161 research outputs found

    TrustDL: Use of trust-based dictionary learning to facilitate recommendation in social networks

    Get PDF
    peer reviewedCollaborative filtering (CF) is a widely applied method to perform recommendation tasks in a wide range of domains and applications. Dictionary learning (DL) models, which are highly important in CF-based recommender systems (RSs), are well represented by rating matrices. However, these methods alone do not resolve the cold start and data sparsity issues in RSs. We observed a significant improvement in rating results by adding trust information on the social network. For that purpose, we proposed a new dictionary learning technique based on trust information, called TrustDL, where the social network data were employed in the process of recommendation based on structural details on the trusted network. TrustDL sought to integrate the sources of information, including trust statements and ratings, into the recommendation model to mitigate both problems of cold start and data sparsity. It conducted dictionary learning and trust embedding simultaneously to predict unknown rating values. In this paper, the dictionary learning technique was integrated into rating learning, along with the trust consistency regularization term designed to offer a more accurate understanding of the feature representation. Moreover, partially identical trust embedding was developed, where users with similar rating sets could cluster together, and those with similar rating sets could be represented collaboratively. The proposed strategy appears significantly beneficial based on experiments conducted on four frequently used datasets: Epinions, Ciao, FilmTrust, and Flixster

    A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects

    Full text link
    Recommender systems have significantly developed in recent years in parallel with the witnessed advancements in both internet of things (IoT) and artificial intelligence (AI) technologies. Accordingly, as a consequence of IoT and AI, multiple forms of data are incorporated in these systems, e.g. social, implicit, local and personal information, which can help in improving recommender systems' performance and widen their applicability to traverse different disciplines. On the other side, energy efficiency in the building sector is becoming a hot research topic, in which recommender systems play a major role by promoting energy saving behavior and reducing carbon emissions. However, the deployment of the recommendation frameworks in buildings still needs more investigations to identify the current challenges and issues, where their solutions are the keys to enable the pervasiveness of research findings, and therefore, ensure a large-scale adoption of this technology. Accordingly, this paper presents, to the best of the authors' knowledge, the first timely and comprehensive reference for energy-efficiency recommendation systems through (i) surveying existing recommender systems for energy saving in buildings; (ii) discussing their evolution; (iii) providing an original taxonomy of these systems based on specified criteria, including the nature of the recommender engine, its objective, computing platforms, evaluation metrics and incentive measures; and (iv) conducting an in-depth, critical analysis to identify their limitations and unsolved issues. The derived challenges and areas of future implementation could effectively guide the energy research community to improve the energy-efficiency in buildings and reduce the cost of developed recommender systems-based solutions.Comment: 35 pages, 11 figures, 1 tabl

    GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems

    Full text link
    Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-based recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a user's long-term preference (or an item's long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each node's local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.Comment: Accepted by CIKM2020 Applied Research Trac

    Exploiting distributional semantics for content-based and context-aware recommendation

    Get PDF
    During the last decade, the use of recommender systems has been increasingly growing to the point that, nowadays, the success of many well-known services depends on these technologies. Recommenders Systems help people to tackle the choice overload problem by effectively presenting new content adapted to the user¿s preferences. However, current recommendation algorithms commonly suffer from data sparsity, which refers to the incapability of producing acceptable recommendations until a minimum amount of users¿ ratings are available for training the prediction models. This thesis investigates how the distributional semantics of concepts describing the entities of the recommendation space can be exploited to mitigate the data-sparsity problem and improve the prediction accuracy with respect to state-of-the-art recommendation techniques. The fundamental idea behind distributional semantics is that concepts repeatedly co-occurring in the same context or usage tend to be related. In this thesis, we propose and evaluate two novel semantically-enhanced prediction models that address the sparsity-related limitations: (1) a content-based approach, which exploits the distributional semantics of item¿s attributes during item and user-profile matching, and (2) a context-aware recommendation approach that exploits the distributional semantics of contextual conditions during context modeling. We demonstrate in an exhaustive experimental evaluation that the proposed algorithms outperform state-of-the-art ones, especially when data are sparse. Finally, this thesis presents a recommendation framework, which extends the widespread machine learning library Apache Mahout, including all the proposed and evaluated recommendation algorithms as well as a tool for offline evaluation and meta-parameter optimization. The framework has been developed to allow other researchers to reproduce the described evaluation experiments and make new progress on the Recommender Systems field easierDurant l'última dècada, l'ús dels sistemes de recomanació s'ha vist incrementat fins al punt que, actualment, l'èxit de molts dels serveis web més coneguts depèn en aquesta tecnologia. Els Sistemes de Recomanació ajuden als usuaris a trobar els productes o serveis que més s¿adeqüen als seus interessos i preferències. Una gran limitació dels algoritmes de recomanació actuals és el problema de "data-sparsity", que es refereix a la incapacitat d'aquests sistemes de generar recomanacions precises fins que un cert nombre de votacions d'usuari és disponible per entrenar els models de predicció. Per mitigar aquest problema i millorar així la precisió de predicció de les tècniques de recomanació que conformen l'estat de l'art, en aquesta tesi hem investigat diferents maneres d'aprofitar la semàntica distribucional dels conceptes que descriuen les entitats que conformen l'espai del problema de la recomanació, principalment, els objectes a recomanar i la informació contextual. En la semàntica distribucional s'assumeix la següent hipotesi: conceptes que coincideixen repetidament en el mateix context o ús tendeixen a estar semànticament relacionats. Concretament, en aquesta tesi hem proposat i avaluat dos algoritmes de recomanació que fan ús de la semàntica distribucional per mitigar el problem de "data-sparsity": (1) un model basat en contingut que explota les similituds distribucionals dels atributs que representen els objectes a recomanar durant el càlcul de la correspondència entre els perfils d'usuari i dels objectes; (2) un model de recomanació contextual que fa ús de les similituds distribucionals entre condicions contextuals durant la representació del context. Mitjançant una avaluació experimental exhaustiva dels models de recomanació proposats hem demostrat la seva efectivitat en situacions de falta de dades, confirmant que poden millorar la precisió d'algoritmes que conformen l'estat de l'art. Finalment, aquesta tesi presenta una llibreria pel desenvolupament i avaluació d'algoritmes de recomanació com una extensió de la llibreria de "Machine Learning" Apache Mahout, àmpliament utilitzada en el camp del Machine Learning. La nostra extensió inclou tots els algoritmes de recomanació avaluats en aquesta tesi, així com una eina per facilitar l'avaluació experimental dels algoritmes. Hem desenvolupat aquesta llibreria per facilitar a altres investigadors la reproducció dels experiments realitzats i, per tant, el progrés en el camp dels Sistemes de Recomanació

    Trust and Credibility in Online Social Networks

    Get PDF
    Increasing portions of people's social and communicative activities now take place in the digital world. The growth and popularity of online social networks (OSNs) have tremendously facilitated online interaction and information exchange. As OSNs enable people to communicate more effectively, a large volume of user-generated content (UGC) is produced daily. As UGC contains valuable information, more people now turn to OSNs for news, opinions, and social networking. Besides users, companies and business owners also benefit from UGC as they utilize OSNs as the platforms for communicating with customers and marketing activities. Hence, UGC has a powerful impact on users' opinions and decisions. However, the openness of OSNs also brings concerns about trust and credibility online. The freedom and ease of publishing information online could lead to UGC with problematic quality. It has been observed that professional spammers are hired to insert deceptive content and promote harmful information in OSNs. It is known as the spamming problem, which jeopardizes the ecosystems of OSNs. The severity of the spamming problem has attracted the attention of researchers and many detection approaches have been proposed. However, most existing approaches are based on behavioral patterns. As spammers evolve to evade being detected by faking normal behaviors, these detection approaches may fail. In this dissertation, we present our work of detecting spammers by extracting behavioral patterns that are difficult to be manipulated in OSNs. We focus on two scenarios, review spamming and social bots. We first identify that the rating deviations and opinion deviations are invariant patterns in review spamming activities since the goal of review spamming is to insert deceptive reviews. We utilize the two kinds of deviations as clues for trust propagation and propose our detection mechanisms. For social bots detection, we identify the behavioral patterns among users in a neighborhood is difficult to be manipulated for a social bot and propose a neighborhood-based detection scheme. Our work shows that the trustworthiness of a user can be reflected in social relations and opinions expressed in the review content. Besides, our proposed features extracted from the neighborhood are useful for social bot detection
    corecore