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Abstract 

 

During the last decade, the use of recommender systems has been increasingly growing to the point that, 

nowadays, the success of many well-known services depends on these technologies. Recommenders 

Systems help people to tackle the choice overload problem by effectively presenting new content adapted 

to the user’s preferences. However, current recommendation algorithms commonly suffer from data 

sparsity, which refers to the incapability of producing acceptable recommendations until a minimum 

amount of users’ ratings are available for training the prediction models.  

This thesis investigates how the distributional semantics of concepts describing the entities of the 

recommendation space can be exploited to mitigate the data-sparsity problem and improve the prediction 

accuracy with respect to state-of-the-art recommendation techniques. The fundamental idea behind 

distributional semantics is that concepts repeatedly co-occurring in the same context or usage tend to be 

related. In this thesis, we propose and evaluate two novel semantically-enhanced prediction models that 

address the sparsity-related limitations: (1) a content-based approach, which exploits the distributional 

semantics of item’s attributes during item and user-profile matching, and (2) a context-aware 

recommendation approach that exploits the distributional semantics of contextual conditions during 

context modeling. We demonstrate in an exhaustive experimental evaluation that the proposed algorithms 

outperform state-of-the-art ones, especially when data are sparse.  

Finally, this thesis presents a recommendation framework, which extends the widespread machine 

learning library Apache Mahout, including all the proposed and evaluated recommendation algorithms as 

well as a tool for offline evaluation and meta-parameter optimization. The framework has been developed 

to allow other researchers to reproduce the described evaluation experiments and make new progress on 

the Recommender Systems field easier. 
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Chapter 1 - Introduction 

1.1. Background  

The overwhelming number of alternative items (e.g. movies, books, music, food, and news) available 

nowadays on many services makes harder the users’ decision-making process. In order to tackle this 

choice overload problem, several software tools have been proposed that help users by presenting content 

adapted to their particular interests and needs.  

Information Retrieval (IR) systems were the first technology solutions to the problem of choice 

overload [Manning et al. 2009]. The goal of these systems is to perform an efficient retrieval upon a huge 

quantity of items taking into account a given query or need of a user. Items are commonly annotated with 

keywords describing some aspects of their content (e.g. for web documents, the most representative terms 

may be used as annotations). Search engines (e.g. Google, Yahoo!, and Bing) are the most common and 

maybe best instantiation of IR systems. These systems present a ranked list of potentially relevant items 

based on the similarities between the user query and the item annotations as well as other relevancy 

measures. However, a main limitation of these search-based systems is their assumption that users are 

always aware of their information needs and know how to express them with queries. Many times people 

discover facts of whose existence were not aware, but which are very interesting for them. As Jeffrey M, 

O’Brien said in his article “The race to create a ‘smart’ Google” published in CNN Money on November 

2006: “We are leaving the era of search and entering one of discovery. What is the difference? Search is 

what you do when you are looking for something. Discovery is when something wonderful that you did 

not know existed, or did not know how to ask for, finds you”. 

In the mid-nineties, Recommender Systems (RSs) emerge as an independent research field of IR and 

Artificial Intelligence (AI), to address the choice overload problem through recommendations instead of 

information searching [Ricci et al. 2011]. The development of RSs was motivated by the fact that most 

users naturally tend to solve the choice overload problem by relying on other’s recommendations.  For 

example, when selecting a movie to watch, users commonly rely on the reviews of film critics or other 

trustworthy users. Therefore, given the importance of recommendations on the users’ decision-making 

process, the main goal of RSs is to improve the quality of recommendations by adapting them to the 

users’ interests. To accomplish this task, RSs estimate the relevance of those items that are yet to be 

consumed by users taking into account the feedback provided during their previous interactions with the 

system. During the last decade, the use of these systems has been increasingly growing to the point that, 

nowadays, the success of many well-known services strongly depends on these technologies. Table 1.1 

shows some examples of RSs in different application domains. 
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Table 1.1.  Examples of recommender systems.  

Application domain Recommender System  Website 

Books 
Amazon http://www.amazon.com 

LibraryThing http://www.librarything.com 

Movies 
Netflix http://www.netflix.com 

MovieLens http://www.movielens.org 

IPTV TiVo http://www.tivo.com 

Travel  Google Now http://www.google.com landing now   

Songs 
Pandora http://www.pandora.com 

Last fm http://www.last.fm 

News 
Google News https://news.google.com 

Yahoo! News http://news.yahoo.com 

 

In the literature, several recommendation techniques
1
 have been proposed, each of which has its own 

advantages and drawbacks [Adomavicius and Tuzhilin 2005]. Two main families of recommender 

systems are commonly distinguished: Content-Based filtering (CB), which expresses user’s tastes as 

attribute-based user profiles and recommend new items matching user and item attribute-based profiles; 

and Collaborative Filtering (CF), which bases predictions on the feedback given by other users with 

similar rating behavior to the target one. In practice, real systems like the ones presented in Table 1.1, 

employ a combination of techniques (i.e. hybrid strategies) trying to enforce their advantages and mitigate 

their limitations.  

1.2. Research Motivation 

A limitation of most recommendation techniques is their lack of context-awareness, which means that 

they fail to adapt the recommendations to the users’ context. Context is a multifaceted concept that has 

been studied across different research disciplines, including AI, ubiquitous computing, cognitive science, 

linguistics, philosophy, psychology, and organizational sciences. Since we focus on the use of context in 

recommender systems, in this thesis we adopt the definition proposed by Dey [2001]: “Context is any 

information that can be used to characterize the situation of an entity. An entity is a person, place, or 

object that is considered relevant to the interaction between a user and an application”.  

In most application domains contextual information can play an important role in order to produce 

more accurate and “intelligent” recommendations. For instance, when recommending a beach or a natural 

park the current weather may cause a completely different user’s experience (e.g. liking the 

recommendation when sunny but detesting it when snowing). The same can happen when recommending 

                                                      

1
 Thorough this document, the terms “recommendation techniques”, “recommendation algorithms”, 

“recommendation models” and “prediction models” are used as synonyms. 
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movies, books and songs. Users can have different movie, music and book preferences depending on their 

context, such as if they are working or on holidays, if they are alone or with some friends, and the period 

of the year.  

Context-Aware Recommender Systems (CARSs) belong to an active and growing research area, 

which aims at improving traditional (context-free) recommenders (both CB or CF techniques) by 

exploiting the contextual information under which the users’ experienced or rated the items. In the last 

years, several CARS techniques have been proposed that outperform context-free approaches when they 

incorporate relevant contextual information into their prediction models [Adomavicius and Tuzhilin 2011; 

Adomavicius et al. 2011]. Recent empirical evaluations indicate that no context-aware approach is 

universally dominant, and the best performing method depends on the recommendation task and domain 

[Panniello et al. 2014]. Their analysis also shows that the accuracy of current CARS techniques decreases 

when contextual information has a finer granularity (i.e. it is more specific) and thus fewer ratings 

acquired in the target contextual situation are available. This data-sparsity limitation
2
 affects especially to 

CARS techniques because they require for a large training set of ratings of users for items in different 

contextual situations in order to learn robust context-aware prediction models.  

In this thesis, we claim that it is possible to address such a limitation of current CARS techniques by 

exploiting semantic similarities between contextual situations when making recommendations in a target 

situation. For instance, if we want to predict the rating for a Place of Interest (POI), e.g., the “Sagrada 

Familia” church (in Barcelona, Spain), and the target contextual situation (i.e. the situation for which the 

system has to make the recommendation) includes a condition such as, “group composition" is "two 

adults and two children”, ratings acquired when the "group composition" was “two adults and three 

children” may also be used to generate an accurate predictive model in the target context. Most current 

techniques do not exploit this idea of reusing ratings acquired in “syntactically” different situations 

because they employ syntactic-based matching techniques, which implies that their domain-specific 

semantic similarities are not taken into account during contextual modeling.  

The need for semantics understanding and exploitation in recommender systems to produce better 

recommendations has been manifested in several works in the last decade [Mobasher et al. 2003; 

Middleton et al. 2004; Cantador et al. 2008; Sieg et al. 2010]. The majority of these semantically-

enhanced recommender systems (SERSs) employ ontologies to represent the semantic knowledge 

because it allows for a simple, scalable and portable description of the concepts belonging to the 

recommendation domain and their relationships. Mostly, SERSs have focused on improving the 

effectiveness of traditional CB techniques, based on “syntactic” keyword matching methods, by 

                                                      

2
 Some researchers also refer to this limitation as a type of cold-start scenario in a wider sense [Schein et al. 

2002]. In a strict sense, cold-start scenarios are those situations where either the items or the users have no rating 

associated at all. 
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exploiting the explicit semantic relationships between the contents of the items to recommend. However, 

the expressiveness and richness of available ontologies are often limited given the difficulty of manually 

modeling all the existing semantic relationships between concepts of particular domain at design stage. In 

addition, most of the available ontologies basically consist of taxonomies that classify the items of a 

system into several categories, since this is the natural way of classify content on the large e-commerce 

websites, and this limits to a great extent the improvement that can be achieved by using ontology-based 

SERS techniques.  

An alternative to ontology-based semantics is data-driven distributional semantics, where the 

“meaning” of a concept is represented based on its distributional properties that can be automatically 

derived from the data. The fundamental idea behind this use of data to extract semantic similarities 

between domain concepts is the so-called distributional hypothesis: concepts repeatedly co-occurring in 

the same context or usage tend to be related.  

In this thesis, we claim that, when ontologies available for recommendation consist of general domain 

taxonomies, which do not express deep domain-specific relations between concepts, such as the movie 

genre classifications available on Amazon and Netflix sites, similarities based on distributional semantics 

are more useful than ontology-based ones to enhance the accuracy of recommender systems. The 

following is an example of such a context taxonomy in the movie domain, defining the hierarchical 

relationships of time and company conditions when having a movie-watching experience [Adomavicius et 

al. 2005]: 

 Time: “Saturday” → “Weekend” → “Any time” 

 Company: “Boyfriend” → “Friends” → “Not alone” → “Any company” 

To illustrate the idea of distributional semantics we return to the example of the context-aware tourism 

recommender system. Let’s suppose that now the target contextual situation contains the sunny day 

condition. Should the system also consider ratings provided to POIs when travelling with family in that 

situation? Clearly, it is difficult to find out such specific condition-to-condition associations based on 

general context taxonomies like the one mentioned above. In this case, the easier way to obtain such 

similarities is by directly looking at the rating data. Let’s assume that we analyze how sunny and family 

conditions influence the users’ ratings and we discover the following influencing pattern: both conditions 

tend to increase the user’s ratings for indoor places like museums, and decrease the ratings for outdoor 

places like castles. Based on this similar influence pattern of both conditions with respect to the same type 

of items (i.e. similar distributional semantics), we may confidently assess that these two conditions are 

highly related in this particular application domain.  

Analogously, we also claim that distributional semantics of items’ attributes can be exploited for 

improving more effectively than ontology-based SERS techniques the prediction accuracy of context-free 
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CB techniques. This intuition relies on the same premise as for context-aware recommendation: 

similarities based on distributional semantics are data-dependent, and thus suit better the rating data that 

are actually used by the system for making recommendations. Differently from semantics of contextual 

conditions, in this case the distributional properties of items’ attributes cannot be based on how they 

influence the user’s ratings. Instead here we are more interested in analyzing the “usage” pattern of the 

attributes across the system’s users and items. For example, let’s imagine that the profile of the target user 

only contains a positive interest in Bruce Willis movie actor, and the movie to recommend is an action 

movie. Based on these attribute-based profiles, would the CB recommender suggest this movie to the 

user? Using a traditional CB technique based on “syntactic” keyword-based matching the answer would 

be “no”, and it is likely that a SERS technique exploiting ontology-based semantics also does not have 

any evidence to recommend it, unless some actors and genres are explicitly related in the ontology. Now, 

let’s assume that we know that several users of the system that like action movies also like Bruce Willis in 

a similar way. In this case the system could infer that a strong association exists between these two 

attributes; therefore, it would probably recommend the movie to the user even with only this information 

available, alleviating thus the data-sparsity problem.  

1.3. Goals 

Taking into account the main limitations of current techniques in addressing the data-sparsity problem, 

presented in the previous section, the ultimate goal of this thesis is the following: 

 

To fulfill this general goal, this thesis has the following two research objectives:  

1. The development of content-based recommendation algorithms enhanced with 

distributional semantics of items’ attributes that can outperform the state-of-the-art CB 

and SERS techniques. We shall investigate novel methods to acquire and exploit attribute-to-

attribute similarities based on their distributional semantics in the CB recommendation 

process. We will analyze whether the common methods used for exploiting ontology-based 

semantics are also appropriate when used with distributional semantics. Finally, we shall 

assess the improvements and benefits of the proposed methods based on distributional 

semantics compared to the ontology-based ones and other state-of-the-art SERS techniques. 

We aim to perform this comparison appropriately and in a reproducible way by using publicly 

available data sets in the most common recommendation domains.   

To develop novel recommendation algorithms capable of exploiting distributional similarities 

between concepts describing items or contextual situations to overcome the sparsity-related 

limitations of state-of-the-art approaches and thus produce more accurate recommendations. 
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2. The development of context-aware recommendation algorithms enhanced with 

distributional semantics of contextual conditions that can outperform the state-of-the-art 

CARS techniques. We shall investigate novel methods to acquire and exploit condition-to-

condition similarities based on their distributional semantics during context modeling. State-

of-the-art CARS techniques typically incorporate contextual information directly into Matrix 

Factorization (MF) prediction models, a specific CF approach whose popularity has increased 

in the last years because of its superior accuracy and scalability. Therefore, to outperform the 

state of the art we shall study how the distributional semantics of contextual conditions can be 

exploited on top of MF models.  

1.4. Summary of Contributions 

This section describes the main contributions of this thesis to the Recommender Systems field: 

1. A novel SERS technique, Semantic Content-Based (SCB) filtering, which mitigates the 

sparsity-related limitations of current CB recommendation algorithms and outperforms state-

of-the-art SERS techniques by exploiting the distributional similarities between item’s 

attributes during the key process of user and item profile matching. 

2. A novel SERS approach to context-aware recommendation, Semantic Pre-Filtering (SPF), 

which is able to tackle the data-sparsity problem and outperform state-of-the-art CARS 

techniques by exploiting distributional semantic similarities between contextual situations 

during context modeling. 

3. The extension of a free open-source recommendation framework including all the 

implemented and evaluated recommendation algorithms as well as a tool for offline evaluation 

of the available algorithms, allowing other researchers to reproduce the empirical evaluation 

carried out in this thesis and make new progress on the RS field easier. 

1.5. Publications Related to this Thesis 

Here we present the list of publications related to this thesis grouped by type of publication and ordered 

by date: 

Conference papers: 

1. Codina, V., & Ceccaroni, L. (2010a). A Recommendation System for the Semantic Web. In A. 

Ponce de Leon F. de Carvalho, S. Rodríguez-González, J. F. De Paz, & J. . Corchado (Eds.), 

Proceedings of the International Symposium on Distributed Computing and Artificial Intelligence 

(pp. 45–52). September 7-10, 2010, Valencia, Spain: Springer. 

2. Codina, V., & Ceccaroni, L. (2010b). Taking advantage of semantics in recommendation 

systems. In R. Alquézar, A. Moreno, & J. Aguilar (Eds.), Proceedings of the International 
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Congress of the Catalan Association of Artificial Intelligence (pp. 163 – 172). October 20-22, 

2010, L’Espluga de Francolí, Spain: IOS Press, Amsterdam, The Netherlands. 

3. Codina, V., & Ceccaroni, L. (2011). Extending Recommendation Systems with Semantics and 

Context-Awareness : Pre-Filtering Algorithms. In C. Fernández, H. Geffner, & F. Manyà (Eds.), 

Proceedings of the International Congress of the Catalan Association of Artificial Intelligence 

(pp. 81–90). October 26-28, 2011, Lleida, Spain: IOS Press, Amsterdam, The Netherlands. 

4. Codina, V., & Ceccaroni, L. (2012). Semantically-Enhanced Recommenders. In D. Riaño, E. 

Onaindia, & M. Cazorlam (Eds.), Proceedings of the International Congress of the Catalan 

Association of Artificial Intelligence (pp. 69–78). October 24-26, 2012, Alicante, Spain: IOS 

Press, Amsterdam, The Netherlands. 

5. Codina, V., Ricci, F., & Ceccaroni, L. (2013a). Exploiting the Semantic Similarity of Contextual 

Situations for Pre-filtering Recommendation. In S. Carberry, S. Weibelzahl, A. Micarelli, & G. 

Semeraro (Eds.), Proceedings of the 21th International Conference on User Modeling, 

Adaptation, and Personalization (UMAP’13) (pp. 165–177). June 10-14, Rome, Italy: Springer, 

Berlin Heidelberg. 

6. Codina, V., Ricci, F., & Ceccaroni, L. (2013b). Local Context Modeling with Semantic Pre-

filtering. In Proceedings of the 7th ACM conference on Recommender systems (RecSys’13) (pp. 

363–366). October 14-16, 2013, Hong Kong: ACM New York, NY, USA. 

7. Codina, V., Ricci, F., & Ceccaroni, L. (2013c). Semantically-enhanced pre-filtering for context-

aware recommender systems. In Proceedings of the 3rd Workshop on Context-awareness in 

Retrieval and Recommendation (pp. 15–18). February 5, Rome, Italy: ACM New York, NY, 

USA. 

Journal article: 

8. Codina, V., Ricci, F., & Ceccaroni, L.. Using Semantic Pre-filtering for Context-Aware 

Recommendation: an Experimental Evaluation. In User Modeling and User-Adapted Interaction 

(UMUAI) (current status: accepted). 

1.6. Organization of the Thesis 

In addition to this introductory chapter, this thesis is organized as follows: 

 Chapter 2 -Recommender Systems- presents the state-of-the-art recommendation algorithms 

that do not incorporate semantic knowledge into their processes. We describe the major 

approaches to content-based, collaborative filtering, context-aware and hybrid recommendation. 

In the following chapters, some of the recommendation algorithms described in this chapter are 

used for performance comparisons. 

 Chapter 3 -Semantically-Enhanced Recommender Systems- describes the related work that is 

more specific to this thesis, describing the state-of-the-art SERS approaches to incorporate 

semantic knowledge, mostly based on ontologies, into existing CB recommendation algorithms 

and CARS techniques in order to mitigate their lack of semantics understanding and exploitation, 

and thus improve their performance. This chapter also presents the empirical evaluation of an 
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existing ontology-based SERS technique that we carried out to better understand the limitations 

of the state of the art. The results of this experimentation were presented in Codina and Ceccaroni 

[2010a; 2010b].  

 Chapter 4 -Exploiting Distributional Similarities for Enhanced Content-Based 

Recommendation- presents SCB, the proposed SERS technique to CB recommendation that 

mitigates the data-sparsity limitation by exploiting the distributional semantics of items’ 

attributes during profile matching (in the prediction phase). We also present an offline evaluation 

of SCB using a well-known movie-rating data set, comparing their performance to state-of-the-art 

SERS, and also analyzing the effectiveness of distributional semantics compared to ontology-

based semantics for improving the accuracy of CB recommendation. An initial definition of this 

technique was presented in Codina and Ceccaroni [2011], and a more complete description and 

evaluation of SCB was published in Codina and Ceccaroni [2012].  

 Chapter 5 -Exploiting Distributional Semantics for enhanced Context-Aware 

Recommendation- presents SPF, the proposed SERS technique to context-aware 

recommendation that alleviates the data-sparsity limitation by exploiting the distributional 

semantics of contextual conditions during context modeling. We present an exhaustive offline 

evaluation of SPF using several contextually-tagged data sets, comparing its prediction accuracy 

to state-of-the-art CARS. Different variants of SPF were introduced by Codina et al. [2013a; 

2013b; 2013c], and an extended version of the results of this research was submitted to the User 

Modeling and User-Adapted Interaction journal [Codina et al. submitted], which is currently 

under review. 

 Chapter 6 -Developed Recommendation Framework- describes the additional functionality we 

have included to an existing recommendation framework for supporting the development and 

evaluation of the state-of-the-art CB algorithms, as well as CARS and SERS techniques 

(including the ones proposed in this thesis). This chapter also illustrates how to use the provided 

recommendation framework and tool for offline evaluation. 

 Chapter 7 -Conclusions- closes the thesis presenting the main contributions as well as future 

research lines to be investigated. 

Appendixes have been included, containing additional information: 

 Appendix A -Acronyms- lists the meaning of all the acronyms used in this document. 

 Appendix B -Description of Contextual Information- provides a more detailed description of 

the contextual information represented in some of the contextually-tagged data sets used for 

evaluating SPF, but it is not crucial for understanding the main content of the thesis. 



 

Chapter 2 - Recommender Systems 

2.1. Introduction 

Recommender Systems (RSs) are information processing systems that actively gather historical data of 

user’s behavior in order to recommend items of interest to the users. This chapter presents an in-depth 

description of the major recommendation techniques in the RSs field, which we classified into five main 

families: baseline predictors (Section 2.2), Content-Based Filtering (CB) (Section 2.3), Collaborative 

Filtering (CF) (Section 2.4), Context-Aware Recommendation Systems (CARSs) (Section 2.5) and 

Hybrid strategies (Section 2.6)  

The traditional recommendation problem is commonly formulated as the problem of estimating ratings 

for the items that have not been consumed/rated/seen by a user [Adomavicius and Tuzhilin 2005; Ricci et 

al. 2011]. To accomplish this task, the recommender usually learns the users’ preferences from their 

previous ratings to other items as well as additional information about the users (e.g. user’s 

demographics) and/or the items (e.g. item’s attributes). More formally, given a set of users U and a set of 

possible items to recommend I, and given incomplete rating data r: U x I → R, the recommendation 

algorithm consists of an estimation function  ̂: U x I → R which estimates the rating of a given user for a 

given item. Normally, predicted ratings ( ̂    are values in the same range as the actual user ratings (e.g. 

using a 5-star rating scale R = [1, 5]). However, if the output of the recommendation is a ranked list of 

items, then it is not necessary that the predicted value is limited to a specific range because in this case 

what matters most is the order in which the items are presented to the user.  

In the RS field, rating is a general term that is used to represent a positive or negative user-item 

interaction, which can be explicitly or implicitly collected. Explicit ratings can take a variety of forms: 

numerical ratings like the well-known 1-5 stars, ordinal ratings such as “agree, neutral, disagree”, binary 

ratings in which the user is asked to decide if a certain item is good or bad, and unary ratings like the 

Facebook’s thumb up icon that it is used to explicitly show a positive interest in a specific item. Implicit 

ratings commonly take the unary form and basically consist of user’s actions, such as searching for more 

information about an item or buying an item. 

2.2. Baseline Predictors 

Baseline predictors (also known as non-personalized recommenders) are usually naïve recommendation 

techniques that make recommendations without considering the user-item interactions. A well-known 

example is the most-popular technique where items are simply ranked according to their popularity across 

all the users of the system.  
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Baseline predictors are especially useful when the recommendation task consists of predicting user’s 

ratings because they capture those effects associated to users and items that cannot be inferred from the 

user-item interactions. For this reason, baseline predictors are commonly used in combination with well-

known CB or CF recommendation algorithms in order to produce more accurate predictions [Koren and 

Bell 2011]. 

The most commonly used baseline predictor is the one that only models the systematic tendencies or 

biases associated to the users when giving ratings (e.g. a critic user that rates lower than others) and some 

items when receiving ratings (e.g. a popular items that receives higher ratings than usual). Denoting by   

the overall rating average, this baseline predictor models the bias associated to a certain user u and item i 

as follows:  

                                                                                                       

The parameters    and     are the observed deviations of user u and item i, respectively, from the average. 

For example, let’s suppose that we want to predict the baseline rating of the movie Matrix by user John, 

and that the average rating over all movies (   is 3.5 stars. Assuming that based on the available ratings, 

the system knows that Matrix is a popular movie that tends to be rated 0.5 stars above the average (   , 

and John is a critical user who tends to rate 0.3 stars lower than the average (   , the baseline prediction 

in this case would be 3.7 stars. 

Basically, two different methods can be used in order to learn these parameters for all users and items. 

One method consists of simply using average offsets, computing subsequent effects within the residuals 

of previous effects as follows: 

   
 

|  |    
∑    

    

                                                                             

   
 

|  |    
∑     

    

                                                                     

Here the damping term   is used to provide a more reasonable estimate for the users and items that have 

few ratings associated (i.e. cold-start users or items), since this parameter makes the predicted value to be 

closer to 0 and hence closer to the global average   in those cases.   is based on the following statistical 

principle: the more ratings a user has provided or an item has received, the more trustworthy is the 

predicted user’s or item’s bias.   is a data-dependent meta-parameter which has to be experimentally 

identified.  

A more sophisticated method to learn the parameters is by solving the following least squares 

optimization problem: 
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This function is typically used to optimize the model parameters for rating prediction. The minimization 

is normally performed by using stochastic gradient descent (SGD), a method which was popularized by 

Funk [2006] during the Netflix prize challenge. Basically, the SGD method consists of randomly iterating 

over all the ratings in the training set, and for each rating     this three-step process is repeated:  

(1) a prediction ( ̂  ) is produced with the current model parameters;  

(2) the associated prediction error            ̂   is computed; and  

(3) in order to reduce the rating prediction error, each model parameter is modified in the opposite 

direction of the gradient (i.e. partial derivatives) of the objective function. In the case of the baseline 

predictor the gradient is simply the associated predictor error    , and the user and item biases are 

modified as follows:  

                                                                                      

                                                                                        

The constant   controls the extent of regularization that is used to prevent over-fitting, and   is the 

learning rate, i.e. determines the size of the steps when moving in the opposite direction of the gradient. 

These meta-parameters of the SGD learning process must be tuned experimentally and it is advised to use 

distinct values for each type of parameter (e.g. one for    and   ). In the case of the learning rate, it is also 

a good practice to employ a decay strategy to reduce its value after each iteration/epoch, since it helps to 

converge easily. As we will see in next sections, baseline predictors are usually incorporated into well-

known CF or CB prediction models. 

2.3. Content-Based Filtering 

Content-based recommendation algorithms rely on the assumption that users may like items whose 

attributes are similar to those of the other items which users have previously rated positively [Pazzani and 

Billsus 2007; Lops et al. 2011]. This approach has a straightforward justification: recommend items to a 

user if she is interested in some attributes of the item. For example, if we know that Matrix is a science 

fiction action movie, and John loves this movie genre, it would be intuitive to recommend this movie to 

him.  

Inspired by IR, the problem of CB recommendation has been traditionally considered as a specific 

type of text classification problem, where the goal is to classify an unseen document as relevant or non-

relevant (user likes/dislikes) based on the previous users’ ratings and the document descriptions. For this 

reason, most CB recommendation techniques are adaptations of text classification algorithms.  



12 Chapter 2 - Recommender Systems 

 

The general process of CB recommendation can be divided into two main components: (1) content 

analysis (Section 2.3.1), in which raw item descriptions (i.e. unstructured item data) are analyzed and 

represented in a structured way (vector space); and (2) user-profile learning, where user profiles 

modeling the users’ interests are learnt from the structured item representations. CB recommenders can be 

classified into three main approaches depending on how the user profile is learnt: using a non-linear 

approach, the k Nearest Neighbor (section 2.3.2), using a probabilistic approach, the Naïve Bayes (section 

2.3.3), and using linear prediction models (section 2.3.4).  

Case-based recommender systems are a subtype of CB approaches that have their origins in Case-

Based Reasoning [Smyth 2007]. These techniques do not attempt to build long-term user profiles, but to 

directly estimate the match between a user’s need and the set of options available. Case-based systems 

can rely on utility-based or knowledge-based technologies to assess the similarity between a case and a 

user’s query. An extension of case-based recommenders are the conversational or critiquing-based 

recommenders [Ricci and Nguyen 2007], which are characterized by a reactive behavior, and are 

especially suitable for recommending products infrequently bought in a user’s life, or those demanding a 

significant financial commitment, such as cars or high-end smart-phones. 

2.3.1. Item Representation 

In order that CB recommendation techniques can be applied, first the descriptions of the items must be 

represented in a structured way. The simplest scenario is when raw items’ descriptions are already 

structured, using a determined set of attributes and whose possible values are known a priori. For 

example, a movie can be described by the cast, the director and its genres. However, this type of 

descriptions has to be manually annotated by content providers, and in most domains this is often not 

affordable, or the descriptions available are little informative. An exception is the Pandora music 

recommender, where songs are manually annotated by musicians with a high level of detail about the 

characteristics of the song.  

Typically, the common scenario of CB recommendation techniques is to deal with unstructured (free-

text) descriptions; thus, no attributes with well-defined values are available a priori. Some examples of 

such type of recommendable items are Web pages, news, e-commerce products [Chen and Sycara 1998; 

Billsus and Pazzani 1999; Ahn et al. 2007]. In these recommendation domains, keyword extraction 

techniques are necessary to obtain a structured representation of the items’ content. A popular technique 

in IR and CB recommenders is to represent items using the Vector Space Model (VSM) and the TF-IDF 

(Term Frequency-Inverse Document Frequency) weighting mechanism [Manning et al. 2009]. In the 

VSM, given a set of k informative keywords (or attributes)   [          ] describing the items of a 

recommendation domain, items are represented in a k-dimensional vector space where each element     

represents the relevance of attribute    in item i according to the TF-IDF weighting scheme: 
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   [              ]                                                                

The TF-IDF is based on the frequency of occurrence of attributes in the item descriptions, and assumes 

that attributes occurring frequently in one item (Term Frequency), but rarely in the rest of items (Inverse 

Document Frequency), are more likely to be relevant to the description of the item. Let I be the set of 

items that can be recommended, and    the subset of items in which the attribute   appears, then the 

standard TF-IDF scheme for a given item i is computed as follows: 

    
   

           
     

| |

|  |
                                                               

where     is the raw frequency of attribute   in the item i, and           stands for the maximum of 

the frequencies       of all attributes    describing item i. 

More recently, some approaches have been proposed using user-generated annotations as item 

attributes [Sen et al. 2009; Nguyen and Riedl 2013]. These systems, known as tag-based recommenders 

or “tagommenders”, use the most popular form of user generated content, folksonomies, where users 

collaboratively annotate and categorize items with freely chosen keywords (i.e. user tags). However, due 

to the inherent noise of user tags, in these CB recommendation techniques it is necessary first to carefully 

select those tags that are useful to build informative user profiles. Additionally, given the peculiarity of 

this type of content, apart from TF-IDF weights other weighting schemes especially designed for user 

tags can be used instead [Sen et al. 2009]. 

2.3.2. Nearest Neighbor: a Non-Linear Approach  

The nearest neighbor CB recommendation algorithm is usually known as a lazy learner because it simply 

stores in memory all the training user data in memory, and classifies a new candidate item by comparing 

it to the previously rated items using a similarity measure. In particular, the algorithm generates a 

prediction score based on the ratings of the most similar items previously rated by the user (the nearest 

neighbors). Depending on how the ratings are combined several estimation functions can be used. For 

instance, using the weighted average one can generate predictions as follows: 

 ̂   
∑             

∑         

                                                                   

where     is the set of k most similar items to item i rated by the user u; and     is the similarity 

between item i and j based on their attribute-based profiles, which typically is computed as the cosine of 

the angle between their respective vector representations. Although it is the least popular CB approach in 

the literature, some systems like Daily Learner [Billsus and Pazzani 2000] have used this method to 

create a model of the user’s short-term interests. 



14 Chapter 2 - Recommender Systems 

 

2.3.3. Naïve Bayes: a Probabilistic Approach  

The Naïve Bayesian classifier is a probabilistic classification approach that has been adopted in several 

CB recommender systems, such as NewsDude [Billsus and Pazzani 1999], LIBRA [Melville et al. 2002], 

and ITR [Degemmis et al. 2008]. This approach generates a probabilistic model based on the set of 

training ratings, which usually is employed to classify the candidate items to be recommended to a user u 

into two possible classes:   
 , which is the set of items known to be relevant to user u; and   

 , the set of 

items not relevant to user u. To classify a candidate item i, for each class the Bayes theorem is applied to 

calculate the corresponding a posteriori probabilities     
 |   and     

 |  , and the class with the highest 

probability is selected.  

    
 |   

    
     |  

  

    
                                                                   

    
 |   

    
     |  

  

    
 

The Naïve Bayes can also be used to generate a prediction score  ̂   by computing the ratio of the a 

posteriori probabilities previously mentioned as follows: 

 ̂   
    

     |  
  

    
     |  

  
                                                                           

where    |  
   is the probability of selecting the item i from the set   

  (the relevant items of user u); 

    
   is the probability of selecting an item from the item collection I relevant to the user u;    |  

   and 

    
   are defined similarly but based on the non-relevant items of user u.  

Empirical results show that the best performing working model of the naïve Bayes to text 

classification and CB recommendation is the multinomial event model, especially in data sets where the 

set of possible item’s attributes A is large [McCallum and Nigam 1998]. This model uses the attribute-

based item representation to estimate    |  
   and    |  

   as the product of the probabilities of the 

attributes that appear in the description of item i, assuming the attribute independence assumption: 

   |  
   ∏   |  

     

   

                                                                 

   |  
   ∏   |  

     

   

 

Finally, a key step for implementing naïve Bayes is the estimation of attribute probabilities     |  
   that 

can be derived from training data as follows: 
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To make the attribute probability estimates more robust, a smoothing method is usually employed to 

modify the probability of infrequently attributes [Witten and Bell 1991]. More recently in Kim et al. 

[2006] the authors proposed a multivariate Poisson model that mitigates some limitations of the 

multinomial model when handling few training items available, and allows more reasonable parameter 

estimation under those conditions. From the learnt attribute probabilities it is also possible to build a user 

profile structured in two parts [Degemmis et al. 2008]: one containing the attributes that are relevant to 

identify items the user likes (i.e. positive interests), and other one containing the negative interests. 

2.3.4. Linear Models 

This family of CB approaches consists of inducing linear prototype vectors representing the user interests 

in terms of items’ attributes, which then are used to recommend items whose attributes match the user’s 

interests. To estimate the degree of matching between the user and the item profile several similarity 

measures can be employed, but the most common ones are the cosine similarity, and the dot product
3
 

between the corresponding vectors. To apply these techniques, user profiles must be represented using the 

same attribute-based space (  [          ]) used for representing the items. Here we denote the 

interest profile of a user u as follows (where     indicates the degree of interest in attribute   of user u): 

   [              ]                                                                

One of the earliest methods using this idea was the Rocchio’s method [1971], which is an adaptation of 

the relevance feedback technique adopted in IR to help users to incrementally refine queries based on 

previous search results. The adaptation for CB recommendation consists of refining the user profile 

instead of a query. Rocchio’s method learns the degree of interest of a user u in an attribute   as follows: 

       ∑
   

|  
 |

    
 

   ∑
   

|  
 |

    
 

                                                 

where   and   are model meta-parameters to control the relative importance of the positive and 

negative examples. This approach has been used in several CB recommenders, such as Fab [Balabanovic 

and Shoham 1997], YourNews [Ahn et al. 2007], and [Degemmis et al. 2007].  

                                                      

3
 Recall that the dot product between two vectors x,y     is defined as:     ∑      
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A limitation of Rocchio’s method is that it does not consider the actual values of user ratings. 

Therefore, recent works have proposed methods for incorporating this information in the user-profile 

learning process; in this thesis, we call them rating average methods. For example, Sen et al. [2009] 

propose a method of predicting the degree of interest of a user u in an attribute   as the weighted user’s 

average rating for items that the user has rated and contain the specific attribute (here we denote this set 

of items as     : 

     
∑              

∑         

                                                                   

 

Finally, a more sophisticated user-profile weighting method consists of modeling the user’s interests as 

part of a linear regression model, in which ratings are expressed as a linear combination of item and user 

profiles (i.e. attribute weights). Recently, it has been demonstrated that this method, when applied to tag-

based recommendation, can perform similarly to state-of-the-art CF techniques in terms of prediction 

accuracy [Nguyen and Riedl 2013]. 

 An efficient way to implement this method is by using the SGD approach previously introduced in 

Section 2.2. In this case, incorporating also the baseline predictor    , the CB rating prediction model 

predicts a rating for a given user and item as the dot product of the corresponding attribute-based user and 

item profiles: 

 ̂               
                                                                    

Then, the interest profiles    can be incrementally learnt together with the user and item biases during the 

minimization of the following objective function:  

   
    

∑[(               
    )

 
   (  

     
  ‖  ‖

 )]

   

                            

Similarly to the case of the baseline parameters, for a given training rating    , each parameter     is 

modified in the opposite direction of the function’s gradient, which corresponds to the prediction error     

times the item’s vector (  ), as follows: 

                                                                              

2.3.5. Limitations of Content-Based Recommendation Techniques 

CB recommenders suffer from three main limitations that affect their effectiveness [Lops et al. 2011]:   

 Limited content analysis. The effectiveness of CB techniques strongly depends on the quality of 

the content analysis process, in which structured representations of items are derived from raw 
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item descriptions. If the generated item representations do not contain distinguishing aspects of the 

items to discriminate the ones the user likes or does not like, these approaches cannot provide 

accurate predictions.  

 Over-specialization. Because the estimations of CB approaches are based on the good match 

between the attributes of the target item and the interests of the target user, they tend to produce 

recommendations with a limited degree of diversity. In other words, all the items suggested will 

share some attributes, especially if the user profile contain few interests.  

 Requirement of a minimum number of user’s ratings (new-user cold-start). CB approaches 

require a minimum number of user’s ratings in order to build an accurate profile of the user’s 

interests. Users that have rated fewer items than this minimum are usually referred to as new users 

when using the wider sense of the cold-start problem [Schein et al. 2002].  

2.4. Collaborative Filtering  

Collaborative Filtering (CF) techniques [Ekstrand et al. 2010; Koren and Bell 2011] base their predictions 

on the ratings of other users. Differently from CB recommenders, CF approaches are domain-independent 

in the sense that no item descriptions are required in order to generate recommendations, only ratings. 

This technique emulates a simple but effective social strategy called “word-of-mouth”, which relies on 

the added credibility of person-to-person recommendations. The basic assumption behind CF is that a 

user may be interested in items that have been positively rated by other users with similar interests.  

In the literature, three main CF techniques can be identified: user-based CF (Section 2.4.1), which was 

the first one proposed and directly implements the basic assumption of CF by computing the k nearest 

neighbors of a target user based on their rating’s behavior similarity; item-based CF (Section 2.4.2), 

which is a more scalable implementation than the previous one where, rather than using similarities 

between users’ rating behavior, it employs similarities between the items’ rating pattern; and Matrix 

Factorization (MF) (Section 2.4.3), nowadays the most popular CF approach because of its superior 

prediction accuracy and scalability compared to nearest neighbors methods, which represents items and 

users as vectors of latent factors directly inferred from the rating matrix, and generate predictions by 

directly comparing the latent factors of users and items. 

2.4.1. User-based CF 

User-based CF is a straightforward implementation of the CF’s core idea: find top k users whose past 

rating behavior is most similar to that of the target user (i.e. nearest neighbors) and compute a rating 

prediction for the target user and item based on the ratings provided to that item by the user’s 

neighborhood. Well-known examples of recommender systems using the user-based CF approach are the 

GroupLens Usenet [Resnick et al. 1994; Konstan et al. 1997], Ringo [Shardanand and Maes 1995], and 

BellCore [Hill et al. 1995].  
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The most common method to generate a prediction for a certain user u and item i using user-based CF 

consists of computing a weighted average of the normalized ratings for item i provided by the neighbors 

of user u according to their user-to-user similarity values: 

 ̂       
∑                 

∑        

                                                      

 where:    is the user’s neighborhood (i.e. top k most similar users to user u) and     is the user-to-

user similarity value. The baseline predictors     are used to adjust the ratings provided by neighbor users 

subtracting the corresponding user and item biases.   

A key design decision when implementing user-based CF is the choice of the similarity measure to 

compute user-to-user similarities based on their rating correlation. In the literature, several measures have 

been proposed, such as the Spearman rank correlation [Herlocker et al. 2002] and the cosine similarity, 

but the most popular one is the Pearson correlation, which computes the statistical correlation (Pearson’s 

r) between two user’s common ratings to determine their similarity, and is usually computed as follows: 

    
∑                           

√∑          
 

        √∑          
 

        

                                       

Again, the baseline predictors are used to remove from the ratings the particular user and item rating 

biases. In order to avoid high similarity values between users with few ratings in common, a damping 

method is commonly applied to reduce the similarity in those cases. Basically, two methods for damping 

can be used: one consists of reducing the similarity only when the number of co-rated items is lower than 

a specific threshold; and the other one consists of incorporating a damping term to the denominator, 

which always reduces the similarity but especially when users have a small number of co-rated items.  

Another important design decision is the choice of the size of the user’s neighborhood, a data-

dependent meta-parameter that should be obtained experimentally. This parameter controls the trade-off 

between the generalization power of the prediction model (the more users, the more reliable may be the 

prediction) and the noise introduced by those users with low similarity to the target one.   

2.4.2. Item-based CF 

Item-based CF is another nearest neighbor variant that, similarly to the CB approach presented in Section 

2.3.2 (Eq. 2.9), computes a rating prediction based on the weighted average of the ratings given by the 

user to the items most similar to the target item. But the key difference between the two methods is that in 

the CF approach the similarity is based on user’s rating behavior rather than item attributes. Hence, 

incorporating also the user and item biases the rating estimation function commonly used in item-based 

CF is the following: 
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 ̂       
∑                  

∑         

                                                         

As in user-based CF the choice of how to measure the rating-based item-to-item similarity is a critical 

design decision of item-based CF. In this case the most popular similarity metric is the cosine but other 

measures have been also proposed, such as an adaptation of the Pearson’s correlation used in user-based 

CF [Sarwar et al. 2000], and conditional probabilities [Karypis 2001]. 

Due to the relatively static nature of item similarities in domains where the number of users is much 

larger than the number of items (i.e. | |  | |), especially when there are more ratings per item than per 

user, it is possible to pre-compute the item-to-item similarities and thus perform predictions much faster 

than in user-based CF. For this reason, item-based CF has been adopted in several e-commerce websites 

with a large user base, like for instance in Amazon’s recommender [Linden et al. 2003].  

2.4.3. Matrix Factorization  

MF prediction models use Singular Value Decomposition (SVD) to reduce the dimensionality of the 

original rating matrix to a latent factor space, which characterizes those aspects of items and users that are 

relevant for both describing the item and modeling the user’s interest. Once the latent factor model is 

learnt, recommendations are produced based on the dot product of the target user and item factor vectors.  

Figure 2.1 illustrates how SVD decomposes the original m n item-to-user rating matrix into three 

smaller matrices (        ) with U an m r matrix,   a r r diagonal matrix, and V an n r matrix, 

such that U and V are orthogonal and r is the rank of the original matrix A. Then, the best rank-k 

approximation of A, which is denoted with Ak, is produced by selecting the k largest singular values in S 

and set the others to zero (i.e.            
 ).   

 

Figure 2.1. Low-rank matrix approximation using SVD (Figure from B. Mobasher UMAP 2013) 

Due to the typical high number of missing values (i.e. high sparsity) of the rating matrix, it is not practical 

to apply the conventional SVD method, widely used in IR to solve the problems of synonymy and 

polysemy, since it requires a full dense rating matrix [Deerwester et al. 1990]. An early solution to this 

limitation consisted of filling missing values with pseudo-generated ratings [Sarwar et al. 2000], but this 
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strategy is usually not accurate and, in addition, it does not scale well. A more accurate and efficient 

method is to use an implementation of the Lanczos algorithm based on Expectation Maximization (EM) 

framework, which is designed to work with sparse matrices. However, the learning process is still costly 

when applied to large matrices, like in the Netflix prize data set [Kurucz et al. 2007]. For this reason, 

most researchers using MF prediction models have focused on learning the latent factors based only on 

the known training ratings while avoiding over-fitting using regularization of the model parameters. A 

popular method to learn the user and item latent factors in this way is by using the SGD optimization 

method popularized by Funk [2006] (described in Section 2.2), which was widely used during the Netflix 

prize because of its efficiency and efficacy, and posteriori used as part of the winning solutions [Koren 

and Bell 2011]. Figure 2.2 illustrates the reduction dimensionality process when using the SGD Funk’s 

method. In this case, the rating matrix A is directly decomposed as the dot product between the 

corresponding user and item vectors of latent factors         over the known training ratings.  

 

Figure 2.2. Low-rank approximation using non-conventional SVD (Figure from B. Mobasher UMAP 2013) 

Incorporating the baseline predictors based on user and item rating biases, the standard MF prediction 

model (also known as bias MF) computes the rating prediction for a given user u and item i as the sum of 

the user and item biases and the dot product between their corresponding vectors of latent factors: 

 ̂               
                                                                   

Considering this MF rating prediction model, the parameters can be optimized for rating prediction task 

by minimizing the least square objective function as follows:  

   
      

∑[(               
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  ‖  ‖

  ‖  ‖
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Using the SGD method, for a given training rating     the user and item factors are modified in the 

opposite direction of the gradient (i.e. the error    times the item or user factor vectors): 
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During the Netflix competition, it was demonstrated that MF models are the best CF approaches in terms 

of prediction accuracy and scalability, especially on large and sparse data sets like the movie data set of 

ratings that was provided for the contest. For this reason, MF prediction models have gained popularity in 

the last years on the research community. Koren [2008] proposed a variant of bias MF (known as 

SVD++) that improves the prediction accuracy by considering also the implicit feedback (i.e. unary 

ratings) provided by the users. In particular, SVD++ adds an additional set of latent factors relating each 

item i to a factor vector      , which are used to characterize users based on the set of items that they 

rated (i.e. here the action of rating an item is considered as implicit feedback). The extended MF 

prediction model is defined as follows: 

 ̂               
 (   |  |

  ∑   

    

)                                            

where   is a normalization factor that stabilizes the variance of the sum of factors across the range of 

observed values of   , since they are centered around zero by the regularization. The model parameters 

are also learnt by minimizing the regularized squared error objective function using SGD.  

Rather than targeting the rating prediction task, recent research started to exploit possibilities for 

ranking-oriented MF approaches that focus on the quality of recommendation or ranked item lists, which 

is especially interesting in scenarios where only implicit feedback is available [Weimer et al. 2009]. For 

example, Rendle et al. [2009] proposed a MF approach dealing with implicit feedback based on the 

Bayesian Personalized Ranking (BPR-MF) framework, which is directly optimized for a smoothed 

ranking objective function based on the Area Under the ROC Curve (AUC), a well-known IR 

performance metric. Essentially, this technique considers entity pairs instead of single entities in its 

objective function, allowing the interpretation of unary ratings as partial ranking data. The objective 

function of BPR-MF is defined as follows: 

   
    

∑ [   (  
       

   )    ‖  ‖
  ‖  ‖

  ]
          

                                    

where            |    
      

   constitutes the partial ranking data, which are training triples 

randomly chosen and uniformly distributed, used for training the model parameters through SGD; and   

is the logistic function:  

     
 

     
                                                                                    

Collaborative Less-is-More Filtering (CLiMF) [Shi et al. 2012b] is a ranking-oriented approach similar to 

BPR-MF, but that optimizes a smoothed version of the Mean Reciprocal Rank (MRR) (another ranking 

accuracy metric) rather than AUC. The main advantage is that it uses a top-biased measure: errors at 
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lower ranked positions of the recommendation list are more penalized than higher ranked positions, which 

is the desired goal when recommending ranked item lists.   

2.4.4. Limitations of Collaborative-Filtering Recommendation Techniques 

CF recommenders suffer from several limitations that affect their effectiveness [Adomavicius and 

Tuzhilin, 2005]:  

 Data Sparsity. In most recommendation domains the rating matrix is highly sparse, in other 

words, the number of ratings already obtained is usually very small compared to the number of 

missing ratings (i.e. the ones the system has to predict). Because CF techniques rely on general 

rating patterns across users and items, their accuracy strongly depends on the rating matrix 

sparsity, especially in nearest neighbors CF approaches. MF prediction models usually perform 

better on sparse data sets, since they are based on rating patterns derived from a reduced and more 

informative representation of the rating matrix.   

 Requirement of a minimum number of user’s ratings (new user cold-start). Similarly to CB 

techniques, CF prediction models require a minimum number of ratings per user in order to 

produce acceptable personalized recommendations.  

 Requirement of a minimum number of item’s ratings (new item cold-start). Additionally to 

the new user problem, CF approaches cannot produce accurate recommendation for items that 

have been rated by few users, since no content-based information is exploited in these approaches. 

 Lack of scalability. The computational cost of neighborhood CF approaches grows exponentially 

with the number of users (user-based CF) and the number of items (item-based CF). For this 

reason, the application of these techniques in systems that deal with millions of users or items can 

be impractical. In those cases, MF prediction models are a better option because they build 

predictive models that can work in a much lower-dimensional space compared to the number of 

users and items.  

 

2.5. Context-Aware Recommender Systems 

Context-Aware recommender systems (CARSs) extend the traditional formulation of the recommendation 

problem by incorporating also the context of user-item interactions. Therefore, CARSs estimate the rating 

of a target user   for an item  , not only based on a data set of ratings (of users for items), but they also 

exploit both the contextual information under which the ratings were acquired and the contextual situation 

of the target user asking for a recommendation. More formally, given a set of possible contextual 

situations S that users can encounter while experiencing items, the rating estimation function is 
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formulated as  ̂: U x I x S → R and estimates the rating of a given user for a given item in a specific 

contextual situation.  

The main assumption supporting CARS techniques is that in many domains users can experience 

items differently depending on their contextual situation, and thus user’s ratings can also be influenced by 

the context. For instance, depending on the weather, a user may prefer to visit a beach or a museum. 

Therefore, CARSs’ goal is to enhance the effectiveness of recommendations by incorporating context into 

the recommendation process. Depending on how context is exploited, three main types of contextual 

paradigms can be identified [Adomavicius and Tuzhilin 2011; Adomavicius et al. 2011]: contextual pre-

filtering (Section 2.5.2), where context is used for selecting the relevant set of rating data before 

computing predictions with a context-free model; contextual post-filtering (Section 2.5.3), where context 

is used to adjust predictions generated by a context-free model; and contextual modeling (Section 2.5.4), 

in which contextual information is directly incorporated in a context-free model as additional parameters. 

Before describing these contextual paradigms, in Section 2.5.1 we show the main views of understanding 

and representing contextual knowledge in CARSs.  

Earlier research on CARS focused on following a context-driven querying and search approach, such 

as INTRIGUE [Ardissono et al. 2003] and COMPASS [Van Setten et al. 2004]. These systems usually do 

not attempt to model users’ contextual preferences, but only to exploit the current context as queries to 

search for the most appropriate items.  

2.5.1. Context Representation 

Context is a multifaceted concept used across various disciplines, each one taking its own perspective of 

the concept. The definition of Dey et al. [2001] was probably the first broadly adopted in AI and 

ubiquitous computing: “Context is any information that can be used to characterize the situation of an 

entity. An entity is a person, place, or object that is considered relevant to the interaction between a user 

and an application”. In CARSs, context characterizes the situation of a user, an item, and the experience 

the user is evaluating. Dourish [2004] introduces a taxonomy of contexts according to which contextual 

information can be classified into the interactional and the representational views.  

The interactional view assumes that the user behavior is induced by an underlying context, but the 

context itself is not necessarily observable. Therefore, no enumeration of contextual conditions is possible 

beforehand, since the scope of contextual information is defined dynamically. This view assumes the 

existence of a cyclical relationship between context and the activity: context gives rise to the activity and 

the activity changes the context. Anand and Mobasher [2007] proposed a generic interaction framework 

for CARS inspired by the Atkinson and Shriffin’s model of human memory. This framework emphasizes 

the distinction between local preference models in short-term memory and global, static long-term 

memory, and the relevance of user’s interaction with the system in deriving contextual cues, which can be 

classified into three types: collaborative, semantic and behavioral. Some works have proposed 
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implementations based on this framework: in Sieg et al. [2007] context is reflected in the current interests 

of the user during her current interaction with the system, and in Hariri et al. [2012] the authors proposed 

a context-aware music recommender based on latent topic sequential patterns, where context is reflected 

in the sequence of songs played by a user during her active interaction with the system. Other works have 

also exploited runtime context to enhance predictions [Hayes and Cunninghamin 2004; Cantador et al. 

2008]. 

 The representational view assumes that context is defined with a predefined set of observable 

conditions, which can be separated from the activity and the structure of which does not change 

significantly over time. In other words, using this view a set of contextual factors and their conditions are 

identifiable and known a priori and, therefore, can be represented beforehand. Similarly as in the 

structured item representations in CB (see Section 2.3.1) a contextual situation     is typically 

represented as a set of static contextual factors (e.g. weather and mood) whose possible values (i.e. 

contextual conditions) are known a priori (e.g. sunny, cloudy and rainy are typical conditions of the 

weather factor): 

  [           ]                                                                                 

where, k is here the number of contextual factors that are captured in the application domain; and    is 

a specific contextual condition of the k-th factor, which can be also unknown if the information is not 

available.  

An important issue in the representational view is the selection of the relevant contextual factors for 

the specific domain, since contextual information that does not have a significant contribution to explain 

the variance in the ratings could degrade the prediction by adding noise. Two main approaches can be 

used to determine whether a specific piece of contextual information should be captured and exploited 

during the recommendation process: (1) user surveys [Baltrunas et al. 2012], where users are explicitly 

asked if a specific contextual condition would positively or negatively influence their decision/evaluation 

(2) using statistical testing methods based on existing training data [Odić et al. 2013]. However, each of 

these techniques has its drawbacks: survey assessment requires a lot of user effort, and statistical testing is 

not reliable unless the data set is dense (i.e. items have been rated several times in different contextual 

situations). 

2.5.2. Pre-Filtering 

Pre-filtering is the most popular contextual paradigm because it has a straightforward justification: when 

context matters, use in the recommendation process only the data acquired in the same contextual 

situation of the target user, because only this data are relevant for predicting user preferences. As show in 

Figure 2.3, in contextual pre-filtering the idea is to use context for data pre-processing, by discarding 
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rating data, which are not relevant for the target situation, and use the remaining ratings to learn a local 

model for rating prediction and recommendation.  

 

Figure 2.3. Contextual pre-filtering paradigm 

 

Adomavicius et al. [2005] proposed a straightforward method to implement contextual pre-filtering 

known as the reduction-based approach. A variant of this approach is Exact Pre-filtering, which strictly 

implements the idea of building a local context model, which is tailored for each target situation, by using 

only the ratings tagged with that situation. Adomavicius et al. [2005] proposed to use Exact Pre-filtering 

in combination with user-based CF, also used in [Panniello et al. 2009; Campos et al. 2013], and 

Lombardi et al. [2009] used it in combination with a Naïve Bayes CB prediction model. The main 

limitation of Exact Pre-filtering is its rigidity when building the local models: it never reuses ratings 

acquired in situations syntactically different to the target one, independently from the number of training 

ratings available for learning the local model (i.e. it always builds a strict local model for each target 

contextual situation). Therefore, this approach only works for those contextual situations with enough 

ratings to build a robust local prediction model.  

A different approach was introduced in Baltrunas and Ricci [2009; 2014], which is known as Item 

Splitting. The idea here is to split the rating vector of a given item into two virtual item vectors using a 

specific contextual factor. For instance, the ratings of a music track may produce two sets of ratings: the 

ratings of the music track collected when the user was happy, and the ratings of the same track when the 

user was sad (assuming that happiness is the contextual factor). Then, a predictive model is trained by 

considering all the ratings organized in the extended set of items generated by splitting all the items that 

satisfy a given statistical test (i.e. measuring if the two virtual items generated by the splitting are 

significantly different). In Item Splitting, filtering is selectively carried out item by item for the most 

relevant contextual condition. Baltrunas and Amatriain [2009] proposed a variant of this approach, which 

is called User Splitting, where instead of splitting items, it splits users into several sub-profiles, each 
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representing the user in a particular context. Then, similarly to the previous approach, a global predictive 

model is built using all the ratings but in the modified set of users. Recently, Zheng et al. [2013a] also 

explored a combination of the two previous variants, UI Splitting, which yielded better prediction 

accuracy in a movie-rating data set. All these variants employ statistical methods (e.g. chi-square test, t-

test, etc.) as splitting criteria. 

Finally, Zheng et al. [2013b] presented Differential Context Relaxation (DCR), another type of pre-

filtering modeling approach that tries to break down a predictive model into different functional 

components to which specific optimal contextual constraints are applied in order to maximize the 

performance of the whole algorithm. The authors used this approach in combination with the nearest 

neighbor CF models (i.e., user-based and item-based CF) because their prediction functions can be easily 

decomposed into several components. The selection of the relevant factors per component is performed 

by using a particle swarm optimization algorithm.  

2.5.3. Post-Filtering 

In contrast to pre-filtering, the post-filtering paradigm ignores the contextual information during the 

prediction generation. As shown in Figure 2.4., here context is used only to adjust the resulting 

predictions made by a context-free prediction model. The basic idea of this contextual paradigm is to 

analyze the preference data for a given user in a given context to find specific item usage patterns (e.g., 

Jane watches only comedies on workdays and action movies on weekends) and then use these patterns to 

adjust the rating predictions or the ranked item list. As in pre-filtering, post-filtering has the major 

advantage that it allows using any of the available context-free recommendation techniques proposed in 

the literature.  

 

Figure 2.4. Contextual post-filtering paradigm 
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Two main post-filtering approaches can be identified: 

 Methods that focus on finding common item features for a given user in a given context (e.g., 

preferred actors to watch in a given context), and then use these attributes to adjust the 

recommendations. An example of such an approach is Smart Radio [Hayes and Cunningham 

2004]. In this case the system uses the genres and artists of the recent played songs as context 

(i.e. session-based context) to refine the recommendations based on CF, by promoting those 

items of the list with similar attributes.  

 Methods that use a predictive model that approximates the probability of an item i to be 

relevant for the user u in a given context, to penalize those items not relevant to the target 

context. Panniello et al. [2009] proposed a simple method to estimate this probability of 

relevance, using user-based CF, as the proportion of users in the neighborhood of user u that 

rated the item i in the target situation. The authors presented two variants: Weight Post-

filtering, which reorders the recommended items by weighting the predicted ratings with their 

estimated probability; Filter Post-filtering, which discards the recommended items that have 

a probability smaller than a specific threshold. 

2.5.4. Contextual Modeling  

Approaches based on contextual modeling commonly extend a context-free prediction model by 

explicitly modeling the influence of context on the rating prediction function, i.e., with additional 

parameters that represent the contextual information. This gives rise to truly Multidimensional (MD) 

recommendation algorithms, as shown in Figure 2.5..  

 

Figure 2.5. Contextual modeling paradigm 

Most research on MD recommenders have focused on extending MF prediction models, although some 

works also have proposed variants extending user-based CF [Chen 2005; Adomavicius and Tuzhilin 

2011] and CB recommendation techniques [Campos et al. 2013]. Currently, two main approaches based 

on extending MF prediction model have been proposed in the literature: Tensor Factorization (TF) and 

Context-Aware Matrix Factorization (CAMF). 
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TF consists of extending the two-dimensional MF problem into a multi-dimensional version, where 

the rating tensor is factored into a lower-dimensional vector space. In this way, the interactions between 

users, items, and contextual factors are represented as latent factor vectors. Several authors have proposed 

variants of this approach: some optimized for rating prediction, such as Multiverse Recommendation 

[Karatzoglou et al. 2010] and Factorization Machines [Rendle et al. 2011], and others optimized for 

ranking using implicit user feedback, such as iTALS [Hidasi and Tikk 2012], and TFMAP [Shi et al. 

2012a]. The main limitation of these approaches is the computational complexity, since the number of 

model parameters grow exponentially with the number of contextual factors.  

CAMF is a more scalable approach, proposed by Baltrunas et al. [2011b; 2012], since it uses less 

parameters than TF. The approach is a generalization of the time-aware MF model proposed by Koren 

[2010], an extension of SVD++ (described in Section 2.4.3) that incorporates the temporal dynamics 

associated to rating data. The authors demonstrated that this prediction model, called timeSVD++, was 

one of the best performing isolated rating prediction models in the Netflix data, and indeed, a variant of 

the model form part of the winning solution based on an ensemble of several prediction models [Koren 

2009]. In particular, this model adds time-sensitive user and item biases              that change over 

time, and models the user factors also as a function of time      , leading to the following prediction 

model: 

 ̂                      
 (      |  |

  ∑   

    

)                                     

 

Here the user bias captures two temporal effects using the function: 

              |    |
                                                                  

where    is the static part of the user bias;    |    |
  is a linear model for approximating a gradual 

drifting behavior, being    the user’s mean date of rating, and |    | the number of days between dates t 

and   ;      captures session-specific variability, modeling short-lived effects, such as a different user’s 

mood that day.  

The item bias captures a less fined-grained temporal variability using the following function: 

                                                                                                

 where    is the stable part of the item bias;           captures temporal variability modeled by time-

based bins of the same size. As the other parameters of the time-aware model, the optimal size is a data-

dependent parameter that must be optimized experimentally. (E.g., in the Netflix data the authors used 

bins of two months.) 
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Baltrunas et al. [2011b; 2012] proposed to extend the static baseline predictors of MF with contextual 

information, modeling the interaction between items and contextual conditions, but without considering 

temporal dynamics. The authors demonstrated that this solution outperforms the TF implementation 

proposed by Karatzoglou et al. [2010] in small-medium size data sets. Baltrunas et al. [2011b; 2012]  

proposed three different variants of CAMF that model the influence of contextual conditions at different 

granularities: CAMF-C models the influence of a condition globally, i.e., assuming that it has the same 

effect on every user and item; CAMF-CI models the influence of a contextual condition uniformly on 

each item, i.e., assuming that it does not depend on the user; and CAMF-CC, which assumes that context 

influences uniformly the ratings for all the items of the same type (i.e. based on item categories). For 

example, using CAMF-CI the contextual rating prediction function is defined as follows: 

 ̂       
           ∑    

 

   

    
                                                       

More Recently, Odić et al. [2013] also experimented with a variant of CAMF that models the influence of 

contextual conditions with respect to the users. This variant, called CAMF-CU has the following 

estimation formula: 

 ̂       
           ∑    

 

   

    
                                                      

2.5.5. Limitations of Context-Aware Recommender Systems 

CARS are based on CB and CF approaches and thus they suffer from the same limitations. Actually, the 

sparsity and cold-start problems are aggravated, especially in pre-filtering approaches, because they 

require for a large data set of contextually tagged ratings, i.e., ratings for items provided in various 

contextual situations that may be encountered by a user while experiencing an item, in order to accurately 

identify the user’s interests in each of the possible contexts. The scalability of CARS can also be a 

problem, especially in TF approaches, if the number of contextual factors is relatively large.  

In addition to the previous limitations, the effectiveness of CARS following the representational view 

strongly depends on the relevance of contextual factors and its conditions that are acquired and 

represented in the system. Similarly to CB recommenders, if the generated representations do not contain 

relevant contextual conditions describing ratings’ contexts that help to identify different user’s behaviors 

on the same kind of items, these approaches are not able to improve context-free recommendations. 
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2.6. Hybrid Recommender Systems 

As in other machine learning applications, the highest prediction accuracy for a particular 

recommendation domain is usually achieved by combining different prediction models. This was clearly 

demonstrated during the Netflix prize, where the most accurate solutions employed a combination of 

more than one hundred prediction models using a specific ensemble scheme. (The winning solution of the 

Netflix prize used Gradient Descent Boosted Trees [Koren 2009].) However, in typical recommender 

systems it is not feasible to combine such a high number of models, mainly because it is expensive to 

maintain this kind of ensembles over time. For this reason, practical solutions consist of combining fewer 

prediction models.  

Two main advantages of CB approaches complement well with the sparsity-related limitations of CF: 

(1) the user independence, since only the ratings provided by the target user are exploited to build her 

own profile; (2) recommendation of new items, since CB approaches also exploit the content information 

of the items and not only the ratings associated to them. For this reason, the most common hybrid 

strategies consist of combining CB and CF approaches. Burke [2002; 2007] presents a classification of 

such hybrid strategies depending on how the combination is made. In the literature, the most popular 

strategies are the feature augmentation/combination (also known as content-boosted CF) and the meta-

level hybrid (also known as collaboration through content).  

Finally, another interesting alternative is to combine different context-aware paradigms (i.e. pre-

filtering, post-filtering or contextual modeling methods), since the utility of contextual factors may be 

different depending on whether it is used for contextual pre-filtering, post-filtering or contextual 

modeling. For example, time information (weekday versus weekend) may be most useful to pre-filter 

relevant data, but weather information (sunny versus rainy) may be the most appropriate to use as a post-

filter. Cinemappy [Ostuni et al. 2012], is a context-aware movie recommender that employs such a 

combination based on the utility of different contextual factors. In particular, the companion factor is 

exploited by a User-Splitting pre-filtering approach, which produces several profiles for the same user 

depending on the user companion, and the location factor is exploited by a post-filtering method that re-

ranks the recommendation list based on geographic criteria. 

2.6.1. Feature Augmentation/Combination Strategy 

Feature augmentation is a strategy for hybrid recommendation in which a contributing component 

produces a new set of features that then are part of the input to the another recommendation technique 

(the primary component). This strategy is usually employed when the strong primary recommendation 

component is a CF approach, and the goal is to boost its performance by exploiting content-based 

features, which can be generated by means of a CB approach. For this reason, approaches using this 

strategy are also known as content-boosted CF.  
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A variant of this strategy consists of filling the missing ratings of the rating matrix by using a CB 

technique. For example, Melville et al. [2002] employed a Naïve Bayes CB to predict rating predictions 

used to fill the missing ratings of the rating matrix, and then train a user-based CF with the dense pseudo 

ratings matrix.   

More recent solutions have focused on combining content-based features into the logic of CF 

techniques. For instance, Mobasher et al. [2003] and Lees-Miller et al. [2008] estimate item-to-item 

similarities based on item attributes to boost an item-based CF by means of a linear combination with the 

rating-based similarities. Gunawardana and Meek [2008] proposed a CF technique based on Boltzmann 

machines, a type of latent factor models using neural networks, whose parameters are constrained 

according to the content associated with the items, allowing the model to use content information to 

recommend items that are not rated during training (i.e. cold-start items).  

Finally, some approaches have also incorporated content-based features to improve the performance of 

MF models. Forbes and Zhu [2011] proposed a variation of the standard MF in which    the factor 

vectors of item i are constrained to depend explicitly on their item features (  ), formulating the rating 

prediction model as follows: 

 ̂      
                                                                                        

Where   stands for a feature-by-factor matrix representing the latent factor vectors of the items’ 

attributes. An interesting characteristic of this approach is that this latent representation of item attributes 

can be also used to measure distributional similarities between attributes based on the user preferences, by 

comparing the generated latent factor vectors after training the MF model (see Section 3.2.2 for more 

details about distributional semantics).  

Katz et al. [2012] proposed a combination of two methods to boost MF models with Wikipedia 

content: (1) creating pseudo-ratings using a nearest neighbor CB prediction model, and (2) incorporating 

item-to-item similarities by adding additional latent factors that are weighted according to the similarity 

values. Finally, Shi et al. [2013] also incorporate item-to-item content-based similarities into a standard 

MF model, but in this case, by means of a joint MF model, in which additional cost functions are 

incorporated in order that similar items share also similar latent factors. 

2.6.2. Meta-Level Strategy 

Differently from feature augmentation, in meta-level strategy the contributing component produces a 

completely new model based on training rating data, and not only additional features, which is then used 

for training the primary component. When combining CB and CF, this strategy usually consists of first 

building interest profiles by using a CB technique and then using the generated user profiles to estimate 

the user-to-user similarities in a user-based CF algorithm. For this reason, this hybrid strategy is also 

known as collaboration through content.  
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In the literature, several works have followed the meta-level strategy using different linear CB models 

for learning the user profiles: the Rocchio’s algorithm [Balabanovic and Shoham 1997; Degemmis et al. 

2007], the Winnow method [Pazzani 1999], and rating average methods [Liu et al. 2007; Sieg et al. 

2010].  

 



 

Chapter 3 - Semantically-Enhanced Recommender Systems 

3.1. Introduction  

Semantically-Enhanced Recommender Systems (SERSs) aim at improving the effectiveness of previously 

mentioned recommendation techniques by exploiting semantic relationships among concepts; these 

concepts are used in CB techniques or hybrid recommenders to describe items (i.e. items’ attributes) and 

in CARSs to describe contextual situations (i.e. contextual conditions).  

The goal of SERSs is then to exploit semantics that is not exploited by CB techniques using traditional 

representations (see Section 2.3.1) and by CARSs using the representational view of context (see Section 

2.5.1). Traditional representations only rely on “syntactic” evidence of concept relatedness and this limits 

their accuracy, especially when rating data are sparse. For example, in a CB recommender of art works, if 

the system only exploits the knowledge that the user is interested in Claude Monet’s paintings, it will be 

able to recommend paintings of the same artist, but not paintings of other artists like Pierre-Auguste 

Renoir, even though they are likely to be also relevant for the user because they are semantically related 

(both are Impressionist paintings). The main assumption in SERSs is that, in a recommendation domain, 

one can identify domain-specific semantic similarities between concepts describing items or contextual 

situations, which can be useful to mitigate the sparsity-related limitations and thus enhance the 

performance of recommendation techniques based on concept matching.  

This chapter is organized as follows. Section 3.2 presents the two major families of semantic similarity 

measures: the ontology-based measures and the distributional measures. Section 3.3 reviews efforts 

focusing on improving existing CB techniques by exploiting attribute-to-attribute semantic similarities. 

Section 3.4 presents the experimental evaluation we performed to a specific SERS technique for enhanced 

CB recommendation using the Netflix prize data set. Finally, Section 3.5 reviews some of the existing 

CARS techniques that exploit domain-specific situation-to-situation semantic similarities in the context-

modeling phase to enhance their performance.  

3.2. Semantic Similarity of Concepts 

The semantic similarity of two concepts is measured differently depending on the knowledge source from 

which associations are derived. In the literature, two main types of semantic similarity measures can be 

identified: ontology-based measures, which estimate similarities based on the explicit, formal structure of 

ontologies; and data-driven distributional measures, where semantic associations are directly derived 

from a corpus of data. 
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The main goal of both type measures is to mimic human judgment of semantic relatedness between a 

given pair of concepts. Typically, these measures have been used in numerous Natural Language 

Processing tasks, such as word sense disambiguation, spelling correction, text summarization and also IR. 

In the following subsections, we present the major ontology-based and distributional similarity measures 

used by some SERSs.   

3.2.1. Ontology-based Measures 

Ontology-based similarity measures exploit the structure of the ontology in order to infer an estimation of 

how semantically related two concepts are. In the field of AI, a widely accepted definition of ontology is 

the one provided by Studer et al. [1998]: “An ontology is a formal, explicit specification of a shared 

conceptualization”. Depending on the degree of complexity of the specification, ontologies can be 

classified (from lower to higher complexity) into: thesauri, like for instance WordNet [Miller 1995]; is-a 

hierarchies or taxonomies (e.g., the Open Directory Project (ODP) [http://www.dmoz.org/]), ontologies 

with domain-specific types of relations (e.g., the DBpedia [http://dbpedia.org/]), and ontologies with 

logical and value restrictions.  

In practice, given the limited availability of expressive domain-specific ontologies, most of the 

existing concept-to-concept ontology-based measures only exploit hierarchy-based relations, and have 

been especially designed for being used with WordNet (for this reason they are also known as WordNet-

based measures). Basically, three different types of hierarchy-based measures are identified in the 

literature: link-based measures, node-based and hybrids combing both measures.  

Link-based (or edge-based) measures are based on counting the number of direct relations between 

concepts (i.e. the links or edges) in the graph path between two concepts. A well-known measure is the 

one proposed by Wu and Palmer [1994], which estimates the similarity between two concepts        by 

considering their respective depths, and the depth of the Lowest Common Subsumer (LCS) of both 

concepts, as follows: 

           
            

                   
                                                      

Another one is the Leacock and Chodorow measure [1998], which estimates the similarity based on the 

distance (d) of the shortest path between the two concepts, and the maximum depth of the taxonomy (D): 

              
   

 
                                                                                  

While these approaches are intuitive, they are based on two assumptions that are rarely true in many 

domain hierarchies: (1) concepts and relations are uniformly distributed, and (2) relations at the same 

level in the taxonomy correspond to the same semantic distance between concepts (i.e. all the links have 

the same weight).  
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Node-based measures rely on comparing the properties of the concepts involved, which can be related 

to the concepts themselves, their ancestors, or their descendants. Specifically, these measures compare the 

Information Content (IC) of a concept, which is an estimation of how specific and informative a concept 

is. The IC of a concept is usually estimated as the negative log likelihood: 

                                                                                          

where the probability of occurrence      in a specific knowledge base is based on its frequency of 

annotation (i.e. how many instances/entities are annotated by the concept). Once estimated the IC of the 

domain concepts, it can be used to quantify the information that the common ancestors share and thus 

measure their semantic similarity.  

Resnik [1995] proposed a node-based measure that calculates the similarity between two concepts by 

simply considering the (IC) of the LCS: 

                                                                                                     

Jiang and Conrath [1997] proposed another measure using IC that, in addition to the IC of the LCS, the IC 

of the concepts themselves is also considered as follows:  

           
 

                       
                                      

Analogously, Lin [1998] proposed another variant which augments the information content of the LCS 

with the sum of the IC of both concepts: 

           
         

             
                                                                    

The advantage of node-based measures is that they are less sensitive to the issues of variable semantic 

distance and variable node density than link-based measures, since the IC gives a measure of a concept’s 

specificity that is independent of its depth in the ontology's hierarchy. However, the IC may be biased by 

the popularity of some concepts, i.e., concepts that are more frequently annotated than other concepts. 

Hybrid (node- and link-based) measures use a combination of the previous two types in order to 

overcome their individual drawbacks and obtain more accurate similarity estimations. An example is the 

work of Li et al. [2003], which proposed a link-based measure making use of path length and hierarchical 

depth as well as node density structural information. The hybridization of the approach is based on how 

they calculate the node density, which is measured using the IC of the concept. Then, these factors are 

combined in a non-linear way. 

More recently, Passant [2010] proposed a set of link-based similarity measures, called Linked Data 

Semantic Distance (LDSD), which exploits any kind of semantic relationship and not only hierarchical 

ones as the previous approaches. The author describes a particular scenario for using DBpedia. 



36 Chapter 3 - Semantically-Enhanced Recommender Systems 

 

3.2.2. Distributional Measures 

Distributional similarity measures only require a data corpus (i.e. text documents or a set of annotated 

items) to derive similarity assessments between concept pairs; they are based on statistics about the 

distributional properties of the concepts. The fundamental idea behind the use of distributional 

information to extract semantic similarities is the so-called distributional hypothesis of meaning: 

 

 

In linguistics, several formulations to this effect can be found, such as [Firth 1957]: “You shall know a 

word by the company it keeps”, [Rubenstein and Goodenough 1965]: “words which are similar in 

meaning occur in similar contexts”, and [Schütze and Pedersen 1995] “words with similar meanings will 

occur with similar neighbors if enough text material is available”. When using raw text as data corpus, 

here “context” refers to other words that occur within a certain window (e.g. a sentence or a paragraph), 

and the intuition is that semantically related words are likely to be used in text in a similar way and thus 

they tend to co-occur more often.  

In this thesis, we claim that this formulation of distributional hypothesis can be easily generalized to 

other types of data like for instance items’ descriptions in the form of attribute-based profiles, which is 

the type of data available in CB recommenders. For example, in the movie domain we could assess that 

the movie actor Bruce Willis is somehow semantically related to action movies, if these two concepts 

repeatedly co-occur in the same movies’ profiles.  

A popular representation method to measure distributional relatedness between concepts is to use a 

vector space representation of concept meaning (the VSM) and measure the similarity in terms of 

proximity in such vector space. When using item content data in a CB recommendation application, the 

concepts’ meaning (also known as semantic vectors) is represented in terms of the items in which they 

occur; therefore, a concept-by-item co-occurrence matrix is commonly built where each row corresponds 

to a concept’s semantic vector. According to the results of our empirical evaluation presented in Chapter 

4 - a better alternative to represent the attributes’ meaning in CB recommendation is with respect to the 

user profiles, since in this way the semantic relatedness also considers the user’s interests. Based on how 

they build the co-occurrence matrix and estimate the semantic similarities between concepts three main 

types of distributional measures can be identified: set theory measures, probabilistic measures, and 

dimensionality reduction techniques in combination with the cosine similarity. 

Set theory measures employ the Boolean representation model, where true indicates that the concept 

appears in the item and false otherwise. Therefore, the frequency-based weights associated to the 

concepts, like TF-IDF weights, are not considered. A popular set theory measure is the Jaccard index, 

which computes the similarity between two concepts   and    based on the intersection of their binary 

semantic vectors (   and     respectively), divided by the size of their union: 

Distributional hypothesis: concepts repeatedly co-occurring in the same context tend to be related. 
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Probabilistic information-theory measures compare the semantic relatedness of two concepts based on 

the similarity of their probability distributions. Consequently, here semantic vectors are built by using a 

probabilistic weighting scheme, where each entry is computed as the conditional probability of a concept 

  co-occurring with another concept    : 

         |    
        

    
                                                                   

Note that using this method the concept’s meaning is represented in terms of the other concepts, i.e. a 

concept-by-concept co-occurrence matrix. Once computed the probabilistic semantic vectors, the 

similarity between two concepts can be estimated using a probabilistic similarity measure. A popular 

measure is the Kullback and Leibler [1951] distance, which estimates the concept-to-concept similarity 

by normalizing their relative entropy, as follows:  

          
 

  ∑    
   
    

 
       

                                                     

Dimensionality reduction techniques reduce the usual high dimensional and sparse representations of 

semantic vectors to a low dimensional and more compact one before estimating similarities between two 

concepts based on the cosine similarity. Commonly, when using these techniques the original semantic 

vectors are previously weighted using a frequency-based weighting scheme, like TF-IDF. Depending on 

the technique used to reduce the dimensionality of the semantic vectors, three main methods can be 

identified:  

 Latent Semantic Analysis (LSA) [Deerwester et al. 1990], which is a popular method, historically 

in the IR field and more recently also in the RS field, to alleviate the limitations related to the 

exact string matching, like synonymy detection, and also to detect latent concept associations that 

reflect higher-order co-occurrences. This technique uses the conventional SVD to reduce the 

dimensionality of the co-occurrence matrix to a l-dimensional space; l being the number of factors 

that will describe a semantic vector   , and whose exact value is data-dependent and thus it has to 

be identified experimentally (see Section 2.4.3 for more details about SVD).  

 Random Indexing (RI) [Kanerva et al. 2000], an alternative method to dimensionality reduction 

based on the Johnson and Lindenstrauss [1984] lemma, which claims that a vector space can be 

efficiently reduced by projecting the points into a randomly selected subspace of enough high 

dimensionality. This approach has the advantage of estimating the semantic vectors in an 

incremental way rather than requiring the entire co-occurrence matrix, as in LSA. 
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 Reduction based on human-based (explicit) domain concepts, where contexts of co-occurrence or 

usages are mapped to an explicit low dimensional set of concepts that categorize them. An 

instantiation of this method is Explicit Semantic Analysis (ESA) [Gabrilovich and Markovitch 

2007], in which items are classified in terms of Wikipedia-based concepts and semantic vectors are 

represented as vectors of this set of concepts.  

Once the lower-dimensional and more compact semantic vectors are computed, concept-to-concept 

similarities are estimated as the cosine of the angle between their vectors (   and    ): 

          
  

    

√∑    
  

    √∑     
  

   

                                                    

3.2.3. Limitations of Semantic Similarity Measures 

Ontology-based and distributional measures use distinct knowledge sources, each of which has its own 

drawbacks and advantages [Mohammad and Hirst 2012]:  

 Ontologies are more expensive than raw data. Ontology engineering requires human experts 

and is usually a time consuming task; this limits its use in many domains and the number of 

publicly available domain-specific ontologies is limited. In contrast, in domains where raw data 

are easy to collect, the application of distributional measures is less expensive. Updating 

ontologies is also more costly than re-building distributional semantic representations, which only 

require re-training the semantics model with the new data.   

 Ontologies are static representations of a domain that may not correspond to the actual data. 

Ontologies are fixed specifications of a domain based on the criteria of human experts, and the 

accuracy of ontology-based measures depends on the quality of the representation, which may not 

suit the data. In contrast, distributional measures are not bounded by a fixed semantic 

representation and can identify as similar concepts that are semantically related, but whose 

relation is not explicitly defined in any ontology.  

 Distributional measures are more affected by data sparsity. A disadvantage of distributional 

measures is that they may assign low similarity values to clearly related concepts simply because 

there is not enough co-occurrence evidence of such relation in the data set. On the contrary, this is 

not an issue for ontology-based measures that rely on the structure of ontologies (i.e. link-based 

measures). However, node-based measures, which use the concept’s IC, could be also affected by 

data sparsity.  
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3.3. Semantically-Enhanced Content-Based Filtering 

This section reviews related work on SERSs that incorporate attribute-to-attribute ontology-based or 

distributional similarities into an existing CB recommendation technique, which can be the component of 

a hybrid recommender.  

This semantic knowledge can be incorporated into several stages of the CB recommendation process: 

(1) in the item representation or content analysis phase (Section 3.3.1), (2) in the user-profile learning 

phase (Section 3.3.2), and (3) in the profile matching or prediction phase (Section 3.3.3), where the 

affinity between different concept-based profiles of items or users is estimated. 

3.3.1. Semantic Content Analysis 

The main goal of incorporating semantic knowledge into the content analysis process is to mitigate the 

lack of semantics of traditional keyword-based item representation. The basic idea consists of mapping 

the keyword-based profiles to a semantic concept-based representation, which then is commonly used to 

learn user profiles in the same semantic space and generate recommendations based on the affinity 

between user and item profiles. These methods perform a different kind of concept-based item 

representation depending on whether they use distributional or ontology-based measures.  

SERS techniques using ontology-based measures aim at mapping keyword-based item profiles to 

explicit concepts defined in the ontology. Particularly, attribute-to-attribute similarities are exploited for 

word disambiguation and classification into concepts of the ontologies. Normally, SERS techniques that 

use this semantics exploitation method deal with text-based descriptions of items and employ thesauri-

based ontologies like WordNet. For instance, SiteIF [Magnini and Strapparava 2001] is a news 

recommender that employs a node-based measure to map keywords to WordNet concepts (also known as 

“synsets”). The authors use, as ontology, MultiWordNet, a multilingual lexical database where English 

and Italian WordNets are aligned. SEWeP (Semantic Enhancement for Web Personalization) [Eirinaki et 

al. 2003] is a Web recommender that employs a link-based measure to map keywords to WordNet 

concepts and to concepts of a domain-specific hierarchy. ITR [Degemmis et al. 2007] is another example, 

in this case a general purpose recommender, which extracts keywords from text-based product 

descriptions and also exploits link-based similarities to map keywords to WordNet synsets.  

In contrast, SERS techniques using distributional measures aim at mapping keyword-based item 

profiles to semantic latent concepts rather than explicit ontology concepts. Therefore, these methods use 

dimensionality reduction techniques, such as LSA and RI, to directly produce more informative and less 

sparse item profiles, but not to estimate attribute-to-attribute semantic similarities. For example, 

Mobasher et al. [2003] proposed a movie recommender that uses LSA to reduce the item profiles into a 

latent semantic space. Then, they compute item-to-item similarities based on this reduced representation 

using the cosine similarity and exploit them into a content-boosted item-based CF hybrid recommender. 
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Bambini et al. [2011] proposed CB-LSA, a TV-program recommender that also uses LSA to reduce item 

profiles to a latent semantic space. In this case, the authors obtained both items and user profiles 

represented in the same reduced vector space by means of a projection technique known as folding-in, and 

produced recommendations based on the cosine of the angle between the reduced latent profiles. 

Assuming that             
  is the factorization of the attribute-by-item matrix, where k is the 

number of latent concepts describing items, and    is the keyword-based representation of item i, the 

folding-in projection is defined as follows: 

 ̃    
                                                                                        

Similarly, the representation of user u is also calculated in the same latent space as the projection of the 

vector of user ratings. Denoting as    the vector of user ratings over the set of items I, its projection is 

defined by: 

 ̃                                                                                        

More recently, Musto et al. [2013] proposed a music recommender that also represents both item and user 

profiles in a latent semantic space. But instead of using LSA, they employ RI as dimensionality reduction 

technique. Additionally, they represent user interests by means of two vectors, one based on positive 

ratings and one based on negative feedback. Differently from the previous approach, they do not use the 

folding-in projection technique to learnt user profiles. Instead they estimate the user profiles as the 

weighted sum of item vectors in the latent space ( ̃ ) that the user has rated, as follows: 

 ̃   ∑  ̃ 

    
 

                                                                             

 ̃   ∑  ̃ 

    
 

      

3.3.2. Semantic Expansion of User Profiles  

CB recommendation techniques require a minimum amount of ratings per user in order to learn accurate 

user profiles (i.e. suffer from new user cold-start). To mitigate this sparsity-related limitation, one can 

exploit the semantic associations between attributes to expand the user profile learnt from the users’ 

ratings by means of interest propagation methods. These propagation methods are known as Spreading 

Activation (SA) strategies and come from past work in associative IR [Crestani 1997], a specific form of 

IR in which relevant information is delivered to the user by retrieving information that is “associated” 

with some information the user already retrieved and considered as relevant.  

The general process of a SA strategy is defined by a sequence of iterations each one consisting of: (1) 

one or more pulses; (2) termination check. Basically, a pulse is made of three phases: pre-adjustment, 

spreading, post-adjustment. The pre- and post-adjustment phases, which are optional, are used to control 



Chapter 3 - Semantically-Enhanced Recommender Systems 41 

 

 

both activation of single nodes and the overall activation of the network. The spreading phase consists on 

a number of passages of activation weaves from one node to its linked nodes. Pulse after pulse, the 

activation weight spreads over the network reaching nodes that are far from the initially activated ones. 

After a determined number of pulses have been fired a termination condition is checked. If the condition 

is verified than the SA process stops, otherwise it continues for another series of pulses. The result of the 

SA process is the activation level of nodes reached at termination time.  

Most SA strategies employ specific types of constraints to control the spreading phase. For this reason, 

they are also known as Constrained Spreading Activation (CSA) strategies. The most typical ones are: 

distance constraints, which stop or degrade the weight propagation at some specified distance from the 

original node; fan-out constraints, where nodes connected to many other nodes receive special treatment 

in the activation process in order to avoid large spreading of the activation weight on the network; and 

rule-based or selective activation, which controls the degree of propagation to the target node based on 

the type of links. This latter constraint is usually used along with hierarchy-based inferences, which can 

be seen as a special case of SA strategies. Two main types of propagation through explicit hierarchical 

relations can be identified: (1) upwards or bottom-up propagation, in which activation weights from sub-

concepts are propagated to the parent concept; (2) sidewards propagation, where weights from activated 

sub-concepts are spread across the other sub-concepts of the same parent concept.  

SERS techniques that semantically expand the users’ interests commonly employ a CSA strategy over 

the explicit relationships defined in the ontology. For example, Deep Map [Fink and Kobsa 2002] is a 

tourist recommender that exploits a hierarchy of types of Points of Interest (POI) by combining upwards 

and sidewards propagation. Both types of propagation are constrained based on a threshold that delimits 

the minimum number of activated sub-concepts necessary to propagate the interest weight to the parent 

concept and/or sub-concepts. In addition, the authors used a decay factor of 50% when the weight is 

spread via upwards propagation, and of 70% in the sidewards case, since this type of propagation is less 

reliable according to the authors. QuickStep [Middleton et al. 2004] is a scientific paper recommender that 

exploits an ODP-based taxonomy of topics describing papers by means of upwards propagation of 

interest weights. In this case, the interest weight of a concept is always propagated to the parent with a 

decay factor of 50%. Additionally, as a type of time-aware contextualization, the authors also use a time 

decay factor in order to reduce the weight of old interests.  

News@hand [Cantador et al. 2008; 2011] is a news recommender system that employs a more 

sophisticated CSA strategy using the IPTC NewsCodes classification
4
. The proposed CSA strategy 

exploits domain-specific relations besides hierarchical ones, whose weights are used as decay factor. The 

                                                      

4
 See [http://www.iptc.org/], accessed on November 14

th
, 2013. 
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authors use a manually assigned decay factor for each type of relation in the ontology, and also the 

following additional constrains:  

 a threshold delimiting the minimum interest weight necessary to propagate it, 

 a threshold delimiting the maximum number of propagation steps (i.e. pulses),  

 and a threshold controlling the maximum fan-out in order to reduce the “hub effect” in 

concepts with many relations to other concepts; 

Following the interactional view of context (see Section 2.5.1), besides using the CSA strategy to expand 

long-term user profiles, the authors also use it to expand short-term user profiles that contain user’s 

interests shown in the current session. Once they have computed both profiles, a “contextualized” user 

profile is learnt as the intersection of both the long- and short-term user profiles. Finally, they make 

recommendations based on the affinity between the expanded user profiles and the item profiles estimated 

as their cosine similarity.  

Sieg et al. [2010] proposed a book recommender system that exploits a taxonomy derived from the 

Amazon.com’s book classification by using a simplified CSA strategy compared to the previous work. 

The main difference is the use of a link weighting mechanism that assigns a weight to each concept-to-

concept association by means of an ad-hoc node-based similarity measure. In this case, they use the 

semantically expanded user profiles to enhance a user-based CF meta-level hybrid by computing more 

accurate user-to-user similarities; the authors use the Euclidean distance to compute similarities between 

user profiles.  

The CHIP Art Recommender
5
 [Wang et. al 2010] is an artwork recommender that makes use of a 

domain-specific ontology describing artworks, which is adapted from different ontologies such as Getty 

vocabularies
6
 (ULAN, AAT, TGN) and Iconclass thesaurus

7
. The main novelty of this approach with 

respect to the others is that, apart from ontology-based semantic associations that have manually-assigned 

weights, they use weighted associations derived by using distributional semantics; specifically, they use 

the corrected Jaccard measure. When a concept is activated from both ontology-based and Jaccard 

similarities, then a linear combination of the weight is propagated from each source node. Finally, the 

system recommends the top-n artworks whose attributes better match the expanded user profile.   

Besides expanding user preferences, some SERSs employ CSA strategies for directly making 

recommendations. For example, InterestMap [Liu and Maes 2005] is a recommender system that suggests 

topics of interest to users of a social network by means of a CSA strategy. The authors use a probabilistic 

                                                      

5
 See [http://chip.win.tue.nl/home.html], accessed on November 14

th
, 2013. 

6
 See [http://www.getty.edu/research/tools/vocabularies/index.html], accessed on November 14

th
, 2013. 

7
 See [http://www.iconclass.nl/], accessed on November 14

th
, 2013. 
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distributional measure over the corpus of user profiles in order to weight the semantic associations 

between topics. The user profiles were crawled from a social network website and then normalized to an 

explicit set of topics defined in different domain ontologies. The distributional similarities between topics 

are represented as a dense semantic network, over which the CSA strategy is applied to suggest new 

topics highly related to the ones the user is interested in. The strategy uses two types of constrains: a 

threshold that delimits the minimum weight of a topic-to-topic association to be considered, and a decay 

factor of 25% per level of distance from the source nodes. Another example is Avatar [Blanco-Fernandez 

et al. 2008], a TV program recommender that exploits a domain-specific ontology, adapted from the 

standard TV-Anytime. The main novelty of their approach is that the weights of explicit relations are 

automatically computed by considering the user profiles in combination with an ad-hoc link-based 

similarity measure; therefore, semantic associations are also personalized to the each user. They make 

recommendations to each user by applying the SA strategy over the personalized semantic network (i.e. 

here user profiles are both the attributes and their weighted relations), and finally, the TV programs that 

contain attributes with higher activation values are recommended.  

More recently, Kaminskas et al. [2012] proposed a location-aware music recommender that provides 

recommendation of musicians contextualized according to the POI the user is currently visiting. In order 

to link musicians and POIs, the authors use the DBPedia ontology that connects items from different 

domains through different kinds of domain-specific relations. Once the current POI of the target user is 

identified, they apply an adaptation of the SA strategy proposed in Cantador et al. [2008; 2011] to 

recommend musicians highly related to the target POI. 

3.3.3. Semantic Profile Matching 

Here we present SERS techniques that only exploit attribute-to-attribute semantic associations in the 

prediction phase. Rather than semantically expand user profiles by propagating the initial set of interests, 

here the goal is to produce better recommendations by directly including the semantic similarities into the 

prediction function.  

SERSs of previous subsections commonly use, after applying a SA strategy, traditional vector-based 

similarity measures to estimate the affinity between two concept-based profiles (i.e. user-to-item or user-

to-user or item-to-item profile matching). The limitation of these measures is that they only use syntactic 

matching strategies (i.e. syntactically different concepts do not contribute to the similarity value), and 

thus they have a lack of semantics intelligence in this sense. Pairwise profile-to-profile matching 

strategies are a solution to this limitation, because they compare two profiles using a specific aggregation 

of the individual pairwise concept-to-concept similarities, allowing for a finer-grained comparison than 

syntactic matching. Depending on how this aggregation is produced, pairwise measures can be classified 

in two main variants: all-pairs, which consider every pairwise combination of concepts from the two sets; 

and best-pairs, which only consider the best-matching pair for each concept of one of the sets. In these 
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measures a global similarity score between two entities is obtained by aggregating the considered 

concept-to-concept similarities. The aggregation method is typically the average, although other methods 

such as the maximum, the minimum and the sum can also be used.  

Ganesan et al. [2003] proposed several pairwise strategies exploiting hierarchy-based similarities, 

including:  

 an all-pairs strategy that generalizes the cosine similarity;  

 a best-pairs strategy, called Optimistic Genealogy Measure, that employs a tree-like hierarchy 

to compute the similarity of two sets.  

In particular, the authors use the Wu and Palmer [1994] link-based similarity to estimate attribute-to-

attribute similarities. Although they do not evaluate the effectiveness of the measures in a 

recommendation task, they claim that the proposed measures can be useful to estimate more precise user-

to-user similarities in a user-based CF approach.  

Liu et al. [2007] proposed a product recommender that exploits a taxonomy of user requirements by 

means of a pairwise strategy. Concretely, they use an all-pairs measure to estimate user-to-user 

similarities, which sums up all the pairwise similarities between concepts of both user profiles that have a 

positive semantic similarity value. The global similarity is then normalized dividing the score by the size 

of the smallest profile. The concept-to-concept semantic associations are estimated using an ad-hoc link-

based measure weighted by hierarchical depth.   

 Shoval et al. [2008] proposed ePaper, a news recommender that exploits a three-level taxonomy, 

extracted from the IPTC classification, by means of a pairwise matching strategy. Specifically, this 

approach uses a best-pair strategy to estimate the affinity between a concept-based user profile and an 

item profile, in which for each attribute of the item profile only the best matching concept of the user 

profile is considered. They compute a weighted sum according to the weight of the hierarchical relation. 

The weights of the relations are manually assigned depending on the type of relation between two 

concepts in the hierarchy (e.g. a weight of 2/3 is used when the item concept is a sub-concept of the user’s 

concept). Finally, they obtain the global similarity dividing the weighted sum over the item’s concepts by 

the sum of weights of the user’s concepts.  
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3.4. Case Study: Exploiting a Movie Taxonomy in Netflix Data 

This section presents research on ontology-based SERSs, which consisted of evaluating an existing 

approach using the Netflix data set. The technique described here was original implemented in a tourism 

recommender system, and comes from my Master thesis in AI [2009; 2012]. Its main novelty with respect 

to the research described in previous section is that exploits hierarchy-based relations using a combination 

of two ontology-based semantics exploitation methods: (1) a CSA user-profile expansion, (2) and a 

pairwise profile matching strategy. This experimental evaluation on the Netflix data set was motivated by 

the fact that previous experimental evaluations on ontology-based SERSs were difficult to reproduce, 

since they were performed on specific application domains whose data sets were not publicly available. 

Furthermore, in most evaluations the performance was not compared to state-of-the-art CF 

recommendation techniques.  

In the following subsections we briefly describe the evaluated ontology-based SERS technique 

(Section 3.4.1), the characteristics of the data and taxonomy used in the evaluation (Section 3.4.2), and 

the experimental evaluation and results (Section 3.4.3). 

3.4.1. Ontology-Based Content-Based Filtering 

The ontology-based SERS technique proposed by Codina [2009; 2012] extends a traditional CB 

recommendation technique by incorporating ontology-based semantics in two stages of the CB 

recommendation process: (1) after the user-profile learning method using a CSA strategy, and (2) in the 

item-to-user profile matching using a pairwise strategy.  

User-profile expansion. Similarly to Fink and Kobsa [2002], the proposed CSA strategy combines 

upwards and sidewards propagation to semantically expand user profiles, which are learnt from the 

training rating data using an ad-hoc rating average method. The spreading is constrained based on a 

threshold that delimits the minimum percentage of activated sub-concepts necessary to propagate the 

interest weight to the parent concept and/or their sibling concepts. These thresholds have to be 

experimentally optimized for each type of hierarchical propagation (see Section 3.4.3 for the exact values 

used on the Netflix data set).  The main novelty with respect to the CSA strategy proposed by Fink and 

Kobsa [2002] is that, after an upwards propagation, the weight of a parent concept is always updated; no 

matter if the concept already exists in the user profile.  

Figure 3.1 shows the pseudo-code of the CSA strategy that expands the profile of a target user u. The 

input of the algorithm is the weighted interest profile    of the user, which has been learnt from her 

training ratings, the upwards and sidewards thresholds, and the maximum depth of the taxonomy.  
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Input  

   : initial user profile 

    : upwards propagation threshold 

    : sidewards propagation threshold 

 D: maximum depth of the taxonomy 

Output 

    : semantically-expanded user profile   

 

 depth = D;  

 while depth > 1 do 

  conceptFamilyList = getFamiliesOfConcepts(  ,depth); 

  foreach      conceptFamilyList  do 

   percentage = getPercentageActivedConcepts(  ); 

   if percentage >     then 

        = doUpwardsPropagation(  ); 

   endif 

   if percentage >     then 

        = doSidewardsPropagation(  ); 

   endif 

  endfor 

  depth--; 

 endwhile 

return      

Figure 3.1. Hierarchy-based Spreading Activation  

Firstly, all the concepts of the user profile with weight different from zero are grouped by level of depth 

in the taxonomy. Then, starting for the deepest concepts (i.e. the most specific attributes), upwards and 

sidewards propagation are applied in the families of concepts, whose percentage of activated sub-

concepts is larger than the corresponding thresholds. A concept is activated if its interest weight is 

different from zero. The parent concepts that are activated from the upwards propagations are included in 

the set of concepts of the next level of depth. If the parent concept already exists in the set, then the 

weight estimated trough the propagation is linearly combined with the interest estimation based on 

ratings. This spreading process is executed for each level until the root node is reached. The result is a 

semantically expanded user profile    . 

 The function doUpwardsPropagation(  ) applies the upward propagation to the family of sub-

concepts   , propagating the average interest weight to the parent concept. If the parent 

concept already has an interest weight, a weighted combination of the existing and propagated 

interest weight is used, based on a measure of how trustworthy the interest prediction is. 

 The function doSidewardsPropagation(  ) applies the sideward propagation to the family of 

sub-concepts   , propagating the average interest weight to the sibling concepts. In this case, 

the average weight is only propagated to the unknown concepts.  
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Pairwise item-to-user profile matching. The item-to-user profile matching strategy follows an all-pairs 

combination. Codina [2009; 2012] proposed a rating estimation function assuming that items are 

represented as binary vectors where       indicates the item i contains the attribute  . In this case, the 

all-pairs function estimates the rating that a target user u will provide to an item i as follows: 

 ̂            ∑
∑           

          

∑                      

                                       

The sim(      function returns the semantic similarity value between two attributes, which is calculated 

using an ad-hoc link-based measure proposed by the author that, differently from the ontology-based 

measures presented in Section 3.2.1, weights differently hierarchical relations based on the depth of the 

deepest concept. The basic assumption of the proposed measure is that two upper-level concepts are less 

similar than two lower-level ones. The weight of the links between a sub-concept and its ancestor is 

controlled by a decay factor K, whose value depends on the depth of the sub-concept; being smaller as 

deeper the sub-concept. The exact values of K per level have to be learnt experimentally (see Section 

3.4.3). Particularly, denoting d as the distance between the two concepts in terms of the number of links 

between them (e.g. d=1 when the ancestor is the sub-concept’s parent) this link-based measure estimates 

the similarity between a sub-concept   and its ancestor    by means of the following recursive function: 

           {
                                                                             

                                         
                    

3.4.2. Netflix Data and Taxonomy 

The Netflix dataset used here consists of 480,000 users, 17,700 movies and a total of 100,480,507 user’s 

ratings ranging between 1 and 5. The original data set does not include descriptive content information 

about movies, only the title and release year. For this reason, we first had to obtain this information from 

other sources. Because the data set also included an internal Netflix ID for each movie, we decided to 

extract the movie information through the Netflix API
8
. Compared to typical parsing methods based on 

string matching of movie title in which often only a percentage of movies is well parsed, using the Netflix 

API we were able to collect attributes for all the movies in the data set. Specifically, the movie attributes 

that we extracted were actors, directors, genres, producer, language and region.  

                                                      

8
 See [http://developer.netflix.com/], accessed on November 14

th
, 2013.  
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After movie annotation, we manually designed a movie taxonomy based on the publicly available 

classification on Netflix website
9
. The taxonomy we defined contains 787 concepts, which are associated 

to specific values of the attributes genre, producer, language and region. The maximum depth in the 

taxonomy is 4, as can be observed in Figure 3.2. In order to simplify the process of mapping movie 

attribute values to ontology concepts, we used the same labels as concept names. Therefore, every 

attribute value was directly associated to one concept of the taxonomy.  

 

Figure 3.2 Partial representation of Netflix’s movie taxonomy 

3.4.3. Experimental Evaluation and Results 

To maintain compatibility with results published by other researchers, we adopted some standards that 

were used for the Netflix contest, which consisted of measuring the prediction accuracy of the evaluated 

models in terms of Root Mean Squared Error (RMSE) over the ratings in the test set. We used for testing 

the qualifying set of ratings, which was provided by Netflix once the contest concluded. This set contains 

nearly 3 million ratings provided by users in the training set.  

We optimized the meta-parameters of the ontology-based SERS technique using as validation the 

probe set, which is a subset of the training set provided by Netflix that contains 1.5 million ratings 

approximately. For the CSA strategy, we found the best performance when setting to 0.2 the upwards 

                                                      

9
 See [http://www.netflix.com/AllGenresList], accessed on November 14

th
, 2013. 
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threshold and to 0.85 the sidewards threshold. This means that, in this data set, the upwards propagations 

are clearly more useful than sideward ones. For the link-based similarity measure we set the following 

values for the decay factor depending on the level of depth: 0.3 when the deepest concept was at level 

four, 0.4 when it was at level three, and 0.5 when it was at level two.  

Table 3.1 shows the prediction accuracy of the evaluated ontology-based SERS technique (Sem-CB) 

with respect to three baseline algorithms: 

 AVG, which computes predictions by simply using the overall movie rating average. 

 CB, which is uses a traditional item-to-user profile matching based on the dot product between 

item and user profiles (defined in Eq. 2.17), and hence without using the semantics 

exploitations methods. It also uses the same user-profile learning method based on rating 

average as Sem-CB. 

 Cinematch, which was the Netflix's own algorithm and also used as the baseline algorithm of 

the Netflix contest.   

In addition to the global prediction accuracy (i.e. measuring RMSE over all the test users), we also show 

the results over new users. In this experiment, we considered as new users the ones with 20 or fewer 

ratings. In terms of global RMSE, Sem-CB slightly improves the prediction accuracy with respect to AVG 

(2% gain) and CB (1% gain), and it is clearly worse than Cinematch. However, if we look at the cold-start 

performance, Sem-CB is clearly better than CB (6% gain) and AVG (7% gain), which demonstrates that 

SEM-CB is especially useful to enhance the performance of traditional CB techniques when users have 

few training ratings. Given that we did not have the exact implementation of Cinematch, we could not 

measure its RMSE for cold-start users.  

 

Table 3.1. RMSE of evaluated models on Netflix movie rating data set. (All means that the result is averaged 

over all the users, and New averaged over the set of new users) 

Models RMSE 

 All  New  

AVG 1.06 1.20 

Cinematch 0.95 - 

CB  1.05 1.18 

Sem-CB 1.04 1.12 

 

We also analyzed the effect of each semantics-exploitation method independently, in order to understand 

the usefulness of the proposed combination of strategies. From the analysis we concluded that the 

differences between a variant using only the CSA strategy and another one using the combined method 

(i.e. the CSA and the all-pairs strategy) were insignificant, indicating that in this case the combination did 

not help to improve the overall performance.  
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3.5. Semantically-Enhanced Context Modeling 

This section reviews related work on CARSs, based on the representational view of context, which 

exploit the semantic relatedness between contextual situations during context modeling for improving 

context-aware recommendation. As we will show, most of these semantically-enhanced CARS techniques 

follow the contextual pre-filtering paradigm (see Section 2.5.2), since these context-aware approaches are 

especially affected by the data-sparsity problem.  

Adomavicius et al. [2005] proposed Generalized Pre-filtering, a reduction-based variant that exploits 

the hierarchical relations between contextual conditions to determine the optimal aggregation of the used 

semantically-related situations (i.e. the optimal contextual segment). In this case, they do not measure the 

strength of the situation-to-situation similarity; they simply consider two situations as similar if at least 

one condition of each situation is hierarchically-related. The authors evaluated the method in a movie 

recommender that exploits a taxonomy describing three contextual factors (time, place, and company). 

This taxonomy contains few levels for each factor, particularly: three levels for time, two for place and 

four levels for company:  

 Time: “Saturday” → “Weekend” → “Any time” 

 Place: “Theater” → “Any place” 

 Company: “Boyfriend” → “Friends” → “Not alone” → “Any company” 

In this approach, the key process is the selection of the optimal contextual segments, which have to be 

identified experimentally by comparing their performance to a context-free recommendation approach. 

For example, the authors found that the segment [Weekend, Theater, Any company] improved 

significantly the accuracy of a user-based CF. Once selected the optimal segments, they build a local 

prediction model using the ratings tagged with situations that belong to each segment. Then, given a 

target contextual situation, the local model corresponding to the segment to which the target context 

belongs is used to make recommendations in that case. A limitation of this technique is that an exhaustive 

search for the optimal contextual segments can be infeasible if the number of possible combinations is too 

large.   

Similarly to the previous approach, Liu et al. [2010] proposed a context-aware service recommender 

using a semantic pre-filtering approach in combination with user-based CF. But here the authors employ a 

more sophisticated ontology-based measure that exploits a context ontology based on Description Logics. 

Once computed the situation-to-situation similarities, they use them to weight the ratings that are used to 

make the neighborhood-based prediction. 

Bouneffouf et al. [2012] proposed a mobile recommender that exploits hierarchy-based situation-to-

situation similarities. The authors quantify the strength of the similarity by using a pairwise strategy, 

which calculates a similarity score as the weighted sum of condition-to-condition similarities of the same 
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factor. To compute the similarity between conditions of a factor they employ the Wu and Palmer [1994] 

(link-based) measure. The weights of the sum correspond to the relevance of the contextual factor, which 

are manually assigned. The authors use the similarities between situations in an adaptation of the bandit 

algorithm that controls the degree of contextualization by means of balancing the exploration/exploitation 

trade-off. 

Finally, Zheng et al. [2013b] proposed Differential Contextual Weighting (DCW), a pre-filtering 

approach which allows for a finer-grained context modeling compared to the DCR variant (proposed by 

the same authors and presented in Section 2.5.2) by exploiting situation-to-situation similarities. In this 

case they compute the similarity between two situations as the Jaccard similarity between their sets of 

known conditions. In particular, they use a weighted Jaccard measure in order to weight the contribution 

of each contextual factor according to its relevance. Similarly to DCR, the optimal weights are found by 

using the Particle Swarm Optimization method. 
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Chapter 4 - Exploiting Distributional Similarities for Enhanced 
Content-Based Recommendation  

4.1. Introduction 

The majority of current SERSs that aim at improving the effectiveness of CB recommendation techniques 

rely on semantic similarity measures using ontologies as main knowledge source, i.e., measures that 

estimate the semantic relatedness between two item’s attributes based on their closeness in the domain 

ontologies. Taxonomies are the most abundant type of ontologies in recommendation domains, mainly 

because they are an inexpensive way to classify the available items of a catalog and can be easily re-used 

among systems in the same domain. The development of rich and expressive domain-specific ontologies 

is expensive, since it is a time consuming task which has to be performed by human experts. Typical 

examples of publicly available taxonomies used for improving CB recommendation techniques are 

WordNet, Amazon’s classifications, the IPTC NewsCodes, and the Open Directory Project.  

The precision of ontology-based similarity measures strongly depends on how well the domain 

ontology represents the concepts and their relations. Hierarchies are built by grouping concepts based on 

their properties (e.g. shape, color, function, or role); and the order in which these properties are used to 

create the tree structure can result in dramatically different hierarchies, and thus different semantic 

similarity assessments between the same two concepts. For this reason, real-world taxonomies are able to 

capture certain semantic relations in their structure, while other relations are not represented. For 

example, publicly-available movie taxonomies often just describe movie genre classifications, but not 

relations between actors and genres or other combinations. This implies that only a small fraction of the 

potential semantic associations among domain concepts is exploited for recommendation.  

A solution to this limitation, which does not require the use of domain-specific ontologies, consists of 

using distributional similarity measures rather than ontology-based ones. As explained in Section 3.2.2, 

distributional measures rely exclusively on a corpus of data to estimate similarities based on concept co-

occurrence analysis. In addition to be based on a more-easily obtainable source of knowledge, 

distributional measures directly infer semantic associations from raw data, and hence they are able to 

infer data-specific relations that might not be defined in generic domain-ontologies.  

This chapter presents our research on exploiting distributional similarities between items’ attributes to 

enhance the accuracy of existing CB recommendation techniques. We have developed a novel SERS 

technique on top of a state-of-the-art CB approach, which we called Semantic Content-Based (SCB) 

filtering, making use of distributional measures that rely on both rating data and item content data. We 

present an extensive evaluation of SCB and compare their performance with respect to the state of the art, 

focusing on the comparison between distributional and ontology-based measures.  
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The remainder of this chapter is organized as follows. Section 4.2 positions our research with respect 

to the state of the art. Section 4.3 describes the proposed variants of SCB using different pairwise profile 

matching strategies. Section 4.4 presents the experimental evaluation of the SCB variants using a well-

known movie rating data set. Finally, based on the experimental results, Section 4.5 highlights the main 

conclusions of this work.   

4.2. Related Work 

In the literature, the majority of the proposed SERS techniques for CB recommendation rely on ontology-

based measures of semantic relatedness, and, depending on how these techniques exploit the semantic 

knowledge, two major approaches can be identified: based on Spreading Activation (SA) strategies (see 

Section 3.3.2) and based on pairwise profile matching strategies (see Section 3.3.3). The goal of SERSs 

using SA strategies is to expand the commonly sparse initial user profiles exploiting the semantic 

relations between attributes. Most of them produce recommendations by directly comparing the expanded 

user profiles and the profiles of the items to recommend by means of vector-based measures, such as the 

cosine and Euclidean measures [Cantador et al. 2008; Sieg et al. 2010]. Other works directly make 

recommendations after executing the SA strategy by selecting those items whose attributes better match 

the activated concepts [Liu and Maes 2005; Blanco-Fernandez et al. 2008]. In contrast, SERSs using 

pairwise strategies are less common in the literature. These approaches try to improve the concept profile 

matching by incorporating the semantic associations in the prediction phase [Liu et al. 2007; Shoval et al. 

2008].  

The majority of SERS techniques that use distributional measures are based on dimensionality 

reduction techniques, such as LSA [Mobasher et al. 2003; Bambini et al. 2011] and RI [Musto et al. 

2013], and employ them to produce reduced and more informative item profiles. However, in all these 

approaches, which are explained in more detail in Section 3.3.1, the semantic associations between items’ 

attributes are not exploited by means of spreading activation or pairwise matching strategies. Instead 

recommendations are produced by measuring the similarity between the reduced latent item and user 

profiles, typically using vector-based similarity measures.  

Differently from these approaches, we propose a novel SERS technique that incorporates 

distributional similarities of items’ attributes in the recommendation phase. In particular, we have 

developed and evaluated two variants of pairwise strategies using several distributional measures, 

comparing their performance to state-of-the-art SERS techniques based on the enrichment of user and 

item profiles. We also present a performance comparison in terms of prediction accuracy between 

distributional and ontology-based measures. Furthermore, in combination with the pairwise strategies, we 

have proposed the use of distributional similarities derived from co-occurrence analysis over the set of 

user profiles, proving that it is more useful to improve the effectiveness of recommendations than using 

item-based co-occurrences.  



Chapter 4 - Exploiting Distributional Similarities for Enhanced Content-Based Recommendation 55 

 

 

4.3. Semantic Content-Based Filtering 

A requirement of SERS techniques using profile expansion or pairwise profile matching strategies is that 

both users and items must be represented using explicit concept-based profiles in the semantic space, 

where each concept correspond to a particular item attribute. Therefore, linear models (see Section 2.3.4), 

which learn weighted user profiles from the attributes of the items the user has rated, are the most suitable 

CB recommendation techniques to be extended with the proposed semantics-exploitation methods.  

Here we present Semantic Content-Based (SCB) filtering, a prediction model which extends a linear 

CB technique by incorporating into the prediction model a pairwise profile matching strategy. Figure 4.1 

shows how the pairwise profile matching strategy is incorporated into the general process of a linear CB 

prediction model. As it can be observed, the pairwise matching strategy substitutes the direct vector-based 

profile matching, which is commonly used to compute the predicted rating for a target item and user, with 

a more sophisticated matching strategy that considers the attribute-to-attribute distributional similarities. 

 

Figure 4.1. Semantic Content-based Filtering recommendation process 

4.3.1. User Profile Learning 

A key component of linear CB models is the user-profile learning method, since the predicted rating is 

estimated comparing the user’s interests and the item’s attributes, and in principle, the more accurate the 

user’s profile, the better the predicted ratings. As it is difficult to decide at design stage which profile 

learning method is better for a given recommendation task and rating data, we have experimented with 

two rating average methods inspired from the state of the art.  

One of these methods consist of an adaptation of the rating average proposed by Sen et al. [2009] and 

defined in Eq. 2.16, in which we normalize the user’s ratings by subtracting from them the user and item 
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biases (   ) during average computation (see Section 2.2 for details about baseline predictors). Given a 

user u and attribute   the interest weight of that user in that attribute (   ) is computed as follows: 

     
∑                  

∑         

                                                                

Where     is the set of items the user has rated which contain the attribute   in their profile, and     is 

the weight associated to attribute   in the item profile, which can be a Boolean value or have a more 

sophisticated representation if TF-IDF is used.   

Similarly to SVD++, proposed by Koren [2009] and defined in Eq. 2.26, which incorporates the 

actions of user’s ratings as additional information for a MF prediction model, we have extended the 

previous rating average variant in Eq. 4.1 by including the action of rating items as additional implicit 

feedback. We use this additional information to learn an independent interest weight for a target user u 

and attribute   as the average weight of the item’s attribute over the items the user has rated (   ):   

          
∑         

|   |
           

∑         

| |
                                             

               
 

   
  

As in the previous variant, we adjust the implicit interest weight by subtracting from it the overall 

attribute popularity (right term of Eq. 4.2). The log odds ratio here is used to normalize the averages to 

the same scale before subtracting. Finally, the extended rating average method consists of a linear 

combination of the previous two equations according to a factor        : 

    
∑                  

∑         

   [     
∑         

|   |
           

∑         

| |
]                        

The purpose of this hybridization is to improve the precision of the interest weights. We experimentally 

found that the best accuracy results were obtained when using      . For example, when using Eq. 4.1 

alone, an attribute that appears only in one item rated by the user with 5 stars would have the maximum 

interest weight regardless the attribute’s relevance; in contrast, using the combined method (Eq. 4.3), the 

weight could be reduced if the relevance of the attribute in the rated item (i.e.    ) is lower than average. 

Once combined the interest weights, we normalize them to the range [-1, 1] in order for all user profiles to 

have the same scale of degree of interest. 
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4.3.2. User-Dependent Distributional Semantics 

As explained in Section 3.2.2, distributional similarity measures use a vector-space semantic 

representation of each attribute (known as semantic vectors) which represent the attribute’s semantics 

based on its occurrence in the data corpus. The set of attribute’s semantic vectors is known as the co-

occurrence matrix, which is used to estimate the attribute-to-attribute similarities by comparing their 

respective semantic vectors.  

Typically, SERS techniques using distributional measures rely on the co-occurrence analysis of the 

attributes in terms of how they are used to annotate the items of the domain, i.e., they measure 

distributional similarities based on the attribute-by-item co-occurrence matrix. However, we claim that 

user-dependent distributional similarities are more adequate than item-based co-occurrences to improve 

the accuracy of recommendations, since they do incorporate user’s ratings in the calculation. Therefore, 

we investigate distributional measures that estimate semantic similarities between attributes based on how 

users are interested in them.  

To measure user-dependent distributional similarities, first we need to build an attribute-by-user co-

occurrence matrix where each entry stores a user interest weight, i.e. the attribute’s semantic vectors are 

built with respect to the interest weights of user profiles. Then, we can assess two attributes as 

semantically related if several users are interested in them in a similar way (i.e. with a similar interest 

weight). Note that, in this case, the reliability of user-based semantic similarities depends on both the 

distributional measure used and the user-profile learning method employed.  

Figure 4.2 illustrates as example the semantic vectors of three movie attributes with respect to six 

users of the system. If we analyze the number of co-occurrences between pairs of attributes, it is easy to 

observe that the semantic vectors of the <Bruce Willis, action> pair are more similar than the semantic 

vectors of the <Bruce Willis, comedy> pair.  

 

Figure 4.2. Semantic vectors of three attributes with respect to six users 

 

Based on this semantic representation, we calculate the distributional similarity between two attributes as 

the cosine of the angle between their semantic vectors. We chose the cosine similarity because it has been 

proved to be a reliable measure when dealing with high-dimensional vector spaces, and differently from 

set-theory and probabilistic measures, it also takes into account the value of the interest weights.  
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When the generated semantic vectors are sparse, the cosine similarity might cause misleading 

similarity estimations. In those conditions, we propose to apply dimensionality reduction techniques to 

produce more compact and informative semantic vectors. In addition to LSA, which uses the 

conventional SVD method to reduce the dimensionality of the co-occurrence matrix (see Section 2.4.3 

and 3.2.2 for more details), we have decided to include in our study a novel method to produce latent 

semantic vectors of item’s attributes based on the user’s ratings proposed by Forbes and Zhu [2011], 

which uses a content-boosted MF recommender which extends the standard MF model by adding the 

item’s attributes in the factorization process (see Section 2.6.1). In this case, the latent semantic vectors 

are a result of the joint matrix factorization process, and thus the number of latent factors is the same 

number as used for learning the latent vectors of user and items. 

4.3.3. Pairwise User-to-Item Profile Matching 

Although pairwise profile matching strategies are not commonly used by ontology-based SERS 

techniques, we want to demonstrate that they are the best way to exploit distributional semantics for CB 

recommendation. Here we propose two pairwise strategies that extend a linear CB prediction model, 

which estimates the rating for a given user and item as the dot product of their respective vector 

representations. In particular, we adapted the prediction model based on dot product defined in Eq. 2.17 

by adding a normalization factor   that modifies the contribution of the profile matching based on the 

number of attributes that appear in both target profiles (in our experiments we obtained the best results 

when using      5). Denoting     as the set of attributes overlapping in both profiles (i.e. every 

attribute    whose     and     are different from zero), we predict the rating that a target user u will 

provide to an item i, as follows: 

 ̂             
 

|   |
 
   

                                                                

The proposed pairwise strategies extend the above mentioned prediction model by incorporating the 

attribute-to-attribute distributional similarities during item-to-user profile matching instead of simply 

using the dot product between profiles. We have proposed the following two pairwise strategies: 

 An all-pairs strategy, where each item’s attribute weight different from zero (   ) is 

aggregated with each user’s interest weight (    ):  

 ̂             
 

|   |
 

∑ ∑                      

      

          

     

           

 A best-pairs strategy, in which each item’s attribute weight different from zero (   ) is 

aggregated with the weight of the most similar user’s attribute:  
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    stands for the set of attributes in the user profile    whose semantic similarity to item’s attribute   is 

larger than a similarity threshold. We used this threshold to avoid aggregating pairwise comparisons 

between item’s and user’s attributes weakly related, which may cause the introduction of too much noise 

to the predicted score. The           function returns the similarity value between the two attributes, 

and the aggregation function defines how the two weights are aggregated. In addition to the typical 

product-based aggregation, we have experimented with the following aggregation functions: the 

maximum, the minimum and the average of the attribute weights. 

Figure 4.3 illustrates the main differences between the all-pairs and best-pairs strategies. The 

example shows the pairwise combinations that are used in each strategy for the same item and user 

profiles (green lines represent the most similar pair for a given item’s attribute, and the red ones the other 

possible combinations). To simplify, here we assume that the similarity between all the possible attribute 

pairs is larger than the similarity threshold. As it can be observed, the all-pairs strategy considers all the 

possible combination pairs and the best-pairs only the best-matching ones.  

  

 

Figure 4.3. Proposed pairwise item-to-user profile matching strategies 

 

In this work, we want to demonstrate that the all-pairs strategy is a better option when the predicted score 

is not bounded to a specific scale, like in ranking prediction, where what matters most is the order of the 

recommended items and not how similar the predicted and true ratings are. In contrast, in rating 

prediction, where the predicted scores must be normalized to the same scale of the real user’s ratings, this 

additional aggregation of the all-pairs strategy may produce more “extreme” rating predictions (i.e. many 

1-stars or 5-star ratings) and thus bigger errors than the best-pairs, which is more selective.  
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4.4. Experimental Evaluation 

For the evaluation of SCB we used an extension of the well-known MovieLens
10

 movie data set. This 

extended data set was released at the second International Workshop on Information Heterogeneity and 

Fusion in Recommender Systems (HetRec 2011)
11

, and includes the following movie attributes: title, year 

of release, genres, directors, actors, countries of origin, filming locations and user tags; some of them 

extracted from IMDb
12

. The data set consists of approximately 10 million ratings from 2113 users on 

10.197 movies.  

As in other machine learning techniques modeling explicit domain attributes, feature selection is 

crucial for the effectiveness of the model. Here we discarded the non-informative attributes, in order to 

maximize the effectiveness of the CB prediction models considered in the evaluation. Concretely, we 

experimentally found the best performance not considering the countries and filming locations as well as 

the least popular actors and user tags. In the case of actors, we only maintained the actors appearing in 

more than three movies and in the top-5 ranking of actors of at least one movie. In the case of tags, we 

removed all tags not associated to at least five different users and movies. Once selected the relevant tags, 

we then removed from the dataset all movies with less than five tags. Table 4.1 shows the main statistics 

of the original movie rating data set and the pruned data set. 

Table 4.1. Dataset statistics before and after pruning 

Characteristic Original dataset Pruned dataset 

Movies 10197 1646 

Attributes 13367 3105 

Ratings per user 404 239 

Rating density 4% 14% 

 

Taking advantage of the rating timestamps available in the data set, we have followed a per-user all but n 

evaluation protocol, in which for each user the n last ratings are selected as test set. As suggested by 

Shani and Gunawardana [2011], this evaluation protocol simulates better the online user behavior than 

traditional cross-validation protocols, and additionally, it is more suitable for significance testing because 

it allows obtaining more independent experiments to compare the algorithms (exactly one average per test 

user), assuming that test users are drawn independently from some population. For measuring the rating 

prediction accuracy of the considered models we computed the RMSE and the Mean Absolute Error 

(MAE) over the test set. Compared to MAE, RMSE penalizes more large errors.  

                                                      

10
 See [http://www.movielens.org], accessed on November 14

th
, 2013. 

11
 See [http://ir.ii.uam.es/hetrec2011], accessed on November 14

th
, 2013. 

12
 See [http://www.imdb.com], accessed on November 14

th
, 2013. 
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Besides the rating prediction accuracy, we have also measured the ranking performance of the 

evaluated models with the goal of validating the expected advantages of the all-pairs strategy for this 

recommendation task. In this case, we have followed a different evaluation protocol known as one plus 

random method [Cremonesi et al. 2010]. The method consists of selecting, for each user, a set of highly 

relevant items, and then the recommender generates a ranking for each of the selected relevant items plus 

the rest of candidate items, which are randomly selected. Finally, we measured the ranking precision of 

each ranking separately based on the final position of the relevant item in the ranking: the higher, the 

better.  

Typically, in rating data sets the selection of highly relevant items is done by simply choosing the 

items rated with 5 stars. In our experiment, we use a finer-grained selection of test ratings using a user-

specific threshold for determining the relevant items. The threshold is computed based on the particular 

user’s rating behavior (i.e. a 4-star rating can be considered as relevant for a critic user, but irrelevant for 

a user rating many items with 5 stars). Particularly, we selected the last 5 ratings (according to their time-

stamps) whose value is larger than the user-specific threshold. Regarding the selection of non-relevant 

candidate items, we randomly selected a certain number of items from the test set not rated by the user. In 

order to reduce the computation time of the experiments, we used a fixed number of candidate items per 

ranking. Experimentally, we found that using 750 non-relevant items was a good compromise between 

computational cost and reliability of the results.  

For measuring the ranking precision we used the following two well-known metrics: 

 Recall, which is defined as the number of “relevant” items (i.e. that appear in a higher position 

than a specific ranking cutoff) divided by size of the recommendation list. Because we used 

the one plus random protocol, we measured the recall for a given target item and user, and 

thus when we have a hit (i.e. if the target item appears in the top-n list) recall is equal to 1; and 

equal to 0 otherwise.  

 Normalized Discounted Cumulative Gain (NDCG) [Järvelin and Kekäläinen 2002], which, 

differently from Recall, also takes into account the position of the item in the top-n list, i.e., a 

recommender that places the item in the first position is better than one placing it in the second 

position. The penalization is based on a relevance reduction logarithmically proportional to the 

position of the item. 

All the reported results are averages of per-user evaluations, and the statistical significance of the 

differences between the proposed methods and the baseline algorithms have been calculated by means of 

the paired Wilcoxon sign rank test. In the case of Recall and NDCG the per-user evaluations are also 

averaged with the results at different ranking cutoffs, specifically from top-5 to top-50. Given that 

previous research on SERSs have demonstrated that these techniques usually perform especially well in 

cold-start scenarios, we have separately measured the performance of the models on users with few 
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ratings. Concretely, we considered the 10% of users with the lowest number of ratings as the set of “new” 

users.  

The numeric meta-parameters of the proposed models (i.e. thresholds, decay factors, etc.) were 

experimentally learnt by using a single validation set. We built the validation set by applying the per-user 

splitting protocol mentioned above on the original training set (using also 5 test ratings per user). To learn 

the optimal configurations efficiently we used the popular simplex search algorithm known as Nelder and 

Mead method [1965], which is used in many fields for meta-parameter optimization. Basically, this 

method begins with a set of points each of which represents a specific meta-parameter configuration and 

together form the initial simplex. At each iteration, the method performs a sequence of transformations of 

the simplex with the goal of finding a new configuration that decreases the prediction error on the 

validation set with respect to the previously evaluated configurations. In our experiments the algorithm 

converged, on average, after 15 iterations. 

4.4.1. Comparing User-Profile Learning Methods 

In this section, we evaluate the effectiveness of the proposed user-profile interest weighting methods 

described in Section 4.3.1. All these methods have in common that they learn the interest weights of a 

user based on the user’s ratings and the attribute-based item profiles. Therefore, their accuracy also 

depends on the precision of the item’s profile representation. In this experiment we weighted differently 

item’s attributes depending on its type: tags were weighted using the well-known TF-IDF scheme; genres 

based on the IDF weighted scheme (using the idea that less popular genres should be more informative); 

for the directors we employ a global rating-based popularity, and for the actors we used a measure of 

relevance based on actor popularity and their ranking positions in the movies that has acted. Finally, the 

weights of item profiles were normalized to the range [0, 1]. 

In this experiment we used as baseline user-profile weighting method the rating average proposed by 

Sen et al. [2009] and defined in Eq. 2.16. Figure 4.4 illustrates a comparison of the accuracy 

improvement of the proposed methods (CB-AdjRA and CB-Hybrid) with respect to the baseline. In order 

to fairly compare the interest weighting methods, we use them in combination with the same CB 

prediction model based on dot product and defined in Eq. 4.4. CB-AdjRA is the variant using the adjusted 

rating average method defined in Eq. 4.1, and CB-Hybrid, the variant using the extended rating average 

method defined in Eq. 4.3.  

It can be observed that both CB-AdjRA and CB-Hybrid outperform the baseline in both 

recommendation tasks: rating prediction (measured by RMSE and MAE) and ranking recommendation 

(measured by Recall and NDCG). Comparing the proposed variants, we can see that CB-Hybrid is clearly 

better than CB-AdjRA, especially for Recall and NDCG, where the improvement achieved is of 74% and 

125%, respectively, in the “All” users set . This demonstrates that the extended variant contributes to 

estimate more precise user profiles and hence better item-to-user profile matching estimations.  



Chapter 4 - Exploiting Distributional Similarities for Enhanced Content-Based Recommendation 63 

 

 

 

Figure 4.4. Accuracy improvement of the proposed user-profile learning methods (CB-AdjRA and CB-

Hybrid) with respect to the baseline method. (All means that the result is averaged over all the users, and New 

averaged over the set of new users) 

 

4.4.2. Best-Pairs vs. All-Pairs Pairwise Strategies 

Here we compare the performance of the proposed SCB variants using several user-based distributional 

measures. In addition to the cosine latent-based measures described in Section 4.3.2, i.e. LSA and Forbes-

Zhu method, we have included in the comparison a set-theory and a probabilistic measure. Table 4.2 

shows the results of the variant using the best-pairs strategy (SCB-BP) and the variant using the all-pairs 

strategy (SCB-AP). Both variants employ the best-performing user-profile learning method according to 

the results shown in previous section, i.e., the extended rating average method defined in Eq. 4.3. In this 

experiment, we use CB-Hybrid as the baseline algorithm. Regarding the distributional measures, Jaccard 

refers to the Jaccard index defined in Eq. 3.7, and Kullback-Leibler refers to the Kullback and Leibler 

[1951] probabilistic measure (defined in Eq. 3.9).  

It can be observed that some of the distributional measures perform differently depending on the 

recommendation task (rating prediction or ranking) and the SCB variant. For example, the dimensionality 

reduction measures perform better than the others in terms of ranking precision when using SCP-AP: in 

general, LSA is the best measure, although Forbes-Zhu obtains slightly better results for new users. This 

implies that, if our idea is to use SCP-AP as part of a hybrid CF recommender, perhaps it is a better option 

to employ the Forbes-Zhu measure and thus focus more on providing better recommendations to new 

users, whereas if we use SCP-AP as the main recommendation technique, then LSA is the best option. 

Surprisingly, dimensionality reduction techniques do not perform as well for rating prediction. In this 

case, the probabilistic measure Kullback-Leibler is the one that achieves the best accuracy when used 

with SCB-BP. We experimentally found the latent dimensionalities that yielded better results, using 200 

factors in LSA, and 90 factors in Forbes-Zhu. 
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Table 4.2. Prediction accuracy of SCB-BP and SCB-AP using user-based distributional measures. Results in 

bold are statistically significant better (95% confidence level) than the baseline. Results underlined are also 

significantly better than the non-underlined. 

Models 
Distributional 

Measure 

RMSE MAE Recall NDCG 

All New All New All New All New 

CB-Hybrid - .85 1.00 .62 .85 .13 .18 .05 .08 

SCB-AP 

Jaccard   .85 1.00 .62 .85 .17 .15 .07 .06 

Kullback-Leibler .95 1.16 .69 .89 .16 .25 .06 .10 

LSA .85 1.00 .62 .85 .19 .27 .07 .12 

Forbes-Zhu  .85 .99 .61 .85 .16 .29 .06 .12 

SCB-BP 

Jaccard   .85 .97 .62 .82 .17 .16 .07 .06 

Kullback-Leibler .84 .94 .61 .79 .16 .11 .06 .03 

LSA .85 .98 .62 .83 .18 .18 .07 .07 

Forbes-Zhu  .84 .98 .62 .83 .17 .15 .07 .05 

 

We compared the performance of both SCB variants when using the optimal distributional measures for 

each recommendation task, i.e., for rating prediction (SCB-BP + Kullback-Leibler and SBP-AP + 

Forbes-Zhu) and for ranking (SCB-BP + LSA and SCB-AP + LSA). Figure 4.5 illustrates the % 

improvement of both SCB variants with respect to the CB baseline (CB-Hybrid).   

 

 

Figure 4.5. Accuracy improvement with respect to CB-Hybrid of SCB-BP and SCB-AP using the best-

performing user-based distributional measure for each recommendation task  
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It can be observed that, for rating prediction, the improvements of both SCB variants are non-significant 

in the “All users" case, being only appreciable the improvement of SCB-BP for new users (8% gain). This 

demonstrates that the best-pairs strategy is better than the all-pairs one for rating prediction, and it is 

especially effective for users with small user profiles.   

For ranking, the improvements of both variants are more significant. In this task, we can see that SCB-

AP clearly outperforms SCB-BP, improving Recall and NDCG for both sets of users. The differences 

between variants are really significant for new users, which is when SCB-BP performs poorly compared 

to SCB-AP. In this case, SCB-AP achieves an improvement of 50% for Recall and NDCG with respect to 

CB-Hybrid. These results prove the usefulness of the all-pairs strategy for ranking, given that for this task 

what matters most is the order of the items and not the closeness between the predicted and the true 

rating. 

We obtained the best results in SCB-AP when using a similarity threshold of 0.25, whereas in SCB-BP, 

the similarity threshold was set to 0 (the threshold is used to determine if a pairwise attribute combination 

is similar enough to be considered during score prediction). This low value of the thresholds in both 

variants means that almost all the positive semantic similarities derived by the distributional measures are 

useful for the prediction. 

 Regarding the selection of the aggregation function, our results show that the product is clearly the 

most effective aggregation function for rating prediction. But, for ranking prediction, it is not clear which 

aggregation method is better because it depends on the distributional measure and the pairwise strategy 

used. For example, the optimal SCB variant for ranking (i.e. SCB-AP + LSA) uses also the product, and in 

the case of SCB-BP with LSA, the best results are obtained when using the average. 

4.4.3. User-Based vs. Item-Based Distributional Semantics 

In this section we evaluate the effectiveness of user-based distributional similarities, which are based on 

co-occurrences of attributes over the corpus of user profiles, compared to the commonly used item-based 

distributional similarities (based on the co-occurrences of attributes with respect to items). Before 

comparing user-based and item-based similarities, we analyzed which distributional measure performs 

better with item-based ones: Table 4.3 shows the results of SCB-BP and SCB-AP using the distributional 

measures that can be employed for item co-occurrence analysis, i.e. Jaccard, Kullback-Leibler and LSA. 

Differently from the results obtained when using user-based semantics, Jaccard is the measure that 

performs better for rating prediction when used with SCB-BP. For ranking with SCP-AP, Jaccard is also 

the best in “All” users, but Kullback-Leibler and LSA have better Recall for “New” users.  
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Table 4.3. Prediction accuracy of SCB-BP and SCB-AP using item-based distributional measures 

Model Distributional Measure 
RMSE MAE Recall NDCG 

All New All New All New All New 

CB-Hybrid - .85 1.00 .62 .85 .13 .18 .05 .08 

SCB-AP 

Jaccard .85 1.00 .62 .85 .19 .18 .07 .08 

Kullback-Leibler .85 .98 .62 .84 .16 .21 .06 .09 

LSA .85 .99 .62 .84 .18 .21 .07 .08 

SCB-BP 

Jaccard .85 .96 .62 .80 .17 .16 .07 .06 

Kullback-Leibler .85 1.00 .62 .85 .17 .13 .07 .06 

LSA .85 .98 .62 .83 .17 .16 .07 .06 

 

Figure 4.6 shows a comparison of the improvement, with respect to the baseline, of the best-performing 

SCB variants when using User-Based (UB) and Item-Based (IB) distributional similarities. When using 

item-based co-occurrences, the similarity between two attributes mainly depends on how-many items are 

annotated by both attributes. In contrast, when using the user-based perspective, the similarity depends on 

how-many users are interested in both attributes and the correlation of their interest weights. It can be 

observed that UB outperforms IB for rating prediction and ranking, and their differences are especially 

significant when dealing with new users. This demonstrates that the exploitation of user-based 

distributional semantics is more useful for overcoming the data-sparsity problem and improving CB 

recommendation.  

 

Figure 4.6. Accuracy improvement with respect to CB-Hybrid of the best-performing SCB variants for each 

task using User-Based (UB) and Item-Based (IB) distributional similarities 
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Table 4.4 shows an example of the type of similarities derived using each method in the MovieLens data 

set: a comparison of the top-5 attributes considered similar to the marvel user tag. As it can be observed, 

the top-5 similarities are completely different. In the item-based ranking the top-5 list is composed 

basically of actors and directors that specifically appear in movies that contain the tag marvel, but they 

are not necessary the most popular among users. In contrast, the user-based ranking is composed of three 

more general tags (superhero, comic book adaptation, and legislation), which in the specific domain of 

movies based on comics are strongly related attributes, such as the popular actor Huge Jackman and the 

director Sam Raimi. This demonstrates that similarities based on user co-occurrences “prioritize” 

semantically-related attributes that are popular among users. 

Table 4.4. Top-5 similar attributes to attribute marvel (a user tag in the MovieLens data set) estimated using 

the user-based and item-based semantic vectors in combination with LSA. The value is the similarity value of 

the association (e.g. <superhero, marvel> pair similarity is equal to 0.85). 

Item-based User-based 

Doug Hutchison 0.82 superhero  0.85 

Lexi Alexander 0.82 comic book adaption 0.83 

Dominic West 0.74 legislation  0.82 

Colin Salmon 0.72 Sam Raimi  0.82 

John Stevenson 0.69 Hugh Jackman  0.81 

 

4.4.4. Distributional vs. Ontology-Based Measures  

In this section, we evaluate the effectiveness of the best-performing user-based distributional measure for 

each recommendation task (according to the performance results presented in previous section), by 

comparing it to the performance of well-known ontology-based measures. But, to perform this experiment 

we first needed a domain ontology defining the explicit relations between attributes of the MovieLens 

data set. In particular, we developed a movie taxonomy based on the movie genre classification publicly 

available on Amazon’s website.  

Figure 4.7 shows a partial representation of the Amazon’s genre classification. We parsed the genre 

hierarchical relations using the Amazon Product Advertising API
13

, which provides programmatic access 

to Amazon’s product selection and discovery functionality in order to help users advertise Amazon 

products from their website. Using this API, we developed two programs: one responsible for crawling 

the Amazon’s movie genre classification and creating a RDF file containing all the genres and their 

hierarchical relations; and the other responsible for automatically annotate the movies in the MovieLens 

                                                      

13
 See [https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html], accessed on November 14

th
, 

2013. 
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data set with the Amazon’s genres. The ontology population was carried out by searching for movies in 

the Amazon catalog with the same or similar title to the one available on the MovieLens item content 

data. Using the developed crawler, we obtained a taxonomy of 420 genres and two levels of depth, and 

annotated 98% of the movies in the data set. In all these movies the Amazon’s genres were included as 

additional attributes. Note that in the pruned MovieLens data set used for evaluation, we had already 

discarded the 2% movies not indexed in the Amazon’s taxonomy. 

 

Figure 4.7 Partial view of Amazon’s movie genre classification  

 

As explained in Section 3.2.1, several ontology-based measures can be used to estimate the similarity 

between two hierarchically-related attributes. In particular, we included in the experimentation the 

following five ontology-based measures: Wu-Palmer (defined in Eq. 3.1), Leacock-Chodorow (Eq. 3.2), 

Resnik (Eq. 3.4), Jiang-Conrath (Eq. 3.5) and the Lin’s measure (Eq. 3.6).  

Table 4.5 shows the results of SCB-BP and SCB-AP using the above mentioned ontology-based 

measures. The first thing one can observe is that no significant differences exist among variants. This can 

be explained by the limited richness of the taxonomy, which only has two levels of depth. This causes 

that the estimated similarity values almost do not differ among ontology-based measures. However, as in 

previous sections, results show that SCB-BP is slightly better than SCB-AP for rating prediction and new 

users, and SCP-AP outperforms SCB-BP in ranking task. Regarding the meta-parameters of SCP-AP and 

SCB-BP, we found the best performance when setting the similarity threshold to 0 in both cases, and used 

the product aggregation for rating prediction and the maximum for ranking.  
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Table 4.5. Prediction accuracy of SCB-BP and SCB-AP using ontology-based measures 

Figure 4.8 illustrates the differences on performance of the best-performing SCB variants for rating 

prediction and ranking recommendation when using the user-based distributional similarities and the 

ontology-based similarities. In terms of rating prediction accuracy, we can observe that the user-based 

(UB) variant (which uses SCB-BP with Kullback-Leibler) outperforms the ontology-based (OB) variant 

(using SCB-BP with Resnik), reducing thus the prediction error by 4% for new users. In terms of ranking 

performance, the UB variant (using SCB-AP with LSA) outperforms the OB variant (using SCB-AP with 

Lin) in global terms (“All users”), improving its recall by 18%, and NDCG by 12%. In contrast, when 

recommending for new users the OB variant is slightly better, improving 64% recall and 53% NDCG 

with respect to CB-Hybrid, compared to the 53% and 48% gain achieved by the UB variant. However, as 

shown in previous section, when using SCB-AP with Forbes-Zhu (another user-based distributional 

measure evaluated) the obtained Recall and NDCG is almost the same as in the OB variant. 

 
Similarity Measure Type 

RMSE MAE Recall NDCG 

 All New All New All New All New 

CB-Hybrid - - .85 1.00 .62 .85 .13 .18 .05 .08 

SCB-AP 

Wu-Palmer 
Link-based 

.84 .99 .61 .85 .16 .29 .06 .12 

Leacock-Chodorow .84 .99 .61 .84 .16 .28 .06 .12 

Resnik 

Node-based 

.85 .99 .62 .84 .16 .28 .06 .12 

Lin  .84 .99 .61 .85 .16 .29 .07 .12 

Jiang-Conrath .85 .99 .62 .84 .16 .28 .06 .11 

SCB-BP 

Wu-Palmer 
Link-based 

.85 .98 .62 .83 .12 .26 .05 .11 

Leacock-Chodorow .85 .98 .62 .83 .12 .26 .05 .11 

Resnik 

Node-based 

.85 .98 .62 .83 .12 .26 .05 .11 

Lin .85 .98 .62 .83 .12 .27 .05 .12 

Jiang-Conrath .85 .98 .62 .83 .12 .26 .05 .11 
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Figure 4.8 Accuracy improvement with respect to CB-Hybrid of the best-performing SCB variants using the 

user-based (UB) distributional measure and the ontology-based (OB) measure 

4.4.5. Pairwise Profile Matching vs. Profile Expansion   

Here we evaluate the performance of the proposed pairwise profile matching strategies compared to a 

CSA strategy for user profile expansion. In particular, we adapted, as explained below, a version of the 

CSA strategy proposed by Cantador et al. [2008; 2011] that was especially designed for working on 

ontologies with hierarchical and domain-specific relations.  

In the original CSA strategy the authors use three constraints to limit the propagation of the interest 

weights: a threshold that delimits the maximum number of propagation steps in the graph (the expansion 

threshold), a threshold delimiting the minimum interest weight to be propagated (the activation threshold) 

to the associated concepts, and a threshold delimiting the fan-out (i.e. the “hub” effect). Given the 

different nature of distributional similarities in which the estimated similarity value is especially relevant 

to determine whether the weight must be propagated or not (i.e. some positive semantic associations can 

be too weak to be used for interest propagation), we have included an additional threshold that delimits 

the minimum attribute-to-attribute similarity to be considered as a relevant association (the similarity 

threshold) and hence to be used for propagation. In this case, we did not use the fan-out threshold.    

Figure 4.9 shows the pseudo-code of the implemented CSA algorithm. The input of the algorithm is 

an initially learnt user profile and a specific configuration of above mentioned thresholds. The output 

consists of a modified user profile as the result of applying the semantic propagation of interest weights. 

Initially, all the concepts of the user profile with interest weight larger than the activation threshold are 

added in a queue sorted by activation value. Then, starting by the concept with larger activation value of 

the queue, we propagate its value if the current number of propagation steps is smaller than the expansion 

threshold. In this case, the propagation is applied to all the strongly associated attributes (whose list is 
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returned by the getSimilarConcepts( ,   ) function and consist of the attributes whose similarity value is 

larger than the similarity threshold). The spreading process is executed until the queue is empty.  

Input  

   : initial user profile 

   : expansion threshold 

   : activation threshold 

   : similarity threshold 

Output 

    : semantically-expanded user profile   

 

 queue = getInitialPriorityQueue(  ,  );  

 while queue.Count > 0 do 

    = queue.Poll(); 

  level = getPropagationLevel( ); 

  if (level <   ) then   

   foreach     getSimilarConcepts( ,   ) do 

                  
               ,   ); 

    setPropagationLevel(  ,level+1); 

    queue.Add(  ); 

   endfor 

  endif 

 endwhile        

return      

Figure 4.9. Implemented Constrained Spreading Activation strategy 

Note that the algorithm only propagates the weight of positive interests, and the sum of propagated values 

can be at most 1 because of the following propagation formula: 

              
                                                                        

where      is the interest weight of user u in attribute    before the propagation, and value refers to 

the propagated weight from the source attribute  , and it is calculated as     multiplied by      ,   ); 

Before comparing the effectiveness of the CSA strategy to the proposed pairwise strategies, we first 

analyzed the performance of CSA with respect to the distributional measures. Note that the CSA strategy 

is used to semantically expand the user profiles initially learnt by using the best-performing user-profile 

learning method (defined in Eq. 4.3). Then, recommendations are produced by means of the item-to-user 

profile matching based on dot product defined in Eq. 4.4.  

Table 4.6 shows the performance results of SCB-CSA (the variant of SCB using the developed CSA 

strategy and whose algorithm is defined in Figure 4.9) in combination with several user and item-based 

distributional measures. Similarly to the pairwise strategies (SCB-BP and SCB-AP), it can be observed 

that there is no clear dominant measure, and the best-performing one again depends on the 

recommendation task (rating prediction or ranking). For rating prediction on new users, SCB-CSA with 
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Kullback-Leibler performs better than the rest, but in this case, when using item-based (IB) co-occurrence 

analysis rather than user-based one, as in SCB-BP. And for ranking, the best measure is user-based (UB) 

with LSA, as in SCB-AP. Regarding the meta-parameters of SCB-CSA, we experimentally obtained the 

best-performing configuration, which was the following:      ;       ;        .  

Table 4.6. Prediction accuracy of SCB-CSA using user- and item-based distributional measures 

 

Figure 4.10 illustrates the differences on performance of three SCB variants: SCB-BP (using the best-

pairs strategy with UB semantics and Kullback-Leibler), SCB-AP (using the all-pairs strategy with UB 

semantics and LSA), and SCB-CSA (using the adapted CSA strategy with IB and Kullback-Leibler for 

RMSE and MAE, and with UB and LSA for Recall and NDCG).  

 

Figure 4.10. Accuracy improvement with respect to CB-Hybrid of three SCB variants: using the best-pairs 

(BP) strategy, using the all-pairs (AP) strategy and using the CSA strategy. 

The bar charts show that for new users (“New columns”) SCB-BP outperforms SCB-CSA in terms of 

RMSE and MAE, and SCB-AP outperforms SCB-CSA for Recall and NDCG. According to these results 

we can conclude that SCB-CSA performs worse than the SCB variants using the proposed pairwise 
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Similarity Measure Perspective 

RMSE MAE Recall NDCG 

 All New All New All New All New 

CB-Hybrid - - .85 1.00 .62 .85 .13 .18 .05 .08 

SCB-CSA  

 

Jaccard 
IB .84 .99 .62 .83 .14 .17 .05 .08 

UB .90 1.12 .64 .94 .12 .13 .04 .06 

Kullback-Leibler 
IB .86 .97 .61 .82 .13 .17 .05 .07 

UB .90 1.11 .64 .94 .12 .13 .04 .05 

LSA 
IB .85 .99 .62 .83 .14 .16 .05 .06 

UB .90 1.12 .64 .94 .19 .19 .07 .09 

Forbes-Zhu  UB .86 .99 .62 .82 .12 .14 .04 .04 
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strategies. We also evaluated a SCB variant combining the CSA strategy and pairwise strategies, but 

similarly to the experimentation presented in Section 3.4, this type of combinations did not obtain 

significant improvements, and in some cases even worse results.  

4.4.6. Performance Compared to the State of the Art 

In this section, we evaluate the performance of SCB-BP and SCB-AP using the best-performing user-

based distributional measures with respect to the following state-of-the-art SERS and CF techniques: 

 CB-LSA [Bambini et al. 2011], a SERS technique that uses LSA to directly reduce the original 

items’ representation, and then learns the interest weights based on the same latent semantic space 

using a folding-in method (see section 3.3.1 for more details about this approach). The rating 

estimation function is based on the dot product of the latent factor representations of item and user 

profiles in addition to the user and item biases (as defined in Eq. 2.17). 

 SVD++ [Koren and Bell 2011], which is a well-known MF model optimized for rating prediction 

using SGD. Its rating estimation function is defined in Eq. 2.26. 

 BPR-MF [Rendle et al. 2009], which is a MF model optimized for ranking based on the BPR 

framework (see Eq. 2.27 in section 2.4.3 for an exact definition of this model). 

Figure 4.11 illustrates a performance comparison of the models considered based on the % improvement 

with respect to CB-Hybrid.  

 

Figure 4.11. Accuracy improvement with respect to CB-Hybrid of the proposed SCB variants and the state-of-

the-art SERS and CF techniques 
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First we analyze the results of the SCB variants with respect to CB-LSA (the SERS technique using an 

item-based distributional measure). It can be observed that SCB-BP outperforms CB-LSA in RMSE and 

MAE, improving its results by 4% on new users (“New” column). In terms of Recall and NDCG, CB-

LSA is also clearly outperformed by SCB-AP in both sets of users (“All” and “New” columns). 

Compared to the MF models, SCB-BP outperforms SVD++ when predicting ratings to new users, 

improving its results by 4%, and SCB-AP is also better than SVD++ for ranking in both sets of users. 

Similarly to other researchers that investigated recommendation models directly optimized for ranking 

[Rendle et al. 2009; Weimer et al. 2009], our results also confirm that models optimized for RMSE or 

MAE, like SVD++, do not necessarily perform well for ranking. Note that SVD++ even has worse Recall 

and NDCG than CB-Hybrid on new users. Finally, SCB-AP also outperforms BPR-MF in the new users 

set, improving its recall by 10% and NDCG by 30% with respect to the baseline. However, both state-of-

the-art MF models are clearly superior to SCB variants in the “All” users set: SVD++ improves the 

baseline by 6% compared to the 1% achieved by SCB-BP, and BPR-MF improves CB-Hybrid by 80% 

compared to the 40% achieved by SCB-AP. 

Due to the small improvements achieved by SCB variants in terms of RMSE and MAE in the “All” 

users set, we extended our experimentation by including another state-of-the-art method for user-profile 

learning, which learns weighted user profiles optimized for RMSE using SGD. The experiment consisted 

of extending with semantics this optimized CB model incorporating the proposed pairwise strategies, and 

evaluating the improvement achieved. Particularly, we have included in this performance comparison the 

following two SGD-based CB prediction models: 

 CB-SGD, which learns the optimal user profiles by using SGD without exploiting distributional 

semantics. As explained in section 2.3.4, using the SGD method, the interest profiles    are 

incrementally learnt together with the user and item biases. Using the rating estimation function 

defined in Eq. 4.4, this model optimizes the model parameters minimizing the following objective 

function: 
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 SCB-SGD-BP, which extends CB-SGD by incorporating the best-pairs strategy to the estimation 

function in both the learning phase using SGD and the prediction phase. Therefore, it learns the 

model parameters optimizing the following objective function (                 refers to the 

best-pairs profile matching defined in Eq. 4.6): 
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We did not include a variant using the all-pairs strategy because we have previously demonstrated that, 

for rating prediction, it does not perform well and in this experiment we aimed at improving the rating 

prediction accuracy of CB-SGD. Figure 4.12 illustrates the RMSE reduction with respect to CB-Hybrid 

of the considered models, including also SCB-BP and SVD++.   

As expected, the CB variant optimized for RMSE (CB-SGD) clearly outperforms CB-Hybrid and SCB-

BP for RMSE in the “All” users set, reducing the error by 2% with respect to CB-Hybrid. However, we 

can see that in the “New” users set, SCB-BP (which employs the same user-profile learning method as 

CB-Hybrid) outperforms CB-SGD. This demonstrates that the SGD-based user profile learning methods is 

especially effective when enough rating data are available but not as good as SCB-BP when dealing with 

cold-start (new) users.    

Analyzing the improvement achieved by the SGD-based SCB variant (SCB-SGD-BP), it can be 

observed that it slightly outperforms CB-SGD in the “All” users set, reducing RMSE by almost 1%, but 

not when making predictions to new users. This was an unexpected result given that SCB-BP is especially 

effective on new users. A possible explanation to this poor performance of SCB-SGD-BP for new users is 

that, during model learning, the best-pairs strategy increases the overfitting effect in those users with few 

training ratings.  

 

Figure 4.12. RMSE reduction of SGD-based CB and SCB variants with respect to CB-Hybrid 
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4.5. Conclusions 

In this chapter we have proposed Semantic Content-Based (SCB) filtering, a novel SERS approach to CB 

recommendation that exploits distributional similarities between item’s attributes by incorporating 

pairwise profile matching strategies in the prediction phase. In particular, we described two SCB variants: 

one using a best-pairs strategy that is more suitable for rating prediction, and another one using an all-

pairs strategy, more suitable for ranking recommendation, where the exact predicted scores are not as 

relevant as the order of the recommended items.  

We have presented an exhaustive evaluation of the proposed SCB variants using a well-known movie 

rating data set including also item content data. We have analyzed their performance using several 

distributional measures, demonstrating than similarities between items’ attributes derived from user-based 

co-occurrences are more effective for improving prediction accuracy than item-based distributional 

similarities or ontology-based similarities. We have also demonstrated that the proposed variants based on 

pairwise matching strategies clearly outperform the commonly used profile expansion technique using 

spreading activation as well as to one strategy for latent item-profile representation using LSA. Finally, 

compared to the state-of-the-art MF models, we have shown that SCB variants are better when 

recommending to new users.  



 

Chapter 5 - Exploiting Distributional Semantics for enhanced 
Context-Aware Recommendation 

5.1. Introduction 

The main goal of Context-Aware Recommender Systems (CARSs) is to enhance the effectiveness of CB 

and CF recommendation techniques by incorporating contextual information in the recommendation 

process. The success of CARSs depends basically on two factors: (1) how relevant the context captured 

by the system is in a particular domain; (2) how sparse the user training data are, since context-aware 

prediction models require a large number of contextually-tagged ratings provided in all the various 

contextual situations that may be encountered by a user while experiencing an item. 

As shown in previous chapters, the exploitation of semantic similarities between item’s attributes is a 

good solution to mitigate the sparsity-related limitations of CB recommendation techniques. Likewise, 

semantics about contextual information can be exploited during context modeling to mitigate the data-

sparsity problem and thus enhance the performance of CARS techniques. In particular, this knowledge 

can be useful to reuse user data tagged with syntactically different contexts but semantically similar. For 

instance, if we want to predict the rating for a museum and the target contextual situation includes a 

condition such as “group composition is two adults and two children”, ratings acquired when the group 

composition was “two adults and three children” might be used, too, to generate a more robust and 

accurate predictive model in the target situation.  

In Chapter 4 we demonstrated that the exploitation of distributional semantic similarities derived from 

co-occurrences over user profiles is an effective method to improve the prediction accuracy of CB 

recommendation techniques, especially in cold-start situations. Similarly, here we want to demonstrate 

that distributional semantics of contextual conditions, derived from contextually-tagged user rating data, 

can help to improve the prediction accuracy of context-aware recommendation. Following with the same 

example in the tourism domain, if we analyze how the conditions “sunny” day and group of “two adults 

and two children” influence the users’ ratings, we may discover that they actually have a similar 

influencing pattern: they both tend to increase the user’s ratings for outdoor places like castles, and 

decrease them for indoor places like museums. Based on the similarity of their influence patterns we 

might consider them as semantically similar. 

This chapter presents a reduction-based pre-filtering approach, called Semantic Pre-filtering (SPF), 

which exploits similarities between situations based on the distributional semantics of contextual 

conditions, i.e., assuming that two situations are similar if they are defined by elementary contextual 

conditions that influence users’ ratings in a similar way. Given a target contextual situation, SPF uses 

ratings tagged with contextual situations similar to the target one to generate a more precise local 
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prediction model for recommending in the target context. In order to determine if a candidate situation is 

similar enough to the target one, SPF uses a global similarity threshold that specifies the minimum 

semantic similarity required for situations to be reused: the larger the threshold, i.e., the higher the 

required similarity is, the sharper the contextualization is. This implies that fewer situations are used to 

build the rating prediction model adapted to the target contextual situation. For that reason, we say that 

the predictive model is (more) “local”. 

This chapter is organized as follows. Section 5.2 positions our work with respect to the state of the art. 

Section 5.3 presents the details of SPF and the proposed variants. Section 5.4 presents an extensive offline 

evaluation of SPF using several contextually-tagged data sets as well as a detailed analysis of the effect of 

the similarity threshold on the system’s performance. Finally, Section 5.5 summarizes the work presented 

in this chapter and highlights the main conclusions.  

5.2. Related Work 

CARSs are generally classified into three paradigms [Adomavicius and Tuzhilin 2011; Adomavicius et al. 

2011]: contextual pre-filtering, where context is used for selecting a set of contextually relevant rating 

data that are exploited for generating a target context-dependent recommendation (using a context-free 

model); contextual post-filtering, where context is used to adjust (filter) recommendations generated by a 

context-free model; and contextual modeling, in which contextual information is directly exploited in the 

adopted context-aware recommendation model. 

Among these paradigms, pre-filtering is especially appealing because it has a straightforward 

justification: when context matters, use in the recommendation process only the rating data acquired in 

the same contextual situation of the target user, because only these ratings are relevant for predicting user 

preferences in that context. However, because of this ratings’ filtering process, a major limitation of pre-

filtering approaches is the data-sparsity problem. Currently, two major pre-filtering approaches have been 

proposed in the literature: reduction-based [Adomavicius et al. 2005] and splitting approaches [Baltrunas 

and Ricci 2009; 2014; Zheng et al. 2013a] (See Section 2.5.2 for a description of pre-filtering 

approaches).  

Approaches based on contextual modeling extend context-free predictive models by explicitly 

modeling the influence of context on the rating prediction, i.e., by typically adding new parameters that 

represent the contextual information. Currently, two major approaches based on extending Matrix 

Factorization (MF) prediction models can be identified in the literature: Tensor Factorization (TF) 

[Karatzoglou et al. 2010; Rendle et al. 2011] and Context-Aware Matrix Factorization (CAMF) 

[Baltrunas et al. 2011b; 2012; Odić et al. 2013; Braunhofer et al. 2014] (See Section 2.5.4 for a 

description of contextual modeling approaches) 
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Recent empirical results indicate that no universal context-aware approach exists, and the best performing 

method depends on the recommendation task and domain [Panniello et al. 2009; 2010; 2014]. Among the 

findings, their analysis shows that the accuracy of all considered CARS techniques decreases when the 

contextual information has a finer granularity and fewer ratings tagged with the target situation are 

available. In this thesis, we tackle the sparsity-related limitations of the state of the art by exploiting 

distributional similarities between contextual situations during context modeling. 

In the literature, few SERS techniques to context-aware recommendation have been proposed, and the 

existing ones only exploit semantics of contextual conditions derived from context taxonomies 

[Adomavicius et al. 2005; Liu et al. 2010; Bouneffouf et al. 2012] (See section 3.5 for a description of 

these three approaches). As commented previously, ontology-based approaches are limited by the quality 

of the context ontology used, which may not suit the data.  

Semantic Pre-filtering, the method proposed in this chapter, is analogous to Generalized Pre-filtering, 

proposed by Adomavicius et al. [2005], because it is also a reduction-based approach, but instead of 

searching for the optimal segmentation of the ratings, it exploits distributional similarities between 

situations to generate segments that aggregate the ratings tagged with situations similar to the target one. 

Therefore, the key difference is that our approach employs a notion of situation-to-situation similarity 

based on the distributional semantics of contextual conditions instead of relying on the usually limited 

condition-to-condition hierarchical relationships defined in the context taxonomy. As we will show later, 

this novel notion of similarity supports a more flexible and effective aggregation of the ratings and thus 

yields a better accuracy with respect to the state of the art, especially when the contextual situations 

considered in the application are very specific, i.e., defined by the conjunctions of several contextual 

conditions. 

5.3. Semantic Pre-Filtering 

To better understand SPF, it is worth recalling how the reduction-based pre-filtering method operates. 

When it is requested to compute recommendations in a target contextual situation, reduction-based pre-

filtering follows a two-step process: firstly, a subset of training ratings relevant to that contextual situation 

are selected from the training set; secondly, a predictive model is built based on the collected ratings, 

which is then used to make predictions to users exactly in that situation. We say that this model is “local” 

because it is not based on the full set of available ratings but exploits only a subset of more relevant 

ratings.  

The key step of this process is therefore the selection of the ratings that must be estimated to be 

relevant to the target contextual situation. In SPF, in addition to the ratings acquired exactly in the target 

situation, ratings acquired in situations “similar” enough to the target one are also used. SPF uses a 

custom definition of similarity that will be described in Section 5.3.2. Then, the selection of the “similar” 
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contextual situations is determined by a similarity threshold (t), which is a global parameter that must be 

tuned to the data set; it determines the minimum similarity score between two situations to make one 

reusable when the target contextual situation is defined by the other. The larger the threshold is and the 

closer to 1 is (maximum similarity), the less contextual situations are selected, and consequently the more 

the rating predictive model is adapted to the target contextual situation. In particular, when t=1 the 

predictive model is equal to the one built by Exact Pre-filtering (a reduction-based variant proposed by 

Adomavicius et al. [2005]: only the ratings acquired in the target contextual situation are used).  

As in other machine learning tasks, it may not be the case that a model fitting exactly the available 

training data (the ratings provided in the target contextual situation) provide the best predictions on future 

data, i.e., not used to train the model: overfitting the local contextual situations may jeopardize the overall 

system behavior, especially when ratings data are scarce. Therefore, one must detect the optimal middle 

point between a global model based on all user ratings (i.e. a context-free model) and a strict local model, 

which is just fitting the user ratings in a specific context. In SPF, we find the right level of 

contextualization for a given data by learning the similarity threshold that maximizes rating prediction 

accuracy.   

Making more precise the above discussion, given a target contextual situation    and a similarity 

threshold t, in SPF the local training set Rs*, which is the set of the ratings acquired in situation   , is 

expanded by adding all the ratings acquired in all the situations s where Sim(s,   ) ≥ t. This expanded 

training set is then used for building the local rating prediction model for the target situation   . Denoting 

with Rs the set of ratings acquired in situation s, the set Xs* of the training data for the local model of    is:  

    ⋃   

              

                                                                                    

Figure 5.1 illustrates the generation of the training data for a target contextual situation in SPF. In this 

example, it is shown that only the sets of ratings RS tagged with a contextual situation whose similarity 

with the target one is larger than the similarity threshold (t) are selected as relevant for learning the local 

predictive model. In this example, only the ratings tagged with s1 are selected. We note that, if more than 

one rating for a given user and item are available in some contextual situation similar to the target one, 

the average of these ratings is computed in order to generate a unique rating for a given user, item and 

contextual situation. Using this procedure we reduce the original multi-dimensional rating data to a two-

dimensional rating matrix that can be then used for learning a local predictive model based using any of 

the available context-free recommendation techniques.  
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Figure 5.1. Example of the ratings selection process in SPF  

5.3.1. Distributional Semantics of Contextual Conditions 

In the previous section, we have assumed the existence of a similarity function between contextual 

situations that can be used to determine which ratings are actually used to generate context-aware 

recommendations for any given target contextual situation. This section describes how a viable 

distributional situation-to-situation similarity function can be computed based on the distributional 

semantics of contextual conditions with respect to the ratings, i.e., based on the distributional hypothesis, 

which is rooted in the assumption that two situations are similar if their composing conditions influence 

users’ ratings in a similar way. To represent the distributional semantics of contextual conditions we use a 

semantic-vector space (VSM) with the goal to define the similarity between conditions in terms of their 

proximity in a high-dimensional vector space.  

We propose to model a contextual condition by describing its influence on the average rating of the 

items or the users of the system. Therefore, the dimensionality of the resulting semantic vectors is equal 

to either the number of items or users. In more detail, our method exploits rating information to measure 

the influence of a condition as the aggregated deviation between the observed ratings when the condition 

holds (    ), and the predicted context-free rating ( ̂  ). If we use a user-based perspective, then the 

influence of a condition c on a user u, which is denoted by    , is calculated as follows: 

    
 

|   |     
 ∑        ̂   

         

                                                          

where     is the set of ratings of the user u in condition c; and   is a decay factor used to reduce the 

value of the influence when |   | is relatively small based on the assumption that the larger the number 

of ratings, the more trustworthy is the above deviation estimate. In our experiments, we obtained the best 

results when using a value of    [    ]; the exact value depends on the data set. As context-free 

predictive model we used the baseline predictor presented in Section 2.2 that optimizes the item and user 

biases by means of SGD and whose prediction formula is defined in Eq. 2.1. We also tested more 

sophisticated context-free predictive models but no significant performance differences were observed. 
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Likewise, the measure of the impact of a contextual condition can also be based on the effect of the 

condition on the ratings for an item. If     denotes the set of ratings for item i in condition c, then in the 

item-based perspective the influence of the condition c on the item i, which is denoted by    , is defined 

as follows: 

    
 

|   |     
 ∑        ̂                                                               

         

 

Using the above mentioned formulas, we can build the semantic-vector representation of each condition 

with respect to the items or users in the training set. Figure 5.2 illustrates an example with the semantic 

vectors of three contextual conditions with respect to six items. In such representation, a positive value 

means that the condition tends to increase the ratings given to the item, a negative value means that the 

condition tends to decrease those ratings, and zero indicates that the condition does not have any effect on 

the item ratings based on the rating data available: the larger the value, the larger the impact of the 

condition.  

 

Figure 5.2. Semantic vectors of three conditions with respect to six items 

When data are sparse, the generated semantic vectors could contain many values close to zero, which can 

lead to wrong similarity estimations. In this situation, analogously to other distributional measures in the 

literature (see Section 3.2.2), we propose to apply dimensionality reduction techniques to produce a more 

compact and informative semantic representation. In this work, we have experimented two techniques: (1) 

by applying the conventional SVD to the original co-occurrence matrix (as in LSA), and (2) by measuring 

the influence of a contextual condition on groups of items or users defined by a category attribute (i.e. 

types of items or users). We detail in the following these two techniques. 

The reduction technique based on SVD decomposes the original     condition-to-item or condition-

to-user co-occurrence matrix A = [wci] (or A = [wcu]) into three smaller matrices          with U 

an     matrix,   an     diagonal matrix, and V an     matrix, such that U and V are orthogonal and 

r is the rank of the original matrix A. Then, the best rank-k approximation of A, which is denoted with Ak, 

is produced by selecting the k largest singular values in S and set the others to zero (i.e.          

  
 ). Finally, we obtain the k-dimensional latent semantic vectors of each condition multiplying the rows 

of    by the square root of   . In our experimentation, we used the Lanczos algorithm of SVDLIB 
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because it has been proved to be a precise and efficient method compared to other approaches [Kurucz et 

al. 2007]. (See Section 2.4.3 for more details). 

The second reduction technique that we propose relies on an explicit grouping of the items according 

to the values of an attribute of the items or users. We call these values categories. For instance, one may 

know that the recommended items can be classified into movies of different genres (categories), or the 

users may be classified into age class categories. Using this grouping into different categories it is 

possible to estimate the influence of a contextual condition (on average) on all the items or users in the 

same group (same category). This makes sense if the contextual conditions have a uniform impact on all 

the items or users in the same group. In this work, we only experimented with item categories because 

this was the only information available in the data sets used in the evaluation. Denoting with     the set 

of ratings tagged with the contextual condition c and associated to items in category g, then the influence 

of a condition c with respect to a category g, which is denoted by    , is defined as follows: 

    
 

|   |     
 ∑           

         

                                                            

5.3.2. Situation-to-Situation Similarity 

Relying on the previously described semantic representation of contextual conditions, we can measure the 

semantic similarity between two contextual conditions and between two generic contextual situations. We 

recall that a contextual situation is defined by the conjunction of one or more conditions (e.g. a contextual 

situation may be defined by temperature=hot, season=summer and mood=happy). In this chapter, we 

evaluate three strategies to measure situation-to-situation similarity based on the distributional semantics 

of conditions: (1) a best-pairs strategy, which aggregates the best-matching pairwise similarities of the 

conditions belonging to the compared situations, (2) an all-pairs strategy, which aggregates all the 

possible pairwise similarities of the conditions belonging to the compared situations; and (3) a direct 

strategy, which directly measures the similarity of two situations by representing the situations, similarly 

to the conditions, as vectors of influence scores on the items or users (i.e. semantic vectors), and then 

computes the cosine similarity.   

If the compared situations are defined by only one condition, we define the situation-to-situation 

similarity as the condition-to-condition similarity between the candidate   and the target condition   , 

which we calculate as the cosine of the angle between their respective semantic vectors, denoted by    

and     respectively (l is the dimensionality of the semantic representation of a contextual condition):  

          
  

    

√∑    
  

    √∑     
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If one of the compared situations is defined by several conditions, in the best-pairs strategy we define the 

similarities between a target situation    and a candidate situation   by comparing, for each contextual 

condition c in the candidate situation, the most similar condition in the target situation (i.e.    
      

). This is 

the best-pairs aggregation method:  

          
 

| |
∑         

      
 

    

                                                               

In the all-pairs strategy, we define the similarity between a target situation    and a candidate situation   

by comparing all the condition pairs in the two situations. The all-pairs aggregation method is defined as 

follows: 

          
 

| |  |  |
∑ ∑          

          

                                             

 

Differently from the previous strategies, in the direct strategy, we define the similarity of two situations 

by defining first a vector representation of a situation, and then comparing these vector representations. 

The semantic vector representation of a contextual situation is defined as the average of the semantic 

vectors representing its known conditions:  

   
 

| |
∑  

   

                                                                                                

Then, the similarity between a target situation    and a candidate situation   is estimated as the cosine of 

the angle between their corresponding semantic vectors: 

          
  

    

√∑    
  

    √∑     
  

   

                                                       

 

Figure 5.3 shows the semantic vectors of three possible contextual situations defined by the conjunctions 

of two conditions (which are also shown in Figure 5.2).  

 

 
Figure 5.3. Situation-to-item influence matrix – semantic vectors 



Chapter 5 - Exploiting Distributional Semantics for enhanced Context-Aware Recommendation 85 

 

 

5.3.3. Exploiting the Relevance of Contextual Conditions 

An important feature of contextual information, which was not mentioned before, is that some contextual 

conditions may have a larger influence on the ratings than others, and these differences might be 

exploited to define a more effective situation-to-situation similarity. In fact, the contextual factors that do 

not have a significant impact on the ratings are not useful when computing rating predictions: they are 

noisy information. For that reason, recent works have proposed detection methods for deciding whether a 

specific contextual factor should be captured and exploited during the recommendation process or not. 

Some of them are based on user surveys [Baltrunas et al. 2012], i.e. directly asking the users about their 

perceived importance of the contextual factors in their decision processes. Other methods are based on the 

offline analysis of the rating data by using significance testing methods. For instance, Odić et al. [2013] 

proposed a method to identify the relevant contextual factors using Pearson’s chi-squared. Each of these 

techniques has its advantages and drawbacks: a survey assessment may be better in detecting the effect of 

context on the final acceptance of recommendation, but requires more user-effort and may identify factors 

that are not ultimately correlated to the ratings in the training data set, while offline methods are better in 

finding quantitative correlations between contextual conditions and ratings, but may be unreliable when 

the data are sparse. 

Similarly to Odić et al. [2013], we proposed a data-driven method to quantify the relevance of 

contextual information, but in our case at condition level rather than factor one. Taking advantage of our 

method to measure the influence of conditions (with either respect to items or users), presented in Section 

5.3.1, and assuming that the larger the influence of a condition, the more relevant is, we define the 

relevance of contextual conditions as the variance of their corresponding semantic vectors. Denoting by 

   the relevance of a condition  , by    its influence vector with respect to items or users, and by    its 

mean influence (i.e.    
 

 
∑    

 
   ), we have that:   

   
 

 
∑         

 
 

   
                                                                         

We propose two different ways for using the above contextual conditions’ relevance definition when 

building the semantic vectors:  

 a weighting method, in which the relevance is used to weight the contribution of each individual 

semantic vector when computing the representation of a contextual situation defined by several 

conditions;  

 a filtering method, where the semantic vectors of the least relevant conditions are excluded from 

the definition of a situation's vector (i.e. their relevance weight is set to 0).  

The weighting method consists of modifying the semantic representation of a contextual situation (see Eq. 

5.8) by using a weighted average of the semantic vectors of its composing conditions, where the weights 
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are the relevancies of each known condition. Therefore, this method can only be applied with the direct 

strategy to estimate situation-to-situation similarities. Incorporating the definition of relevance in Eq. 5.8, 

the new formula to compute the semantic vector of a situation s is the following one: 

   
∑         

∑      
                                                                                  

The filtering method consists of excluding the q least relevant conditions when computing the semantic 

representations. Differently from the previous case, this method can be also applied with the best-pairs 

and all-pairs similarity strategies, since it completely removes the contribution of the semantic vectors of 

the excluded conditions. When computing the similarity between two conditions (Eq. 5.5), if   or    is one 

of the excluded conditions, then            ; and when computing the semantic vector of a situation 

(Eq. 5.8) the weight associated to the semantic vectors of the non-relevant conditions is set to 0. 

Additionally, we remove the rows corresponding to the non-relevant conditions before applying SVD to 

the co-occurrence matrix in order to remove their contribution to the resulting latent semantic 

representation. (See Section 5.4.3 for more details about the excluded conditions (q) for each data set.) 

5.3.4. Improving Scalability by Using Clustering Techniques 

A potentially severe limitation of SPF, which is common to all the reduction-based approaches, is the 

need to learn a local rating prediction model for each target contextual situation that the system may face. 

This means that, depending on the number of possible situations and the size of each local prediction 

model, SPF can be more memory-demanding than CARS techniques where a unique global prediction 

model is needed (e.g. contextual post-filtering and contextual modeling approaches). In the worst case 

scenario, when the complexity of each local model is almost the same as the global model (i.e. the local 

models have the same number of parameters as the global one) the memory consumption may be really 

high on large data sets. However, as we will show in Section 5.4.6, the local models that SPF commonly 

builds are usually trained with a small portion of the training data (i.e. only with those ratings tagged with 

situations strongly similar to the target one) and thus their complexity in terms of number of parameters is 

usually lower than global context-aware approaches, such as TF and CAMF.  

Moreover, during the initial system test we conjectured that many of the local models produced by 

SPF may be highly similar to each other. Therefore, “merging” together models trained on almost the 

same ratings may be an effective approach to save space without significantly sacrificing prediction 

accuracy. In a set of experiments illustrated in Section 5.4.4, we have studied the effectiveness of some 

clustering techniques to identify which local models may be merged. In this way, several local models, in 

the same cluster, can be replaced with a clustered model built by using all the rating data used by the local 

models belonging to the same cluster.  
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We have developed and evaluated two different clustering strategies with the combined goal of reducing 

the number of local models while avoiding any decrease in the prediction accuracy – compared with the 

original, not-clustered SPF method: 

 K-means--based clustering strategy. This (models’ reduction) strategy uses the K-means 

clustering algorithm [Rajaraman and Ullman 2012] to find, first, k optimal groups of contextual 

situations and then for all the situations in a cluster (and for each cluster) it selects, as relevant set 

of training ratings, those acquired in the situations associated in the cluster.  

 Hierarchical clustering strategy. This strategy uses a bottom-up hierarchical clustering which 

begins by considering each local set of ratings (i.e. the ratings associated to each target situation) 

as a cluster, and then gradually, moving up the hierarchy, merges the most similar pairs of clusters.  

Note that each clustering strategy employs a different similarity function for the clustering: the k-means--

based strategy estimates situation-to-situation similarities by directly comparing their semantic vectors, 

whereas the hierarchical strategy compares two situations based on the similarity of sets of ratings 

previously selected as relevant for the given situations.  

k-means--based clustering strategy. We implemented the k-means--based strategy using the standard 

algorithm (also known as Lloyd’s algorithm). Figure 5.4 shows the pseudo-code of the full learning 

process using the standard k-means algorithm.  

Input  

 P: initial set of contextual situations to be clustered 

 k: exact number of clusters to produce 

Output 

 models: k local prediction models (one for each cluster) 

 clusters = getRandomlyInitialGroups(P, k);   

 movement = true; 

 while movement do 

  movement = false; 

  centroids = computeMeans(clusters); 

  foreach     do 

   nearestClusterID = findNearestCluster(p, centroids); 

   if (              nearestClusterID) then 

    assignPointToNearestCluster( , clusters, nearestClusterID); 

    movement = true; 

   endif  

  endfor   

 endwhile    

 foreach c    clusters do 

   R
c 
= getRelevantRatings(c); 

   M
c
 = buildLocalModel(R

c
); 

   addModelTo(models, M
c
); 

  endfor 

return models 

Figure 5.4. Algorithm of the full learning process using the k-means--based clustering strategy 
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The process has two parameters as input: the set of contextual situations to be clustered, and the exact 

number of clusters to produce. The algorithm begins initializing the clusters by randomly assigning each 

semantic vector of a situation to one of the possible k clusters. Then, it follows an iterative process, which 

ends when the clustering converges, that is, when all the situations are assigned to the nearest cluster. In 

each iteration, two main operations are carried out:  

1. The centroid of each cluster is updated computing the average situation (i.e. semantic vector) 

over the set of situations currently associated to the cluster. 

2. Each situation is moved to the nearest cluster, based on the Euclidean distance between the 

centroid of the cluster and the semantic vector of the situation.  

Note that here we use the Euclidean distance rather than the proposed cosine situation-to-situation 

similarity (Eq. 5.9). The reason is because the standard k-means algorithm assumes a Euclidean space, 

and thus using other distance metrics will not ensure the convergence of the algorithm [Rajaraman and 

Ullman 2012]. Once the clusters of contextual situations are generated, we build a local predictive model 

for each of the clusters using as training set only the ratings acquired in situations that belong to the 

cluster. In this case, instead of using the similarity threshold, the level of expansion of the local models is 

controlled by the meta-parameter k: the larger k, the fewer contextual situations are aggregated per 

cluster. Similarly to the global similarity threshold (t), the optimal k for each data set must be determined 

experimentally. 

Hierarchical clustering strategy. This strategy builds clusters of contextual situations by directly 

merging the local sets of ratings associated to each possible situation. We have implemented a bottom-up 

approach that gradually merges highly similar pairs of ratings sets. In this case, we measure the similarity 

between ratings sets using the standard Jaccard similarity, which calculates an estimation of how well the 

two sets overlap as follows, being Rs1 and Rs2 the ratings sets of two different contextual situations    and 

   respectively: 

             
       

       
                                                                  

Figure 5.5 shows the pseudo-code of the full learning process using the proposed hierarchical clustering 

strategy. It takes as input the local sets of ratings for each possible target contextual situation, and a 

similarity threshold that determines the minimum Jaccard similarity between two sets so that they can be 

merged. The algorithm follows an iterative process than ends when no more sets can be merged in a new 

cluster. At each iteration, the most similar pairs of sets are merged if their similarity is larger than the 

specified threshold. When this happens, the original local sets are removed and the merged one is added 

as a new set of ratings. The resulting sets of ratings correspond to the new clusters, each of which 
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contains the contextual situations associated with each merged set. As in the previous strategy, the final 

step consists of building the local prediction models using the ratings associated to each resulting cluster.   

 

Input  

 ratingSets: Initial sets of ratings (one set for each possible target 

contextual situation) 

   : Jaccard similarity threshold 

Output 

 models: local prediction models (one for each cluster) 

 

 

  merge = true; 

 while merge == true do 

  merges = false; 

   foreach               do 

        = findMostSimilarSet(  ,ratingSets); 

   if (JaccardSim(  ,    ) >   ) then 

       = union(  ,    );  

    addSetTo(ratingSets,   ) ; 

    removeSetFrom(ratingSets,   ); 

    removeSetFrom(ratingSets,    ); 

    merge = true; 

   else  

    addSetTo(ratingSets,   ); 

  endfor   

 endwhile   

   foreach      ratingSets  do 

   M
c
 = buildLocalModel(  ); 

   addModelTo(models, M
c
); 

  endfor 

  

return models 

Figure 5.5. Algorithm of the full learning process using the bottom-up hierarchical clustering strategy 

5.4. Experimental Evaluation 

In order to evaluate the prediction accuracy of SPF, we have considered six contextually-tagged data sets 

of ratings with different characteristics. Table 5.1 illustrates descriptive statistics of the data sets. 

 The Music data set contains ratings for music tracks collected by an in-car music recommender 

developed by Baltrunas et al. [2011a]. This data set has multiple ratings for the same tracks and 

users but in different contextual situations, which are described by one condition only. Contextual 

situations are defined by the union of eight different factors, such as driving style, mood and 

landscape, and each of the factors can have different conditions (e.g. active, passive, happy and 

sad are possible conditions of the mood factor).  
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 The Tourism data set contains ratings for POIs in the region of South Tyrol. It was collected using 

a mobile tourism recommender system, called South Tyrol Suggest (STS) and developed at the 

Free University of Bozen-Bolzano. In this data set, ratings are acquired in contextual situations 

described by the conjunction of several conditions, expressed using 14 different factors, such as 

weather, companion and travel goal. Possible travel goal conditions are, for instance, business, 

education, fun and social event. In Appendix B, we show the complete list of contextual factors 

and conditions represented in this data set, which were identified in Baltrunas et al. [2012].  

 The Adom data set is derived from the movie rating data set used by Adomavicius et al. [2005]. 

The ratings were collected in a survey of college students who also provided information about the 

context of the movie-watching experience. In the data set, conditions are expressed using four 

contextual factors: companion, day of the week, movie venue, and if it was on the opening 

weekend. As in the previous data set, ratings contain situations described by several conditions 

(e.g. a situation could be defined by summer, home and alone at the same time). 

 The Comoda movie-rating data set was collected and used by Odić et al. [2013]. As in the 

previous data set, it contains ratings acquired in situations defined by the conjunction of several 

conditions, expressed using 12 different contextual factors, such as mood, time of the day, and 

weather. See Appendix B for a more detailed description of the contextual factors and conditions 

represented in this data set.  

 The Movie rating data set corresponds to the extension of the well-known MovieLens data set 

(which we also used in the offline evaluation presented in Section 4.4). However, in this 

experimentation, we used the tags provided by the users to the movies as contextual situations 

rather than as item content data, based on the assumption that user tags provide a contextual clue 

of why the movie is important for the user. Given the inherent noise of user-generated tags, we 

only used those tags that have a statistically significant impact on the user’s rating behavior and 

have been used by a minimum of 5 users. As significance test we used Pearson’s chi-squared that 

has been proved an effective method to identify relevant contextual information [Odić et al. 2013]. 

We selected the tags that are dependent on the ratings (at 99% confidence level). After this tag 

filtering process, 29 tags remained as relevant enough to be used as contextual conditions. In this 

case there is a factor for each condition, i.e., a tag can appear or not in the definition of a 

contextual situation. 

 The Library book-rating data set was collected from the LibraryThing website
14

 and augmented 

with user tags. Again, here tags are used as contextual conditions. In this case, given the large 

number of ratings and tags, we used a stricter tag filtering criteria: in addition to tags significantly 

                                                      

14
 See [www.librarything.com], accessed October 27

th
, 2013. 
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influencing the ratings (at the 99% confidence level), we only considered tags that were used by a 

minimum of 200 users. After the filtering process, 149 tags were kept as relevant.  

Table 5.1. Data set’s statistics 

Data set ratings 
rating 

scale 
users items density factors conditions 

conditions per 

situation 
situations 

Music 4013 1-5 43 139 16% 8 26 1 26 

Tourism 1358 1-5 121 101 15% 14 57 2,79 375 

Adom 1464 1-13 84 192 9.1% 4 14 3,20 134 

Comoda 2296 1-5 121 1197 1.4% 12 49 11,84 1939 

Movie 2190 1-10 428 1115 0.4% - 29 2,15 114 

Library 609K 1-10 7192 37K 0.2% - 149 3,65 39K 

 

Similarly to previous research on CARS, we evaluated SPF in terms of rating prediction accuracy (MAE) 

and the improvements produced by SPF with respect to a context-free recommendation technique. We 

measured the accuracy of SPF by conducting a per-user evaluation protocol known as all-but-n because, 

as noted by Shani and Gunawardana [2011], it is better than the traditional n-fold cross-validation in 

assessing the true improvement as perceived by the users (both users with many and few ratings count 

equally). Using this protocol, for each user, n ratings are randomly selected as test set (we used n=5 in 

Library and n=3 in the other data sets) and all the remaining ratings of the user are used for training. We 

note that the training ratings were also used to acquire the distributional semantics of contextual 

conditions (but not the test ratings). Because we wanted to reduce the computational cost of the 

experiments on the Library data set, in this case we restricted the maximum number of possible target 

contextual situations to 100. Additionally, in all the data sets we only selected as possible target contexts 

those situations that were present in the training set with at least three ratings. All the reported results are 

averages of per-user evaluations, and the statistical significance of the differences between evaluated 

models has been calculated using the paired Wilcoxon sign rank test.  

For building the local prediction models we used the MF model proposed by Koren [2010], known as 

bias MF, since it is one of the best-performing rating prediction models, especially when dealing with 

highly sparse data. The estimation function of bias MF is defined in Eq. 2.23 in Section 2.4.3. 

Nonetheless, note that in SPF it is possible to use any available context-free rating prediction model to 

build the local models.  

The numeric meta-parameters of the evaluated models (i.e. similarity thresholds, regularization 

parameters, etc.) were optimized on a single validation set by using the Nelder and Mead [1965] simplex 

search algorithm, which has been proved to be an effective solution for multi-dimensional meta-

parameter optimization. This method begins with a set of points, each of which represents a specific 

configuration and which, together, form the initial working simplex. At each iteration, the method 

performs a sequence of transformations of the simplex with the goal of finding a new configuration that 
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decreases the MAE on the validation set with respect to the previously evaluated configurations. In our 

experiments the algorithm converged, on average, after 15 iterations.  

We built the validation set by applying the per-user splitting protocol mentioned above on the original 

training set, and we used the resulting two sets, the new and smaller training set and the new test or 

validation set, for the meta-parameter optimization. The only difference with respect to the first training-

test split is that in this case we restricted the ratings selected for validation to those tagged with contextual 

situations that appear in the test set. We applied this constrain in order to have the set of target situations 

in the validation set as similar as possible to the one in the test set. Thus, the meta-parameters were 

optimized for a different set of ratings but similar target contextual situations. For the local MF models 

produced by SPF, we employed the same optimal meta-parameters used by the global MF model.   

We have considered two baseline algorithms:  

 the context-free bias MF model (which here we denoted by MF), which generates rating 

predictions without considering the context, i.e., all predictions are based on a global prediction 

model learnt using all the training ratings; and  

 Exact Pre-filtering, the reduction-based variant proposed by Adomavicius et al. [2005] (described 

in 2.5.2) in combination with bias MF (which here we denoted by Pref-MF-Exact).  

5.4.1. Comparison of the Situation-to-Situation Similarity Measures 

In this section, we evaluate the effectiveness of the three situation-to-situation similarity measures 

described in Section 5.3.2: 

 SPF-MF-BP corresponds to SPF using the best-pairs similarity measure defined in Eq. 5.6. 

 SPF-MF-AP corresponds to SPF using the all-pairs similarity measure defined in Eq. 5.7. 

 SPF-MF-DR corresponds to SPF using the direct similarity measure defined in Eq. 5.9. 

Figure 5.6 shows the MAE reduction with respect to the baseline algorithm (MF) of the SPF variants 

mentioned above using the best-performing method for building the semantic vector representation of 

contextual conditions in each considered data set (see next section for a performance comparison of the 

proposed semantic vector representations). We can see that the direct measure (SPF-MF-DR) clearly 

achieves better results than the other SPF variants (SPF-MF-AP and SPF-MF-BP). As expected, in the 

Music data set, where situations are defined by one condition and thus only direct condition-to-condition 

similarities can be used, the results of both similarity measures are exactly the same.  

As it can be observed in Figure 5.6, the differences among variants are larger in the data sets where 

the average number of conditions per situation is larger. For instance, in the Comoda data set, where 

contextual situations are defined on average by 12 conditions, SPF-MF-DR improves the accuracy by 

12% with respect to SPF-MF-AP and by 14% with respect to SPF-MF-BP, which in this case almost has 
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the same accuracy as MF. In the other data sets, where situations are defined on average by 3 conditions, 

the improvement is not that large (3% on average). Comparing the pairwise strategies, it is also clear that 

the all-pairs strategy is more effective than the best-pairs (Pref-MF-BP). 

Furthermore, SPF-MF-DR has a smaller time complexity compared with Pref-MF-AP. In the worst 

case, computing the all-pairs aggregation of condition-to-condition similarities for two contextual 

situations is O(n
2
), whereas the cost of computing the averaged semantic vector for two situations is at 

most O(2n); n being the number of contextual factors. 

 

Figure 5.6. MAE reduction with respect to MF of SPF variants using different situation-to-situation 

similarities measures   

5.4.2. Semantic-Vector Representations 

In this section we compare the performance of SPF when different methods (described in Section 5.3.1) 

are used to obtain the distributional semantics of contextual conditions, i.e., the semantic vectors. To 

simplify the performance comparison, here we only show the results of SPF using the direct situation-to-

situation similarity measure, which is the one that performs better according to the results shown in the 

previous section; however, we obtained similar results when using the other similarity measures. The 

variants evaluated in this section are the following: 

 SPF-MF-UB, which uses the user-based perspective for measuring the influence of conditions 

(defined in Eq. 5.2) and building the semantic vectors. 

 SPF-MF-IB, using the item-based perspective, defined in Eq. 5.3, to build the semantic vectors. 

 SPF-MF-IC, which employs the item categories perspective for measuring the influence of 

conditions, as in Eq. 5.4.  

0%

2%

4%

6%

8%

10%

12%

14%

16%

Tourism Music Adom Comoda Movie Library

SPF-MF-BP

SPF-MF-AP

SPF-MF-DR



94 Chapter 5 - Exploiting Distributional Semantics for enhanced Context-Aware Recommendation 

 

 SPF-MF-UB-SVD, which uses SVD to reduce the dimensionality of the semantic vectors built by 

using the user-based perspective of influence. 

 SPF-MF-IB-SVD, which applies SVD to the condition-to-item co-occurrence matrix instead.  

Table 5.2 shows the MAE of each SPF variant compared to the baseline algorithms MF and Pref-MF-

Exact. As it can be observed, no SPF variant is clearly superior to the others. However, the results show 

that, when the best variant is used, SPF clearly outperforms the baseline algorithms. 

We note that dimensionality reduction techniques are not always improving the results. In fact, in 

some data sets (e.g. Comoda and Movie) the accuracy is worse when using them. This can be explained 

by the fact that SVD is useful only when the matrix to be decomposed has redundant data; otherwise, 

SVD is also removing/compressing relevant information. In the data sets where SVD is beneficial, we can 

see that the improvement achieved is relatively small compared to not using it; only in Music it is 

significant. This overall small improvement in all these data sets can be explained by the fact that the 

original co-occurrence matrices have almost no redundant data, since the available contextual conditions 

are few and informative. We experimentally optimized to each data set the number of latent factors used 

in SVD. In particular, we used 20 factors in Tourism, 10 factors in Music and Adom, and 130 factors in 

Library.  

Comparing the two reduction techniques, it can be observed that, in these data sets, the variant using 

semantic vectors based on explicit item categories (SPF-MF-IC) is slightly worse than the ones using 

SVD. Note that SPF-MF-IC can only be used in the data sets where items are classified in categories, 

which in this experimentation are Music, Tourism and Comoda, and its effectiveness strongly depends on 

how meaningful the categorization of the items is. If contextual conditions do not have a stable influence 

on the items belonging to the category, then the reduced semantic vectors may be noisy. 

Table 5.2. MAE results of SPF using different methods for building the semantic vectors of conditions. 

Results in bold are statistically significant better (95% confidence level) than the baseline algorithms. 

Underlined results are also significantly better than the other SPF variants. 

Model Tourism Music Adom Comoda Movie Library 

MF 1.00 1.00 2.25 .76 1.27 1.26 

Pref-MF-Exact 1.02 1.21 2.21 .83 1.13 1.19 

SPF-MF-UB .94 .94 2.19 .65 1.12 1.14 

SPF-MF-IB .89 .99 2.21 .68 1.10 1.14 

SPF-MF-IC .91 .99 - .69 - - 

SPF-MF-UB-SVD .90 .97 2.19 .69 1.12 1.14 

SPF-MF-IB-SVD .88 .93 2.19 .71 1.12 1.15 
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Figure 5.7 focuses on the performance comparison of the item-based and user-based perspectives that can 

be used for estimating the influence of contextual conditions. It can be observed that again there is no a 

clear winner, since item-based perspective performs better in Tourism, Music and Movie, and the user-

based one achieves better results in Adom, Comoda and Library. Similarly to other CARS techniques, 

such as CAMF [Baltrunas et al. 2011] and User-Item Splitting [Baltrunas and Ricci 2009; Zheng et al. 

2013], different variants are possible depending on whether context is modeled with respect to the users 

or items, and it is difficult at design stage to decide which variant is better. Furthermore, note that in some 

data sets, such as Adom and Library, the differences between perspectives are not significant, which 

means that not always this decision is crucial for the effectiveness of SPF. Similarly to User-Item 

Splitting [Zheng et al. 2013], we also evaluated an SPF variant modeling the context with respect to items 

and users at the same time but it did not improve the results.  

 

 

Figure 5.7. MAE reduction of best SPF variant using user-based semantics and item-based semantics with 

respect to MF 

 

Additionally, we have analyzed and compared the condition-to-condition similarities calculated using the 

proposed item-based and user-based perspectives in order to bring some examples illustrating why they 

perform differently in different data sets. In Table 5.3 we show as example the top-10 similar conditions 

to cloudy day and negative mood conditions of Tourism and Comoda data sets, respectively. (A more 

complete description of the contextual conditions and factors used in both data sets is shown in Appendix 

B.)  

Looking at the top ranked conditions in Comoda, one can see that, in general, user-based similarities, 

which are the best-performing ones, seem to be also more reliable in terms of common sense. For 

example, in item-based the happy emotion appears in the top-10 of negative mood, which contradicts 
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common sense, whereas in user-based the disgusted emotion
15

 is the most similar one. Analogously, in 

Tourism, item-based similarities (best-performing here) seem to be more reliable in terms of common 

sense than user-based ones (in which, e.g., the top-2 condition of cloudy day is fun, which could be seen 

as puzzling association in the tourism domain). 

Based on the system performance results and the characteristics of the contextual information captured 

in the evaluated data sets, we concluded that in data sets like Comoda, where user-dependent contextual 

factors are more predominant and relevant to the domain (e.g. mood, emotions, and physical aspects), 

using the user-based perspective is better; and, in data sets like Tourism, where environmental contextual 

factors are more relevant (e.g. weather, temperature, time) using the item-based perspective seems a 

better option.    

 

Table 5.3. Top-10 similar conditions to cloudy day (Tourism data set) and to negative mood (Comoda data 

set) using user-based and item-based perspectives. In parenthesis we show the factor of each condition.  

Tourism (top-10 similar to Cloudy day) Comoda (top-10 similar to Negative mood) 

User-based Item-based User-based Item-based 

Budget traveler(Budget) 

Fun(Goal) 

With friends(Companion) 

Near by(Distance) 

Working day(DayType) 

Visiting friends(Goal) 

Rainy(Weather) 

Alone(Companion) 

Returning visitor(Knowledge) 

Crowded(Crowdedness) 

Winter(Season) 

Cold(Temperature) 

Rainy(Weather) 

Social-event(Goal) 

Snowing(Weather) 

Empty(Crowdedness) 

Night-time(Time) 

Not-crowded(Crowdedness) 

Business(Goal) 

Public-Transport(Transport) 

Disgusted(EndEmotion) 

Disgusted(DominantEmotion) 

Afternoon(Time) 

Neutral (Mood) 

Friend’s house(Location) 

Neutral (EndEmotion) 

Neutral (DominantEmotion) 

Not chosen (Decision) 

First (Interaction) 

Working day (DayType) 

Angry (EndEmotion) 

Not chosen (Decision) 

Night (Time) 

First (Interaction) 

Spring (Season) 

Scared (EndEmotion) 

Neutral(DominantEmotion) 

Happy (EndEmotion) 

Afternoon(Time) 

Chosen(Decision) 

 

5.4.3. Context Relevance 

In this section we evaluate the effectiveness of the methods that we have introduced for exploiting our 

definition of conditions’ relevance (described in Section 5.3.3). Figure 5.8 shows the MAE reduction 

with respect to MF of the following SPF variants:  

 SPF-MF-DR, which is a variant of SPF using the direct similarity function but not using the 

relevance weighting; 

 SPF-MF-DR-Weighted is the method using the weighted average semantic vector calculation 

defined in Eq. 5.11;  

                                                      

15
 EndEmotion factor refers to the user’s emotional state at the end of the movie-watching experience and 

DominantEmotion factor refers to the emotional state during the movie-watching experience. 
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 SPF-MF-DR-Filtered is the method that directly excludes the q least relevant contextual 

conditions during the calculation of the situation-to-situation similarities.   

As shown in Figure 5.8, there is no clear winner: SPF-MF-DR-Weighted yields a lower MAE in Adom, 

Movie and Library data sets, whereas SPF-MF-DR-Filtered is slightly better in Tourism and Comoda. In 

general, it is demonstrated that the exploitation of the relevance of conditions is useful to improve the 

effectiveness of SPF, although in some data sets this improvement is little significant.  

 

 

Figure 5.8. MAE reduction of SPF variants using the relevance weighting methods with respect to MF 

 

Based on the characteristics of the contextual information in each data set, it seems that SPF-MF-DR-

filtered performs better in data sets with a relatively high number of conditions and high context 

granularity. We believe that under these conditions it is more likely that some conditions may introduce 

noise, and thus it is better to directly exclude them from the model rather than weighting their 

contribution during the similarity calculation. In Comoda, the best results (an improvement of 2% with 

respect to SPF-MF-DR) are obtained when considering the top-29 relevant conditions. In Tourism, the 

best performance is obtained when using the top-40 relevant conditions and the semantic definition of the 

contextual conditions is based on the item categories (improvement of 1%). Note that, according to the 

results shown in Table 5.2, the best-performing semantic definition in Tourism was using the item-based 

perspective combined with SVD. This means that, once one has excluded the noisy conditions from the 

model, the reduced semantic vectors based on explicit item categories become more effective.  

In contrast, SPF-MF-DR-Weighted seems to perform better in the tag-based data sets (Movie and 

Library) and in Adom: it improves MAE by 2% with respect to SPF-MF-DR. We note that this method is 

more effective when the relevance of the conditions significantly differs between them, since in these 
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cases the weighted average has a major impact on the resulting averaged semantic vectors. This happens 

for instance in the Adom data set where the top-3 conditions are largely more relevant than the others. 

5.4.4. Evaluation of the Clustering Strategies 

This section illustrates and compares the effectiveness of the clustering strategies described in Section 

5.3.4. The MAE of the best-performing relevance-boosted SPF variants using the two alternative 

clustering strategies is shown in Table 5.4. In addition to the baseline algorithms, in this table we also 

show the MAE of the best-performing not-clustered SPF variant, which we denote as SPF-MF-DR+. The 

variants using the clustering strategies are denoted by: 

 SPF-MF-DR+-kmeans, which is the variant using the k-means--based clustering method; 

 SPF-MF-DR+-hierarchical, the variant using the bottom-up hierarchical clustering method.  

The goal of the proposed clustering methods is to reduce the number of local models generated by SPF 

while avoiding any decrease of prediction accuracy with respect to SPF-MF-DR+. However, we did not 

expect an improvement of the accuracy when using the proposed model clustering methods. We can 

observe that SPF-MF-DR+-hierarchical slightly outperforms SPF-MF-DR+ in some data sets, especially 

in Tourism. This demonstrates that merging similar sets of ratings, i.e., sets that mostly overlap, not only 

helps to reduce the number of local models, but also improves the prediction accuracy. In contrast, the k-

means method (SPF-MF-DR+-kmeans) always produces a significant loss of accuracy with respect to 

SPF-MF-DR+.  

Table 5.4. MAE of SPF using the proposed clustering strategies 

Model Tourism Music Adom Comoda Movie Library 

MF 1.00 1.00 2.25 .76 1.27 1.261 

Pref-MF-Exact 1.02 1.21 2.21 .83 1.13 1.193 

SPF-MF-DR+ .88 .93 2.14 .64 1.10 1.13 

SPF-MF-DR+-kmeans .92 .96 2.19 .69 1.10 1.15 

SPF-MF-DR+-hierarchical .86 .95 2.14 .64 1.10 1.13 

 

Table 5.5 shows the number of local models produced by SPF with and without the model clustering 

strategies. It can be observed, as an advantage of  SPF-MF-DR+-kmeans, that in its optimal configuration 

it produces a much coarser clustering, that is, fewer local MF models are built. In particular, we found 

that the best results setting is k equal to 2 in Tourism, Music and Comoda, 4 in Adom, 5 in Movie and 8 in 

Library. Conversely, the optimal configuration of SPF-MF-DR+-hierarchical merges highly similar sets 

of ratings, that is, with Jaccard similarity larger than 0.8. Therefore, the hierarchical clustering strategy, 

based on the merging of similar rating sets is more selective in merging similar models and produces a 

larger number of local models. Using this strategy, the more significant reduction of the number of local 
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models is produced in the Tourism data (70% reduction with respect to SPF-MF-DR+) and Comoda (43% 

reduction with respect to SPF-MF-DR+).  

Table 5.5. Number of local MF models produced by each SPF variant 

Model Tourism Music Adom Comoda Movie Library 

SPF-MF-DR+ 103 26 31 90 18 73 

SPF-MF-DR+-kmeans 2 2 4 2 5 8 

SPF-MF-DR+-hierarchical 31 23 28 51 12 60 

 

According to these results, SPF-MF-DR+-kmeans performs well on the tag-based data sets (i.e. Movie 

and Library), i.e., in the trade-off between accuracy and the number of produced local models. On these 

data sets it is able to find finer-grained clusters and hence the accuracy is not as bad as the one achieved 

by SPF-MF-DR+-hierarchical. On the other data sets, SPF-MF-DR+-hierarchical outperforms SPF-MF-

DR+-kmeans in terms of prediction accuracy. The strategy seems to be more effective when the original 

local sets are relative small and similar, like for instance in Tourism.  

To illustrate the SPF performance when model clustering is used we have analyzed the time and space 

complexity of the SPF variants that are using the clustering strategies in comparison to the not-clustered 

SPF in the Tourism data set. We implemented the algorithms in the Java programming language and 

executed the experiments on a machine with two 2.4 GHz cores. To speed up the learning process of the 

considered SPF variants we parallelized the local model learning using multi-threading. In Table 5.6 we 

show the execution time and memory consumed by each prediction model. As expected, SPF-MF-DR+-

kmeans with k equal to 2 is clearly more efficient than SPF-MF-DR+ and SPF-MF-DR+-hierarchical. In 

this particular case it is even faster than MF (probably because of the parallel processing and the smaller 

size of the local training sets of ratings) but SPF-MF-DR+-kmeans uses slightly more execution memory. 

The memory usage is similar because, although they use fewer training ratings, the resulting local MF 

models have a number of parameters similar to the global one. Regarding the complexity of SPF-MF-

DR+-hierarchical, we can observe that the hierarchical clustering method consumes more memory than 

k-means (more local models are generated), but still this is less than what it is used by SPF-MF-DR+ 

(84% less) and it is twice as fast as SPF-MF-DR+.  

Table 5.6. Execution time and memory of the SPF variants and MF in the Tourism data set 

Model Time (seconds) Memory (MB) 

MF 5 10 

SPF-MF-DR+ 57 173 

SPF-MF-DR+-kmeans 2 16 

SPF-MF-DR+-hierarchical 25 28 
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5.4.5. Comparing SPF to the State of the Art 

In this section we compare the performance of the best-performing SPF variant in each data set, which we 

denote here as SPF-MF, with two state-of-the-art CARS techniques. In particular, we compare the rating 

prediction accuracy of SPF-MF to CAMF, the contextual modeling approach proposed by Baltrunas et al. 

[2011b; 2012], and UI-Splitting, a novel splitting-based pre-filtering method proposed by Zheng et al. 

[2013a] (both methods are described in more detail in Section 2.5). CAMF was proved to outperform TF 

approaches, especially in small-medium--size rating data sets like Adom [Baltrunas et al. 2011b], and UI-

Splitting was proved to outperform CAMF on the Comoda data set [Zheng et al. 2013a].  

In Figure 5.9 we show the performance (MAE reduction) of the three evaluated rating prediction 

models in comparison with MF. For each prediction model its best-performing variant, in each data set, is 

shown. For SPF-MF the best results are obtained using SPF-MF-DR+-hierarchical, which combines the 

best relevance-boosted methods with the hierarchical clustering strategy. Concretely, it uses the filtering 

method in Tourism and Comoda, and the weighted method in the others. Moreover, SPF-MF uses the 

best-performing semantic-vector representations on each data set, which are the following: Item 

Categories (IC) in Tourism, Item-Based (IB) in Music, Adom and Movie, and User-Based (UB) in 

Comoda and Library. For CAMF the best variants are the following: CAMF-CC in Tourism and Music, 

CAMF-CI in Adom and Comoda, and CAMF-CU in Movie and Library. Finally, similarly to the 

experimental evaluation presented by Zheng et al. [2013a], for UI-Splitting the best results are obtained 

when using the chi-square significance test at 95% confidence level as splitting criteria, and bias MF as 

context-free prediction model.  
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Figure 5.9. MAE reduction with respect to MF (the context-free baseline) of SPF-MF compared to two 

state-of-the-art context-aware approaches (CAMF and UI-Splitting) 
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As it can be observed, the three context-aware prediction models significantly outperform MF in all the 

data sets, confirming that contextual predictions are significantly more accurate when context matters. It 

can be observed that UI-Splitting outperforms CAMF in Adom and Comoda data sets, but in the remaining 

data sets CAMF is clearly superior. On the other hand, SPF-MF clearly outperforms CAMF and UI-

Splitting, especially in the data sets where the contextual situations are defined by the conjunction of 

several conditions, like in Comoda that has 12 conditions per situation on average, and the improvement 

achieved with respect to CAMF and UI-Splitting is 14% and 10%, respectively. In the remaining data sets, 

where the situations are defined by fewer conditions (between 2 and 4), SPF-MF outperforms CAMF by 

7% in Tourism, 9% in Movie, 4% in Adom, 1% in Music and Library. These large differences in accuracy 

in the data sets where the target contextual situations have finer granularity demonstrate that SPF-MF 

builds better context models than CAMF and UI-Splitting under those conditions.  

5.4.6. Optimal Level of Contextual Expansion 

A key parameter of SPF is the global similarity threshold that limits the level of contextual expansion 

with respect to a strict local model. We recall that in SPF, when a rating prediction is requested for a 

target contextual situation, instead of using exactly the ratings acquired in that situation, we expand the 

training data by reusing ratings acquired in similar situations, and we build, with these ratings, the local 

predictive models for the given target contextual situation. In the previous sections, we have illustrated 

the performance of several variants of SPF; but all of them were using the optimal threshold for each data 

set, i.e., the threshold that yielded better prediction accuracy.  

We note that the impact of the similarity threshold choice on the prediction accuracy is similar to the 

effect of the user-to-user similarity threshold in user-based CF (described in Section 2.4.1): the lower the 

threshold value, the larger the user’s neighborhood. In user-based CF, as in our case, it is important to 

find the optimal level of locality (neighborhood size), which is the one that cause the system to obtain the 

best prediction accuracy for the given data.   

Table 5.7 shows the level of contextual expansion of the local models produced by SPF using the 

optimal similarity threshold. We measure the level of contextual expansion applied by SPF based on the 

amount of ratings added (on average for all the target situations) to the ratings used for building the strict 

local models targeted to a specific contextual situation (as those built by Exact Pre-filtering). Therefore, 

we say that there is a 0 expansion when no additional ratings are aggregated (i.e. when SPF is using Exact 

Pre-filtering) and 100% expansion when all the ratings in the data set are aggregated independently of the 

target situation (i.e. when using a context-free global model). Concretely, for a given target situation (s), 

we measure the expansion level (  ) applied by SPF to learn its local model as follows: (note that the final 

percentage is estimated by averaging the    over all the tested target situations) 
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As it can be observed in Table 5.7, the precise value of the similarity threshold itself is not providing an 

indication of the level of contextual expansion applied to a data set, because the expansion depends on the 

distribution of the situation-to-situation similarities. In fact, if the average similarity between situations is 

small, then a high threshold is more restrictive than if the average is large, since the number of situations 

that can be aggregated is much smaller. For example, although the optimal threshold in Adom and 

Comoda is equal (0.9), the resulting contextual expansion level is much lower in Adom than in Comoda. 

The reason is that in Adom the average situation-to-situation similarity is 0.38, whereas it is 0.86 in 

Comoda. The same situation is found in Movie and Library, which have similar levels of 

contextualization but significantly different optimal thresholds. 

Table 5.7. Optimal level of contextualization for each data set using SPF 

 Tourism Music Adom Comoda Movie Library 

Similarity threshold 0.3 0 0.9 0.9 0.05 0.35 

Contextual expansion 31% 90% 2% 40% 10% 8% 

 

Looking at the results shown in Table 5.7 side by side to the accuracy data of SPF (shown in Figure 5.9), 

one can note that the improvement of SPF with respect to the global MF model (11% gain in Library, 

13% in Tourism, 14% Movie and 16% in Comoda) is larger when using a low-medium level of contextual 

expansion (8% expansion in Library, 31% in Tourism, 10% Movie and 40% in Comoda). This fact is not 

observed for Adom data where the improvement is similar to Music (5% and 7%, respectively), but Adom 

has a low optimal expansion (2%) while Music has a large optimal expansion (90%).  

In order to illustrate the effect of varying the similarity threshold on rating accuracy and contextual 

expansion, in Figure 5.10, we show the MAE and the expansion percentage as functions of the similarity 

threshold in the three movie-rating data sets: Movie, Comoda and Adom. In general, we have noted (not 

shown in this figure) that using a negative similarity threshold yields bad results. For this reason here we 

only show the MAE and expansion percentage for positive values of the similarity threshold (from 0 to 

1). The charts on the top show the results in the Movie data set. As it can be observed, in this case the 

smallest MAE (i.e. the global minimum) is obtained when the threshold is near to 0.05, which causes a 

level of contextual expansion above 10%. In Comoda (charts on the middle), we found that the best MAE 

is obtained when the similarity threshold is close to 0.9, which implies a level of contextual expansion 

around 40%. In this case the accuracy suddenly increases when the threshold is over 0.75, and then 
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drastically drops when the expansion percentage is lower than 30%. Finally, the charts at the bottom show 

the results obtained in Adom. Similarly to Comoda, the best MAE is obtained when the threshold is set to 

0.9, which corresponds to a very low contextual expansion (2%). Note that the expansion decreases 

linearly as a function of the threshold. 

 

 

 

 

 

 

 

Figure 5.10. MAE (left line chart) and contextual expansion (right line chart) as functions of the similarity 

threshold (from top to down we show the results in Movie, Comoda and Adom data sets) 
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5.5. Conclusions 

In this chapter, we have described Semantic Pre-Filtering (SPF), a novel SERS technique that is able to 

tackle the data-sparsity problem and thus improve prediction accuracy by exploiting distributional 

semantic similarities between contextual situations during local context modeling. SPF is a reduction-

based approach that employs a global situation-to-situation similarity threshold to precisely select the 

right level of contextual expansion for a given data set: the larger the threshold, the fewer contextual 

situations are aggregated to build the local predictive models. 

Accurate similarity assessments allow for a fine-grained local context modeling, and the key 

component of SPF is the method for determining the degree of similarity between a candidate and the 

target contextual situation. In this chapter, we have introduced our notion of situation-to-situation 

similarity, which is based on the distributional semantics of contextual conditions, i.e., assuming that two 

situations are similar if their known conditions influence users’ ratings in a similar way. Although the 

reliability of distributional similarities mostly depends on the size of the training data, it has the advantage 

that does not require a context taxonomy, as in Generalized Pre-filtering.  

The experimental evaluation that we have carried out on six contextually-tagged data sets shows that 

SPF clearly outperforms state-of-the-art CARS techniques when used in combination with bias MF. The 

results show that our approach obtains even better results in data sets where contextual situations have a 

finer granularity and high data sparsity, demonstrating that SPF is especially effective under these 

conditions. 



 

Chapter 6 - Developed Recommendation Framework 

6.1. Introduction 

In the last decade, the use of free, open source software frameworks like Weka
16

 [Witten et al. 2011] have 

become a common practice in the machine learning and data mining fields, because they help researchers 

to implement and evaluate their algorithms by providing stable implementations of existing algorithms 

and standard evaluation protocols. 

More recently, recommendation software frameworks containing several recommendation algorithms 

and additional functionality to support their evaluation have become also popular in the RS field. 

Currently, the more complete, free recommendation frameworks are the following:  

 MyMediaLite
17

 [Gantner et al. 2011] is a library written in C#, for the .NET platform, which 

provides several state-of-the-art CF recommendation algorithms and also some content-

boosted CF hybrid techniques (see Section 2.6.1 for details about such hybrid strategies); 

 Apache Mahout
18

 [Owen et al. 2011] is a general purpose machine learning library, written in 

Java, providing several mostly distributed (via Hadoop
19

) implementations of 

recommendation, clustering and classification algorithms. The section dedicated to 

recommendation algorithms is mainly based on the original Taste library
20

, and only contains 

CF recommendation techniques and other baseline algorithms. 

 GraphLab
21

 [Low et al. 2010] is a library written in C++ that contains several 

implementations of MF recommendation models, such as SVD++ and bias MF.  

 LensKit
22

 [Ekstrand et al. 2011] is a library written in Java that currently contains several CF 

techniques such as MF prediction models as well as user-based and item-based CF.   

Given the lack of support for CB and CARS algorithms of existing recommendation frameworks, in this 

thesis we implemented our own implementations of the proposed and evaluated recommendation 

algorithms. But, in order to make our experiments more reproducible by other researchers and 

                                                      

16
 See [http://www.cs.waikato.ac.nz/ml/weka/], accessed on November 14

th
, 2013. 

17
 See [http://www.mymedialite.net/], accessed on November 14

th
, 2013.  

18
 See [http://mahout.apache.org/], accessed on November 14

th
, 2013.  

19
 See [http://hadoop.apache.org/], accessed on November 14

th
, 2013. 

20
 See [http://taste.sourceforge.net/], accessed on November 14

th
, 2013. 

21
 See [http://select.cs.cmu.edu/code/graphlab/index.html] , accessed on November 14

th
, 2013.  

22
 See [http://lenskit.grouplens.org/], accessed on November 14

th
, 2013. 
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practitioners, we decided to implement them by extending one of the existing recommendation 

frameworks. In particular, we extended Apache Mahout because at the time of starting this thesis this was 

the only free, open-source Java-based library, which makes feasible its use with any platform that can run 

a modern Java Virtual Machine. As in other Apache projects, Apache Mahout is built around Maven
23

, 

which is a tool that manages compiling code, packaging release, generating documentation, and 

publishing formal releases. Detailed instructions for the installation of Apache Mahout can be found on its 

homepage. 

This chapter is organized as follows. Section 6.2 describes the main functionality that we have 

included in Apache Mahout. Section 6.3 illustrates how to use the tool that we developed to simplify the 

offline evaluation of the available recommendation algorithms in Apache Mahout. Section 6.4 describes 

how to use the developed recommendation framework from an existing recommender system. Finally, 

Section 6.5 summarizes the work presented in this chapter.  

6.2. Added Functionality  

We have implemented all the proposed recommendation algorithms as well as other state-of-the-art 

algorithms (included in the previously described experimental evaluations) as part of Apache Mahout. For 

the development of the new recommendation functionality we followed as much as possible the original 

Apache Mahout code structure, which consisted of the following main packages with the 

“org.apache.mahout.cf.taste” namespace:  

 common: specific data structures implementations and other utility code which are more efficient 

than normal Java Collections; 

 eval: code with evaluation protocols and performance metrics; 

 model: data structures for storing user data; 

 recommender: CF recommendation algorithms; 

 similarity: Similarity measures (used by user-based and item-based CF); 

6.2.1. Support for Linear CB Recommendation Algorithms.  

We included classes and interfaces necessary for implementing CB recommendation algorithms. On the 

one hand, we implemented data structures for representing and accessing item content data. We created a 

sub-package of model named contentbased containing these implementations and also different weighting 

mechanisms. We created the new package usermodeling that contains several linear user-profile learning 

methods, such as the ones proposed by Sen et al. [2009] and the ones proposed in Chapter 4. In the 

                                                      

23
 See [http://maven.apache.org], accessed on November 14

th
, 2013. 
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recommender package, we added implementations of the linear CB recommendation algorithms evaluated 

in this thesis based on the dot product of item and user profiles.  

6.2.2. Support for SGD-based Prediction Models.  

We created a subpackage of recommenders, called sgd, which contains implementations of model-based 

recommendation algorithms whose parameters are learnt by using the SGD implementation popularized 

by Funk [2006], allowing also time-aware rating data explorations. In order to speed up the learning 

phase of SGD-based models, we also included in the model package a more efficient data structure 

especially optimized for matrix and vector operations.  

We implemented several CF and CB recommendation techniques optimized by SGD, some of them 

also included in the experimental evaluation of the semantically-enhanced recommendation approaches 

presented in Chapters 4 and 5 (e.g. bias MF and SVD++ [Koren and Bell 2011], the content-boosted MF 

proposed by Forbes and Zhu [2011], and SGD-CB). We also included an implementation of BPR-MF 

[Rendle et al. 2009] ported from MyMediaLite as well as another variants also optimized for ranking.  

6.2.3. Support for CARS Techniques 

We created a subpackage of model, called contextaware, which included data structures for representing 

and accessing contextual information associated to user ratings. We also provided support for that multi-

rating data models, i.e., assuming that in context-aware applications a user can provide several ratings for 

an item but in different contexts. For instance, the Tourism and Music data sets used in the evaluation of 

SPF have this characteristic (see Section 5.4).  

We created a subpackage of recommender, called contextaware, including the implementation of 

several state-of-the-art CARS techniques (e.g. timeSVD++ [Koren 2010], Exact Pre-filtering 

[Adomavicius et al. 2005], CAMF [Baltrunas et al. 2011], TF [Karatzoglou et al. 2010], and User-Item 

splitting [Zheng et al. 2013]). 

6.2.4. Support for SERS Techniques  

We created a new package, called semantics, containing data structures for representing and accessing 

ontologies using the Apache Jena library
24

. We implemented several ontology-based and distributional 

similarity measures (most of them used in the experimental evaluations described in Chapters 4 and 5). In 

this package we also included implementations of the semantics exploitation methods presented in this 

thesis, such as the pairwise profile matching strategies and the CSA strategy for user profile expansion. 

                                                      

24
 See [http://jena.apache.org/documentation/ontology/], accessed on November 14

th
, 2013. 
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We included implementations of the described SCB and SPF variants, presented in Chapters 4 and 5, 

respectively, as well as some state-of-the-art SERS techniques like CB-LSA [Bambini et al. 2011].  

6.2.5. Support for Offline Evaluation 

We included an evaluation tool that allows other researcher to test all the available recommendation 

algorithms in Apache Mahout on data provided in text files and without having to write additional code. 

In eval package we included additional evaluation metrics for measuring ranking performance (e.g. AUC, 

Mean Average Precision (MAP), NDCG, and metrics for measuring novelty and diversity proposed by 

Vargas et al. [2011]). We also implemented protocols for splitting data in training, validation and test 

sets, such as the per-user chronological splits suggested by Shani and Gunawardana [2011], and the one-

plus-random protocol proposed by Cremonesi et al. [2010]. In order to speed up the testing phase we 

included a parallel implementation (via Java Multi-threading) of the evaluation protocols for both rating 

prediction and ranking recommendation tasks. 

Additionally, we have also included a parallel implementation of the popular simplex search algorithm 

known as Nelder and Mead method [1965], which can be used to obtain the optimal meta-parameter 

configuration of a recommendation algorithm according to a given optimization criteria, such as RMSE or 

MAE.  

6.3. Using the Evaluation Tool 

We have developed a command-line tool to ease the evaluation of the available recommendation 

algorithms in Apache Mahout without having to develop any Java program. The usage of the tool is 

similar to command-line tools available in other recommendation frameworks, like the one provided by 

MyMediaLite, in which user and item data are provided through files. Table 6.1 shows the main 

configurable options to use the evaluation tool, called recommender_eval.  

Table 6.1. Configurable options of the command-line evaluation tool 

General options:  

--executionID “String” Define ID of the execution of the recommendation 

algorithm (used for identifying the generated result 

files) 

--workingPath DIRECTORY Define DIRECTORY where data and model files are 

located 

--trainingFile FILE Read user data from FILE. In the case of ratings without 

context information, each line of FILE contains [userID 

itemID, rating value] with tab-separated columns. When 

ratings have context, then the format is [userID, itemID, 

value, factor1,..., factorN]. The first line is used to 

define the format of contextual situation, i.e. the order 

of factors.    
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--relevantItemsFile FILE Read list of item IDs that are used for recommendation 

from FILE. This is used to constrain the original set of 

items available on user data FILE 

--recAlgorithm METHOD Use METHOD as recommendation algorithm. Some 

examples are random algorithm, sgd_MF (which 

corresponds to bias MF using SGD), and 

generic_semantic_CB (which corresponds to SCB).  

--recParameters OPTIONS Use the specific OPTIONS of the recommender. The 

format is “option1=value2 option2=value2 …” For 

example, sgd_MF may be used with the following 

configuration: [num-iter=25 learning-rate=0.01 random-

exploration=true max-faults=1] 

 

Options for CB:  

--itemAttributesTypesFile FILE Read from FILE all the item's attributes and their 

values. Each line of FILE contains a value and its 

attribute, i.e. [value attribute] (e.g. "comedy genre") 

--itemAttributesFile FILE Read item data from FILE. Each line should contain the 

one item's attribute value and its relevance [itemID 

value relevance]  

--attributeTypesRelevancesFile FILE Read the relevance of each item attribute from FILE. 

  

Options for CARS:  

--contextualFactorsFile FILE Read contextual information from FILE. Each line 

should contain a contextual condition and its factor, i.e. 

[condition factor] (e.g. "summer season") 

--contextualPrefiltering METHOD [OPTIONS] Use METHOD as pre-filtering approach (e.g. Exact, 

SPF variants) and using the specific OPTIONS (in SPF 

a possible option is setting a specific similarity 

threshold (e.g. [sim-threshold=0.4])  

--contextualPostfiltering METHOD [OPTIONS] Use METHOD as post-filtering and using the specific 

OPTIONS 

 

Options for SERS:  

--domainKnowledgeURIs FILE Read ontology from FILE 

--domainKnowledgeFileFormat RDF|OWL Define the specific format of the ontology (OWL or 

RDF) 

--matchingStrategy METHOD [OPTIONS] Use METHOD as item-to-user profile matching strategy  

using the specific OPTIONS, where one can define the 

semantic similarity measure to use and the global 

similarity threshold (e.g. [all-pairs sim-threshold=0.25 

sem-similarity= ]) 

--profileExpansion METHOD [OPTIONS] Use METHOD as user-profile expansion strategy (by 

default CSA) and with the specific OPTIONS.  

--contextualMatchingStrategy METHOD [OPTIONS] Use METHOD as situation-to-situation similarity 

function (e.g. all-pairs, or direct) with the specific 
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OPTIONS.  

 

Evaluation options:  

--ratingPredictionTask METHOD [OPTIONS] Use METHOD as rating prediction evaluation protocol 

(by default per-user splitting). Possible OPTIONS are: 

numValidationRatings, numTestRatings.  

--itemRecommendationTask METHOD [OPTIONS] Use METHOD as ranking evaluation protocol (by 

default one plus random protocol). Possible OPTIONS 

are: numRandomItems, relevantThreshold. 

--parameterSearchAlgorithm METHOD [OPTIONS] Use METHOD as method for meta-parameter 

optimization (by default Nelder and Mead method). 

Possible OPTIONS are the numberIterations.  

 

 

File options:  

--saveModelToFile Save recommendation model into an automatically 

generated file (via Java serialization). If the option is 

enabled, and the file associated to a recommendation 

algorithm exists, then the model is loaded from the file.  

--saveResultsToFile Save the performance results into files (each metric 

separated into a different file). Then, the stored results 

can be used for programmatically creating charts or for 

significance testing.  

 

Figure 6.1 illustrates an example of usage in which we show how to evaluate a variant of SCB (the SERS 

technique described in Chapter 4). “recParameters” define the user-profile learning method used by SCB, 

which in this example corresponds to the method we have defined in Eq. 4.3 in Section 4.3.1. As profile 

matching strategy, it uses the best-pairs one in combination with user-based distributional similarities 

(indicated by the option “sim-source=UserBased”) that are estimated using the Kullback and Leibler 

[1951] probabilistic measure (defined in Eq. 3.9). In this case, we evaluate both recommendation tasks: 

rating prediction and ranking recommendation (denoted by the options “ratingPredictionTask” and 

“itemRecommendationTask”). For rating prediction evaluation we employ the per-user splitting protocol 

using 5 ratings for test and 5 for validation. For ranking, the one-plus-random protocol is used with 3 test 

and validation ratings per user. Finally, here we also indicate that we want to optimize the numeric meta-

parameters of SCB (i.e. the similarity threshold) by using the Nelder and Mead method [1965] with a 

maximum of 15 iterations.   
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Figure 6.1. Arguments of recommender_eval to evaluate a SCB variant. 

 

Figure 6.2 illustrates another example of usage, in this case evaluating a specific SPF variant. Here 

“recAlgorithm” determines which context-free recommendation algorithm will be used in combination 

with SPF, and “recParameters” its meta-parameter configuration. In this example, the local models are 

built by using the SGD-based bias MF with the following configuration: 25 iterations over training data 

using random exploration (i.e. not chronological order), a learning rate of 0.01, 50 latent factors for 

representing users and items, and setting the factor, user, and item regularization parameters to 0.01. The 

SPF variant used is indicated by the option “contextualPrefiltering”; in this case “threshold_based” 

corresponds to the SPF variant not using relevance information and clustering strategies, and with the 

global similarity threshold set to 0.9. The situation-to-situation similarity measure used is defined by the 

option “contextualMatchingStrategy”, and it consists of the all-pairs strategy, defined in Eq. 5.7 in 

Section 5.3.2, using the user-based perspective for semantic-vector representation of conditions applying 

SVD with 30 latent factors, and damping term (   equal to 10. In this case, SPF is evaluated in terms of 

rating prediction accuracy using the per-user splitting protocol with 3 ratings per user test and validation.  

 

 

Figure 6.2. Arguments of recommender_eval to evaluate a SPF variant. 
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6.4. Using the Recommendation Framework  

This section illustrates how to use the implemented recommendation algorithms from an existing 

recommender system, using as an example the integration of the best-performing SPF variant in the 

Tourism data set (according to the evaluation described in Section 5.4) into a mobile tourism 

recommender system called STS. 

In this case the mobile app has been developed in order that the client part has been kept as thin as 

possible and it works only in a limited way offline. The client comprises a user interface, a presentation 

logic component as well as a session-handling component. On the server resides the entire 

recommendation logic which is divided by two asynchronous phases: the learning phase and the 

recommendation phase. The learning phase is performed offline (every five minutes), and once the model 

is learned, recommendations can be produced in constant time. Based on these two asynchronous phases, 

we have implemented a “wrapper” class on the server, logically divided into learning and 

recommendation phase, which is responsible for transforming the data structures used in STS to the 

Apache Mahout’s data types as well as initializing and using the Apache Mahout’s implementation of the 

SPF variant. 

6.4.1. Learning Phase 

Figure 6.3 shows the code of the learning phase implemented in the wrapper class, where the best-

performing SPF variant is initialized. Particularly, the SPF variant that we integrated into STS is the one 

which combines the following methods:  

 Condition’s semantic-vector representation reduced by using the method based on item 

categories (described in Section 5.3.1); 

 Direct situation-to-situation similarity function (described in Section 5.3.2); 

 The relevance-boosted method using the filtering strategy (described in Section 0); 

 Local model reduction based on hierarchical clustering strategy (presented in Section 5.3.4).  
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Figure 6.3. Code of the STS wrapper class implementing the SPF learning phase 

The parseContextualInformation(contextFactors) function transforms the data structure representing the 

contextual information captured in STS to the data structure used in Apache Mahout, which is represented 

by the objects contextStateDefinition (a list of Strings each of which represents a contextual factor) and 

contextualFactorsMap (which stores the conditions-factors mappings using FastByIDMap, the faster map 

implementation used in Apache Mahout).  

The parseItemAndUserData (itemCategories, reviews) function transforms the data structures 

representing item and contextual user rating data in STS to the data types used in Apache Mahout. This 

function modifies the following objects: attributeTypesMap, which is the FastMap that stores the item’s 

attributes-values mappings; itemData, a FastByIDMap which stores the mappings between items and 

their attributes vector; userData, a FastByIDMap which stores the mappings between users and their 

ratings (represented as array of Preference); and contextData, a FastByIDMap which stores the mappings 

between users, items and contextual situations (note that in this case multiple ratings per user and item are 

allowed).  

Once all the training data are correctly initialized, we create the multi-rating data model (an instance of 

MultiRatingMatrixContextualContentModel). Then, this data model is used to calculate the distributional 

similarities of all contextual conditions (function getDistributionalSimilarities). The resulting 

SemanticSimilarity object is then used to initialize the situation-to-situation similarity function using the 

direct matching strategy. The objects matchingStrategy and dataModel together with the SPF variant 
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meta-parameters (the global similarityThreshold and the JaccardSimThreshold that constrains the 

hierarchical clustering strategy) are then used to create an instance of the SPF recommender.  

Next, we assign to the SPF recommender the context-free prediction model that will be used to build 

the target local prediction models. In this case, we use as context-free prediction model bias MF, which 

learns the model parameters from a bi-dimensional MatrixDataModel. SPFDataBuilder is the constructor 

responsible for creating each instance of MatrixDataModel from a local set of training ratings. 

SPFRecommenderBuilder is the constructors responsible for building an instance of bias MF 

(BiasBasedMatrixFactorizationRecommender) for each local MatrixDataModel.  

Finally, the initHierarchicalClustering() function, first creates the semantically expanded local sets of 

training ratings for each possible contextual situation (in the training set), and then executes the 

hierarchical clustering strategy over this initial sets of ratings, which produces a reduced set of local MF 

prediction models.  

6.4.2. Recommendation Phase 

After the learning phase is executed, SPF is ready to make recommendations: Figure 6.4 illustrates the 

code of the wrapper class implementing the recommendation phase in STS. As it can be observed, STS 

makes recommendations using SPF if the target user and item exist in the training set; otherwise, a default 

prediction score equivalent to a 3-star rating is returned. 

The function parseContextualSituation(contextValues) transforms the data structure in STS 

representing the target contextual situation (a set of ContextValue) to the Apache Mahout’s format (an 

array of String). Once correctly formatted the context, SPF makes a prediction for the target user, item 

and situation. This score is then used by STS system to provide a personalized ranking to the user.  

 

 

Figure 6.4. Code of the STS wrapper class implementing the SPF recommendation phase. 
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6.5. Summary and Outlook 

In this chapter we have described the implementation of the recommendation framework developed in 

this thesis. We have implemented several recommendation algorithms described in previous chapters on 

top of Apache Mahout, an existing open source recommendation framework, in order to make our 

experiments more reproducible by other researchers as well as to ease the development of new 

recommendation algorithms.  

We have extended Apache Mahout by including several state-of-the-art recommendation algorithms 

and an additional tool for offline evaluation. We illustrated some usage examples of this tool for 

evaluating SCB and SPF (the proposed recommendation algorithms in this thesis that we described in 

Chapters 4 and 5, respectively) and also an example of how to use the developed recommendation 

framework from an existing recommender system. 

The recommendation framework is implemented as an independent distribution of Apache Mahout on 

top of version 0.6. Currently, this extension is available to any practitioner or researcher upon request. 

However, in the near future, we expect to integrate our extension with the official distribution of Apache 

Mahout. 
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Chapter 7 - Conclusions 

This thesis investigated the effectiveness of exploiting data-driven distributional semantics to address the 

sparsity-related limitations of state-of-the-art recommendation approaches. Specifically, this research 

pursued the following two goals:  

 To implement and evaluate content-based recommendation algorithms capable of exploiting 

the distributional semantics of items’ attributes to outperform state-of-the-art CB and SERS 

techniques.   

 To implement and evaluate context-aware recommendation algorithms capable of leveraging 

the distributional semantics of contextual conditions during context modeling to outperform 

state-of-the-art CARS techniques. 

In this thesis, we described and evaluated two novel SERS techniques exploiting distributional semantics: 

(1) for enhanced CB recommendation, called Semantic Content-based (SCB) Filtering, and (2) for 

enhanced context-aware recommendation, called Semantic Pre-filtering (SPF). Finally, we described the 

implementation of the developed recommendation framework that contains the proposed SERS 

techniques.  

This chapter presents a summary of these contributions (Section 7.1), analyzes their main limitations 

and presents future research directions to address these limitations (Section 7.2). 

7.1. Thesis Contributions 

This thesis investigated how distributional semantic similarities between items’ attributes and contextual 

conditions can be exploited in CB and CARS techniques to alleviate the limitations of the state of the art 

related to the data-sparsity problem, and thus improve prediction accuracy.  

In distributional semantics, the meaning of a concept is based on its distributional properties, which 

are automatically derived from the corpus of data where the concept is used. The fundamental idea behind 

this way to extract semantic similarities between domain concepts is the so-called distributional 

hypothesis: concepts repeatedly co-occurring in the same context or usage tend to be related.  

In this thesis, we employed distributional-similarity measures to infer semantic similarities between 

concepts describing entities of the recommendation space. Therefore, concepts are either attributes 

describing items or conditions describing contextual situations. In the following subsections we 

summarize the main contributions and present general conclusions of this research. 
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7.1.1. Distributional Semantics for Enhanced Content-Based Recommendation 

In this thesis, we have proposed SCB, a SERS approach to CB recommendation that employs a novel 

strategy to mitigate the lack of semantics of traditional CB approaches. This method consists of exploiting 

distributional similarities between attributes using a pairwise profile-matching strategy in the prediction 

phase. Concretely, we proposed two variants of SCB: a best-pairs strategy, in which each item’s attribute 

is compared to the most similar user’s interest; and an all-pairs strategy, where every item’s attribute is 

compared to every user’s interest. In both variants we used a global similarity threshold to delimit the 

minimum attribute-to-attribute similarity to be considered during item-to-user profile matching.  

We empirically demonstrated that the best-pairs variant is better for rating prediction and the all-pairs 

variant for ranking or top-n recommendation. This difference on performance is explained by the fact that 

the all-pairs strategy tends to estimate “extreme” rating predictions (i.e. predictions closer to 1 or 5 stars) 

due to the higher number of aggregated pairwise comparisons, which causes bigger mistakes than using 

predictions more centered to the average (i.e. values close to 3 stars), like the ones of best-pairs variant. 

However, these overestimated scores are less inconvenient for ranking, since in this case prediction 

accuracy is measured by the position of the recommended items on the ranked list, and not by how close 

the predicted score is to the true rating. 

We also demonstrated that distributional similarities derived from co-occurrences over attribute-based 

user profiles are more effective for improving the effectiveness of recommendations than similarities 

derived from item-based co-occurrences or ontology-based measures. This better performance of user-

based distributional similarities is due to the fact that the derived semantic associations are based on both 

users’ interests and item’s descriptions.  

 Compared to the state-of-the-art SERSs techniques, we showed that the proposed SCB variants 

clearly achieve the best results in both recommendation tasks: rating prediction and ranking. Specifically, 

we compared the proposed pairwise profile-matching strategies to a user-profile expansion strategy based 

on CSA, as well as to a strategy for latent item-profile representation using LSA. The results also showed 

that SCB outperforms state-of-the-art MF approaches when recommending to users with few ratings (i.e. 

cold-start users).  

According to the results, the proposed method is a good alternative to ontology-based SERSs, 

especially when the available domain ontologies consists of general hierarchies which are not expressive 

enough to infer useful domain-specific relations between items’ attributes.  
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7.1.2. Distributional Semantics for Enhanced Context-Aware Recommendation 

CARSs assume that, when context matters, the ratings acquired in the target contextual situation are more 

relevant for predicting what to recommend in that situation. However, these techniques also suffer from 

the data-sparsity problem, since in order to generate accurate recommendation they need a large data set 

of contextually-tagged ratings, i.e., ratings for items provided in various contextual situations, which are 

encountered by a user while experiencing an item.  

In the thesis, we claim that the data-sparsity limitation of state-of-the-art CARS techniques is mainly 

due to their lack of context-semantics understanding and exploitation during context modeling. We have 

then proposed a novel SERS approach to context-aware recommendation that implements a solution to 

the data-sparsity problem based on exploiting similarities between contextual situations/conditions in the 

context modeling phase. Concretely, the proposal (which we named SPF) consists of a reduction-based 

pre-filtering approach that builds a local MF prediction model for each target contextual situation by 

reusing ratings tagged with situations semantically related to the target one. We proposed a method to 

control the level of contextualization (i.e. how many situations are aggregated in the local model) by 

means of a global similarity threshold, which determines the minimum similarity necessary to consider a 

contextual situation as reusable in a given target context. 

We showed that the effectiveness of SPF depends on the specific method used to compute the 

situation-to-situation similarity. We evaluated several similarity functions that are all based on the 

distributional semantics of contextual conditions, i.e., assuming that two situations are similar if they are 

defined by elementary conditions that influence users’ ratings in a similar way. A key component of our 

approach is the method to estimate the influence of a condition with respect to items or users. We 

proposed a method especially designed for explicit ratings based on how the true rating deviates from a 

predicted context-free rating when the contextual condition holds. 

Additionally, we improved even more the effectiveness of our approach using a model of the 

relevance of contextual conditions. This model measures the relevance of a condition as the variance of 

its corresponding semantic vector representation, tailored to our method to measure the influence of 

conditions with respect to items or users. We also presented a more efficient and scalable implementation 

of SPF that reduces the number of local models to build by means of clustering strategies and, at the same 

time, preserving their predictive accuracy.  

According to the results on six different contextually-tagged rating data sets, we showed that SPF, 

when used in combination with MF local models, clearly outperforms two state-of-the-art CARS based on 

MF, especially in those data sets where contextual situations have a finer granularity and higher data 

sparsity.  
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7.1.3. Recommendation Framework 

In the existing open-source recommendation frameworks, such as MyMediaLite, Apache Mahout, 

GraphLab and LensKit, there is a lack of support for developing and evaluating CB, CARS and SERS 

techniques, since the majority only focuses on context-free CF algorithms. 

In this thesis, we implemented all the proposed recommendation algorithms as part of the Apache 

Mahout machine-learning library, thus extending it with additional functionality for developing and 

evaluating CB recommendation algorithms, CARS and SERS techniques. We also included a tool that 

allows developers to easily perform offline evaluations of all the available recommendation algorithms on 

data provided in text files. The main motivation for implementing our algorithms and this evaluation tool 

as part of Apache Mahout was to allow other researchers to reproduce the described experiments and 

make new progress in the RS field easier. 

This extended software library provides a state-of-the-art recommendation framework that can be used 

to easily integrate all the available recommendation algorithms into an existing recommender system. As 

an example, we described how to use our SPF implementation in a tourism recommender system.  

Currently, the recommendation framework is implemented as an independent distribution of Apache 

Mahout on top of version 0.6, and is available to any practitioner or researcher upon request. In the near 

future, we expect to integrate our extension (or a part of it) with the official Apache Mahout distribution. 

7.2. Limitations and Future Work 

This thesis presented two novel SERS techniques that exploit distributional semantic similarities to 

alleviate the sparsity-related limitations of current recommendation techniques. The performed 

experimental evaluations showed that the proposed techniques outperform state-of-the-art approaches in 

diverse data sets. Here we discuss limitations and further improvements of the proposed techniques as 

well as promising lines of future research.  

Fine-grained meta-parameter optimization. As in other machine learning tasks, it is important to 

select the optimal meta-parameters of the prediction models in order to maximize their effectiveness in 

the target application domain. A particularly relevant meta-parameter of the proposed SERS techniques is 

the similarity threshold, which is used to decide which semantic similarities are strong enough to be 

considered by the model. In this thesis, we proved that using a global similarity threshold optimized for 

each data set is enough to obtain good results. However, in some data sets, a fine-grained tuning of the 

similarity threshold could improve even more the accuracy of the models. For example, when using SPF 

in data sets where ratings are not uniformly distributed among the possible contextual situations, it would 

be better to find the optimal similarity threshold per each contextual situation or group of situations. 

Similarly, in SCB a different threshold per user or groups of users with similar profile size could be used. 

In this way, we would learn optimal thresholds that are adapted to the characteristics of each type of user 
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or context, and not only to the overall data. For instance, for users with few ratings a low threshold could 

be more adequate in order to increase the contribution of the semantic part, whereas for users with many 

ratings a high threshold, limiting more the semantic aggregation, could be more adequate.  

Besides the similarity thresholds, other meta-parameters can be further improved. Currently, SPF 

employs the same configuration as the global, context-free MF prediction model (i.e. the same number of 

latent factors, regularization parameters, etc.) to train the local MF models. In larger data sets, the 

prediction accuracy could be further improved by learning independent optimal meta-parameters for each 

local MF model. However, the main difficulty of this fine-grained optimization is how to find the 

optimum without over-fitting, especially in small-medium rating data sets. 

Extending other recommendation techniques with distributional semantics. The proposed 

methods for acquiring distributional similarities from rating data can be similarly applied in other existing 

CB and CARS recommendation techniques. For instance, a feature-augmentation or metal-level hybrid 

recommender could use the distributional similarities between item’s attributes to enhance the item-to-

item or user-to-user profile matching. Similarly, a contextual modeling approach extending MF, such as 

TF [Karatzoglou et al. 2010] and CAMF [Baltrunas et al. 2011b], could exploit situation-to-situation 

distributional similarities to obtain fine-grained clusters of contextual situations, and thus reducing the 

data-sparsity effects and the number of model parameters to be learnt. 

Combining ontology-based and distributional measures. In this thesis, we have shown that 

distributional similarity measures can be more useful than ontology-based ones to improve the prediction 

accuracy of recommender systems. However, in very sparse data sets, in which no enough training rating 

data are available to learn reliable distributional similarities, a combination of ontology-based and 

distributional measures could improve the precision of the similarity assessments.   

Dealing with implicit user data. Although most research on the RS field focuses on making 

recommendations based on explicit user feedback, the large majority of the data available and easy to 

collect in real recommender systems is indeed implicit. This type of feedback commonly consists of 

user’s actions, such as browsing and purchase history. The main limitation of implicit user data, as used 

today, is that they only provide positive evidence of the user’s interests, and this could affect the accuracy 

of the distributional similarities used in SPF and SCB. The exploration of SERS techniques using 

distributional similarities based on implicit user data can be a promising research line for the future. 

  



 

 

 



 

 

Appendix A - Acronyms 

 

The following table describes the meaning of the acronyms used throughout this document. 

Acronym Meaning 

AI artificial intelligence 

API application program interface 

AUC area under the ROC curve 

BPR Bayesian personalized ranking 

CAMF context-aware matrix factorization 

CARS context-aware recommender systems 

CB content-based 

CF collaborative filtering 

CSA constrained spreading activation 

DCR differential context relaxation 

DCW differential context weighting 

ESA explicit semantic analysis 

IB item-based 

IC information content 

IR information retrieval 

LCS lowest common subsumer 

LDSD linked data semantic distance 

LSA latent semantic analysis 

MAE mean absolute error 

MAP mean average precision 

MD multidimensional 

MF matrix factorization 

ML machine learning 

MRR mean reciprocal rank  

NDCG normalized discounted cumulative gain 

OB ontology-based 

ODP open directory project 

POI place of interest 

PMI pointwise mutual information 

RI random indexing 

RMSE root mean squared error 

RS recommender systems 

SA spreading activation 

SCB semantic content-based  

SERS semantically-enhanced recommender systems 

SGD stochastic gradient descent 
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STS South Tyrol suggests 

SPF semantic pre-filtering 

SVD singular value decomposition 

TIPI ten-item personality inventory 

TF tensor factorization 

TF-IDF term frequency-inverse document frequency 

UB user-based 

UI user interface 

VSM vector space model 

 
  



 

Appendix B - Description of Contextual Information 

We evaluated SPF on several real-world contextually-tagged data sets. Each of these data sets contains 

different contextual conditions and factors. Here we present the contextual information that is captured in 

movie Comoda data set (shown in Table 7.1) and in Tourism data set (shown in Table 7.2).  

The factors endEmo and dominantEmo in Table 7.1 capture the emotional state of a user while 

watching a movie at different stages of the movie-watching experience: endEmo is the emotional state at 

the end of the movie, and dominantEmo is the emotional state that was dominant during the consumption.   

 

 

 

 

 

 

 

 

 

  

Table 7.1. Contextual information represented in Comoda data set [Odić et al. 2013] 
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Table 7.2. Contextual information represented in Tourism data set [Baltrunas et al. 2012] 
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