670 research outputs found

    Cracks in the Foundation: NATO's New Troubles

    Get PDF
    The North Atlantic Treaty Organization is beginning to fracture. Its members, sharing the triumphalism that underpinned U.S. foreign policy after the Cold War, took on burdens that have proved more difficult than expected. Increasingly, they are failing to meet the challenges confronting them. The principal problem is Afghanistan. After the United States was attacked on September 11, 2001, NATO for the first time invoked Article V, its pledge that an attack against one member country would be considered an attack against all. But NATO's forces are being relentlessly attacked by the Taliban, and among NATO countries popular support for maintaining troops there is fading. If NATO fails in Afghanistan, the consequences could be as damaging for its survival as the Vietnam War was for the now defunct Southeast Asia Treaty Organization. There are a number of other problems, which may not reach the importance of Afghanistan, but which nevertheless pose serious complications. These include the proposed deployment of antiballistic missiles in Poland and the Czech Republic; a potential flashpoint in Kosovo, where the Albanian majority's insistence on independence could divide alliance members; and the growing tension between Russia and some of its neighbors. NATO's inability to deter a cyber attack that virtually paralyzed NATO member Estonia's access to the internet -- an attack evidently launched from Russia but without any clear link to the Russian government -- raises questions about the alliance's ability to protect its newest members. In short, NATO is facing new challenges, and the future of the alliance is unclear. The United States should begin discussions with our allies about what a post-NATO world would look like

    Packet filter performance monitor (anti-DDOS algorithm for hybrid topologies)

    Get PDF
    DDoS attacks are increasingly becoming a major problem. According to Arbor Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. Hacker News stated that the largest DDoS attack as of March 2016 was over 600 Gbps, and the attack targeted the entire BBC website. With this increasing frequency and threat, and the average DDoS attack duration at about 16 hours, we know for certain that DDoS attacks will not be going away anytime soon. Commercial companies are not effectively providing mitigation techniques against these attacks, considering that major corporations face the same challenges. Current security appliances are not strong enough to handle the overwhelming traffic that accompanies current DDoS attacks. There is also a limited research on solutions to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS attacks in order to minimize downtime. One possible solution is for organizations to implement their own architectures that are meant to mitigate DDoS attacks. In this dissertation, we present and implement an architecture that utilizes an activity monitor to change the states of firewalls based on their performance in a hybrid network. Both firewalls are connected inline. The monitor is mirrored to monitor the firewall states. The monitor reroutes traffic when one of the firewalls become overwhelmed due to a HTTP DDoS flooding attack. The monitor connects to the API of both firewalls. The communication between the rewalls and monitor is encrypted using AES, based on PyCrypto Python implementation. This dissertation is structured in three parts. The first found the weakness of the hardware firewall and determined its threshold based on spike and endurance tests. This was achieved by flooding the hardware firewall with HTTP packets until the firewall became overwhelmed and unresponsive. The second part implements the same test as the first, but targeted towards the virtual firewall. The same parameters, test factors, and determinants were used; however a different load tester was utilized. The final part was the implementation and design of the firewall performance monitor. The main goal of the dissertation is to minimize downtime when network firewalls are overwhelmed as a result of a DDoS attack

    SACA: Self-Aware Communication Architecture for IoT Using Mobile Fog Servers

    Get PDF

    Towards Protection Against Low-Rate Distributed Denial of Service Attacks in Platform-as-a-Service Cloud Services

    Get PDF
    Nowadays, the variety of technology to perform daily tasks is abundant and different business and people benefit from this diversity. The more technology evolves, more useful it gets and in contrast, they also become target for malicious users. Cloud Computing is one of the technologies that is being adopted by different companies worldwide throughout the years. Its popularity is essentially due to its characteristics and the way it delivers its services. This Cloud expansion also means that malicious users may try to exploit it, as the research studies presented throughout this work revealed. According to these studies, Denial of Service attack is a type of threat that is always trying to take advantage of Cloud Computing Services. Several companies moved or are moving their services to hosted environments provided by Cloud Service Providers and are using several applications based on those services. The literature on the subject, bring to attention that because of this Cloud adoption expansion, the use of applications increased. Therefore, DoS threats are aiming the Application Layer more and additionally, advanced variations are being used such as Low-Rate Distributed Denial of Service attacks. Some researches are being conducted specifically for the detection and mitigation of this kind of threat and the significant problem found within this DDoS variant, is the difficulty to differentiate malicious traffic from legitimate user traffic. The main goal of this attack is to exploit the communication aspect of the HTTP protocol, sending legitimate traffic with small changes to fill the requests of a server slowly, resulting in almost stopping the access of real users to the server resources during the attack. This kind of attack usually has a small time window duration but in order to be more efficient, it is used within infected computers creating a network of attackers, transforming into a Distributed attack. For this work, the idea to battle Low-Rate Distributed Denial of Service attacks, is to integrate different technologies inside an Hybrid Application where the main goal is to identify and separate malicious traffic from legitimate traffic. First, a study is done to observe the behavior of each type of Low-Rate attack in order to gather specific information related to their characteristics when the attack is executing in real-time. Then, using the Tshark filters, the collection of those packet information is done. The next step is to develop combinations of specific information obtained from the packet filtering and compare them. Finally, each packet is analyzed based on these combinations patterns. A log file is created to store the data gathered after the Entropy calculation in a friendly format. In order to test the efficiency of the application, a Cloud virtual infrastructure was built using OpenNebula Sandbox and Apache Web Server. Two tests were done against the infrastructure, the first test had the objective to verify the effectiveness of the tool proportionally against the Cloud environment created. Based on the results of this test, a second test was proposed to demonstrate how the Hybrid Application works against the attacks performed. The conclusion of the tests presented how the types of Slow-Rate DDoS can be disruptive and also exhibited promising results of the Hybrid Application performance against Low-Rate Distributed Denial of Service attacks. The Hybrid Application was successful in identify each type of Low-Rate DDoS, separate the traffic and generate few false positives in the process. The results are displayed in the form of parameters and graphs.Actualmente, a variedade de tecnologias que realizam tarefas diárias é abundante e diferentes empresas e pessoas se beneficiam desta diversidade. Quanto mais a tecnologia evolui, mais usual se torna, em contraposição, essas empresas acabam por se tornar alvo de actividades maliciosas. Computação na Nuvem é uma das tecnologias que vem sendo adoptada por empresas de diferentes segmentos ao redor do mundo durante anos. Sua popularidade se deve principalmente devido as suas características e a maneira com o qual entrega seus serviços ao cliente. Esta expansão da Computação na Nuvem também implica que usuários maliciosos podem tentar explorá-la, como revela estudos de pesquisas apresentados ao longo deste trabalho. De acordo também com estes estudos, Ataques de Negação de Serviço são um tipo de ameaça que sempre estão a tentar tirar vantagens dos serviços de Computação na Nuvem. Várias empresas moveram ou estão a mover seus serviços para ambientes hospedados fornecidos por provedores de Computação na Nuvem e estão a utilizar várias aplicações baseadas nestes serviços. A literatura existente sobre este tema chama atenção sobre o fato de que, por conta desta expansão na adopção à serviços na Nuvem, o uso de aplicações aumentou. Portanto, ameaças de Negação de Serviço estão visando mais a camada de aplicação e também, variações de ataques mais avançados estão sendo utilizadas como Negação de Serviço Distribuída de Baixa Taxa. Algumas pesquisas estão a ser feitas relacionadas especificamente para a detecção e mitigação deste tipo de ameaça e o maior problema encontrado nesta variante é diferenciar tráfego malicioso de tráfego legítimo. O objectivo principal desta ameaça é explorar a maneira como o protocolo HTTP trabalha, enviando tráfego legítimo com pequenas modificações para preencher as solicitações feitas a um servidor lentamente, tornando quase impossível para usuários legítimos aceder os recursos do servidor durante o ataque. Este tipo de ataque geralmente tem uma janela de tempo curta mas para obter melhor eficiência, o ataque é propagado utilizando computadores infectados, criando uma rede de ataque, transformando-se em um ataque distribuído. Para este trabalho, a ideia para combater Ataques de Negação de Serviço Distribuída de Baixa Taxa é integrar diferentes tecnologias dentro de uma Aplicação Híbrida com o objectivo principal de identificar e separar tráfego malicioso de tráfego legítimo. Primeiro, um estudo é feito para observar o comportamento de cada tipo de Ataque de Baixa Taxa, a fim de recolher informações específicas relacionadas às suas características quando o ataque é executado em tempo-real. Então, usando os filtros do programa Tshark, a obtenção destas informações é feita. O próximo passo é criar combinações das informações específicas obtidas dos pacotes e compará-las. Então finalmente, cada pacote é analisado baseado nos padrões de combinações feitos. Um arquivo de registo é criado ao fim para armazenar os dados recolhidos após o cálculo da Entropia em um formato amigável. A fim de testar a eficiência da Aplicação Híbrida, uma infra-estrutura Cloud virtual foi construída usando OpenNebula Sandbox e servidores Apache. Dois testes foram feitos contra a infra-estrutura, o primeiro teste teve o objectivo de verificar a efectividade da ferramenta proporcionalmente contra o ambiente de Nuvem criado. Baseado nos resultados deste teste, um segundo teste foi proposto para verificar o funcionamento da Aplicação Híbrida contra os ataques realizados. A conclusão dos testes mostrou como os tipos de Ataques de Negação de Serviço Distribuída de Baixa Taxa podem ser disruptivos e também revelou resultados promissores relacionados ao desempenho da Aplicação Híbrida contra esta ameaça. A Aplicação Híbrida obteve sucesso ao identificar cada tipo de Ataque de Negação de Serviço Distribuída de Baixa Taxa, em separar o tráfego e gerou poucos falsos positivos durante o processo. Os resultados são exibidos em forma de parâmetros e grafos

    The Cooperative Defense Overlay Network: A Collaborative Automated Threat Information Sharing Framework for a Safer Internet

    Get PDF
    With the ever-growing proliferation of hardware and software-based computer security exploits and the increasing power and prominence of distributed attacks, network and system administrators are often forced to make a difficult decision: expend tremendous resources on defense from sophisticated and continually evolving attacks from an increasingly dangerous Internet with varying levels of success; or expend fewer resources on defending against common attacks on "low hanging fruit," hoping to avoid the less common but incredibly devastating zero-day worm or botnet attack. Home networks and small organizations are usually forced to choose the latter option and in so doing are left vulnerable to all but the simplest of attacks. While automated tools exist for sharing information about network-based attacks, this sharing is typically limited to administrators of large networks and dedicated security-conscious users, to the exclusion of smaller organizations and novice home users. In this thesis we propose a framework for a cooperative defense overlay network (CODON) in which participants with varying technical abilities and resources can contribute to the security and health of the internet via automated crowdsourcing, rapid information sharing, and the principle of collateral defense

    Cyber Infrastructure Protection: Vol. II

    Get PDF
    View the Executive SummaryIncreased reliance on the Internet and other networked systems raise the risks of cyber attacks that could harm our nation’s cyber infrastructure. The cyber infrastructure encompasses a number of sectors including: the nation’s mass transit and other transportation systems; banking and financial systems; factories; energy systems and the electric power grid; and telecommunications, which increasingly rely on a complex array of computer networks, including the public Internet. However, many of these systems and networks were not built and designed with security in mind. Therefore, our cyber infrastructure contains many holes, risks, and vulnerabilities that may enable an attacker to cause damage or disrupt cyber infrastructure operations. Threats to cyber infrastructure safety and security come from hackers, terrorists, criminal groups, and sophisticated organized crime groups; even nation-states and foreign intelligence services conduct cyber warfare. Cyber attackers can introduce new viruses, worms, and bots capable of defeating many of our efforts. Costs to the economy from these threats are huge and increasing. Government, business, and academia must therefore work together to understand the threat and develop various modes of fighting cyber attacks, and to establish and enhance a framework to assess the vulnerability of our cyber infrastructure and provide strategic policy directions for the protection of such an infrastructure. This book addresses such questions as: How serious is the cyber threat? What technical and policy-based approaches are best suited to securing telecommunications networks and information systems infrastructure security? What role will government and the private sector play in homeland defense against cyber attacks on critical civilian infrastructure, financial, and logistical systems? What legal impediments exist concerning efforts to defend the nation against cyber attacks, especially in preventive, preemptive, and retaliatory actions?https://press.armywarcollege.edu/monographs/1527/thumbnail.jp

    Corresponding Evolution: International Law and the Emergence of Cyber Warfare

    Get PDF

    War of Nerves: Russia\u27s Use of Cyber Warfare in Estonia, Georgia and Ukraine

    Get PDF
    This project examines how Soviet military thought has influenced present day Russian military doctrine and has evolved to include cyber warfare as part of the larger structure of Russian information warfare. The analysis of three case studies of Russian cyber activity, the attack on Estonia (2007), the Russian-Georgian war (2008) and the ongoing Ukrainian war (beginning 2014), demonstrates the continuity of military doctrine and the physical manifestation of Russia’s cyber capabilities

    The Need for International Laws of War to Include Cyber Attacks Involving State and Non-State Actors

    Get PDF
    This article argues that existing international laws of war are inadequate and need to be adjusted and clearly defined to include cyber attacks involving state and non-state actors. Part II of this article describes the different forms and increasing use of cyber attacks in international conflicts. Part III focuses on the importance and relevance of non-state actors in the international community and today’s asymmetric battlefield. Part IV discusses the applicability of current international laws of war to cyber attacks. Part V of this article suggests ways in which current international law can be improved to include and regulate cyber attacks involving state and non-state actors
    corecore