000 3 1 2 0.8158 0.8078
1.0000 0.5500 0.4500 4 1 3 0.8887 0.8410
1.0000 0.5500 0.4500 5 1 4 0.9294 0.9160
1.0000 0.6000 0.4000 6 2 4 0.9566 0.9266
1.0000 0.5500 0.4500 7 2 5 0.9744 0.9616
1.0000 0.5500 0.4500 8 2 6 0.9847 0.9651
1.0000 0.5500 0.4500 9 2 7 0.9907 0.9820 ■

Average: 0.7817 0.7695
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Table A.13: Optimal workload and kanban allocation results obtained through 
enumerating the allocation vectors around balanced allocation of 
two-stage pull systems in order to maximize the mean throughput 
rate (MTR).

(Fixed parameters of the two-stage system: mean demand arrival 
rate (A) = 1.0; transfer/review period length T = 1.0).

TWO-STAGE PERIODIC PULL SYSTEMS
(Periodic with T ■= 1.0)

OPTIMAL UNBALANCED ALLOCATION • BALANCED
TWO l/^ıı l/fi2 TN K  AT AT MTR M TR
2.0000 1.2000 0.8000 2 1 1 0.2894 0.2878
2.0000 0.8000 1.2000 3 1 2 0.3757 0.3646
2.0000 1.1000 0.9000 4 2 2 0.4922 0.4892
2.0000 1.0000 1.0000 5 2 3 0.5616 0.5616
2.0000 1.1000 0.9000 6 3 3 0.6219 0.6179
2.0000 1.0000 1.0000 7 3 4 0.6673 0.6673
2.0000 1.1000 0.9000 8 4 4 0.7027 0.6990
2.0000 1.0000 1.0000 9 4 5 0.7316 0.7316
1.5000 0.9000 0.6000 2 1 1 0.3205 0.3186
1.5000 0.6000 0.9000 3 1 2 0.4150 0.4038
1.5000 0.9000 0.6000 4 2 2 0.5549 0.5501
1.5000 0.6750 0.8250 5 2 3 0.6434 0.6433
1.5000 0.9000 0.6000 6 3 3 0.7104 0.7033
1..5000 0.8250 0.6750 7 3 4 0.7732 0.7724
1.5000 0.7500 0.7500 8 3 5 0.8115 0.8011
1.5000 0.8250 0.6750 9 4 5 0.8512 0.8479
1.0000 0.6000 0.4000 2 1 1 0.3548 0.3533
1.0000 0.4000 0.6000 3 1 2 0.4528 0.4443
1.0000 0.6000 0.4000 4 2 2 0.6200 0.6150
1.0000 0.4500 0.5500 5 2 3 0.7270 0.7266
1.0000 0.6000 0.4000 6 3 3 0.7947 0.7859
1.0000 0.5500 0.4500 7 3 4 0.8697 0.8678
1.0000 0.5000 0.5000 8 3 5 0.9132 0.8874 ·
1.0000 0.6000 0.4000 9 4 5 0.9411 0.9363

Average: 0.6332 0.6282
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Table A. 14: Experimental framework designed for investigat
ing the workload and kanban allocation problem 
in three-stage pull systems. The first term in each 
cell denotes the number of possible kanban alloca
tions and the second term denotes the number of 
possible workload allocations with degree of im
balance is less than or equal to 5 (that means both 
DI^ < 5 and DIk < 5).

EXPERIMENTAL FRAMEWORK

DEMAND ARRIVAL RATE
A = 1.0

CONTINUOUSn 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0

T N K
TW C  1 TW C

1.50 2.25 3.00 1 1.50 2.25 3.00
3 1x31 1x31 1x31 1 1x31 1x31 1x31
4 3x31 3x31 3x31 3x31 3x31 3x31
5 6x31 6x31 6x31 6x31 6x31 6x31
12 31x31 31x31 31x31 31x31 31x31 31x31
13 30x31 30x31 30x31 30x31 30x31 30x31
14 30x31 30x31 30x31 30x31 30x31 30x31

TOTAL: 18786 M T R  evaluations
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Table A. 15: The independent factors determining the mean
throughput rate of a three-stage pull system.

A -  Demand Arrival Rate
Level (s);

1.0000

Transfer/Review Period Length
Level (s):

0.0001
1.0000

T W C  -  Total Work Content
T W C  = 1/i.ti + l|^i2 + l//i3 

Level(s): Workload Allocation Variables: 1//Ui, I//W2, l //«3
1.5000 0.3500, 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500
2.2500 0.5250, 0.6000, 0.6750, 0.7500, 0.8250, 0.9000, 0.9750
3.0000 0.7000, 0.8000, 0.9000, 1.0000, 1.1000, 1.2000, 1.3000

T N K -  Total Number of Kanbans
T N K = Ad + I<2 + A3

Level (s): Kanban Allocation Variables: Ad, Ad, Ad
3 1
4 1,2
5 1,2,3

12 1,2,3,4,5,6,7
13 1,2,3,4,5,6,7
14 2,3,4,5,6,7,8



APPENDIX 125

Table A. 16: Correlation analysis of the factors af
fecting the mean throughput rate of a
three-stage system.

Dependent Factor: M T R
CONTINUOUS PERIODIC

approximated by with
Factors T = 0.0001 T = 1.0

TW C -0.7416 -0.4279
-0.5751 -0.3396

l//^2 -0.6205 -0.3627
l//^3 -0.6769 -0.3782

T N K 0.5006 0.6278
Ki 0.0964 0.1770
I<2 0.1452 0.2272
I<3 0.4872 0.5104
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Table A. 17: The summary of factorial regression models between the independent fac
tors and the mean throughput rate of a three-stage pull system.

FACTORIAL REGRESSION MODELS

CONTINUOUS 
approximated by 

T = 0.0001
Linear Quadratic M TR

PERIODIC 
with 

T = 1.0
M TR Quadratic Linear

Mean
St. deviation
Variance
CV
Skewness
Kurtosis
Minimum
Maximum

0.7959
0.1317
0.0173

16.5524
-0.3210
-0.3495
0.3946
1.0692

0.7959
0.1374
0.0189

17.2764
-0.3173
-0.4161
0.3657
1.0342

0.7959
0.1394
0.0194

17.5282
-0.3959
-0.5999
0.3968
0.9965

0.6551
0.1732
0.0300

26.4444
-0.4129
-0.6379
0.2666
0.9638

0.6551
0.1592
0.0253

24.3055
-0.3417
-0.4214
0.2565
0.9912

0.6551
0.1381
0.0191

21.0772
-1.0701
1.2460
0.1740
0.9148

Cork coefRcient 
R-square 
SS (error)
MS (error)
F-Value
DF

0.9443
0.8918

19.7617
0.0021

12887.5800

0.9856
0.9715
5.2076
0.0006

11813.0200
W

1.0000
1.0000
0.0000
0.0000

oo
9393

1.0000
1.0000
0.0000
0.0000

00

9393

0.9191
0.8448

43.7497
0.0047

1887.6800
W

0.7970
0.6353

102.7979
0.0110

2724.7300
6
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Table A. 18: The estimated values of the parameters used in factorial regression models
for the mean throughput rate of a three-stage pull system.

FACTORIAL REGRESSION MODELS

COEFFICIENT ESTIMATES
CONTINUOUS 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0
Terms Linear Quadratic Linear Quadratic
do 0.8565484076 0.5827241186 0.4308403946 0.1274007674
«1 * l//ii -0.1043070657 0.1110643034 -0.0874848155 0.0277271038
«2 * l/li2 -0.1639678300 0.0765738780 -0.1252007223 0.0456764512
a-s * l/l^3 -0.2381940216 -0.2680796642 -0.1504406583 -0.0130468644
«4 * A'l 0.0164634341 0.0006810667 0.0302945355 0.0400000461
a,5 * Â2 0.0197128229 0.0225298833 0.0344482260 0.0558162019
«6 * A'3 0.0425290163 0.1534690116 0.0578864409 0.1195401918
ai,i * l//^i * l//ii -0.1827325280 -0.0814183720
«1,2 * l/l«i * l//i2 -0.0216172871 0.0286002104
«1,3 * l/l«i * 1/1̂ 3 0.1573230013 0.0897991465
«1,4 * l/y«i * 7i'i 0.0198780323 0.0229492137
«1,5 * l/l^l * N 2 -0.0052634765 -0.0130030766
«1,6 * 1/ 1̂ 1 * A3 -0.0208407372 -0.0284214115
«2,2 * l//i2 * 1/A<2 -0.1867305971 -0.0905698310
«2,3 * l//«2 + l/l«3 0.1473482610 0.0961356227
«2,4 * l/i«2 * El 0.0054222539 -0.0062979680
«2,5 * l/y«2 * E 2 0.0125778621 0.0116310474
«2,6 * l//«2 * E 3 -0.0266545259 -0.0350325691
«3,3 * 1/1̂ 3 * l/li3 -0.1318705263 -0.0808204875
«3,4 * l//i3 * El -0.0174784408 -0.0240078790
«3,5 * l / /^ 3  * 7v2 -0.0005761688 -0.0122865211
03,6 * l / / ‘3 * A'3 0.0153442854 -0.0021439029
« 4 ,4  * 7i'i*A'i -0.0007359557 -0.0095221394
«4,5 * A'i *A'2 0.0014621663 0.0089114461
«4,6 * Ei*Ii3 0.0008061401 0.0122194491
«5,5 * A'2*A'2 -0.0020666380 -0.0098969007
«5,6 * A'2*A'3 -0.0006845384 0.0113491603
«6,6 * A'3*A3 -0.0109469800 -0.0117021530
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Table A. 19: Optimal workload and kanban allocation results obtained through enu
merating the allocation vectors around balanced allocation of three- 
stage pull systems in order to maximize the mean throughput rate 
(MTR).

(Fixed parameters of the three-stage system: mean demand arrival rate 
(A) = 1.0; transfer/review period length T — 0.0001).

THREE-STAGE CONTINUOUS PULL SYSTEMS 
(Approximated by T =  0.0001)

OPTIMAL UNBALANCED ALLOCATION • BALANCED
TWO l// ii l//i2 l//^3 T NK A'l A 2 Кг M TR M TR
3.0000 1.2000 1.1000 0.7000 3 1 1 1 0.4395 0.4236
3.0000 1.2000 0.9000 0.9000 4 1 1 2 0.5171 0.5146
3.0000 1.1000 0.9000 1.0000 5 1 2 2 0.5593 0.5587
3.0000 1.1000 1.0000 0.9000 12 4 4 4 0.7345 0.7318
3.0000 1.1000 0.9000 1.0000 13 4 4 5 0.7486 0.7477
3.0000 1.0000 1.0000 1.0000 14 4 5 5 0.7605 0.7605
2.2500 0.9000 0.8250 0.5250 3 1 1 1 0.5302 0.5064
2.2500 0.9000 0.6750 0.6750 4 1 1 2 0.6380 0.6324
2.2500 0.8250 0.6750 0.7500 5 1 1 3 0.6870 0.6810
2.2500 0.8250 0.6750 0.7500 12 3 3 6 0.8908 0.8690
2.2500 0.8250 0.7500 0.6750 13 4 3 6 0.9046 0.8954
2.2500 0.8250 0.7500 0.6750 14 4 4 6 0.9179 0.9047
1..5000 0.6000 0.5500 0.3500 3 1 1 1 0.6542 0.6207
1.5000 0.6500 0.4500 0.4000 4 1 1 2 0.7960 0.7837
1.5000 0.6000 0.4500 0.4500 5 1 1 3 0.8609 0.8246
1.5000 0.5500 0.5000 0.4500 12 2 3 7 0.9914 0.9646
1.5000 0.6000 0.5000 0.4000 13 3 3 7 0.9942 0.9815
1.5000 0.5500 0.5000 0.4500 14 3 3 8 0.9965 0.9829

Average: 0.7567 0.7435
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Table A.20: Optimal workload and kanban allocation results obtained through enu
merating the allocation vectors around balanced allocation of three- 
stage pull systems in order to maximize the mean throughput rate 
(MTR).

(Fixed parameters of the three-stage system: mean demand arrival rate 
(A) = 1.0; transfer/review period length T = 1.0).

THREE-STAGE PERIODIC PULL SYSTEMS 
(Periodic with T =  1.0)

O P T I M A L  U N B A L A N C E D  A L L O C A T IO N • B A L A N C E D

T W C l / / i i l//^2 l//^3 T N K A'l I<2 I<3 M T R M T R

3 .0 0 0 0 1 .3 0 0 0 0 .9 0 0 0 0 .8 0 0 0 3 1 1 1 0 .2 7 6 9 0 .2 7 4 6

3 .0 0 0 0 0 .9 0 0 0 0 .8 0 0 0 1 .3 0 0 0 4 1 1 2 0 .3 3 5 3 0 .3 2 3 1

3 .0 0 0 0 0 .7 0 0 0 1 .1 0 0 0 1 .2 0 0 0 5 1 2 2 0 .3 9 3 6 0 .3 7 1 8

3 .0 0 0 0 1 .1 0 0 0 1 .0 0 0 0 0 .9 0 0 0 12 4 4 4 0 .6 8 2 8 0 .6 7 8 7

3 .0 0 0 0 1 .1 0 0 0 0 .9 0 0 0 1 .0 0 0 0 13 4 4 5 0 .7 0 2 5 0 .7 0 1 4

3 .0 0 0 0 1 .0 0 0 0 i .p o o o 1 .0 0 0 0 14 4 5 5 0 .7 1 8 5 0 .7 1 8 5

2 .2 5 0 0 0 .9 7 5 0 0 .6 7 5 0 0 .6 0 0 0 3 1 1 1 0 .3 1 1 1 0 .3 0 8 1

2 .2 5 0 0 0 .6 7 5 0 0 .6 0 0 0 0 .9 7 5 0 4 1 1 2 0 .3 8 1 2 0 .3 6 8 3

2 .2 5 0 0 0 .5 2 5 0 0 .8 2 5 0 0 .9 0 0 0 5 1 2 2 0 .4 3 7 8 0 .4 1 4 9

2 .2 5 0 0 0 .7 5 0 0 0 .7 5 0 0 0 .7 5 0 0 12 3 4 5 0 .8 0 9 6 0 .7 9 1 9

2 .2 5 0 0 0 .8 2 5 0 0 .7 5 0 0 0 .6 7 5 0 13 4 4 5 0 .8 3 7 4 0 .8 3 2 3

2 .2 5 0 0 0 .8 2 5 0 0 .7 5 0 0 0 .6 7 5 0 14 4 4 6 0 .8 5 8 6 0 .8 4 8 5

1 .5 0 0 0 0 .6 5 0 0 0 .4 5 0 0 0 .4 0 0 0 3 1 1 1 0 .3 4 9 8 0 .3 4 6 9

1 .5 0 0 0 0 .4 5 0 0 0 .4 0 0 0 0 .6 5 0 0 4 1 1 2 0 .4 3 3 1 0 .4 2 2 4

1 .5 0 0 0 0 .3 5 0 0 0 .5 5 0 0 0 .6 0 0 0 5 1 2 2 0 .4 7 5 4 0 .4 5 8 4

1 .5 0 0 0 · 0 .5 5 0 0 0 .4 5 0 0 0 .5 0 0 0 12 3 3 6 0 .9 2 6 0 0 .8 8 5 7

1 .5 0 0 0 0 .5 0 0 0 0 .5 0 0 0 0 .5 0 0 0 13 3 4 6 0 .9 4 7 7 0 .9 3 3 2

1 .5 0 0 0 0 .6 0 0 0 0 .5 0 0 0 0 .4 0 0 0 14 4 4 6 0 .9 6 3 8 0 .9 4 0 9

A v er a g e: 0 .6 0 2 3 0 .5 9 0 0
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Table A.21: Experimental framework designed for in
vestigating the workload and kanban al
location problem in four-stage pull sys
tems. The first term in each cell denotes 
the number of possible kanban allocations 
and the second term denotes the number 
of possible workload allocations with de
gree of imbalance is less than or equal to 4 
(that means both DI^ < 4 and DI^ < 4).

EXPERIMENTAL FRAMEWORK

DEMAND ARRIVAL RATE
A = 1.0

CONTINUOUS
approximated by 

T = 0.0001

PERIODIC 
with 

T =  1.0

T N K
TW C TW C

2.00 4.00 2.00 4.00
4 1x93 1x93 1x93 1x93
5 4x93 4x93 4x93 4x93
6 10x93 10x93 10x93 10x93
7 20x93 20x93 20x93 20x93
8 135x93 35x93 35x93 35x93

1TOTAL: 26040 M T R  evaluations
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Table A.22: The independent factors determining the mean 
throughput rate of a four-stage puU system.

Demand Arrival Rate
Level (s):

1.0000

Transfer/Review Period Length
Level (s);

0.0001
1.0000

T W C  -  Total Work Content
T W C  = l/fii  + l / f i2 + l//^3 + l/l^4 

Level(s): Workload Allocation Variables: l/f-ii, l//<2, l/i“4
2.0000 0.3500, 0.4000, 0.4500, 0.5000, 0.5500, 0.6000, 0.6500
4.0000 0.7000, 0.8000, 0.9000, 1.0000, 1.1000, 1.2000, 1.3000

T N K -  Total Number of Kanbans
T N K = Ai + A2 + A3 + A4

Level (s): Kanban Allocation Variables: K\, K 2, N 3, K 4

4 1
5 1,2
6 1,2,3
7 1,2,3,4
8 1,2,3,4,5
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Table A.23: Correlation analysis of the factors af
fecting the mean throughput rate of a
four-stage system.

Dependent Factor: M T R
CONTINUOUS PERIODIC

approximated by with
Factors T = 0.0001 T =  1.0

TW C -0.8404 -0.6843
1/^1 -0.7466 -0.6169
1/Ai2 -0.7589 -0.6249
l//^3 -0.7712 -0.6292
1/^4 -0.8003 -0.6344

T N K 0.1802 0.2539
Ki -0.1377 -0.1271
I<2 -0.0910 -0.0359
1<3 -0.0082 0.0194
lU 0.4170 0.3975
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Table A.24: The summary of factorial regression models between the independent fac
tors and the mean throughput rate of a four—stage pull system.

FACTORIAL REGRESSION MODELS

CONTINUOUS 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0
Linear Quadratic M TR M TR Quadratic Linear

Mean 0.6175 0.6175 0.6175 0.3613 0.3613 0.3613
St. deviation 0.1397 0.1466 0.1472 0.0586 0.0552 0.0476
Variance 0.0195 0.0215 0.0217 0.0034 0.0030 0.0023
CV 22.6157 23.7377 23.8321 16.2121 15.2747 13.1834
Skewness 0.0768 0.4705 0.4896 0.7632 0.2761 0.0983
Kurtosis -1.2138 -0.9269 -1.0123 0.7648 -0.6770 -0.9921
Minimum 0.3743 0.3638 0.3854 0.2584 0.2124 0.2683
Maximum 0.9580 0.9389 0.9088 0.6167 0.4854 0.4796
Cork coefficient 0.9490 0.9960 1.0000 1.0000 0.9422 0.8132
R-square 0.9005 0.9921 1.0000 1.0000 0.8877 0.6613
SS (error) 28.0465 2.2288 0.0000 0.0000 5.0157 15.1293
MS (error) 0.0022 0.0002 0.0000 0.0000 0.0004 0.0012
F-Value 14723.5900 37008.6700 00 oo 2330.9800 3174.8600
DF 8 44 13020 13020 44 8
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Table A.25: The estimated values of the parameters used in factorial regression models
for the mean throughput rate of a four-stage pull system.

FACTORIAL REGRESSION MODELS

COEFFICIENT ESTIMATES
CONTINUOUS 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0
Terms Linear Quadratic Linear Quadratic
ao
ai  ̂ l/ni*
a 2 *  1// X 2  
as * l//^3
« 4  *  1 /A i4  

a.5 * A X
ae * K2 
ar * Kz 
«8 * K4

0.7936631797
-0.0671833238
-0.0978783119
-0.1285528357
■0.2010641000
0.0051089087
0.0107164913
0.0206690233
0.0717529858

0.5192887308
0.1085928773
0.0813317285

-0.0276325096
-0.3908594062
0.0003898498
0.0109853726
0.0480746366
0.2414146205

0.3722276302
-0.0307020549
-0.0386232073
-0.0428826597
•0.0481039644
0.0060658897
0.0104274168
0.0130687698
0.0311533289

0.2755627673
0.0151783863
0.0025854375

-0.0148462827
-0.0303838768
-0.0051042942
0.0048119481
0.0208477458
0.0835979706

«1,1 * l / lJ ·!  * l / / i i  

«1,2 * 1 / A i * V / i 2  

« 1,3 * i M i  *

« 1,4 * l / / i i  * V / i 4  

« 1,5 * l / / ^ i  * E l  

«1,6 * l / n i  * E ‘2
a i ,7  * l / y « i  * A'3

« 1,8 * l / y « i  * A '4 

« 2,2 * 1 / A 2 *

« 2,3 * l / / « 2  * l / / « 3  

« 2,4 * l / i ^2 * 1 / ^ 4  

«2,5 * I / A 2 * E l

«2,6 * l / / i 2  * A'-2

« 2 ,7  * 1 / A 2  * A 3 
«2 ,8  * 1 / A 2  * A  4

-0.0745845444
-0.0666015448
-0.0114274720
0.0633173028
0.0175536817
0.0065718007
0.0039167638
0.0377445221
0.0790581407
0.0179731928
0.0898985496
0.0047046242
0.0184644019
0.0003705912
0.0477860935

-0.0185870126
0.0068323095
0.0031145482

-0.0014105381
0.0149456536
0.0013640742
0.0050026336

-0.0186924908
■0.018.3296576
0.0008414325
0.0016542802
0.0012703642
0.0172411913
0.00130.38598
0.0192686951
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Table A.26: (Continued) The estimated values of the parameters used in factorial re
gression models for the mean throughput rate of a four-stage pull system.

FACTORIAL REGRESSION MODELS 
(continued)

COEFFICIENT ESTIMATES
CONTINUOUS 
approximated by 

T = 0.0001

PERIODIC 
with 

T = 1.0
Terms Linear Quadratic Linear Quadratic
«3,3 * l/j«3 * l//i3 -0.0641752241 -0.0198141434
«3,4 * l/y«3 * l//«4 0.0857245960 -0.0011263440
«3,5 * 1/M3 * A'l -0.0035111437 -0.0047421619
«3,6 * l/iti3 * K2 0.0021939812 -0.0027053583
«3,7 * l //̂ 3 * A3 0.0186148255 0.0199589240
«3,8 * l//i3 * N4 -0.0391740122 -0.0118938360
04,4 * l//i4 * 1/^4 0.0060265887 -0.0180244209
«4,5 * l/̂ J■4* K\ -0.0095489671 -0.0044502908
04,6 * 1///4 * K2 -0.0140754731 -0.0063162769
04,7 * I//O4 * A'3 -0.0097450178 -0.0036150522
04,8 * 1/M4 * A'4 0.0114917220 0.0199554239
«5,5 * -0.0016811858 -0.0020408076
«5,6 * A'i */v'2 -0.0016086535 0.0000749271
«5,7 * A'i*/t3 0.0003351231 0.0034914875
«5,8 * A'i *A'4 0.0052957324 0.0086338901
«6,6 * K 2*I<2 -0.0032537168 -0.0038962730
a&,7 * A'2*A'3 -0.0021031673 0.0002308363
«6,8 * A'2*A'4 0.0073546464 0.0114513596
«7,7 * A'3*A3 -0.0063174994 -0.0054703226
07,8 * A'3*A'4 0.0010260753 0.0036148339

|o8,8 * A'4*A'4 -0.0221220675 -0.0135497103
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Table A.27: Optimal workload and kanban allocation results obtained through 
enumerating the allocation vectors around balanced allocation of 
tour-stage pull systems in order to maximize the mean throughput 
rate (M TR).

(Fixed parameter of the four-stage system: mean demand arrival 
rate (A) =  1.0).

F O U R -S T A G E  C O N T IN U O U S P U L L  SY ST E M S  
(A p proxim ated  by T  =  0.0001)

O PT IM A L  U N B A L A N C E D  A LLO C A T IO N B A L A N C E D
T W C  1 / mi 1//12 l//^3 l/f-iA T N K  K i  I<2 I<3 I<4 M T R M T R
4 .0000
4 .0000
4 .0000
4 .0000
4 .0000
2.0000 
2.0000 
2.0000 
2.0000 
2.0000

1.2000
1.2000
1.1000
1.1000
1.2000
0 .5500
0 .6000
0 .6000
0 .6000
0 .5500

1.1000
0 .9000
1.0000
0 .9000
1.0000
0 .5500
0 .5500
0 .5000
0 .4 5 0 0 .
0 .4500

0.9000
0 .9000
1.0000
1.0000
0 .9000
0 .5500
0 .4500
0.4500
0 .4500
0.5000

0 .8000
1.0000
0 .9000
1.0000
0 .9000
0.3500
0 .4000
0.4500
0 .5000
0.5000

4
5
6
7
8
4
5
6
7
8

0 .4277
0.4892
0.5222
0.5534
0.5832
0.6502
0.7840
0 .8427
0.8778
0.9088

0.4130
0.4858
0.5191
0.5531
0.5758
0.6168
0 .7703
0 .8117
0.8295
0 .8348

A verage: 0 .6639 0.6410

F O U R -S T A G E  P E R IO D IC  P U L L  SY ST E M S  
(P eriod ic  w ith  T  =  1.0)

O PT IM A L  U N B A L A N C E D  A LL O C A T IO N • B A L A N C E D
T W C 1/ mi 1/M2 1 / â 3 1/M4 T N K A 'l I<2 I<3 K4 M T R M T R
4.0000 1.2000 1.0000 1.0000 0.8000 4 1 1 1 1 0 .2697 0.2672
4 .0000 0 .9000 0 .9000 0.9000 1.3000 5 1 1 1 2 0.3101 0.3004
4 .0000 0 .8000 1.2000 0.8000 1.2000 6 1 2 1 2 0.3530 0.3412
4 .0000 0 .7000 1.1000 1.1000 1.1000 7 1 2 2 2 0.3988 0.3738
4 .0000 1.2000 1.0000 0.9000 0 .9000 8 2 2 2 2 0.4670 0.4625
2.0000 0 .6000 0 .5500 0.4500 0 .4000 4 1 1 1 1 0.3470 0.3433
2.0000 0 .4500 0 .4500 0.4500 0.6500 5 1 1 1 2 0.4157 0.4065
2.0000 0 .4000 0 .4 0 0 0 0.6000 0.6000 6 1 1 2 2 0.4531 0.4366
2.0000 0 .3500 0 .5500 0.5500 0.5500 7 1 2 2 2 0.4812 0.4618
2.0000 0 .6000 0 .5500 0.4500 0.4000 8 2 2 2 2 0 .6167 0.6059

Average: 0 .4112 0.3999
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