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Distributed denial of service (DDoS) attacks targeted to cloud services have 

serious consequences such as long downtime, economic loss, and both short- and 

long-term business and reputation losses. We present an overview of these 

attacks and their variants with respect to cloud infrastructure as well as explain the 

attack dynamics. Cloud resource management based on autoscaling algorithms is 

used to build the required DDoS mitigation solutions. These requirements include 

sustainability or budget constraints, controlled autoscaling, minimization-based 

optimized control of attack traffic, mitigation throughput time, and service quality 

and availability. Toward this end, we develop and propose a detailed guideline on 

possible solutions leading to a novel collaborative solution framework based on 

multilevel alert flows. We also comment on future attacks in the DDoS space and 

give a novel DDoS attack variant—detection near impossible DDoS—as an 

anticipated vision of future attacks to help orchestrate upcoming solutions from 

the community. 

cloud computing, DDoS attacks, security and protection (e.g., firewalls) 

DISTRIBUTED DENIAL OF SERVICE (DDoS) ATTACKS HAVE BEEN A NIGHTMARE FOR ENTERPRISE 
OPERATIONS, AVAILABILITY, AND SECURITY. After the emergence of modern computing paradigms like 
cloud computing, these attacks saw major changes in scale, methods, aims, and targets. The advantages provided by 
cloud computing are available to both victims as well as the attackers. This has made the DDoS arms race 
interesting and quite complex.1 In 2004, the peak attack bandwidth was just 8 gigabits per second (Gbps). However, 
according to the report by Arbor Networks, there were much heavier DDoS attacks that had attack bandwidths of 
more than 500 Gbps in 2015.2 The target services of DDoS attacks lie in each sector that is influenced by IT 
infrastructure, whether its government, banking, or media industry. 

As per the report by Arbor Networks, the percentage of attacks targeting cloud-based services is growing each 
year. Over 33% of total reported DDoS attacks in 2015 targeted cloud services, which make the cloud one of the 
major attack targets. Motivation for the DDoS attacks ranges from extortion, demonstration of attack capabilities, 
and hacktivism to business rivalry. It is interesting to note the rise of DDoS-attack-for-hire payment-based services, 
also known as booters or stressers, that attack a target via the planting of attack guns (botnets).3 With the advent of 
these methods, the attack frequencies to victim organizations have increased considerably in recent few years. DDoS 
attacks may last between a few seconds to even weeks in a few cases, which multiplies the economic and business 
losses multifold. 

In particular, the attack duration has enormous impact on the services running on the cloud due to the on-demand 
utility computing model of the cloud. Financial losses due to DDoS attacks have multiple components or symptoms, 
few of which are quite visible during the attack. However, the remaining part of the losses are visible only after the 
attack disappears. Most of these losses are difficult to measure, including the long-term reputation and resultant 
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business losses. There are recent and much talked about massive DDoS attacks on cloud services and cloud service 
providers that have shaped the so-called battlefields of the cyberattacks. 

The first popular attack was around Christmas 2014 on Sony and Microsoft gaming servers that were used for 
cloud-based services related to PlayStation and Xbox, respectively. Similarly, there was an attack on a cloud service 
provider Rackspace that was a DNS DDoS attack and lasted more than 11 h. Another attack in the third quarter of 
2014 was a combination of hacking and DDoS attack on Amazon EC2 cloud services.4 A more recent attack around 
New Year’s eve of 2016 occurred on cloud-hosting provider Linode and lasted for more than a week. These attacks 
have made the whole cyber security research community think about the scale and strength of these attacks. This 
introspection and reevaluation of the mitigation methods is also substantiated by the attackers’ target shift toward 
cloud services. 

In this paper, we provide a detailed appraisal of the major requirements of efficient DDoS mitigation solutions 
and the factors governing these requirements. We describe DDoS attack dynamics and cloud resource allocation 
model to determine the major reasons behind the fatal impact of these attacks on cloud services. We also provide the 
research gaps and issues associated with the solutions available in the past. This will help in establishing the 
important requirements for DDoS mitigation solutions and its design considerations. 

The paper is organized as follows. The next section details the attack dynamics with a focus of attack methods 
and consequences on cloud services. We then provide a detailed cloud system analysis of the role of fine- to coarse-
grain resources in cloud autoscaling. The following section provides the detailed requirements of cloud-specific 
mitigation solutions followed by details of the design goals of DDoS mitigation solution, illustrating the proposed 
collaboration-based multilevel alert flow framework. The final section draws the conclusions of this work. 

DDoS Attack Dynamics 

Traditionally, analyzing DDoS attacks and designing mitigation solutions have been a hot research area for the cyber 
security community. Only recently, after the emergence and adoption of cloud computing, DDoS attack research has 
seen a shift in its focus toward cloud services. Figure 1 details the major attack mechanisms and possible impact of 
attacks on cloud services and infrastructure. The scale of the DDoS attacks on the cloud is mostly 
volumetric/massive, having attack bandwidths >100 Gbps. However, there are a few attack incidents of very 
sophisticated or intelligent attacks where the attackers sent low-rate DDoS attacks to defeat the attack detection 
mechanisms.5 

A simple example of such a sophisticated attack is to send attack requests from a large number of sources. The 
number of attack requests are slightly less than the detection thresholds and so remain undetectable. It is interesting 
to note that a low-rate DDoS attack with an attack frequency of just one request per minute for a month on a cloud 
service can be costly.6 Attack infrastructure used by DDoS attackers for the cloud ranges from Botnets that may 
range from a few hundred to thousands of malware-affected computers, phones, servers, or cloud virtual machines 
(VMs) following the instructions of an attacker-governed command-and-control server. 

New players in the DDoS attack space are DDoS-for-hire service providers that provide attack as a service with a 
utility-based business model. The notion of an arms race for DDoS attacks1 is substantiated by attackers utilizing 
large amounts of cloud resources. These clouds may be the attacker-administered clouds (termed black or gray 
clouds) or public clouds hosting attacker VMs. These attacks will make the DDoS mitigation more and more 
expensive as the resources needed to circumvent these attacks will proportionately grow. 

Target protocols/ports may also make the attack effects different. Most of the time, the target services are web 
services with attack packets of the HTTP GET type. There are other popular attack packets like TCP SYN, ICMP 
(Internet Control Message Protocol) ECHO, and HTTP POST. Recently, fatal and powerful amplification attacks, 
employing DNS, NTP (Network Time Protocol), or SNMP (Simple Network Management Protocol), were used that 
quickly reached high levels of attack. Service disruption remains the primary effect, which is visible in most cases. 
Economic losses due to the ensuing downtime, disruption to other dependent services/websites, and long- and short-
term business reputation losses are the major effects of the DDoS attacks. 

In addition to these effects, DDoS attacks in the cloud might not result in service disruption because of flexibility 
in acquiring further resources as needed. The resulting economic losses might be very heavy as seen in some recent 
instances.6–8 Mitigation of a DDoS attack in the cloud also comes at a price as additional resources are required to 
help in the mitigation; these have associated costs that are proportional to the strength of the attack. In addition to 
these losses, collateral damage to cohosted VMs, servers, cloud networking, and cloud as a whole might have 
adverse effects.9 

These effects are also dependent upon cloud resource allocation algorithms and various related functions such as 
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VM placement, VM migration (due to resource-freeing attacks), and load balancing. These additional effects range 
in their performance interference, higher energy consumption needs, and decrease in return on investment. Most of 
these losses are shown by several important attack characterization studies in the literature, which are summarized in 
Table 1. 

These studies have revealed different kinds of attack effects due to variants of DDoS attacks on cloud services. 
The major findings of these characterization studies point to the fraudulent consumption of resources as a result of 
the economic losses incurred by the DDoS attacks. Additional studies such as the one by Somani et al. have shown 
the effects on DDoS nontargets.9 These collateral damages are due to the multitenant nature of cloud computing. 
Resource sharing and resource contention in such environments result in performance issues to cohosted VMs and 
other cloud resources. 

A detailed discussion on attack and threat models for DDoS attacks in cloud computing was presented by Somani 
et al.14 Based on the findings, Figure 2 shows a summary of the major contributions related to DDoS attack 
prevention, detection, mitigation, and recovery. 

Cloud Resource Management 

A cloud infrastructure may have a number of physical servers (say n ) that are ready to host and run VMs. We 

represent the physical servers as iP  (i = 1 to n). Each physical server iP  has four basic resources: CPU (C ), 

memory (M ), disk (D ), and network bandwidth (B ). These resources are shared among the hosted service 
instances. These resources also represent the available capacity of a physical server as a resource vector. 

Capacity( )  ( , , , )i i i i iP C M D B . (1) 

An infrastructure cloud runs services in the form of VM instances. A service kS might have a single VM instance to 

support the service. If there is an additional resource requirement, the single VM instance service is governed by 
horizontal scaling (adding/removing resources on the same VM instance on the same server). 

In case the required resources are not available on the same physical server, VM instance migration is used to 
identify a candidate server where the required resources are available. On the other hand, some services might have 
multiple instances of the same service running behind a load balancer. In this case, additional instances are started 

on other candidate servers using vertical scaling. Resources allocated to a VM instance jI  are represented as 

Allotted( )  ( , , , )j j j j jI C M D B . (2) 

As a consequence of DDoS attacks, the target service will see heavy usage of the basic resources. This would trigger 
the cloud autoscaling algorithm to act and get more resources. Acquiring more resources to serve the traffic surge is 
analogous to capacity planning in performance management problems. 

Autoscaling policy see few performance matrices (such as CPU utilization and response time of the service) and 
act accordingly to respond to the service state. In case of multi-instance service, a general representation of 
autoscaling policy would be 

add

remove       

          if  . overload

  if  . underload

No change   if  . normal load

I Service State

I Service State

Service State

    
 (3) 

Demand and other application performance parameters are the basis of the amount of resources to be added (add I ) 

or removed ( removeI ). The additional requirement of resources for a service kS  will be 

Requirement( )  ( , , , ).k r r r rS C M D B  (4) 

This service requirement is met by the available idle resources in the cloud. Idle resources on a physical server are 

those that are left after allocating resources to the hosted instances. If 1I  and 2I  are two instances, which are 

already placed on the server iP , the remaining idle resources on iP  will be 

     2

1

Idle Capacity Allotted .i i s
S

P P I


   (5) 
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The requirement of service kS  can be met by a server that requires idle resources. Equation 4 should also be 

fulfilled for each individual basic resource given in Equation 1.  candidateIdle  Requirement( ).kP S  (6) 

If the DDoS attack continues even after the addition of another instance, in that case, the newer instances will also 
face the attack. These instances will also show autoscaling triggers and may result in adding more instances, making 
the attack effects epidemic. 

DDoS Mitigation: Solution Requirements in Cloud Computing 

In this section, we highlight the major requirements of a DDoS mitigation solution considering cloud computing 
infrastructure as a target. Figure 3 shows various factors and their dependency on other important factors while 
combating DDoS attacks. Governs relationship is very important from the perspective of DDoS solutions for cloud 
services. Each one of these factors and their associated roles is the basis of the requirements we have identified for 
DDoS solutions. 

Sustainability and Various Costs 

Let us assume that the cost of service under attack kS  for attack duration t  is   Cost , attackkS . This includes the 

cost of downtime, short- and long-term business losses, and all the other costs listed in the previous section on 

DDoS attack dynamics. The cost of the service would have been only  Cost , no attackkS  if there was no attack. 

 Cost , no attackkS  does not harm the economic sustainability of the VM owner. 

The cost of the service while a DDoS attack mitigation system is in place is  Cost , mitigationkS . This cost 

includes the cost of the DDoS mitigation system and the cost of additional resources required to perform the 
mitigation, backup, and recovery. We assume that every organization’s budget includes a component for mitigating 

these attacks considering their sustainability. We take this budgeted item as  Cost , budgetkS . The primary 

conditions to mitigating DDoS attacks are given in Equations 7 and 8. The cost of attack mitigation should always 
be lower than the budget/sustainable costs. Additionally, the cost of mitigation should always be lower than the costs 
while facing the attack or the business gains received if there was no attack. 

Requirement 1: Costs 

Cost( , budget)  Cost(  , mitigation).k kS S  (7)    Cost , mitigation  Cost , attack .k kS S  (8) 

Autoscaling/Resource Requirements 
While DDoS mitigation is happening, one of the most important factors to carefully control is autoscaling policy. 
The policy of dynamically adding/removing resources may make DDoS attacks in the cloud quite harmful. Typical 
autoscaling policies (as given in Equation 3) add resources in resource units/VM instances. This should always be 
done in consonance with the required service quality and costs. Somani et al. have proposed controlled autoscaling 
to maintain service quality.15 Dynamic resource allocation-based mitigation has been studied by Yu et al.16 

The initial resources  Allotted kI  provide quality good Q  that would in turn provide the response time goodR  

for N  requests (detailed below in the discussion of service quality and availability where Equation 10 shows that 
the required service quality can only be achieved if the number of requests is matched with the resources). While 

DDoS occurs, N  would become very high and would require large amounts of resource addition to service kS . 

Attack Filtering 

If a DDoS mitigation system is in place, it should be able to minimize N  that would in turn minimize the additional 
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resource requirement, which is designated as  Requirement kS  in Equation 4. N  includes both attack requests 

A  as well as benign requests B . 
    .N A B   (9) 

Therefore, the DDoS mitigation mechanism should minimize A . DDoS mitigation at the application layer is mostly 
done by filtering the good and the bad traffic. This may leave some attackers undetected (false negatives) and some 
benign requests falsely marked as attack requests (false positives). 

Mitigation Throughput Time 
Mitigation throughput time (MTT) is the time difference between the attack starting time and the time when it is 
completely mitigated. MTT  will decide the cost of all the important factors governing the DDoS attack. 

Attack Scale and Duration 
Attack scale and duration are two important factors affecting aspects of attack mitigation and resource requirement. 
Attack duration is controlled by the attackers and may last between a few seconds to hours or days. Attack duration 
is also dependent on the mitigation methods and their efficiency in detecting and blocking the attacks as early as 
possible. 

Service Quality and Availability 
The major reason for a service provider to offer cloud services is availability. Availability is measured in terms of 
service uptime. Service quality is also a related factor of service health. For web servers, the important service 
quality criteria is response time or page serve time R . Let us assume that in the capacity-planning phase of the 

virtualized web server the resources listed in Equation 2 are needed for instance .jI  To make it simple, we 

represent the service quality by using only the response time R . Response time goodR  is accepted as representative 

of good quality of service ( goodQ ) and poorR  is accepted as representative of poor service quality (poorQ ). 

Assuming a single instance service ,kS  the response time will be inversely proportional to available resources to 

the service instance  Allotted .kI  Additionally, the response time will be higher if there are more requests (N ) 

to be served. 

 1 1
                 and                                    and                  

Allotted j

R N R Q
RI

   . (10) 

We see that the initial resources given to instance kI  provide goodQ . If the service quality deteriorates to poor,Q  

autoscaling will add more resources (using vertical or horizontal scaling as described by Equation 3). Resource 

addition will be done per the autoscaling policy to keep the service quality maintained at goodQ . We assume that the 

service quality is directly controlled by the resources allocated to the service seeing the available load. 
We also assume that a mechanism exists that can provide the service quality guarantees by using this control. The 

available load per second is a function of request arrivals each second. The following are the additional requirements 
of an efficient DDoS mitigation system. 

Requirement 2: Optimization Subproblems 
We describe the function Minimize(), which is an optimization function minimizing the input fields by 

controlling various factors governing the field. 
Minimize( ).A  (11) 

Minimize( ).R  (12) 

Minimize(Requirement( ))kS . (13) 

Minimize(Cost( , mitigation)).kS  (14) 

Minimize( ).MTT  (15) 
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In addition to the requirements detailed in Equation 7 and Equation 8, Minimize() forms the major requirements 
of a DDoS mitigation solution in the cloud. Budget/sustainability requirements may be considered as factors while 
deciding on the maximum budget to be spent on resources, which requires a balance between costs and resources 
(Equations 13 and 14). 

DDoS Attacks in Cloud Services: Lessons Learned and Future 
Directions 

We present the major lessons learned from recent DDoS attacks on cloud services and the connection to the 
requirements presented in the previous section. Later in this section, we present a multilevel solution hierarchy as 
well as future attack trends. 

1. Traffic filtering: It is well-established that detection based on traffic filtering alone is not sufficient and 
foolproof. Modern sophisticated attacks evolve by varying their attack features to remain undetected by traffic 
filters. 

2. Managing costs: DDoS attacks are compromising the finances of victim service owners. While designing 
mitigation solutions, the cost factor is important when managing the sustainability aspects. 

3. Services availability: While mitigating DDoS attacks, a mechanism should exist to run services for benign 
users with minimum or no downtime. 

4. Collaboration: Massive volumetric attacks, power attacks, and other sophisticated attacks are not fully 
detectable at the victim end. There are many other information/alert points in the cloud stack and Internet stack that 
may help in gaining important information about the likelihood of attacks. These alerts and subsequent actions based 
on these alerts may prove to be promising to combat attacks. 

5. Damage minimization: DDoS mitigation should also provide for minimizing collateral damages as shown in 
the study by Somani et al.9 This can be ensured by isolating and monitoring the efforts at other components such as 
hypervisors and networks. 

6. Resource management: DDoS attacks in the cloud has been evaluated as a resource management problem at 
the victim service end of several studies.17,18 The major idea behind these solutions is to provide a guarantee of 
resource contention-free execution of attack mitigation solutions in the presence of the attacks. These resource 
management-based methods are useful and cost-effective. 

Next, we propose a solution hierarchy. They incorporate the detailed requirements in the previous section and the 
lessons learned and presented above. 

Collaboration-Based Multilevel Alert Flow 
We propose a collaboration-based multilevel alert flow system, which is shown in Figure 4. We give this as a 
supporting framework on top of which other efficient mitigation systems can be designed. We identify five 
important stakeholders in the scenario. These stakeholders include the victim VM, physical server hosting the VM, 
the network connecting the VM to local and global network, the cloud infrastructure as a whole, and the ISP 
providing services to the cloud. All these stakeholders are regularly emanating monitored metrics to the Attack 
Control module, which is a control program running in isolation. The Attack Control module has five major aims 
related to service health. 

Traffic evaluation, monitored autoscaling, service quality, and service availability are performed using the 
matrices received by five stakeholders. Victim separation and mitigation is done in response to attack detection by 
the control activity. Once an attack is detected, the mitigation process is leveraged by giving alerts to each 
stakeholder for necessary action. Additionally, recovery clouds may help in providing needed extra resources and 
help in isolating a victim server. 

The information flow from each stakeholder will help in monitoring the situation and in taking necessary actions. 
Approaching each individual stakeholder, a victim service may help in collecting history and statistics on 
application layer traffic. In addition to implementing attack prevention mechanisms such as CAPTCHAs 
(completely automated public Turing test to tell computers and humans apart), other important alerts about the 
susceptible attack source may help the Attack Control to take actions at network and ISP levels. Similarly, physical 
server-based counters can help in getting resource usage patterns, achieving isolation, and controlling horizontal 
scaling. Network level efforts, including traffic evaluation and filtering at the VM level, server level, and cloud level 
to ISP level, help in monitoring overall network activity. Filtering mechanisms can be implemented here in addition 
to the minimal ingress and egress filtering methods. 
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Network reconfiguration based on Software Defined Network is also important in supporting the implementation 
of actions by the Attack Control module. Additionally, this level also helps in monitoring VM migrations and 
identifying their needs. The cloud level may help in providing abstract input on the incident and in controlling 
autoscaling, power consumption, and the identification of recovery options. Similarly, the ISP level, which connects 
the outside world, including attackers to the victim network, may help in providing support for top-level decisions 
and blockage of attacker networks as well as spreading the same to the global ISP consortia. Additionally, this level 
may also help in anticipating attacks based on trends and in securing backup lines to help in availability. 

Future Attacks 
We anticipate that the future of DDoS attacks will be from DDoS-for-hire services, with cloud infrastructures and 
Internet of Things devices becoming major sites for the attack sources as well as targets.19,20 Volumetric yet 
sophisticated attacks may utilize knowledge of scaling, resource pricing, application features, and benign users’ 
behavior. 

Both parties are considered as armies, where the winning army is mostly the one with more resources. However, 
we see a different trend with respect to DDoS attacks in cloud computing. Here, the party that spends more on 
acquiring resources may not be the winning party. On the contrary, the one that instigates the other party to acquire 
and commit more and more resources may win the game. 

This is mostly true where both attackers and victim servers are running on top of cost-driven models. The 
attacker’s aim is to stop the service, and the victim’s aim is to keep running the service. The attacker would also like 
to invest in resources capped with a cost it can support, which is true in the case of DDoS-for-hire services. On the 
other hand, looking at the cost of each hour spent on a CPU core, victims would also implement prevention methods 
to make it difficult for attackers to get positive results with the available resources. 

Based on traditional volumetric DDoS attacks, we now see a trend where the attacks are becoming sophisticated 
and are variable rate based. This allows the attackers to remain undetected. Now, we can provide an extreme 
example of DDoS attack for which detection is impossible by the methods available today, i.e., a detection near 
impossible (DeNy) DDoS attack. The phrase “near impossible” has been specifically used to imply a hope for 
detection and direction for the whole cloud security community. After having a look at the large number of attack 
instances, we see that these forms of attacks are going to appear soon. The launch of such an attack is shown in 
algorithm 1. 

Algorithm 1: DeNy DDoS 
Data: N  Attack Sources uS , 1  u to N  

Benign request distribution/pattern uB  for 1  u to N . 

Result: Successful attack for duration T 
while Attack!=Successful && Attack Duration<= T  do 
Learn uB  for N  users; 

Prepare N  Attack sources; 
for all the u  from 1 to N  do 

uS  follows uB ; 

end 
end 
In this type of attack, attackers send only benign traffic, but from very large number of sources. This results in 

traffic that is undetectable yet volumetric.5 We also feel that this attack may be successful even with the number of 
sources equal to or slightly higher than the maximum parallel connections the target service can support. Figure 5a 
shows the traffic filter, filtering out attack requests (red is an attack request and green is benign). 

On the other hand Figure 5b, shows the DeNy DDoS where the attack remains undetected due to its benignness. 
The DeNy DDoS follows two important properties: 

1. Benignness: The resultant traffic has no anomalies as per the attack detection rules. 
2. False alerts: Any detection method that is traffic based would always give false positives even if the method 

was able to detect any patterns. 
DeNy attacks are mostly benign traffic from a very large number of cloud-driven computationally capable sources. 
They may not be completely similar to today’s stealthy attacks, but they are benign requests that if detected by 
current methods would generate a huge number of false positives/alerts. We anticipate that the future solutions in 
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mitigating DDoS attacks in the cloud or in general (with respect to DeNy DDoS attacks) will require a thorough re-
appraisal and shift in combating DDoS attacks efficiently. 

Conclusion 

DDoS attacks in the cloud are different from the behavior of attacks on fixed on-premise infrastructure. We provide 
a detailed introduction to the attack methods, consequences, and attack dynamics. This novel work is an attempt to 
analyze and gather the important requirements in designing DDoS mitigation solutions for cloud infrastructure. 
These requirements include optimization of five important factors governing the attack. These factors are 
sustainability/budget constraints, controlled autoscaling, minimization-based optimization of attack traffic, MTT, 
and service quality and availability. We also compile important lessons learned pertaining to DDoS attacks in the 
recent past. 

These lessons suggest that traffic filtering alone may not be sufficient to combat DDoS attacks in the cloud 
environment. We suggest considering sustainability, collaboration, resource management, damage minimization, 
and availability while handling DDoS attacks in cloud computing. We provide a multilevel alert flow-based 
collaborative DDoS detection solution framework that may be beneficial in designing efficient mitigation solutions. 
Finally, based on attack trends, we illustrate future attack surface learning. This is supported by an extreme attack 
case of DeNy DDoS as an open research problem. 
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FIGURE 1. DDoS attacks and losses in cloud services. 

FIGURE 2. Various methods of combating DDoS attacks in cloud computing. 

FIGURE 3. Who governs what while combating DDoS attacks? 

FIGURE 4. DDoS attacks in the cloud: multilevel solution. 

FIGURE 5. Traffic filters and undetectable attacks. (a) Traffic filtering. (b) DeNy attacks passing through the 
filters. 

TABLE 1. DDoS attack variants in the cloud. 

DDoS Attack Variants Attack Specialties 

Economic denial of sustainability and fraudulent 

resource consumption6 

On-demand resource scaling and economic loss 

due to fake resource surge 

Yo-Yo attack7 Exploits cloud autoscaling vulnerabilities 
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Stealthy/energy DDoS attacks5 Sophisticated attacks targeting energy 

consumption losses 

Internal DDoS attacks/BotCloud10,11 Cloud-originated attacks/cloud-originated attacks 

Collateral damage to nontargets9 Performance impacts on nontargets in 

multitenant clouds 

Power meltdown12 Energy consumption 

Index page EDoS* attack8 Attacks on index pages 

Bandwidth DDoS attack13 Bandwidth-depletion attacks 

*EDoS, economic denial of sustainability 


