
Copyright

by

Donghyuk Shin

2017

The Dissertation Committee for Donghyuk Shin
certifies that this is the approved version of the following dissertation:

A Multi-Scale Framework for Graph Based Machine

Learning Problems

Committee:

Inderjit S. Dhillon, Supervisor

Andrew B. Whinston

Lili Qiu

Deepayan Chakrabarti

A Multi-Scale Framework for Graph Based Machine

Learning Problems

by

Donghyuk Shin, B.E.; B.Eco.; M.S.C.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

Acknowledgments

First and foremost, I would like to express my sincere gratitude to

my supervisor and mentor Professor Inderjit Dhillon. He has been extremely

supportive with his indispensable guidance and encouragement, and constantly

inspired me with his deep and broad insight in conducting research as well as

in its presentation. Having him as an advisor has been invaluable for making

the whole experience as a graduate student worthwhile and life-changing.

I gratefully acknowledge my Ph.D. committee members, Lili Qiu, Deep-

ayan Chakrabarti, and Andrew Whinston. Suggestions and feedback from

Professor Lili Qiu have helped reinforce research ideas, Professor Deepayan

Chakrabarti has motivated and sharpened my thoughts with insightful ques-

tions and comments, and Professor Andrew Whinston has been my mentor

for broadening my research to the field of business. I also had the great privi-

lege to work with my academic grandfather Professor Beresford Parlett, whose

expertise and vision have helped shaping this thesis.

I am grateful to my research internship mentors and friends Dr. Suley-

man Cetintas and Dr. Kuang-Chih Lee from Yahoo Research for their support

and advise. I also thank my lab-mates, colleagues and coauthors from the Cen-

ter for Big Data Analytics and wish to extend my gratitude to Berkant Savas,

Ambuj Tewari, Nagarajan Natarajan, Si Si, and David Inouye. I am fortu-

iv

nate to have met many great friends as well, who have made life in Austin an

enriching experience.

Finally, and most importantly, I dedicate this thesis to my beloved wife,

my dear parents and brother. It is their unconditional and unswerving love

and support that made this thesis possible.

v

A Multi-Scale Framework for Graph Based Machine

Learning Problems

Publication No.

Donghyuk Shin, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Inderjit S. Dhillon

Graph data have become essential in representing and modeling rela-

tionships between entities and complex network structures in various domains

such as social networks and recommender systems. As a main contributor of

the recent Big Data trend, the massive scale of graphs in modern machine

learning problems easily overwhelms existing methods and thus sophisticated

scalable algorithms are needed for real-world applications. In this thesis, we

develop a novel multi-scale framework based on the divide-and-conquer princi-

ple as an effective and scalable approach for machine learning tasks involving

large sparse graphs. We first demonstrate how our multi-scale framework can

be applied to the problem of computing the spectral decomposition of massive

graphs, which is one of the most fundamental low-rank matrix approximations

used in numerous machine learning tasks. While popular solvers suffer from

vi

slow convergence, especially when the desired rank is large, our method ex-

ploits the clustering structure of the graph and achieves superior performance

compared to existing algorithms in terms of both accuracy and scalability.

While the main goal of the divide-and-conquer approach is to efficiently

compute solutions for the original problem, the proposed multi-scale frame-

work further admits an attractive but less obvious feature that machine learn-

ing problems can benefit from. Particularly, we consider partial solutions of

the subproblems computed in the process as localized models of the entire

problem. By doing so, we can combine models at multiple scales from local to

global and generate a holistic view of the underlying problem to achieve better

performance than a single global view. We adapt such multi-scale view for the

problems of link prediction in social networks and collaborative filtering in

recommender systems with additional side information to obtain a model that

can make accurate and robust predictions in a scalable manner.

vii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables iv

List of Figures v

Chapter 1. Introduction 1

1.1 Outline . 6

1.2 Contributions . 8

1.3 Related Work . 9

Chapter 2. Spectral Decomposition of Massive Graphs 17

2.1 Spectral Decomposition . 19

2.2 Single-level Division . 22

2.2.1 Divide Step . 23

2.2.2 Conquer Step . 26

2.3 Multi-level Division: Multi-scale Spectral Decomposition . . . 30

2.3.1 Early Termination Strategy 32

2.3.2 Multi-core Parallelization 33

2.4 Experiments . 33

2.4.1 Approximation Results 34

2.4.2 Label Propagation for Semi-supervised and Multi-label
Learning . 36

2.4.3 Inductive Matrix Completion for Recommender Systems 38

2.5 Extension to Singular Value Decomposition 40

2.5.1 Multi-scale Singular Value Decomposition 41

2.5.2 Experiments . 44

2.6 Conclusions . 45

i

Chapter 3. Link Prediction in Social Networks 47

3.1 Proximity Measures and Link Prediction 50

3.2 Proposed Method: Multi-scale Link Prediction 53

3.2.1 Hierarchical Clustering 53

3.2.2 Subspace Approximation 55

3.2.3 Multi-scale Link Prediction 56

3.3 Experiments . 61

3.3.1 Case Study: Karate Club Network 61

3.3.2 Results on Large-scale Datasets 63

Evaluation Mmethodology 64

Varying Hierarchical Clustering Structure 66

Results on Large-scale Social Networks 68

3.4 Conclusions . 70

Chapter 4. Collaborative Filtering with Interactional Context 72

4.1 Problem Setting . 78

4.2 Proposed Method: iConRank 80

4.2.1 Modeling Implicit Feedback 81

4.2.2 Behavioral Clustering 82

4.2.3 Incorporating Interactional Context 83

4.2.4 iConRank Algorithm . 87

4.3 Experiments . 89

4.3.1 Dataset Description . 89

4.3.2 Experimental Results 92

4.4 Conclusions . 96

Chapter 5. Collaborative Filtering with Side Information 97

5.1 Tumblr Dataset . 103

5.2 Methods . 105

5.2.1 Matrix Completion . 106

5.2.2 Inductive Matrix Completion 106

5.2.3 Boosted Inductive Matrix Completion 108

5.3 Feature Extraction . 112

ii

5.4 Experiments . 115

5.4.1 Baselines and Evaluation Metrics 115

5.4.2 Experimental Results 117

Performance Comparison 118

Temporal Evaluation . 119

Performance for Users and Items with Different Levels of
Sparsity . 119

5.5 Conclusions . 124

Appendix 126

Appendix 1. Appendix 127

1.1 Proof of Theorem 2.2.1 . 127

1.2 Proof of Theorem 2.2.3 . 128

Bibliography 131

iii

List of Tables

2.1 Performance of MSEIGS with varying cluster quality 28

2.2 Datasets for spectral decomposition 34

2.3 Summary of datasets used for label propagation. 37

2.4 Label propagation results . 37

2.5 Summary of datasets used for inductive matrix completion . . 39

2.6 Inductive matrix completion results 39

2.7 Datasets for singular value decomposition 45

3.1 Percentage of within-cluster edges 54

3.2 Computational time for subspace approximation 60

3.3 Summary of networks with timestamps 64

3.4 Performance by varying hierarchical clustering structure . . . 67

3.5 Precision at top-100 results 69

4.1 Recall at top-N results . 94

5.1 Offline evaluation results . 117

5.2 Temporal evaluation results 117

5.3 AUC results for different groups of users 120

iv

List of Figures

2.1 Comparison of random partition and graph clustering 25

2.2 Comparison of RSVD, BlkLan, MSEIGS with single level and
MSEIGS . 26

2.3 Illustration of MSEIGS framework 32

2.4 Spectral decomposition time vs. average of the cosine of prin-
cipal angles . 34

2.5 Number of cores vs. time to compute similar approximation . 35

2.6 Singular value decomposition time vs. average of the cosine of
principal angles . 46

3.1 Illustration of MSLP framework 59

3.2 Case study: Karate club network 62

3.3 ROC curve results . 70

4.1 Information sources available in addition to the user-item matrix 73

4.2 Behavioral clusters . 84

4.3 Item count and session length distributions 91

4.4 Recall at top-20 for existing and new items 95

4.5 Results by different session lengths 95

5.1 Blog recommendation module and example post 99

5.2 Statistics of Tumblr data . 104

5.3 Boosted Inductive Matrix Completion model diagram 111

5.4 Relative approximation error with different levels of noise in
features . 112

5.5 Recall at top-k results for user groups with different activity levels121

5.6 Recall at top-k results for blog groups with different popularity
levels . 121

5.7 Precision at top-k results for different user and blog groups . . 123

5.8 Recall at top-k results for different user and blog groups . . . 124

v

Chapter 1

Introduction

Graph data have become increasingly important in representing and

modeling dyadic relationships between entities and complex network struc-

tures with broad applications in the field of machine learning and data mining.

It is one of the key contributing factors of the recent Big Data trend appearing

in large-scale datasets from various applications, whenever there is a need to

represent how things are connected or related to one another. Some canoni-

cal examples include hyperlinks between webpages in web graphs, friendships

between users in social networks, user ratings of items in recommender sys-

tems and associations between genes and diseases in biological networks. The

relationships that graphs in many real-world applications represent are un-

structured and sparse. It is usually the case that they follow a pattern of

sparsity that is not uniform, but irregular and highly skewed towards a few

entities (e.g., power-law distribution) [80]. While these inherent characteristics

make modern graph-based machine learning problems, such as identifying new

relationships, quite challenging, the massive scale of such graphs has driven

to an even greater need for developing scalable and sophisticated methods for

graphs.

1

In this thesis, we develop a novel multi-scale framework based on the

divide-and-conquer principle as an effective and scalable approach for ma-

chine learning tasks involving sparse graphs. While the divide-and-conquer

paradigm has been a classical approach for various computer science problems

(e.g., sorting and eigenvalue computation of tridiagonal matrices), it has not

been widely employed in problems that arise in graph-based machine learn-

ing. The main idea is to first divide the original problem into several smaller

subproblems defined only on a subset of data that are more manageable and

efficient to solve. Then, the partial solutions from each subproblem are merged

or conquered to obtain a solution for the original problem. A desirable prop-

erty of the divide-and-conquer paradigm is that it can be naturally parallelized,

since each subproblem can be solved independently, which is crucial for modern

large scale applications.

However, developing a divide-and-conquer approach is usually non-

trivial and the interconnected nature of graph data makes it an even more

challenging task. In particular, a good algorithm should partition the graph

such that (1) subproblems can be solved efficiently, and (2) solutions to the

subproblems can be easily combined to give the solution to the original prob-

lem. We address these issues and demonstrate how our multi-scale framework

can be effectively utilized for large scale machine learning problems with sparse

graphs to obtain accurate and scalable solutions.

Though, in general, the main goal of the divide-and-conquer approach

is to efficiently compute solutions for the original problem, it reveals an in-

2

teresting and appealing aspect for machine learning tasks. Particularly, we

can view partial solutions of the subproblems as localized models of the entire

problem. Thus, instead of simply using these localized models to compute a

global solution for the original task, we can combine models at multiple scales

from local to global generated by our divide-and-conquer approach in order

to achieve better performance for the underlying problem. By taking such

multi-scale view of the data, we are able to obtain a model that can make

accurate and robust predictions in various machine learning problems such as

link prediction and recommender systems.

To this end, we demonstrate the efficiency of our multi-scale approach

on three important machine learning problems including (1) spectral decompo-

sition and singular value decomposition of graphs, (2) link prediction in social

network analysis and (3) recommender systems with additional information.

We propose a novel multi-scale framework that achieves superior performance

compared to other state-of-the-art methods in a robust and scalable manner.

Particularly, we show the first aspect of efficiently computing a global solu-

tion by applying our multi-scale framework to the spectral decomposition and

singular value decomposition problems. The second aspect of our proposed

method, i.e., exploiting multi-scale view of the data, is shown for the problem

of link prediction, where we combine models at various scales to make accurate

and robust predictions. Another important application that has gained great

interest is recommender systems, where interactions between users and items

can be represented as a bipartite graph.

3

First, we consider the spectral decomposition of massive graphs, which

is one of the most informative and fundamental matrix approximations. There

are cases when only very few eigenvectors are needed, such as the leading

eigenvector for PageRank [40] or the Fiedler vector for spectral clustering [81],

where classical single-vector iterative algorithms (e.g., power method) [58, 84]

are widely used. However, it is often the case that a reasonably large number

k of eigenvalues and eigenvectors are needed. This computation is required

in various machine learning applications such as link prediction, recommender

systems and semi-supervised learning. The aforementioned single-vector al-

gorithms fall short in such case as they are restricted to computing only the

leading eigenvector or have difficulty in computing multiplicities or clusters of

eigenvalues. To avoid such problems, block versions of iterative algorithms,

such as the randomized SVD [36] or block Lanczos [75], can be employed.

Nonetheless, these methods generally suffer from slow convergence due to its

random initialization and does not scale well with sufficiently large k. In

this thesis, we develop a multi-scale framework to compute large number of

dominant eigenpairs of the entire graph in an efficient and scalable manner.

Specifically, we exploit the cluster structure of the graph to obtain a good

initialization for standard eigensolvers, which is based on the key observations

that the union of all cluster’s subspace is close to that of the original graph.

From this, we extend the developed method for spectral decomposition to com-

puting the more general singular value decomposition of large-scale graphs and

demonstrate its effectiveness.

4

Next we consider the problem of link prediction, which is an important

task in social network analysis [67]. Comprehensive proximity measures be-

tween users that are based on the structural properties of the graph (e.g., Katz)

have been shown to be quite effective for link prediction. The core assumption

is that users with a high proximity score implies they are close and hence will

have a good chance of forming a link in the future. However, such measures

typically involve high computational costs making it infeasible for large scale

graphs in the big data era. An alternative is to use a low rank approximation

of the graph to obtain a good estimation of the proximity measure. Due to

our proposed framework, we can generate a multi-scale view of the graph and

efficiently compute low-rank approximations at different levels of granularity.

Our approach considers scores from local to global views of the network based

on the multi-scale low-rank approximation, whereas traditional methods use

a single low-rank representation of the graph resulting in a single prediction

score. As a result, we are able to capture more information from local views

within clusters, where most of the new links appear, while capturing links

between clusters through a more global view at the same time.

For the third and final problem, we investigate recommender systems,

where the data can also be represented as a graph encoding relationships be-

tween users and items [2, 56]. While such user-item matrix lies at the core

of recommender systems, numerous recommendation scenarios involving ad-

ditional information about users, items and their interactions have emerged

in recent years. In this thesis, we exploit information beyond the user-item

5

matrix of conventional collaborative filtering settings and adapt a multi-scale

view of the problem to enhance recommendation quality. The type of in-

formation additional to the user-item matrix can be classified into two main

categories related to its source: (1) interaction information associated with

the interplay between users and items, and (2) rich side-information about

users and items [91]. The former considers contextual information such as

time and location, while the latter includes examples such as profile, user-

generated content and social network information. We discuss each case in

two real-life applications: mobile application (app) recommendation and blog

recommendation. For the app recommendation problem, we develop a novel

algorithm that utilizes app usage patterns from multiple scales to make dy-

namic recommendations. For the blog recommendation problem, we study

how to effectively leverage side-information of users and items with the goal

of achieving improved recommendation performance.

1.1 Outline

The thesis discusses multi-scale approaches for three important prob-

lems using graphs as the main data source in machine learning and data

mining. Chapter 2 discusses the first part of the thesis, where we explore

the fundamental problem of computing spectral decompositions of massive

graphs, especially when reasonably large number of eigenvalues and eigenvec-

tors are needed. We present a novel multi-scale spectral decomposition method

(MSEIGS) based on the divide-and-conquer principle. Both theoretical and

6

empirical analysis is presented to highlight the effectiveness of our method.

We also propose an early-termination strategy to efficiently compute quality

approximations. The usefulness of our method is demonstrated in two im-

portant applications that require large number of eigenvectors of graphs. In

the subsequent section, we propose a multi-scale singular value decomposition

method (MSSVDS) by extending MSEIGS to general rectangular matrices.

The second part of the thesis discusses two important machine learning

applications that can benefit from the proposed multi-scale approach. Chapter

3 illustrates how our multi-scale view can be adapted to the problem of link

prediction in social networks. We propose a novel multi-scale link prediction

framework (MSLP) that captures and combines both local and global informa-

tion to improve predictions in a scalable manner. The three main phases of our

method are presented in different sections: hierarchical clustering, subspace

approximation and multi-scale prediction. Extensive experimental results on

large scale real-world datasets are given to support our claims.

Lastly, we discuss recommender systems with information beyond the

traditional user-item matrix in Chapters 4 and 5. We study the two main cat-

egories of information available in addition to the user-item matrix, contextual

information and side-information of users and items, each in real-life applica-

tions: mobile application (app) recommendation and blog recommendation.

In Chapter 4, we address the problem of predicting the next app that a user

will use, given his or her recent interaction information. We show how users

can be represented by their app usage pattern at different scales from individ-

7

ual to global level, which is utilized to develop a novel collaborative filtering

method that incorporates dynamic interaction information. In Chapter 5, we

explore the problem of blog recommendation in one of the most popular mi-

croblogging services. We present a novel boosted inductive matrix completion

(BIMC) method, which is an additive low-rank model for user-blog preferences

consisting of two components; one component captures the low-rank structure

of follow relationships and the other captures the latent structure using side-

information. In both recommendation scenarios, the proposed methods are

shown to greatly enhance recommendation quality on real-world datasets.

1.2 Contributions

This thesis makes the following conceptual and concrete contributions:

• We look at machine learning problems with graphs as the primary data

source and show that our multi-scale approach based on the divide-and-

conquer paradigm can be applied to achieve superior performance and

scalability.

• We propose a novel multi-scale spectral decomposition method (MSEIGS)

that is capable of computing large number of eigenvalues and eigenvec-

tors of the entire graph. MSEIGS outperforms other widely used solvers

in terms of convergence speed and approximation quality. Furthermore,

our method is naturally parallelizable and exhibits significant speedups

in shared-memory parallel settings.

8

• We extend MSEIGS to the more general case of computing the singular

value decomposition. The proposed multi-scale singular value decompo-

sition method (MSSVDS) naturally shares the advantages of MSEIGS

and outperforms other popular solvers.

• We propose a flexible multi-scale link prediction framework (MSLP) for

scalable link prediction. Our method makes predictions by combining

information from multiple scales of the network, resulting in a more

accurate and robust model than other state-of-the-art methods.

• We propose new algorithms for real-world recommender systems where

additional information sources are available. Specifically, we utilize con-

textual information and side-information of users and items for app rec-

ommendation and blog recommendation, respectively. The proposed

methods adapt our multi-scale view and effectively exploit such addi-

tional information in a scalable manner yielding significant improvements

in recommendation performance.

1.3 Related Work

Here we highlight previous work closely related to the research in this

thesis.

Multi-scale Spectral Decomposition: The spectral decomposition of large

and sparse graphs is a fundamental tool that lies at the core of numerous algo-

9

rithms in varied machine learning tasks. Practical examples include spectral

clustering [81], link prediction in social networks [94], recommender systems

with side-information [77, 92], densest k-subgraph problem [83] and graph

matching [85]. Most of the existing eigensolvers for sparse matrices employ

the single-vector version of iterative algorithms, such as the power method

and Lanczos algorithm [58]. The Lanczos algorithm iteratively constructs the

basis of the Krylov subspace to obtain the eigendecomposition, which has

been extensively investigated and applied in popular eigensolvers, e.g., eigs

in Matlab (ARPACK) [61] and PROPACK [59]. However, it is well known

that single-vector iterative algorithms can only compute the leading eigen-

value/eigenvector (e.g., power method) or have difficulty in computing mul-

tiplicities/clusters of eigenvalues (e.g., Lanczos) [84]. In contrast, the block

version of iterative algorithms using multiple starting vectors, such as the ran-

domized SVD [36] and block Lanczos [75], can avoid such problems and utilize

efficient matrix-matrix operations (e.g., Level 3 BLAS) with better caching

behavior.

While these are the most commonly used methods to compute the spec-

tral decomposition of a sparse matrix, they do not scale well to large problems,

especially when hundreds of eigenvalues/eigenvectors are needed. Further-

more, none of them consider the clustering structure of the sparse graph. One

exception is the classical divide and conquer algorithm by [22], which parti-

tions the tridiagonal eigenvalue problem into several smaller problems that are

solved separately. Then it combines the solutions of these smaller problems

10

and uses rank-one modification to solve the original problem. However, this

method can only be used for tridiagonal matrices and it is unclear how to

extend it to general sparse matrices.

Multi-scale Link Prediction: Link prediction refers to the problem of in-

ferring new interactions among members in a network. The first systematic

treatment of the problem appeared in [67], where a variety of proximity mea-

sures, such as Common Neighbors [79] and Katz [52] were used as effective

methods for link prediction. In addition to unsupervised approaches, there is

also rising interest in supervised approaches for link prediction [39, 68]. In

supervised link prediction, node and/or edge features are extracted from the

network and link prediction is treated as a classification problem. However,

engineering good features and handling the class imbalance problem are still

challenging tasks.

Many popular proximity measures that are used for link prediction have

high computational complexity and do not scale well to large-scale networks.

A great deal of recent work has been devoted to speed up the computation.

For example, [102] truncates the series expansion of Katz and only considers

paths of limited length. In [97, 28], dimensionality reduction methods, such as

the eigen-decomposition, are used to construct low-rank approximations of a

graph, which are then used to compute approximated proximity measures. The

more recent work in [13] applies the Lanczos/Stieltjes procedure to iteratively

compute upper and lower bounds of a single Katz value and shows that these

11

eventually converge to the real Katz value.

Very little work has been done using hierarchical structures for link

prediction. One exception is the method proposed by [19], which works by

sampling a number of competitive hierarchical random graphs from a large

pool of such graphs. Each sampled graph is associated with a probability

indicating the strength of community structure over the original network. The

probability of a link appearing between any two nodes is averaged over the

corresponding connecting probability on the sampled graphs. However, to

predict potential links, this algorithm needs to enumerate and average over

almost all possible hierarchical partitions of a given network and thus is very

costly to compute even for small networks. Compared with [19], our algorithm

is much more efficient in terms of speed and thus can be scaled up to large-scale

link prediction problems with millions of users.

Collaborative Filtering with Interactional Context: Previous research

has shown that contextual information can enhance the performance of recom-

mender systems in various applications. Based on the classification of context

introduced in [27], context can be distinguished into two types: representa-

tional and interactional. The majority of context-aware recommender systems

have investigated the use of representational context, such as time, location

and weather [8]. Some context-aware neighborhood-based models [17, 43] in-

corporate contextual information in the similarity measure between users. An-

other approach described in [10] introduces item splitting, where item ratings

12

are split into two virtual items based on a given contextual condition. The

virtual items are used instead of the original ones in different collaborative

filtering algorithms and a rating is predicted for the virtual item correspond-

ing to the current user’s context. The context-aware latent factor model in [9]

includes attribute-based context variables as biases to appropriately learn the

model parameters. In the tensor factorization method proposed in [49], addi-

tional dimension for contextual information is added to the standard user-item

ratings matrix.

There has been limited work for recommender systems that incorpo-

rate interactional context. Hariri, et. al [38] also consider the problem of

recommending the next track given a sequence of tracks recently played. Each

sequence of tracks in a hand-compiled playlist database is first encoded as a

sequence of latent topics (using topic modeling). Frequent patterns of top-

ics are discovered from the topic sequences using a pattern-mining algorithm.

These sequential patterns are then used to predict relevant topics given a user

session. The predicted topics are used to post-filter an initial ranking pro-

duced by a traditional recommendation algorithm. The method is applicable

only when the number of topics is small or the maximum length of a session

is short. Enumerating all possible sequences can be computationally infeasi-

ble otherwise. Moreover, recommendations are not personalized as sequential

patterns are mined from the entire population. In the domain of mobile appli-

cation, recent work on predicting app launch [105] uses both representational

(location, time) and interactional (app launch) context information to engi-

13

neer features. However, the approach in [105] uses only the first app in a given

session, which is considered as the trigger. In contrast, our approach considers

all apps launched in the current session.

Collaborative Filtering with Side Information: In general, various sources

of information additional to the traditional user-item matrix can boost recom-

mendation performance. Recommender systems with side information is by

no means new and numerous methods have been proposed based on the type

of side information they utilize, such as user generated content [55, 112, 37, 76,

64, 5], user/item profile or attribute [3, 14], social network [47, 70] and con-

text information [78]. A recent comprehensive survey of the state-of-the-art

methods can be found in [91].

One of the main approaches that extend MC with side information is

the Collective Matrix Completion (CMC) model [96, 14], where the goal is

to jointly recover a collection of matrices with shared low-rank structure. In

[112], the user-item matrix and the user-user similarity matrix based on tags

information are jointly factorized to facilitate better recommendations. Recent

work on CMC provides consistency guarantees under certain assumptions [33],

which can be restrictive due to imposing a common structure. Recommender

systems with social networks are mostly based on the latent factor model with

additional constraints in the objective such as latent factors being similar

between connected users [47, 70]. Another approach is the regression-based

latent factor model proposed by [3], where attribute information is integrated

14

into the model. However, the proposed method does not scale well to large

datasets. Graph-based methods have also been extended to incorporate side

information. For example, [55] constructs a multi-partite graph with social and

tag information, which does not scale well with additional side-information

or when features are represented as a dense matrix. Lastly, user generated

content, such as reviews and comments, have been exploited by analyzing

sentiment information [76, 64]. In most cases, methods are either specialized

for a particular source of information or do not scale well with large number

of features and lack theoretical guarantees.

Closely related to Tumblr blog recommendation is the Who-To-Follow

system in Twitter [34]. Previous approaches for followee recommendation in-

clude a probabilistic model based on probabilistic latent semantic analysis

proposed by [54]. In [111], a community-based approach is proposed, where

matrix factorization is applied independently to each of the discovered com-

munities. However, both methods do not consider any other explicit user/blog

features. In [37], follower/followee as well as content (tweets) information is

used to represent users in a similarity-based collaborative filtering method.

Similarly, [5] first identifies a list of candidate followees, which are the 2-hop

neighbors in the follower graph, and then refines the list using content-based

profiles of users. Graph-based methods that use proximity measures between

nodes have also been applied to followee recommendation [108]. One major

drawback is that these methods can not efficiently deal with the inductive

setting. Furthermore, none of the existing methods consider images nor user

15

activity information, which is also available in Twitter.

There has been limited work on employing deep learning methods for

recommender systems. One exception is the music recommendation method

proposed by [82]. In [82], the traditional matrix factorization is combined

with a deep convolutional neural network to learn a function that maps music

content features to corresponding latent factors. Another exception is the work

by [30], where a recurrent neural network is trained to capture semantics of

text documents that is used in a content-based recommender system. Both

studies have shown deep learning as a promising approach for recommender

systems.

16

Chapter 2

Spectral Decomposition of Massive Graphs

Spectral decomposition of large-scale graphs is one of the most informa-

tive and fundamental matrix approximations. Specifically, we are interested

in the case where the top-k eigenvalues and eigenvectors are needed, where k

is in the hundreds. This computation is needed in various machine learning

applications such as semi-supervised classification, link prediction and recom-

mender systems. The data for these applications is typically given as sparse

graphs containing information about dyadic relationship between entities, e.g.,

friendship between pairs of users. Supporting the current big data trend, the

scale of these graphs is massive and continues to grow rapidly. Moreover, they

are also very sparse and often exhibit clustering structure, which should be

exploited. However, popular solvers, such as subspace iteration, randomized

SVD [36] and the classical Lanczos algorithm [58], are often too slow for very

big graphs.

A key insight is that the graph often exhibits a clustering structure

and the union of all cluster’s subspaces turns out to have significant over-

lap with the dominant subspace of the original matrix, which is shown both

The materials presented in this chapter have been published in [95]. All the co-authors
contributed equally in the related publication.

17

theoretically and empirically. Based on this observation, we propose a novel

divide-and-conquer approach to compute the spectral decomposition of large

and sparse matrices, called MSEIGS, which exploits the clustering structure

of the graph and achieves faster convergence than state-of-the-art solvers. In

the divide step, MSEIGS employs graph clustering to divide the graph into

several clusters that are manageable in size and allow fast computation of the

eigendecomposition by standard methods. Then in the conquer step, eigen-

vectors of the clusters are combined to initialize the eigendecomposition of

the entire matrix via block Lanczos. As shown in our analysis and experi-

ments, MSEIGS converges faster than other methods which do not consider

the clustering structure of the graph. To speedup the computation, we further

divide the subproblems into smaller ones and construct a hierarchical cluster-

ing structure; our framework can then be applied recursively as the algorithm

moves from lower levels to upper levels in the hierarchy tree. Moreover, our

proposed algorithm is naturally parallelizable as the main steps can be carried

out independently for each cluster. On the SDWeb dataset with more than 82

million nodes and 3.6 billion edges, MSEIGS takes only about 2.7 hours on a

single-core machine while Matlab’s eigs function takes about 4.2 hours and

randomized SVD takes more than 6 hours. Using 16 cores, we can cut this time

to less than 40 minutes showing that our algorithm obtains good speedups in

shared-memory settings. We further extend MSEIGS to computing the more

general Singular Value Decomposition (SVD) of a sparse matrix and propose a

multi-scale singular value decomposition (MSSVDS) method, which naturally

18

inherits the advantages of MSEIGS.

While our proposed algorithm is capable of computing highly accurate

eigenpairs, it can also obtain a much faster approximate eigendecomposition

with modest precision by prematurely terminating the algorithm at a certain

level in the hierarchy tree. This early termination strategy is particularly useful

as it is sufficient in many applications to use an approximate eigendecomposi-

tion. We apply MSEIGS and its early termination strategy to two real-world

machine learning applications: label propagation for semi-supervised classifi-

cation and inductive matrix completion for recommender systems. We show

that both our methods are much faster than other methods while still attaining

good performance. For example, to perform semi-supervised learning using la-

bel propagation on the Aloi dataset with 1,000 classes, MSEIGS takes around

800 seconds to obtain an accuracy of 60.03%; MSEIGS with early termination

takes less than 200 seconds achieving an accuracy of 58.98%, which is more

than 10 times faster than a conjugate gradient based semi-supervised method

[48].

2.1 Spectral Decomposition

Suppose we are given a graph G = (V,E, A), which consists of n vertices

and |E| edges such that an edge between any two vertices i and j represents

their similarity wij. The corresponding adjacency matrix A is a |V|×|V| sparse

matrix with (i, j) entry equal to wij if there is an edge between i and j and

0 otherwise. We consider the case where G is an undirected graph, i.e., A is

19

symmetric. The goal is to efficiently compute the top-k eigenvalues λ1, · · · , λk
(|λ1| ≥ · · · ≥ |λk|) and their corresponding eigenvectors u1,u2, · · ·uk of A,

which form the best rank-k approximation of A. That is,

A ≈ UkΛkU
T
k ,

where Λk is a k × k diagonal matrix with the k largest eigenvalues of A and

Uk = [u1,u2, · · · ,uk] is an n× k orthonormal matrix.

The block Lanczos algorithm is one of the most successful and widely

used methods for computing the dominant k eigenvalues and eigenvectors

of a symmetric matrix A [75, 84]. It can be viewed as a generalization of

the classical single-vector Lanczos method. The basic idea of block Lanc-

zos is to use an n × b initial matrix V0 to recursively construct the Krylov

subspace of A. After j steps, the algorithm generates an orthonormal basis

Q̂j =
[
Q1, Q2, · · · , Qj

]
of the j-th Krylov subspace of A on V0: Kj(A, V0) =

span{V0, AV0, A
2V0, · · · , Aj−1V0}. Simultaneously with the iteration, a se-

quence of block tridiagonal matrices T̂j is obtained, each of which is an or-

thonormal projection of A onto Kj(A, V0):

T̂j = Q̂T
j AQ̂j =


D1 BT

1 · · · 0

B1 D2
. . .

...
...

. BT
j

0 · · · Bj Dj+1

 .
Subsequently, the Rayleigh-Ritz procedure is applied by using the extreme

eigenpairs (λ̂i, ûi) of T̂j to obtain the Ritz values λ̂i and Ritz vectors Q̂jûi as

the approximate eigenpairs (λ̄i, ūi) of A.

20

The main procedure of block Lanczos is listed in Algorithm 1, which

can be expressed in the following three-term recurrence:

Qj+1Bj = AQj −QjDj −Qj−1B
T
j−1.

Typically, convergence is checked by examing the residual matrix R as AQ̂j −

Q̂jT̂j = REj, where Ej = [0, 0, · · · , Ib] (Ib is the identity matrix of size b).

Note that Q̂j forms an invariant subspace of the range space of A when R = 0.

If the residuals ‖Aūi − λ̄iūi‖ are small enough, we stop the procedure and

output (λ̄i, ūi), i = 1, · · · , k, as the approximate eigenpairs.

Algorithm 1: Block Lanczos

Input : n× n symmetric sparse matrix A, rank k and n× b
initial matrix V0.

Output: The approximate dominant k eigenpairs (λ̄i, ūi) of A for
i = 1, · · · , k.

1 Initialize block Lanczos: B0 = 0; Q0 = 0; Q1 = V0

2 for j = 1, 2, · · · do
3 R = AQj −Qj−1B

T
j−1 // Let R be orthogonal to Qj−1

4 Dj = QT
j R // Obtain Dj by projecting R onto Qj

5 R = R−QjDj // Let R be orthogonal to Qj

6 Qj+1Bj = R // QR-factorization of R to obtain Bj

and Qj+1

7 Form T̂j and Q̂j and compute the top-k eigenpairs (λ̂i, ûi) of

T̂j to obtain the Ritz values λ̄i = λ̂i and Ritz vectors

ūi = Q̂jûi of A.
8 If the residuals ‖Aūi − λ̄iūi‖, i = 1, · · · , k, are sufficiently

small, then stop and output (λ̄i, ūi) as the approximate
eigenpairs.

9 end

More recently, the randomized SVD proposed by [36] has gained pop-

21

ularity due to its simple implementation, applicability to large-scale datasets,

and existence of theoretical approximation error bounds. It is equivalent to

subspace iteration, which is the block version of the power method, with a

Gaussian random matrix as the initial matrix. In contrast to block Lanc-

zos that uses Kj(A, V0), randomized SVD (or subspace iteration) constructs a

basis for AjV0 and then restricts A to this subspace to obtain the decomposi-

tion discarding information from previous iterations. As a consequence, block

Lanczos can achieve better performance than randomized SVD with the same

number of iterations.

While these are the most commonly used methods to compute the

spectral decomposition of a sparse symmetric matrix, they do not scale well

to large problems, especially when hundreds of eigenvalues and eigenvectors

are needed. Furthermore, none of them consider the clustering structure of

the sparse graph and use random initialization. In this chapter, we propose a

novel multi-scale spectral decomposition method (MSEIGS), which embodies

the clustering structure of A to achieve faster convergence. We begin first

describing the single-level version of MSEIGS.

2.2 Single-level Division

Our proposed multi-scale spectral decomposition algorithm, which can

be used as an alternative to Matlab’s eigs function, is based on the divide-and-

conquer principle to utilize the clustering structure of the graph. It consists

of two main phases: in the divide step, we divide the problem into several

22

smaller subproblems such that each subproblem can be solved efficiently and

independently; in the conquer step, we use the solutions from each subproblem

as a good initialization for the original problem and achieve faster convergence

compared to existing solvers which typically start from random initialization.

2.2.1 Divide Step

We first use clustering to partition the sparse matrix A into c2 subma-

trices as

A = D+∆ =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc

 , D =

A11 · · · 0
...

. . .
...

0 · · · Acc

 , ∆ =

 0 · · · A1c
...

. . .
...

Ac1 · · · 0

 ,
(2.1)

where each diagonal block Aii is a mi × mi matrix, D is a block diagonal

matrix and ∆ is the matrix consisting of all off-diagonal blocks of A. We

then compute the dominant r (r ≤ k) eigenpairs of each diagonal block Aii

independently, such that Aii ≈ U
(i)
r Λ

(i)
r (U

(i)
r)T , where Λ

(i)
r is a r × r diagonal

matrix with the r dominant eigenvalues of Aii and U
(i)
r = [u

(i)
1 ,u

(i)
2 , · · · ,u(i)

r]

is an orthonormal matrix with the corresponding eigenvectors.

After obtaining the r dominant eigenpairs of each Aii, we can sort all

cr eigenvalues from the c diagonal blocks and select the k largest eigenvalues

(in terms of magnitude) and the corresponding eigenvectors. More specifically,

suppose that we select the top-ki eigenpairs of Aii and construct an mi × ki
orthonormal matrix U

(i)
ki

= [u
(i)
1 ,u

(i)
2 , · · · ,u(i)

ki
], then we concatenate all U

(i)
ki

’s

23

and form an n× k orthonormal matrix Ω as

Ω = U
(1)
k1
⊕ U (2)

k2
⊕ · · · ⊕ U (c)

kc
, (2.2)

where
∑

i ki = k and ⊕ denotes direct sum, which can be viewed as the sum

of the subspaces spanned by U
(i)
ki

. Note that Ω is exactly the k dominant

eigenvectors of D. After obtaining Ω, we can use it as a starting subspace for

the eigendecomposition of A in the conquer step. We next show that if we use

graph clustering to generate the partition of A in (2.1), then the space spanned

by Ω is close to that of Uk, which makes the conquer step more efficient. We

use principal angles [66] to measure the closeness of two subspaces. Since Ω

and Uk are orthonormal matrices, the j-th principal angle between subspaces

spanned by Ω and Uk is θj(Ω, Uk) = arccos(σj), where σj, j = 1, 2, · · · , k,

are the singular values of ΩTUk in descending order. In Theorem 2.2.1, we

show that Θ(Ω, Uk) = diag(θ1(Ω, Uk), · · · , θk(Ω, Uk)) is related to the matrix

∆. The proof is given in Appendix 1.1.

Theorem 2.2.1. Suppose λ1(D), · · · , λn(D) (in descending order of magni-

tude) are the eigenvalues of D. Assume there is an interval [α, β] and η ≥ 0

such that λk+1(D), · · · , λn(D) lies entirely in [α, β] and the k dominant eigen-

values of A, λ1, · · · , λk, lie entirely outside of (α− η, β + η), then

‖ sin(Θ(Ω, Uk))‖2 ≤
‖∆‖2

η
, ‖ sin(Θ(Ω, Uk))‖F ≤

√
k
‖∆‖F
η

.

As we can see, Θ(Ω, Uk) is influenced by ∆, thus we need to find a

partition such that ‖∆‖F is small in order for ‖ sin(Θ(Ω, Uk))‖F to be small.

24

(a) Random partition (b) Graph clustering

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank k

C
o
s
in

e
 o

f
p
ri
n
c
ip

a
l
a
n
g
le

s

Random partition

Graph clustering

(c) Cosine of principal angles

Figure 2.1: Comparison of random partition and graph clustering on the Cond-
Mat dataset (collaboration network with 21,362 nodes and 182,628 edges). (a)
Spy plot of randomly partitioned graph. (b) Spy plot of graph partitioned into
4 clusters using Metis (nodes are reordered by their cluster indexes). (c) Cosine
of principal angles of Θ(Ω, Uk) using random partitioning and graph clustering
to compute Ω.

Assuming that the graph has clustering structure, we apply graph clustering

algorithms to partition A to generate small ‖∆‖F . In general, the goal of graph

clustering is to find clusters such that there are many edges within clusters and

only a few between clusters, i.e., make ‖∆‖F small. Various graph clustering

software can be used to generate the partitions, e.g., Metis [51], Graclus [24],

GEM [104] and Nerstrand [60]. Figure 2.1 shows a comparison of the cosine

values of Θ(Ω, Uk) with different Ω for the CondMat dataset, a collaboration

network with 21,362 nodes and 182,628 edges. We compute Ω using random

partitioning and graph clustering, where we cluster the graph into 4 clusters

using Metis. Spy plots of each case are shown in Figures 2.1(a) and 2.1(b),

respectively, illustrating the clustering structure of the CondMat dataset with

more than 85% of edges appearing within clusters for graph clustering, whereas

there are less than 30% of such edges for random partitioning. As shown in

25

Figure 2.1(c), more than 80% of principal angles have cosine values that are

greater than 0.9 with graph clustering, while this ratio drops to 5% with ran-

dom partitioning. This illustrates that (1) the effectiveness of graph clustering

to reduce Θ(Ω, Uk); (2) the subspace spanned by Ω from graph clustering is

close to that of Uk.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rank k

C
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

RSVD
BlkLan

MSEIGS with single level
MSEIGS

(a) Cosine of principal angles.

0 20 40 60 80 100
−2.5

−2

−1.5

−1

−0.5

0

Rank k

|λ̄
i|
−

|λ
i
|

RSVD
BlkLan

MSEIGS with single level
MSEIGS

(b) Difference between computed and exact
eigenvalues.

Figure 2.2: Comparison of RSVD, BlkLan, MSEIGS with single level and
MSEIGS on the CondMat dataset with the same number of iterations (5 steps).
(a) shows cos(Θ(Ūk, Uk)), where Ūk consists of the computed top-k eigenvectors
and (b) shows the difference between the computed eigenvalues and the exact
ones.

2.2.2 Conquer Step

After obtaining Ω from the clusters (diagonal blocks) of A, we use Ω

to initialize the spectral decomposition solver for A. In principle, we can use

different solvers such as randomized SVD (RSVD) and block Lanczos (Blk-

Lan). In our divide-and-conquer framework, we focus on using block Lanczos

due to its superior performance as compared to RSVD as discussed in Sec-

26

tion 2.1. In Figure 2.2(a), we compare block Lanczos with RSVD in terms

of cos(Θ(Ūk, Uk)) for the CondMat dataset, where Ūk consists of the approx-

imate k dominant eigenvectors. Similarly in Figure 2.2(b), we show that the

eigenvalues computed by block Lanczos are more closer to the true eigenval-

ues. In other words, block Lanczos needs less iterations than RSVD to achieve

similar accuracy. For the CondMat dataset, block Lanczos takes 7 iterations

to achieve mean of cos(Θ(Ūk, Uk)) to be 0.99, while RSVD takes more than

10 iterations to obtain similar performance. It is worth noting that there are

a number of improved versions of block Lanczos [32, 7], and we show in the

experiments that our method achieves superior performance even with the

simple version of block Lanczos.

The single-level version of our proposed MSEIGS algorithm is given in

Algorithm 2. Some remarks on Algorithm 2 are in order: (1) ‖Aii‖F is likely to

be different among clusters and larger clusters tend to have more influence over

the spectrum of the entire matrix. Thus, we select the rank r for each cluster i

based on the ratio ‖Aii‖F/
∑

i ‖Aii‖F ; (2) We use a small number of additional

eigenvectors in step 4 (similar to RSVD) to improve the effectiveness of block

Lanczos; (3) It is time consuming to test convergence of the Ritz pairs in block

Lanczos (steps 7, 8 of Algorithm 1), thus we test convergence after running a

few iterations of block Lanczos; (4) Better quality of clustering, i.e., smaller

‖∆‖F , implies higher accuracy of MSEIGS. From Figures 2.2(a) and 2.2(b),

we can observe that the single-level MSEIGS performs much better than block

Lanczos and RSVD.

27

Algorithm 2: MSEIGS with single level

Input : n× n symmetric sparse matrix A, target rank k and
number of clusters c.

Output: The approximate dominant k eigenpairs (λ̄i, ūi) of A for
i = 1, · · · , k.

1 Generate c clusters A11, · · · , Acc by performing graph clustering on
A (e.g., Metis or Graclus).

2 Compute top-r eigenpairs (λ
(i)
j ,u

(i)
j) of Aii for j = 1, · · · , r using

standard eigensolvers.
3 Select the top-k eigenpairs from the c clusters to generate

U
(1)
k1
, · · · , U (c)

kc
.

4 Form block diagonal matrix Ω = U
(1)
k1
⊕ · · · ⊕ U (c)

kc
(
∑

i ki = k).

5 Apply block Lanczos (Algorithm 1) with initialization Q1 = Ω.

We show that MSEIGS is robust to the quality of clustering by exam-

ining performance with varying cluster quality. To vary the clustering quality,

we first cluster the CondMat graph into 4 clusters and then randomly perturb

clusters by moving a portion of vertices from their original cluster to another

random cluster, which reduces the number of within-cluster edges. Table 2.1

presents the performance of MSEIGS with different percentages of vertices

shuffled. We can see that (1) the quality of clustering influences the perfor-

mance of MSEIGS, i.e., better quality of clustering implies higher accuracy

of MSEIGS; (2) even with poor clustering structure, MSEIGS can still obtain

reasonably good approximations.

Table 2.1: Performance of MSEIGS with varying cluster quality.
Percent of vertices shuffled 0% 20% 40% 60% 80% 100%

Percent of within-cluster edges 86.31% 64.57% 47.08% 35.43% 27.42% 24.92%
Avg. cosine of principal angles 0.9980 0.9757 0.9668 0.9475 0.9375 0.9268

28

We can now analyze the approximation quality of Algorithm 2 by first

examining the difference between the eigenvalues computed by Algorithm 2

and the exact eigenvalues of A.

Theorem 2.2.2. Let λ̄1 ≥ · · · ≥ λ̄kq be the approximate eigenvalues obtained

after q steps of block Lanczos. According to Kaniel-Paige Convergence Theory

[87], we have

λi ≤ λ̄i ≤ λi +
(λ1 − λi) tan2(θ)

T 2
q−1(1+νi

1−νi)
.

Using Theorem 2.2.1, we further have

λi ≤ λ̄i ≤ λi +
(λ1 − λi)‖∆‖2

2

T 2
q−1(1+νi

1−νi)(η
2 − ‖∆‖2

2)
,

where Tm(x) is the m-th Chebyshev polynomial of the first kind, θ is the largest

principal angle of Θ(Ω, Uk) and νi = λi−λk+1

λi−λ1 .

Next we show the bound of Algorithm 1 in terms of rank-k approxima-

tion error.

Theorem 2.2.3. Given a n × n symmetric matrix A, suppose by Algorithm

2, we can approximate its k dominant eigenpairs and form a rank-k approxi-

mation, i.e., A ≈ ŪkΛ̄kŪ
T
k with Ūk = [ū1, · · · , ūk] and Λ̄k = diag(λ̄1, · · · , λ̄k) .

The approximation error can be bounded as

‖A− ŪkΛ̄kŪ
T
k ‖2 ≤ 2‖A− Ak‖2

(
1 +

sin2(θ)

1− sin2(θ)

) 1
2(q+1)

,

where q is the number of iterations for block Lanczos and Ak is the best rank-k

approximation of A. Using Theorem 2.2.1, we further have

‖A− ŪkΛ̄kŪ
T
k ‖2 ≤ 2‖A− Ak‖2

(‖∆‖2
2

η2 − ‖∆‖2
2

) 1
2(q+1)

.

29

The proof is given in Appendix 1.2. The above two theorems show

that a good initialization is important for block Lanczos. Using Algorithm 2,

we will expect a small ‖∆‖2 and θ (as shown in Figure 2.1(c)), and thus our

algorithm can have faster convergence compared to block Lanczos with random

initialization, because it embodies the clustering structure of A and constructs

a good initialization. The time complexity for Algorithm 2 is O(|E|k + nk2).

2.3 Multi-level Division: Multi-scale Spectral Decom-
position

In this section, we describe our multi-scale spectral decomposition al-

gorithm (MSEIGS). One challenge for Algorithm 2 is the trade-off in choosing

the number of clusters c. If c is large, although computing the top-r eigenpairs

of Aii can be very efficient, it is likely to increase ‖∆‖, which in turn will result

in slower convergence of Algorithm 2. In contrast, larger clusters will emerge

when c is small, increasing the time to compute the top-r eigendecomposition

for each Aii. However, ‖∆‖ is likely to decrease in this case, resulting in faster

convergence of Algorithm 2. To address this issue, we can further partition

Aii into c smaller clusters and construct a hierarchy until each cluster is small

enough to be solved efficiently. After obtaining this hierarchical clustering, we

can recursively apply Algorithm 2 as it moves from lower levels to upper levels

in the hierarchy tree.

By constructing a hierarchy, we can choose a small c in order to obtain

Ω with small Θ(Ω, Uk) (we choose c = 4 in the experiments). Our MSEIGS

30

algorithm with multiple levels is described in Algorithm 3. Figures 2.2(a)

and 2.2(b) show a comparison between MSEIGS and MSEIGS with a single

level. For the single level case, we use the top-r eigenpairs of the c child

clusters computed up to machine precision. We can see that MSEIGS performs

similarly well compared to the single level case showing the effectiveness of our

multi-scale approach. To build the hierarchy, we can choose either top-down

or bottom-up approaches using existing clustering algorithms. The overhead

of clustering is very low, usually less than 10% of the total time. For example,

MSEIGS takes 1,825 seconds, where clustering takes only 80 seconds, for the

FriendsterSub dataset (in Table 2.2) with 10M nodes and 83M edges.

Algorithm 3: Multi-scale spectral decomposition (MSEIGS)

Input : n× n symmetric sparse matrix A, target rank k, the
number of levels ` of the hierarchy tree and the number
of clusters c at each node.

Output: The approximate dominant k eigenpairs (λi,ui) of A for
i = 1, · · · , k.

1 Perform hierarchical clustering on A (e.g., top-down or
bottom-up).

2 Compute the top-r eigenpairs of each leaf node, i.e., A
(`)
ii for

i = 1, · · · , c`, using block Lanczos.
3 for i = `− 1, · · · , 1 do
4 for j = 1, · · · , ci do

5 Form block diagonal matrix Ω
(i)
j by (2.2).

6 Compute the eigendecomposition of A
(i)
jj using Algorithm 2

with Ω
(i)
j as the initial block.

7 end

8 end

31

A

A33 A44

A22A11

A11 A22

Uk

U
(1)
k1

U
(1)
k1

U
(2)
k2

U
(2)
k2

U
(3)
k3

U
(4)
k4

Level 2	

Level 1	

Level 0	

A

Uk

U
(1)
k1

U
(1)
k1

U
(2)
k2

U
(2)
k2

U
(3)
k3

U
(4)
k4

A33

A44

A22

A11

A11

A22

Divide Step

Conquer Step

Figure 2.3: Illustration of MSEIGS framework.

2.3.1 Early Termination Strategy

Computing the exact spectral decomposition of A can be quite time

consuming. Furthermore, highly accurate eigenvalues and eigenvectors are

not essential for many applications. Thus we propose a fast early termination

strategy (MSEIGS-Early) to approximate the eigenpairs of A by terminating

MSEIGS at a certain level of the hierarchy tree. Suppose that we terminate

MSEIGS at the `-th level with c` clusters. From the top-r eigenpairs of each

cluster, we can select the top-k eigenvalues and the corresponding eigenvectors

from all c` clusters as an approximate eigendecomposition of A. As shown in

Sections 2.4.2 and 2.4.3, we can significantly reduce the computation time

while attaining comparable performance using the early termination strategy

for two applications: label propagation and inductive matrix completion.

32

2.3.2 Multi-core Parallelization

An important advantage of MSEIGS is that it can be easily parallelized,

which is essential for large-scale eigendecomposition. There are two main as-

pects of parallelism in MSEIGS: (1) The eigendecomposition of clusters in the

same level of the hierarchy tree can be computed independently; (2) Block

Lanczos mainly involves matrix-matrix operations (Level 3 BLAS), thus effi-

cient parallel linear algebra libraries (e.g., Intel MKL) can be used. We show

in Section 2.4 that MSEIGS can achieve significant speedup in shared-memory

multi-core settings.

2.4 Experiments

In this section we empirically demonstrate the benefits of our proposed

method, MSEIGS. We compare MSEIGS with other popular eigensolvers in-

cluding Matlab’s eigs function (EIGS) [61], PROPACK [59], randomized SVD

(RSVD) [36] and block Lanczos with random initialization (BlkLan) [84] on

three different tasks: approximating the eigendecomposition, label propaga-

tion and inductive matrix completion. All experiments are conducted on com-

puting nodes that have two Intel Xeon E5-2680 (v2) CPUs with either 256

GB or 1 TB of main memory. Our algorithms are implemented in C++ with

OpenMP and all methods use Intel Math Kernel Library (MKL) as the un-

derlying BLAS/LAPACK library.

33

Table 2.2: Datasets of increasing sizes.
dataset CondMat Amazon RoadCA LiveJournal FriendsterSub SDWeb

of nodes 21,263 334,843 1,965,206 3,997,962 10.00M 82.29M
of nonzeros 182,628 1,851,744 5,533,214 69,362,378 83.67M 3.68B

rank k 100 100 200 500 100 50

0 1 2 3 4 5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(a) CondMat

0 20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(b) Amazon

0 500 1000 1500 2000 2500
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(c) FriendsterSub

0 500 1000 1500 2000 2500 3000 3500 4000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(d) RoadCA

0 2000 4000 6000 8000 10000 12000 14000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g
.
c
o
s
in

e
 o

f
p
ri
n
c
ip

a
l
a
n
g
le

s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(e) LiveJournal

0.5 1 1.5 2 2.5

x 10
4

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (sec)

A
v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

EIGS
PROPACK
RSVD
BlkLan
MSEIGS

(f) SDWeb

Figure 2.4: The k dominant eigenvectors approximation results showing time
vs. average of the cosine of principal angles. For a given time, MSEIGS
consistently yields better results than other methods.

2.4.1 Approximation Results

First, we show in Figure 2.4 the performance of MSEIGS for approxi-

mating the top-k eigenvectors for different types of real-world graphs includ-

ing web graphs, social networks and road networks [107, 72]. Summary of

the datasets is given in Table 2.2, where the largest graph contains more

than 3.6 billion edges. We use the average of the cosine of principal angles

cos(Θ(Ūk, Uk)) as the evaluation metric, where Ūk consists of the computed

34

2 4 6 8 10 12 14 16

10
3

10
4

Number of cores

T
im

e
 (

s
e
c
)

EIGS

RSVD

BlkLan

MSEIGS

(a) LiveJournal

2 4 6 8 10 12 14 16

10
4

Number of cores

T
im

e
 (

s
e
c
)

EIGS

RSVD

BlkLan

MSEIGS

(b) SDWeb

Figure 2.5: Shared-memory multi-core results showing number of cores vs.
time to compute similar approximation. MSEIGS achieves almost linear
speedup and outperforms other methods.

top-k eigenvectors and Uk represents the “true” top-k eigenvectors computed

up to machine precision using Matlab’s eigs function. Larger values of the

average cos(Θ(Ūk, Uk)) imply smaller principal angles between the subspace

spanned by Uk and that of Ūk, i.e., better approximation. As shown in Figure

2.4, with the same amount of time, the eigenvectors computed by MSEIGS

consistently yield better principal angles than other methods.

Since MSEIGS divides the problem into independent subproblems, it

is naturally parallelizable. In Figure 2.5, we compare MSEIGS with other

methods under the shared-memory multi-core setting on the LiveJournal and

SDWeb datasets. We vary the number of cores from 1 to 16 and show the time

to compute similar approximation of the eigenpairs. As shown in Figure 2.5,

MSEIGS achieves almost linear speedup and outperforms other methods. For

example, MSEIGS is the fastest method achieving a speedup of 10 using 16

35

cores for the LiveJournal dataset.

2.4.2 Label Propagation for Semi-supervised and Multi-label Learn-
ing

One application for MSEIGS is to speed up the label propagation algo-

rithm, which is widely used for graph-based semi-supervised learning [113] and

multi-label learning [101]. The basic idea for label propagation is to propagate

the known labels over an affinity graph (represented as a weighted matrix W)

constructed using both labeled and unlabeled examples. Mathematically, at

the (t+1)-th iteration, F (t+1) = αSF (t)+(1−α)Y , where S is the normalized

affinity matrix of W ; Y is the n× l initial label matrix; F is the predicted label

matrix; l is the number of labels; n is the total number of samples; 0 ≤ α < 1.

The optimal solution is F ∗ = (1 − α)(I − αS)−1Y . There are two standard

approaches to approximate F ∗: one is to iterate over F (t) until convergence

(truncated method); another is to solve F ∗ as a system of linear equations by

using an iterative solver like conjugate gradient (CG). However, both meth-

ods suffer from slow convergence, especially when the number of labels, i.e.,

columns of Y , grows dramatically. As an alternative, we can apply MSEIGS

to generate the top-k eigendecomposition of S such that S ≈ ŪkΛ̄kŪ
T
k and

approximate F ∗ as F ∗ ≈ F̄ = (1 − α)Ūk(I − αΛ̄k)
−1ŪT

k Y . Obviously, F̄ is

robust to large numbers of labels.

In Table 2.4, we compare MSEIGS and MSEIGS-Early with other meth-

ods for label propagation on two public datasets: Aloi for semi-supervised

36

learning and Delicious for multi-label learning. In the experiment, we use the

RBF kernel Wij = exp(−γ‖xi− xj‖2) to measure the similarity between sam-

ples i and j. Details of the datasets and parameters, which are chosen by

cross-validation, are given in Table 2.3. As we can see in Table 2.4, MSEIGS

and MSEIGS-Early significantly outperform other methods. To achieve similar

accuracy, MSEIGS takes much less time. More interestingly, MSEIGS-Early

is faster than MSEIGS and almost 10 times faster than other methods with

little degradation of accuracy showing the efficiency of our early-termination

strategy.

Table 2.3: Summary of datasets used for label propagation.
Dataset # of training points # of test points # of classes/labels dimension γ α

Delicious 12,920 3,185 983 500 10−1 0.99
Aloi 10,000 98,000 1,000 128 10−7 0.99

Table 2.4: The label propagation results on two real datasets including Aloi
for semi-supervised classification and Delicious for multi-label learning. The
graph is constructed using [69], which takes 87.9 seconds on Aloi and 16.1
seconds on Delicious.

Method
Aloi (k = 1500) Delicious (k = 1000)

time(secs) acc(%) time(secs) top3-acc(%) top1-acc(%)

Truncated 1824.8 59.87 3385.1 45.12 48.89
CG 2921.6 60.01 1094.9 44.93 48.73

EIGS 3890.9 60.08 458.2 45.11 48.51
RSVD 964.1 59.62 359.8 44.11 46.91
BlkLan 1272.2 59.96 395.6 43.52 45.53

MSEIGS 767.1 60.03 235.6 44.84 49.23
MSEIGS-Early 176.2 58.98 61.36 44.71 48.22

37

2.4.3 Inductive Matrix Completion for Recommender Systems

In the context of recommender systems, Inductive Matrix Completion

(IMC) [45] is another important application where MSEIGS can be applied.

IMC incorporates side-information of users/items given in the form of feature

vectors for matrix factorization, which has been shown to be effective for the

gene-disease association problem [77]. Given a user-item ratings matrix R ∈

Rm×n, where Rij is the known rating of item j by user i, IMC is formulated

as follows:

min
W∈Rfc×r,H∈Rfd×r

∑
(i,j)∈Ω

(Rij − xTi WHTyj)
2 +

λ

2
(‖W‖2

F + ‖H‖2
F),

where Ω is the set of observed entries; λ is a regularization parameter; xi ∈ Rfc

and yj ∈ Rfd are feature vectors for user i and item j, respectively. We eval-

uated MSEIGS combined with IMC for recommendation tasks where a social

network among users is also available. It has been shown that exploiting these

social networks improves the quality of recommendations [47, 100]. One way

to obtain useful and robust features from the social network is to consider the

k principal components, i.e., top-k eigenvectors, of the corresponding adja-

cency matrix A. We compare the recommendation performance of IMC using

eigenvectors computed by MSEIGS, MSEIGS-Early and EIGS. We also report

results for two baseline methods: standard matrix completion (MC) without

user/item features and Katz1 on the combined network C = [A R;RT 0] as in

[100].

1The Katz measure is defined as
∑t

i=1 β
tCt, and we set β = 0.01 and t = 10.

38

Table 2.5: Summary of datasets used for inductive matrix completion. Note
that r is the rank of W and H in IMC and we set the regularization parameter
λ = 0.1, which are chosen by cross-validation.

Dataset # of users # of items # of ratings in R # of links in A r

Flixster 1.0M 48.8K 8.2M 11.8M 100
Amazon 334.8K 73.2K 2.7M 1.9M 200

LiveJournal 4.0M 2.0K 2.4M 69.4M 100

Table 2.6: Recall-at-20 (RCL@20) and top-k eigendecomposition time (eig-
time, in seconds) results on three real-world datasets: Flixster, Amazon and
LiveJournal. MSEIGS and MSEIGS-Early require much less time to compute
the top-k eigenvectors (latent features) for IMC while achieving similar per-
formance compared to other methods. Note that Katz and MC do not use
eigenvectors.

Method
Flixster (k = 100) Amazon (k = 500) LiveJournal (k = 500)

eig-time RCL@20 eig-time RCL@20 eig-time RCL@20

Katz - 0.1119 - 0.3224 - 0.2838
MC - 0.0820 - 0.4497 - 0.2699

EIGS 120.51 0.1472 871.30 0.4999 12099.57 0.4259
RSVD 85.31 0.1491 369.82 0.4875 7617.98 0.4294
BlkLan 104.95 0.1465 882.58 0.4687 5099.79 0.4248

MSEIGS 36.27 0.1489 264.47 0.4911 2863.55 0.4253
MSEIGS-Early 21.88 0.1481 179.04 0.4644 1545.52 0.4246

We evaluated the recommendation performance on three publicly avail-

able datasets shown in Table 2.5 [47, 107]. For the Amazon and LiveJournal

datasets, we randomly sampled items (affiliations) with at least 10 users. The

Flixster dataset contains user-movie ratings information and the other two

datasets are for the user-affiliation recommendation task. We report recall-at-

N where N = 20 averaged over 5-fold cross-validation, which is a widely used

evaluation metric for top-N recommendation tasks [21]. In Table 2.6, we can

see that IMC outperforms the two baseline methods: Katz and MC. For IMC,

39

both MSEIGS and MSEIGS-Early achieve comparable results compared to

other methods, but require much less time to compute the user latent features

(top-k eigenvectors). For the LiveJournal dataset, MSEIGS-Early is almost 8

times faster than EIGS while attaining similar performance as shown in Table

2.6.

2.5 Extension to Singular Value Decomposition

In this section, we show how to extend the multi-scale framework to

computing the Singular Value Decomposition (SVD) of large-scale sparce ma-

trices. The SVD is the generalization of the spectral decomposition of a square

matrix to any m× n matrix. Formally, given a matrix A with m rows and n

columns, if σ is a nonnegative scalar, and u ∈ Rm and v ∈ Rn are nonzero

vectors such that

Av = σu and ATu = σv,

then σ is a singular value of A and u and v are corresponding left and right

singular vectors, respectively. As in the case of MSEIGS, our interest lies

in the case where the top-k singular values and singular vectors are needed,

where k is in the hundreds. Let Σk be a k × k diagonal matrix with the k

largest singular values σ1 ≥ σ2 ≥ · · · ≥ σk and Uk = {ui}ki=1 and Vk = {vi}ki=1

be their corresponding orthonormal matrices of left and right singular vectors,

respectively. Our goal is to efficiently compute

A ≈ UkΣkV
T
k .

40

2.5.1 Multi-scale Singular Value Decomposition

In general, algorithms for computing singular values are analogs of al-

gorithms for computing eigenvalues of symmetric matrices [99, 20]. The key

idea is to find square roots of eigenvalues of ATA without actually forming

ATA:

ATA = (UΣV T)T (UΣV T) = V Σ2V T .

Note that we assume m ≥ n and the algorithm may be applied to AT when

m < n. Specifically, the SVD of A is computed as follows:

1. Compute the spectral decomposition ATA = V ΛV T .

2. Let Σ be the nonnegative square root of diagonal matrix Λ.

3. Solve the system UΣ = AV for orthogonal U .

For the block Lanczos algorithm, this can be achieved by replacing AQj with

AT (AQj) as in Algorithm 4 (step 3). That is, we operate on the j-th Krylov

subspace of A on V0:

Kj(A, V0) = span{V0, (A
TA)V0, (A

TA)2V0, · · · , (ATA)j−1V0}

to obtain the decomposition. One caveat of this approach is that it is nu-

merically unstable for small singular values with σi � ‖A‖2 = σ1 as we are

squaring the condition number. However, this is not a problem in our case as

we focus on the dominant singular values. Furthermore, we have seen that a

reasonable approximation suffices for important machine learning applications

41

as demonstrated with MSEIGS-Early in Section 2.4. In such case, the num-

ber of iterations j is small and the columns of Kj(A, V0) are unlikely to be

dependent, and thus numerical stability is not a big issue.

Algorithm 4: Block Lanczos for SVD

Input : m× n sparse matrix A (m ≥ n), rank k and n× b initial
matrix V0.

Output: The approximate dominant k singular values, left and
right singular vectors (σ̄i, ūi, v̄i) of A for i = 1, · · · , k.

1 Initialize block Lanczos: B0 = 0; Q0 = 0; Q1 = V0

2 for j = 1, 2, · · · do
3 R = AT (AQj)−Qj−1B

T
j−1 // Let R be orthogonal to

Qj−1

4 Dj = QT
j R // Obtain Dj by projecting R onto Qj

5 R = R−QjDj // Let R be orthogonal to Qj

6 Qj+1Bj = R // QR-factorization of R to obtain Bj

and Qj+1

7 Form T̂j and Q̂j and compute the top-k eigenpairs (λ̂i, v̂i) of T̂j

to obtain the Ritz values λ̄i = λ̂i and Ritz vectors v̄i = Q̂jv̂i
of A.

8 If the residuals ‖ATAv̄i − λ̄iv̄i‖, i = 1, · · · , k, are sufficiently
small, then stop and output the approximate singular values

σ̄i =
√
λ̄i and right singular vectors v̄i.

9 end
10 Solve UΣ = AV for orthogonal U as the left singular vectors.

// e.g., via QR factorization

An alternative way to compute singular values without squaring the

condition number is to consider the (m+ n)× (m+ n) matrix

C =

[
0 AT

A 0

]
. (2.3)

42

Since A = UΣV T implies AV = UΣ and ATU = V ΣT = V Σ,[
0 AT

A 0

] [
V V
U −U

]
=

[
V V
U −U

] [
Σ 0
0 −Σ

]
,

which is equivalent to a spectral decomposition of C and extracting the cor-

responding components. However, we would need to explicitly form C for

MSEIGS due to the divide step (clustering), which incurs unnecessary storage

and computation costs as vectors will be of length m + n. Thus, we take the

first approach of finding the square roots of eigenvalues of ATA outlined in

Algorithm 4.

For the divide step, recall that we want the size of off-diagonal blocks

‖∆‖F in Eq (2.1) to be small as possible by Theorem 2.2.1. To achieve this

without explicitly computing ATA, we employ the k-means clustering algo-

rithm to cluster the columns of A into c clusters as A =
[
A1 A2 · · · Ac

]
,

where Ai denotes the i-th cluster of size m × ni (
∑c

i=1 ni = n). By doing so,

we can partition ATA into c2 submatrices similar to Eq (2.1) as

ATA = D+∆ =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc

 , D =

A11 · · · 0
...

. . .
...

0 · · · Acc

 , ∆ =

 0 · · · A1c
...

. . .
...

Ac1 · · · 0

 ,
where each diagonal block Aij = ATi Aj is an ni × ni matrix. The choice of

distance metric for the k-means algorithm should depend on the application

of interest. For the datasets used for evaluation (see Table 2.7), using cosine

similarity as the distance metric (i.e., spherical k-means) gives good perfor-

mance.

43

Once we obtained the top-ki eigenvalues and corresponding eigenvectors

V
(i)
ki

for each Aii (i = 1, 2, · · · , c), we form an n × k orthonormal matrix

Ω = V
(1)
k1
⊕ V (2)

k2
⊕ · · · ⊕ V (c)

kc
(
∑c

i=1 ki = k) for the conquer step. Similar to

MSEIGS with single-level (Algorithm 2), we use Ω to initialize a SVD solver

for A as shown in Algorithm 5. By extending this single-level MSSVDS to

the multi-level setting as described in Section 2.3, we arrive at the proposed

multi-scale singular value decomposition (MSSVDS) method.

Algorithm 5: MSSVDS with single level

Input : m× n sparse matrix A, target rank k and number of
clusters c.

Output: The approximate dominant k singular values, left and
right singular vectors (σ̄i, ūi, v̄i) of A for i = 1, · · · , k.

1 Generate c clusters A1, · · · , Ac by clustering columns of A (e.g.,
k-means).

2 Compute top-r eigenpairs (λ
(i)
j ,v

(i)
j) of Aii = ATi Ai for j = 1, · · · , r

using standard eigensolvers.
3 Select the top-k eigenpairs from the c clusters to generate

V
(1)
k1
, · · · , V (c)

kc
.

4 Form block diagonal matrix Ω = V
(1)
k1
⊕ · · · ⊕ V (c)

kc
(
∑

i ki = k).

5 Apply block Lanczos (Algorithm 4) with initialization Q1 = Ω.

2.5.2 Experiments

We give experimental results of the MSSVDS for approximating the

top-k singular vectors compared to other solvers on real-world datasets in-

cluding user-item ratings, text document-word counts and web graphs. Sum-

mary of the datasets is given in Table 2.7 [65, 71, 72]. We compare MSSVDS

44

with other popular SVD solvers including Matlab’s svds function (SVDS) [61],

PROPACK [59], randomized SVD (RSVD) [36] and block Lanczos with ran-

dom initialization (BlkLan) [84]. The average of the cosine of principal angles

cos(Θ(V̄k, Vk)) is used as the evaluation metric, where V̄k consists of the com-

puted top-k singular vectors and Vk represents the “true” top-k singular vectors

computed up to machine precision using Matlab’s svds function. As shown in

Figure 2.4, with the same amount of time, the singular vectors computed by

MSSVDS consistently yield better principal angles (i.e., larger values of the

average cos(Θ(V̄k, Vk))) than other compared methods. Matlab’s svds performs

the worst due to actually forming C in Eq (2.3) and computing its spectral

decomposition for stability reasons. Lastly, we note that MSSVDS achieves

similar speedups to that of MSEIGS in multi-core settings as shown in Section

2.4.1.

Table 2.7: Datasets of increasing sizes.
dataset Epinions RCV1 PLDWeb

of rows (m) 72,119 677,399 27,370,613
of columns (n) 755,137 42,735 36,165,034

of nonzeros 13,430,330 49,556,258 623,056,312
rank k 100 200 20

2.6 Conclusions

In this chapter, we proposed a novel divide-and-conquer based frame-

work, multi-scale spectral decomposition (MSEIGS), for approximating the

top-k eigendecomposition of large-scale graphs. Our method exploits the clus-

tering structure of the graph and converges faster than state-of-the-art meth-

45

0 50 100 150 200 250 300 350 400

Time (sec)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
A

v
g

.
c
o

s
in

e
 o

f
p

ri
n

c
ip

a
l
a

n
g

le
s

SVDS

PROPACK

SubIter-Rand

BlkLan-Rand

MSSVDS

(a) Epinions

0 200 400 600 800 1000 1200 1400 1600

Time (sec)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
v
g
.
c
o
s
in

e
 o

f
p
ri
n
c
ip

a
l
a
n
g
le

s

SVDS

PROPACK

SubIter-Rand

BlkLan-Rand

MSSVDS

(b) RCV1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sec)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
v
g
.
c
o
s
in

e
 o

f
p
ri
n
c
ip

a
l
a
n
g
le

s

SVDS

PROPACK

SubIter-Rand

BlkLan-Rand

MSSVDS

(c) PLDWeb

Figure 2.6: Approximation results of the k dominant left singular vectors
showing time vs. average of the cosine of principal angles. For a given time,
MSSVDS consistently yields better results than other methods.

ods. Moreover, our method can be easily parallelized, which makes it suitable

for massive graphs. Empirically, MSEIGS consistently outperforms other pop-

ular eigensolvers in terms of convergence speed and approximation quality on

real-world graphs with up to billions of edges. We show that MSEIGS is highly

effective for two important applications: label propagation and inductive ma-

trix completion. We also proposed multi-scale singular value decomposition

(MSSVDS) that extends MSEIGS to computing the SVD of large-scale graphs

and showed that it shares the advantages of MSEIGS resulting in better per-

formance than other popular SVD solvers. Dealing with graphs that cannot fit

into memory is one of our future research directions. We believe that MSEIGS

can also be efficient in streaming and distributed settings with careful imple-

mentation.

46

Chapter 3

Link Prediction in Social Networks

A core problem for social network analysis is proximity estimation that

infers the “closeness” of different users. Proximity measures quantify the in-

teraction between users based on the structural properties of a graph such

as the number of common friends. An important application of proximity

estimation in social networks is link prediction, which is a key problem in

social network analysis [67]. The task of link prediction refers to predicting

which pairs of users in a social network will be connected in the future. It

allows social network services to make better recommendations for potential

new friends making it easier for users to expand their social neighborhood and

consequently, to increase their activity.

Using proximity estimation for link prediction is based on the assump-

tion that a pair of users with a high proximity score indicates they are close

in terms of social relatedness and hence this pair of users will have a good

chance to become friends in the future. Simple proximity measures such as

neighborhood-based measures, e.g., common neighbors [79] and Adamic-Adar

score [1], can be computed efficiently. However, they describe a very localized

The materials presented in this chapter have been published in [94]. Donghyuk Shin
formulated the problems, developed the algorithms, and conducted experiments.

47

view of interaction. There are more comprehensive proximity measures that

capture a broader perspective of social relationships by considering all paths

between users. These path based methods, such as Katz [52] or rooted PageR-

ank [67], are often more effective. Nonetheless, they are also well known for

their high computational complexity and memory usage, which limits their

applicability to massive graphs. For example, Facebook, one of the most pop-

ular social networking sites, now has more than 1.3 billion active users with 5

new users joining every second on average.1

To solve this problem, a great deal of work has been done on scalable

proximity estimation [97, 13]. One basic idea is to perform dimensionality

reduction on the original graph and then compute the proximity based on its

low-rank approximation. Recently, clustered low rank approximation (CLRA)

has been proposed, which develops a fast and memory efficient method [89, 98].

However, a single low-rank approximation may not be sufficient to represent

the whole network. Furthermore, the approach in [89] uses only a single cluster-

ing structure making it sensitive to a particular clustering and biased against

links that happen to be between clusters. More notably, a recent study has

shown that large social networks tend to lack large well-defined clusters, which

suggests that a single clustering structure can be problematic [63].

To address the above problems, we adapt the multi-scale framework

from MSEIGS to the problem of link prediction. Recall that the goal of

1http://newsroom.fb.com/company-info/

48

MSEIGS is to efficiently compute the eigendecomposition of the entire ma-

trix by utilizing approximations at lower levels as a good initialization, which

is discarded afterwards. Instead of discarding such information, we treat each

low-rank approximation at different levels as a representation of the entire net-

work from different levels of granularity. As a results, we can obtain multiple

granular views of the network based on its hierarchical clustering structure.

Although we use a single hierarchical representation of the graph, it is im-

portant to note that we do not require it to be the optimal structure. The

main purpose of using hierarchical clustering is not to detect the underlying

community structure of the graph, but to use it as a tool for efficient multi-

scale approximation as in MSEIGS. In the experimental section, we show that

under clustering structures of varying quality, our proposed algorithm can

still achieve better results compared to other link prediction algorithms (for

example, in the Epinions network [86], which was also used in [63]).

Specifically, we propose a robust, flexible, and scalable framework for

link prediction on social networks that we call multi-scale link prediction (MSLP).

Our method exploits different scales of low-rank approximation of social net-

works by combining information from multiple levels in the hierarchy in an

efficient manner. Higher levels in the hierarchy present a more global view,

while lower levels focus on more localized information. MSLP works by first

performing hierarchical clustering on the graph by utilizing a fast graph clus-

tering algorithm, and then performing multi-scale approximation based on

the produced hierarchy. Since different levels have different approximation,

49

each level will give different approximated proximity scores. Afterwards, we

combine approximated proximity scores from each level and makes the final

prediction based on the combined scores. As a result, MSLP captures both

local and global information of the network.

We list the benefits of our framework as follows:

• MSLP makes predictions based on information from multiple scales and

thus can make more accurate and robust predictions.

• MSLP is fast and memory-efficient as it uses a simple and fast tree-

structured subspace approximation method, which speeds up the com-

putation of our multi-scale approximation while re-using memory across

different levels. As a result, it can be applied to social networks with

millions of users.

• MSLP is flexible in two aspects: (1) it can be used with any other

reasonably good clustering algorithm to generate a multi-scale view of

the graph as it does not depend on a particular hierarchical structure, (2)

as a dimensionality reduction method, it is not tied down to a particular

proximity measure, e.g., Katz and CN, and others can be used.

3.1 Proximity Measures and Link Prediction

Assume we are given a graph G = (V,E), where V = {1, · · · , n} is the

set of vertices representing the users in a social network and E = {eij|i, j ∈ V}

50

is the set of weighted edges quantifying the connection between user i and user

j. Let A = [aij] be the corresponding n× n adjacency matrix of G such that

aij = eij, if there is an edge between i and j and 0 otherwise. For simplicity,

we assume G is an undirected graph, i.e., A is symmetric.

As shown in [67], various proximity measures can be computed from A.

Many of these measures can be represented as a matrix function f(A), where

the (i, j)-th element represents the value of a proximity measure between user

i and user j [29]. One popular measure is the number of common neighbors,

which can be captured by fcn(A) = A2, describing a very localized view of

interactions between vertices by considering only paths of length 2. A more

extensive measure is the popular Katz measure. Such path-based proximity

measures often achieve better accuracy at the cost of higher computational

complexity. The Katz measure is defined as follows

fkz(A) = βA+ β2A2 + β3A3 + · · · =
∞∑
k=1

βkAk = (I − βA)−1 − I,

where I is the identity matrix and β ≤ 1/‖A‖2 is a damping parameter that

ensures convergence of the series. As we can see, the Katz measure takes

O(n3) time, which is computationally infeasible for large-scale networks with

millions of nodes.

Here, dimensionality reduction methods such as the Singular Value De-

composition (SVD) play an important role. These methods are particularly

useful, since it suffices to have a reasonably good estimation of a given prox-

imity measure for most applications. Furthermore, low-rank approximation of

51

the adjacency matrix serves as a useful conceptual and computational tool for

the graph. Assume that we are given a rank-r approximation of the n × n

matrix A as A ≈ Ã = USUT , where U is an n × r orthonormal matrix and

S is an r × r matrix. Using this low-rank approximation Ã, the CN measure

can be approximated as fcn(A) ≈ US2UT . Similarly, the Katz measure is

approximated by

fkz(A) ≈
∞∑
k=1

βkÃk = U(
∞∑
k=1

βkSk)UT = U((I − βS)−1 − I)UT .

In general, f(A) ≈ Uf(S)UT , which requires less computational resources as

the matrix function is only evaluated on the much smaller S matrix.

Based on the estimated proximity measures, we can perform link pre-

diction on social networks. The problem of link prediction deals with networks

that evolve over time. Given a “snapshot” Gt = (Vt,Et) of the network for

time t, the task is to predict links that would form at a future time step t+ 1.

For simplicity, we assume no links are removed and use Vt = Vt+1. In terms of

adjacency matrices, this can be expressed as At+1 = At + ∆t, where At is the

adjacency matrix corresponding to Gt and ∆t consists of links formed between

time t and t+ 1. Then the link prediction problem is to find nonzero elements

in ∆t given At. A high proximity score between two users from At captures

the high correlation between them and thus a high chance to form a new link

in the future, i.e., in ∆t.

52

3.2 Proposed Method: Multi-scale Link Prediction

In this section, we present our multi-scale link prediction (MSLP) frame-

work for social networks. We adapt the multi-scale framework of MSEIGS

presented in Chapter 2 to the problem of link prediction. Our method con-

sists of three main phases: hierarchical clustering, subspace approximation and

multi-scale prediction. Specifically, we first construct a hierarchy tree with a

fast top-down hierarchical clustering approach. Then, a multi-scale low-rank

approximation to the original graph is computed when traversing the hierar-

chy in a bottom-up fashion. Finally, we combine proximity measures, which

are computed using the multi-scale low-rank approximation of the graph, and

make our final predictions.

3.2.1 Hierarchical Clustering

The first step of our method is to hierarchically cluster or partition

the graph A. The purpose of this is to efficiently generate a multi-scale ap-

proximation of the graph using the constructed hierarchical structure. This, in

turn, makes predictions more accurate and robust as we combine predictions at

each level of the hierarchy in the final step. Generally, there are two main ap-

proaches for hierarchical clustering: agglomerative (or bottom-up) approach

and divisive (or top-down) approach. The agglomerative approach initially

treats each vertex as one cluster and continually merges pairs of clusters as it

moves up the hierarchy. The divisive approach takes the opposite direction,

that is, all vertices are placed in a single cluster and recursively partitioned

53

Table 3.1: Percentage of within-cluster edges using Graclus. Numbers in brack-
ets represent random clustering. It can be seen that Graclus is quite effective
in finding good clustering structure. (these networks contain about 2 million
nodes — details are given in Table 3.3.)

Hierarchy Flickr LiveJournal MySpace

Level 1 96.2 (68.1) 99.3 (60.1) 98.6 (61.6)
Level 2 95.1 (61.7) 98.8 (51.7) 88.0 (35.2)
Level 3 88.1 (54.3) 85.0 (28.6) 69.5 (18.0)
Level 4 85.2 (51.4) 79.4 (15.2) 64.3 (13.0)
Level 5 66.7 (27.2) 70.0 (9.4) 56.3 (8.4)

into smaller clusters. Due to the large scale of the problem and the availability

of efficient clustering software, such as Metis [51] or Graclus [24], we employ

the divisive approach as we did for MSEIGS in Chapter 2.

As it is desirable to capture most of the links within clusters, we com-

pare with random clustering in terms of the percentage of within-cluster links

on three large-scale social networks in Table 3.1. For each level of the hier-

archy tree, the within-cluster links are those that connect two vertices in the

same cluster. As shown in Table 3.1, the percentage of within-cluster edges

of random clustering is much smaller than the hierarchical clustering scheme,

and the gap becomes much larger when going down the hierarchy. Even at the

deepest level, the clustering scheme we use can still capture more than half

of the edges compared with less than 10% in the LiveJournal and MySpace

graphs when using random clustering. We note that the hierarchical cluster-

ing scheme is also very fast. Clustering the three networks of Table 3.1 into

5 levels with 2 clusters at each level can be completed in just 5 minutes on a

8-core 3.4GHz machine. In the next section, we show how to use the hierar-

54

chy structure to efficiently construct a multi-scale approximation of large-scale

graphs.

3.2.2 Subspace Approximation

After constructing the hierarchy for a given graph, we can compute

low-rank approximations of A at each level of the hierarchy to obtain a multi-

scale approximation. The main idea of our approach is based on MSEIGS in

Chapter 2. For notational brevity, we omit the superscripts denoting the level

of the hierarchy. The cluster structure of A at level p with c clusters and its

low-rank approximation A ≈ Ã = USUT can be represented as:

A =

A11 · · · A1c
...

. . .
...

Ac1 · · · Acc

 ≈ Ã =

U1 . . . 0
...

. . .
...

0 . . . Uc


S11 . . . S1c

...
. . .

...
Sc1 . . . Scc


U1 . . . 0

...
. . .

...
0 . . . Uc


T

,

where the columns of Ui are the set of orthonormal basis vectors forming the

subspace for cluster i.

In MSEIGS, each Sii is a diagonal matrix with the r dominant eigenval-

ues of Aii and Sij = 0 for i 6= j. However, such approximation does not contain

any information about the off-diagonal matrices Aij and would not be able to

make predictions for links that appear between clusters. Therefore, we extend

such cluster-wise approximation to the entire graph as in clustered low rank

approximation (CLRA) [89]. That is, we set Sij = UT
i AijUj for i 6= j, which

is optimal in the least squares sense. Note that level 0 in the hierarchy can be

viewed as treating the entire graph as a single cluster, which yields a global

55

view of the entire matrix A, while lower levels will preserve more local infor-

mation within each cluster. Thus, each level of approximation concentrates on

different levels of granularity, resulting in a multi-scale approximation of A.

An important issue here is how to compute each level’s approximation

of A efficiently. As shown in Section 2.2, we can use the union of all child

cluster’s subspace Ω = U1⊕U2⊕ · · · ⊕Uc as a good initializaiton to efficiently

compute the subspace of the parent cluster. For the task of link prediction, we

only require quality approximations to obtain a good estimate of the proximity

measures. Thus, we employ subspace iteration as in Algorithm 6 to speed

up the computation, whereas the block Lanczos algorithm was employed in

MSEIGS for higher accuracy. The basic idea of Algorithm 6 is to construct

an orthonormal basis Q for AΩ and then restrict A to this subspace to obtain

the approximation. Specifically, we construct the Rayleigh quotient matrix

B = QTAQ and compute its eigendecomposition to compute the dominant

subspace of the parent cluster.

3.2.3 Multi-scale Link Prediction

As mentioned in Section 3.1, many proximity measures f(A) for link

prediction are expensive to compute on large-scale networks because of their

high complexity. One solution is to approximate A by a low-rank approxi-

mation Ã and then compute approximated proximity measures with f(Ã) to

make predictions. This stems from the idea that most of the action in A can

be captured by a few latent factors, which can be extracted with low-rank

56

Algorithm 6: Tree-structured approximation of dominant sub-
space of parent cluster from child clusters

Input: n× n adjacency matrix of parent cluster A = A(P), child
cluster’s subspaces U

(C)
1 , . . . , U

(C)
c , target rank r.

Output: dominant subspace for parent cluster A(P), i.e., U (P).

1 Ω← U
(C)
1 ⊕ U (C)

2 ⊕ · · · ⊕ U (C)
c .

2 Compute n× cr matrix Y = AΩ.
3 Compute Q as an orthonormal basis for the range of Y .
4 Compute B = QTAQ. // A ≈ Q(QTAQ)QT

5 Compute rank-r eigen-decomposition of B ≈ V ΛV T .

6 Compute U (P) = QV .

approximations of A. It has been shown that CLRA provides an accurate

and scalable low-rank approximation, and can be used for efficient proximity

estimation [98]. However, CLRA uses only a single clustering structure mak-

ing it sensitive to a particular clustering and biased against links that appear

between clusters.

Our proposed method alleviates such problem with a multi-scale ap-

proach. The main idea is that, under a hierarchical clustering, all links will

eventually belong to at least one cluster. That is, even if we miss a between-

cluster link at a certain level, it still has a good chance of getting corrected

by upper levels as it will eventually become a within-cluster link. Moreover,

links that lie within clusters at multiple levels, such as from the deepest level,

get emphasized multiple times. Those links will have the propensity of being

included in the final prediction, which aligns with the intuition that links are

more likely to form within tight clusters.

57

Algorithm 7: Multi-Scale Link Prediction (MSLP)

Input: adjacency matrix A, number of levels `, number of clusters
c at each node, target rank r, weights w0, w1, . . . , w`.

Output: top-k predictions.

/* Hierarchical clustering */

1 A
(0)
11 ← A.

2 for i = 0 to ` do
3 for j = 1 to ci do

4 Cluster A
(i)
jj into c clusters. // e.g. Graclus

5 end

6 end
/* Subspace approximation */

7 Compute U (`), S(`) using CLRA. // approximation for

deepest level

8 for i = `− 1 to 0 do
9 Compute U (i) using Algorithm 6. // approximation for

intermediate levels

10 S(i) = U (i)TAU (i).

11 end
/* Multi-scale prediction */

12 for i = ` to 0 do

13 Ki = f(A(i)) = U (i)f(S(i))U (i)T . // e.g. Katz

14 end
15 return top-k predictions according to

P = w0K0 + w1K1 + · · ·+ w`K`.

Once the multi-scale low-rank approximation of A is obtained, we now

perform multi-scale link prediction. From each low-rank approximation of the

hierarchy, Ã(i), i = 0, 1, . . . , `, the approximated proximity measure can be

computed with f(Ã(i)). This gives a total of `+ 1 proximity measures for each

link, which are combined to make final predictions. Formally, our multi-scale

58

predictions are given by

P = g(w0f(Ã(0)) + w1f(Ã(1)) + . . .+ w`f(Ã(`))),

where wi’s are the weights for different levels and g(·) is the predictor (e.g.,

top-k scoring links). In the experiments, we use uniform weights for all levels,

i.e., wi = 1/(`+ 1).

The entire flow of our proposed method, Multi-Scale Link Prediction

(MSLP), is listed in Algorithm 7 and illustrated in Figure 3.1. Next, we

analyze the computation time and memory usage of MSLP.

Prediction Prediction Prediction

U
(1)
2

U
(2)
2

U
(2)
3

U
(1)
1

U (0)

U
(2)
1

f(Â(0)) f(Â(1)) f(Â(2))

	
 	
 	
 	
 Final	
 Predic,on	

level 0	

 level 1	

 level 2	

A(0)

A
(1)
22

A
(2)
22

A
(2)
33

A
(1)
11 A

(2)
11

Subspace	

Approxima,on	

Mul,-­‐Scale	

Predic,on	

Hierarchical	

Clustering	

Figure 3.1: Illustration of MSLP framework.

59

Table 3.2: Computational time (in minutes) for subspace approximation by
MSLP (Algorithm 6) and EIG on three large-scale social networks.

Network LiveJournal Flickr MySpace

EIG 157.10 146.28 211.29

MSLP

Level 0 30.74 29.98 38.27
Level 1 20.18 21.95 35.86
Level 2 18.93 17.25 29.17
Level 3 14.01 15.33 26.36
Level 4 13.74 15.79 26.36
Level 5 121.26 132.93 188.26

MSLP Total 218.88 233.33 344.02

Computation Time: As mentioned earlier, the hierarchical clustering is

fast and linear in the number of edges in the network and can be finished

in a few hundred seconds on networks with 2 million nodes. Computing the

approximated proximity scores as a final step for a given user is simply a matrix

multiplication of low-rank matrices and time complexity isO(`nr2). In general,

we set the number of clusters c and the rank in each cluster r to be fairly small.

Among the three phases of MSLP, the subspace approximation phase is the

dominant part of the computation time. In Table 3.2, we compare the CPU

time for subspace approximation by Algorithm 6 and EIG on three large-scale

social networks with about 2 million users. We can see in Table 3.2 that for

each intermediate level from 4 to 0, the subspace approximation in MSLP is

up to 10 times faster than that of EIG, demonstrating the effectiveness of

Algorithm 6. Furthermore, since we operate on each cluster independently,

MSLP can be easily parallelized to gain greater speedups.

60

Memory Usage: For a rank-r approximation, EIG needs to store r eigen-

vectors and eigenvalues which takes O(nr+ r) memory. Compared with EIG,

CLRA is memory efficient as it only takes O(nr + c2`r2) memory for a larger

rank-c`r approximation [89]. MSLP basically has the same memory usage as

CLRA. While MSLP achieves a multi-scale approximation, it is not necessary

to store the subspaces for all levels simultaneously. We can reuse the memory

allocated for the child cluster’s subspace to store the parent cluster’s subspace

using Algorithm 6.

3.3 Experiments

In this section we present experimental results that evaluate both accu-

racy and scalability of our method, Multi-Scale Link Prediction (MSLP), for

link prediction. First we present a detailed analysis of our method using the

Karate club network as a case study. This will give a better understanding of

our algorithm and illustrate where it succeeds. Next we provide results under

different parameter settings on a large social network. Lastly, we compare

MSLP to other popular methods on massive real-world social networks with

millions of users and demonstrate its superior performance.

3.3.1 Case Study: Karate Club Network

We first start our performance analysis on a well-known small social

network, Zachary’s Karate club network [110]. The Karate club network rep-

resents a friendship network among 34 members of the club with 78 links.

61

(a) Hierarchy of the Karate club network

1 2 3 4 5 6 7
0

5

10

15

20

25

30

Top−k

N
u
m

b
e
r

o
f
h
it
s

RandClust

CN

Katz

CLRA−Katz

MSLP−Katz

(b) Results of top-k hits

Figure 3.2: (a) Hierarchy of the Karate club network with 2 levels, two clusters
on the first level and four clusters on the second level. (b) Number of top-k
hits for different methods on the Karate club network.

The clustering structure of the Karate club network is a standard example for

testing clustering algorithms. We adopt the clustering results from [4], where

the clustering is found via modularity optimization. Figure 3.2(a) shows the

hierarchy of the Karate club network. The first level has 2 clusters (circle

and triangle) with 68 within-cluster links and the second level has 4 clusters

(red, yellow, green and blue) with 50 within-cluster links. As the Karate club

network is a small network, we apply the leave-one-out method to compare

different methods. We first remove a single link from the network, treat the

held out edge as 0 in A, and perform link prediction on the resulting network.

For each leave-one-out experiment, we compute the rank of the removed link

based on its proximity measure. If the rank of the removed link appears in

the top-k list, we count it as a hit. The number of top-k hits is the number of

hits out of all leave-one-out experiments.

62

We compare MSLP to four other methods: RandCluster, common

neighbors (CN), Katz and CLRA. In RandCluster, we randomly partition

the graph into 4 clusters and compute the Katz measure using CLRA with

these clusters. Figure 3.2(b) shows the number of top-k hits for each method.

Clearly, our method significantly outperforms other methods by achieving a

much higher number of hits. This implies that MSLP makes more accurate

predictions by considering the hierarchical structure of the network. Rand-

Cluster performs the worst, while CLRA has comparable performance with

Katz indicating that the network’s property can be captured by a few latent

factors. For a better illustration of the advantage of our method, we annotate

Figure 3.2(a) with the results of top-3 hits. The solid blue links correspond to

hits made by MSLP and the dashed red links are hits made by both CLRA

and MSLP, i.e. the set of links successfully predicted by CLRA is a subset

of that of MSLP. We can see that all hits made by CLRA are within-cluster

links (green cluster), showing that CLRA favors within-cluster links. In con-

trast, MSLP can predict not only more within-cluster links, but also links

between clusters (red and yellow). The ability to correctly predict both within

and between-cluster links is one of the main advantages of our multi-scale

approach.

3.3.2 Results on Large-scale Datasets

In this section we present the results of link prediction on large real-

world datasets. We start by examining how the parameters of MSLP affect

63

performance. Particularly, we investigate how different hierarchical clustering

structures impact the performance of MSLP. For this, we use a large real-world

network: Epinions, which is an online social network from Epinions.com with

32,223 users and 684,026 links [86]. Next we use three real-world massive

online social networks with millions of nodes: Flickr [74], LiveJournal and

MySpace [97], and compare MSLP to other methods. These datasets have

timestamps associated with them and we summarize each snapshot in Table

3.3. The adjacency matrix at the first timestamp, At1 , is used to compute

proximity measures, and the adjacency matrix at the next timestamp, At2 , is

used for testing and evaluation.

Evaluation Mmethodology

We evaluate the accuracy of different methods by computing the true

positive rate (TPR) and the false positive rate (FPR), defined by

TPR =
of correctly predicted links

of actual links
,

FPR =
of incorrectly predicted links

of non-friend pairs
,

Table 3.3: Summary of networks with timestamps.
Network Date # of nodes # of links

Flickr
5/6/2007 1,994,422 42,890,114

5/17/2007 1,994,422 43,681,874

LiveJournal
3/4/2009 1,757,326 84,366,676
4/3/2009 1,757,326 85,666,494

MySpace
1/11/2009 2,086,141 90,918,158
2/14/2009 2,086,141 91,587,516

64

for all links in a sampled test set. Our evaluation is based on receiver operat-

ing characteristic (ROC) curve and its area under the ROC curve (AUC) that

present achievable TPR with respect to FPR. Predicting links with proximity

measures involves some thresholding on the measures to produce top-k predic-

tions. The ROC curves captures the full spectrum of prediction performance

by varying the decision threshold. However, in a practical sense, a user is

recommended only a small number of top-k predictions and the hope is that

most of them are correct. Thus, we focus on the region of low FPR by plotting

FPR along the x-axis in log-scale, since it reflects the quality of these top-k

links. In the same spirit, we also use the Precision at Top-k, i.e., the number

of correct predictions out of top-k recommendations, as our evaluation metric.

For the Flickr, LiveJournal and MySpace datasets, we randomly se-

lect 5,000 users and evaluate on these users as the networks are very large.

Performance measures are averaged over 30 iterations of such sampling. As

pointed out in [62], most of all newly formed links in social networks close a

path of length two and form a triangle, i.e., appear in a user’s 2-hop neighbor-

hood. All three datasets show that this is the case for at least 90% of test links

in the second timestamp. For similar reasons as in [6], we focus on predicting

links to users that are within its 2-hop neighborhood.

Other Methods for Comparison: We have carefully chosen a variety of

proximity measures to compare with: Preferential Attachment (PA), Adamic-

Adar score (AA), Random Walk with Restarts (RWR), common neighbors

65

(CN) and Katz [67]. The actual values of Katz quickly becomes difficult to

compute as scale increases due to its high computational cost. Therefore, we

employ the Lanczos method [13] for its speed and good approximation of the

real Katz values. We also consider a supervised machine learning method

(LR) [6, 39]. For the latter, we extracted five network-based features: paths

of lengths 3, 4 and 5, CN, and AA. Using these features, a logistic regression

model is trained over a sampled set of positive and negative links from 10,000

users as in [6].

Varying Hierarchical Clustering Structure

We experiment with various hierarchical clustering structures by vary-

ing the number of levels in the hierarchy ` and the number of clusters at each

node in the hierarchy c. We fix r = 20 while changing one parameter at a time

and measure AUC and precision at top-20. The Epinions network does not

have time information, thus we randomly sample a number of links and treat

them as test links in At2 . The sampling is performed such that about 90% of

test links appear in a user’s 2-hop neighborhood. We compare the performance

of our method to two other low-rank approximation methods: eigendecompo-

sition (EIG) and clustered low rank approximation at the deepest level in the

hierarchy tree (CLRA).

Table 3.4 shows how the performance changes as the hierarchical clus-

tering structure changes. For a complete comparison, results of other methods

are also given in Table 3.4. The second column in Tables 3.4(a) and 3.4(b)

66

Table 3.4: Varying hierarchical clustering structure by changing (a) the num-
ber of clusters per node at each level and (b) the number of levels on Epinions

dataset. Results show that MSLP is not only more robust than CLRA to dif-
ferent clustering structures, but also outperforms other methods in most cases.
Percentage is the percentage of within-cluster edges (Numbers in brackets rep-
resent percentage of within-cluster edges of random clustering).

(a) Changing the number of clusters per node at each
level.

c Percentage
CLRA-Katz MSLP-Katz
AUC Prec AUC Prec

2 53.41 (13.42) 0.7928 4.93 0.8550 5.62
3 41.91 (6.41) 0.7649 4.32 0.8520 5.48
4 37.33 (5.47) 0.7426 3.80 0.8463 5.27
5 34.03 (3.12) 0.7293 3.74 0.8276 4.80

(b) Changing the number of levels.

` Percentage
CLRA-Katz MSLP-Katz
AUC Prec AUC Prec

2 67.54 (26.51) 0.7970 5.02 0.8459 5.33
3 53.31 (13.42) 0.7928 4.93 0.8550 5.62
4 47.77 (8.59) 0.7825 4.60 0.8508 5.55
5 43.54 (5.39) 0.7633 4.15 0.8498 5.37

(c) Results of other methods.

Method AUC Prec

PA(Preferential Attachment) 0.7717 2.09
AA(Adamic-Adar) 0.8378 5.16
RWR(Random Walk /w Restarts) 0.8468 2.68
LR(Logistic Regression) 0.8227 4.60
CN(Common Neighbors) 0.8163 4.78
Katz(Katz) 0.8352 4.77

represents the percentage of within-cluster edges. It is clear that as the num-

ber of clusters at the bottom level increases the percentage decreases. While

the accuracy of CLRA degrades as the percentage decreases, MSLP is still

able to perform better than other methods in all cases with the only exception

of Table 3.4(a) at c = 5. The results clearly show that MSLP is robust to

67

different hierarchical structures.

Results on Large-scale Social Networks

In this section, we present results on real-world networks with millions

of nodes presented in Table 3.3. We construct a hierarchical structure with

` = 5 and c = 2 for all three networks, and use r = 100 for EIG, CLRA and

MSLP. We set β = 0.0005 for the Katz measure, which yields the best results.

Table 3.5 gives AUC and precision at top-100 results for the various

methods, respectively. MSLP-Katz gives a significant improvement over the

Katz measure and outperforms all other methods. Specifically, it gains a

relative improvement of up to 4% in AUC and 15% in precision over the next

best performing method. We emphasize the superior performance in terms

of precision at top-100 of MSLP-Katz as shown in Table 3.5. This is a very

appealing aspect of MSLP as it reflects the quality of top recommendations. In

contrast, MSLP-CN remains comparable to CN, but performs better than EIG

and CLRA. Surprisingly, the supervised method LR does not perform well,

which is consistent with results found in [6]. Note that we only use network-

based features and no additional features for training. However, engineering

for more features is a difficult task and constructing good features itself can

be computationally expensive.

Figure 3.3 gives ROC curves focused on the low FPR region for the

three large-scale networks. We note that only one representative method from

methods that have similar performance is plotted for the sake of clarity. We

68

Table 3.5: Precision at top-100 and AUC results for Flickr, LiveJournal and
MySpace datasets.

Method
Flickr LiveJournal MySpace

PRC@100 AUC PRC@100 AUC PRC@100 AUC

PA 1.02 0.6981 1.32 0.6075 4.57 0.8325
AA 7.29 0.8758 5.93 0.7709 7.44 0.8767
RWR 5.49 0.7872 3.46 0.7113 1.30 0.8357
LR 2.54 0.7115 2.23 0.7055 4.95 0.7487
CN 7.08 0.8649 5.94 0.7630 7.18 0.8801
EIG-CN 6.88 0.8583 5.34 0.7317 6.99 0.8732
CLRA-CN 6.91 0.8506 5.21 0.7390 6.88 0.8587
MSLP-CN 7.03 0.8621 5.59 0.7538 7.05 0.8743
Katz 7.17 0.8429 5.86 0.7651 6.18 0.8492
EIG-Katz 11.26 0.8887 5.62 0.7547 7.55 0.8638
CLRA-Katz 12.13 0.8611 6.11 0.7531 7.64 0.8646
MSLP-Katz 13.34 0.8924 6.72 0.7890 8.38 0.8850

observe that MSLP-Katz performs the best in all three datasets with significant

improvements over Katz. For a given TPR, MSLP reduces FPR by 10% on

average and at most 20% compared to others in all datasets.

While dimensionality reduction methods, such as EIG and CLRA, tend

to perform well in all three datasets, they are limited to a single low-rank repre-

sentation of the network. Furthermore, CLRA has the largest drop in relative

performance in terms of precision compared to MSLP in the MySpace dataset,

where only 56% of the edges are within clusters, whereas MSLP achieves the

best result. Overall, the superior performance of MSLP illustrates the effec-

tiveness of our multi-scale approach.

We note that the majority of time is taken by computing CLRA at

the deepest level and thereafter low-rank approximations of upper levels can

be obtained efficiently due to Algorithm 6. However, CLRA can be easily

69

10
−4

10
−3

10
−2

0.05

0.1

0.15

0.2

0.25

0.3

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

MSLP−Katz
EIG−Katz
Katz
PA
LR

(a) Flickr

10
−4

10
−3

10
−2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

MSLP−Katz
EIG−Katz
Katz
PA
LR

(b) LiveJournal

10
−4

10
−3

10
−2

0.05

0.1

0.15

0.2

0.25

0.3

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

MSLP−Katz
EIG−Katz
Katz
PA
LR

(c) MySpace

Figure 3.3: ROC curve on low FPR region of different methods for Flickr,
LiveJournal and MySpace datasets. MSLP performs the best on all three
datasets.

parallelized as computing the subspace of each cluster is independent to other

clusters. Thus, MSLP can achieve much more speedup by using a parallel

implementation and serve as a highly scalable method for link prediction.

3.4 Conclusions

In this chapter, we have presented a general framework for multi-scale

link prediction by combining predictions from multiple scales using hierarchi-

cal clustering. A novel tree-structured approximation method is proposed to

achieve fast and scalable multi-scale approximations. Extensive experimental

results on large real-world datasets have been presented to demonstrate the

effectiveness of our method. This significantly widens the accessibility of state-

of-the-art proximity measures for large-scale applications. For future work, we

plan to investigate methods to learn the weights for various levels of the hier-

archy, since some levels may have better predictions and deserve larger weights

in the final prediction. In this work, we use a balanced hierarchical structure

70

mainly for its simplicity in combining predictions. However, a more realistic

setting would be to use an unbalanced hierarchical clustering structure. The

issue here is how to combine predictions from different levels as some links may

not receive predictions at certain levels. We also plan to develop a parallelized

version of MSLP as each level of the hierarchy can be easily parallelized.

71

Chapter 4

Collaborative Filtering with Interactional

Context

Recommender systems have become a vital tool for alleviating infor-

mation overload for online users, due to their ability to model user preferences

or interests of items at scale and to predict new associations between them in

a personalized manner. For example, recommender systems are now ubiqui-

tous in online shopping and media consumption supporting customers to find

the most relevant items or contents (e.g., Netflix, Amazon, Twitter). The

most prominent and successful technique for recommender systems is collabo-

rative filtering (CF), which is based on the underlying assumption that users

who have expressed similar interests are likely to share common interests in

the future [31]. Throughout the past decade, remarkable progress has been

made both theoretically and empirically in CF-based recommender systems

[2, 56, 21, 15, 46], whose primary data source is a sparse user-item matrix rep-

resenting user preferences for items. However, many recommendation settings

have surfaced where various sources of information are accessible additional to

the user-item matrix in recent years. In such scenarios, CF can be extended

The materials presented in this chapter have been published in [78]. All the co-authors
contributed equally in the related publication.

72

to incorporate additional information in a way that alleviates existing issues

(e.g., data sparsity, cold-start) and enhances recommendation quality. There

are two main types of additional information: (1) interaction information as-

sociated with the interplay of users and items; (2) rich side-information of

users and items as illustrated in Figure 4.1 [91]. We explore how the proposed

multi-scale framework can be adapted to significantly improve recommenda-

tion performance in both cases. In this chapter, we focus on the first type

of additional information, i.e., interaction information, and discuss the second

type in Chapter 5.

Toby The Revenant
Rating: 4/5

Interaction-associated	information:
² Time:	Saturday	9:22pm
² Location:	Home
² Weather:	Cloudy,	50°F
² …

Side	Information	of	movie:
q Release:	Dec	25,	2015
q Genre:	Drama,	Thriller
q Cast:	Leonardo	DiCaprio,	…
q Plot:	…
q …

Side	Information	of	user:
Ø Age:	36
Ø Gender:	Male
Ø Friends:	Tim,	Ladan,	…
Ø Address:	…
Ø …

Figure 4.1: Information sources available in addition to the user-item matrix.

The interaction-associated or contextual information includes informa-

tion sources that are directly related to the event of a user interacting (e.g.,

rating, clicking) with an item. The most common sources are timestamps and

locations, which record the time and place at which a user interacted with an

73

item. Based on the classification presented in [27], such contextual informa-

tion is called representational context, which is usually defined before the user

interacts and provided as attributes. That is, representational context often

influences how the user interacts with the system. In contrast, the interac-

tional context is defined dynamically and arises from user interaction, which

is less explored in context-aware recommender systems. It is applicable in gen-

eral settings where items are used repeatedly, such as listening to tracks from

online music streaming services or browsing products in shopping websites.

We propose a novel method for collaborative filtering with interactional con-

text for mobile application recommendation and show that utilizing multiple

scales of user behavior information enhances recommendation quality.

The problem of recommending an item to a user given a sequence of

items that the user recently interacted with arises in many systems. The prob-

lem is best understood by considering a smart phone user navigating through

various applications (apps) on the mobile device. Mobile apps are often used

in conjunction with other relevant apps. For example, if a user launches the

‘contacts’ app, the next app is likely to be the ‘mail’ or the ‘messages’ app.

The current context of the user can be characterized from recently launched

apps. Recommending the “right” app to use next based on the context of the

user’s actions would improve user experience and multitasking efficiency.

Based on the classification presented in [27], we call the context that

arises from user’s activity within a session interactional context. In contrast,

most of the existing context-aware recommender systems focus on represen-

74

tational context, usually defined before the user interacts and provided as

attributes such as location, weather and interests [8].

The problem differs from traditional collaborative filtering (CF) set-

tings, such as the Netflix rating prediction problem [11], in many respects.

First, user interaction with items such as apps is brief and repetitive in na-

ture, whereas items like movies are usually watched/rated once. Second, the

user feedback is inherently implicit in the form of item clicks, as opposed to

explicit feedback like ratings or comments. Additionally, we have a temporal

ordering of clicks within user sessions. Third, recommendations must be made

available dynamically as the user interacts with the system. That is, recom-

mendations should be updated each time a user clicks an item. Finally, we

have the notion of interactional context defined by the session in progress, to

which the recommendations are targeted. It is desirable for a recommender

system to use the context set by the user to update its recommendations. It

might be tempting to relate the aspect to that of online CF systems [25], where

systems could use newly available ratings to recompute predictions. However,

there is a subtle difference. The interactional context should help better zero

in on the apps that the user would launch next while she interacts with the

system. It is therefore necessary to treat the current session differently from

past sessions.

The problem is applicable in any setting where items are generally used

repeatedly, such as listening to tracks from online music services or browsing

products in shopping websites. If a user has been listening to rock music, she

75

is more likely to prefer other rock music than tracks from a different genre.

Note that in such general settings, the system should be able to recommend

new or unseen items to the user. In the next app prediction setting, one could

restrict the recommended apps to those that are already installed in the user

device, or even recommend new apps that other users have used in similar

context.1 A less obvious but tangible benefit of predicting the next app is that

the predicted apps can be pre-loaded to reduce both app launch latency and

energy consumption [105].

In this section, we propose a novel method, iConRank, for collabora-

tive filtering with interactional context. The fundamental observation is that

we do not want to treat the sequence of item clicks as raw counts, but as

ordered transitions. We model users’ transition behavior between items as

a Markov chain, where transition probabilities are empirically estimated. A

single global Markov model would fall short of capturing diverse transition

patterns. On the other hand, a fully personalized Markov model would suffer

from extreme sparsity of observed transitions. So, we seek cluster-level Markov

models, where the clusters themselves are behavioral. That is, we cluster users

by their sparse one-step item transition probabilities and compute a repre-

sentative Markov model per behavioral cluster. We develop our method by

introducing a context bias to a classical neighborhood-based CF model. Our

formulation essentially leads to a personalized PageRank [40] on a particular

1This choice is made when the recommender system is deployed. In experiments, we
evaluate with the latter option.

76

Markov graph, where the so-called “personalization” vector is derived from

interactional context.

Our contributions are as follows:

• The problem of incorporating interactional context in collaborative fil-

tering is relatively unexplored (see Section 1.3). Though the setting is

motivated from app launch patterns of smart phone users, it is applicable

in many click-based interactive systems.

• We propose iConRank that makes personalized and dynamic recommen-

dations given the current session. Recommendations are updated as the

user interacts with the system. We show that the quality of recommenda-

tions made by our algorithm is superior to those of competitive methods

on two real-life datasets.

• Behavioral clustering of users allows the system to make recommenda-

tions using past item transitions of a given user as well as transitions

from users with similar navigational patterns. That is, we utilize app

usage patterns at multiple scales from individual user level to cluster and

global level.

• Our method is scalable and can handle large problems efficiently. The

clustering stage of our algorithm is done offline. Personalized PageRank

can be computed in a scalable manner, as detailed in Section 4.2.4, which

enables implementation on devices with limited processing power.

77

4.1 Problem Setting

Our problem setting is motivated by smart phone users who exhibit

patterns of interaction with the device through mobile apps. The sequence of

apps launched by a user defines the interactional context of the user’s actions.

Interactional context arises from the user’s activity within a session and is

dynamic. The setting is applicable to any click-based recommender system,

where recommendations are updated as the users click on an item (Youtube,

Spotify, etc).

We refer to the sequence of items accessed by a user over a certain

contiguous period as a session. In practice, sessions are defined based on the

type of activity (e.g. articles read by an online user when she is signed in).

Note that we do not consider any temporal aspects of the session, other than

the ordering of clicks. Existing context-aware recommender systems focus on

attribute-based representational context that is less dynamic and often fixed

before the start of a session. A given user may have specified a set of preferences

globally, but it is often the case that user preferences change between sessions.

The goal of this chapter is to present recommendations to a given user based

on her past sessions, sessions of other users in the system and the current

session in progress. The key aspects of our problem setting are:

1. There are no explicit “likes” or “dislikes” of an item, unlike the case of

Netflix ratings. We want to come up with a ranking of items that the

user will click next in the current session. Following the recommender

78

systems literature, our setting relies on implicit feedback as against the

Netflix prize setting that uses explicit feedback.

2. Users may be interested in multiple categories of items, but given the

sequence of clicks made in the current session, there is an added context

bias that needs to be accounted for. In general recommender systems,

user bias and item bias are accounted for whereas context bias is either

ignored or is not applicable.

We would like to emphasize here that though the first aspect in isolation

is well-known in the recommender systems community [44, 106], the second

aspect has received little attention [38].

The Problem Statement: The item recommendation problem in the Col-

laborative Filtering with Interactional Context setting is formally stated as

follows. Given a history of sessions S of users U = {u1, u2, . . . , u|U|} over a

set of items I = {a1, a2, . . . , a|I|}, and a specific user u ∈ U with session in

progress s = 〈ai1 , ai2 , . . . , ait〉, for some t ≥ 1, we want to recommend the best

candidate item ait+1 ∈ I. Note that we want the recommendations to be (a)

personalized to the user u, and (b) relevant to the context of the session s.

The classical collaborative filtering systems (with implicit feedback) consider

a specific case of the problem where the current session is ignored and the goal

is to come up with a set of recommendations based on the click history.

79

4.2 Proposed Method: iConRank

In our problem setting, we work with implicit feedback in the form

of click sequences. A widely-used collaborative filtering approach for implicit

feedback data is to simply form a user-item count matrix, where an entry rep-

resents the number of times (or a monotonic function such as log of the count)

a user has clicked on an item in the past. Any of the collaborative filtering ap-

proaches for explicit feedback such as matrix factorization or similarity-based

methods can then be applied on the count matrix. However, such a naive

approach is not appropriate for reasons manyfold. Most importantly, we do

not want to predict any exact rating — we just need a ranking of relevant

items. It is inherently hard to gauge user preferences with clicks — lack of

an established scale like star ratings makes it tricky to compute similarities

between users or items. For a detailed discussion of what prevents a direct use

of algorithms designed for explicit feedback, see [44]. We will see later in the

experiments (Section 4.3) that collaborative filtering methods on the count

matrix perform poorly.

Some latent factor models for ratings data include biases due to attribute-

based context variables such as location to appropriately learn the model pa-

rameters [9]. Other than the absence of explicit feedback, such context-aware

models pose another immediate challenge — they rely on rating instances for

different settings of context variables to learn the appropriate biases. In the

case of interactional context, it is not obvious how to succinctly define context

variables and obtain associated training examples. Also, it must be efficient to

80

update model parameters as the current session progresses in order to provide

dynamic recommendations.

In this section, we first describe how we model history in the form of

click sequences. Then, we derive our PageRank-based method by incorporating

interactional context in an existing collaborative filtering framework. Finally,

we present our algorithm iConRank.

4.2.1 Modeling Implicit Feedback

The fundamental observation is that we do not want to treat the session

history as counts but as sequences instead. A simple and effective way to

model sequences is to use Markov models. Ideally, we would want to know the

probability of user clicking on an item given the current session. To this end,

we model the users as Markov. The set of items I corresponds to the state

space of the Markov model, and the state transition probability Mij is the

probability that item j is clicked immediately after item i. From the sessions

data, we can estimate Mij as the fraction of times item j appears immediately

after item i, whenever i appears.

Typically, a given user does not have enough training data to estimate

|I| × |I| parameters of the Markov model. On the other hand, we do not

need to determine a personalized Markov model for each user. The basic

idea of collaborative filtering is to combine preferences from “similar” users in

order to make recommendations for a given user. One naive way to combine

preferences in our setting is to use session data of all users to determine a

81

single global Markov model. While the training data may be rich enough to

estimate a global model, it is less likely to be a good characterization of the

diverse transition behavior of users. The aforementioned fully personalized and

fully global models fall short, and our approach is to use cluster-level Markov

models. It is reasonable to suppose that there are different clusters of users

exhibiting a common navigational pattern. To discover behavioral clusters

using session data, we need to find a good representation of users, where users

who have similar transition patterns are “close” to each other than those that

are not.

4.2.2 Behavioral Clustering

First, we note that the user-item count matrix itself cannot be used

for clustering — we want the clusters to indicate how users click and not

what users click. In particular, we want a feature map Φu that encodes the

fraction of times a particular transition was made, rather than the number

of transitions. Let Φ : U → M, where M denotes the set of row-stochastic

matrices, i.e. M = {M ∈ R|I|×|I| : Mij ≥ 0,
∑

jMij = 1}. In particular,

Φ(u) = M (u) where M (u) denotes the one-step Markov transition probability

matrix estimated from the session history of user u. Now, we need a distance

measure to cluster users in the space of transition probability matrices. An

appropriate measure of distance between two probability distributions is the

KL-divergence or the relative entropy. The KL-divergence dKL(x, y) between

82

two p-dimensional probability distributions x and y is defined as:

dKL(x, y) =

p∑
i=1

xi log2

(
xi
yi

)
.

The distance between two users u and v is in turn defined as:

d(u, v) =
1

|I|

|I|∑
i=1

dKL(M
(u)
i· ,M

(v)
i·
)
. (4.1)

We have d(u, v) ≥ 0 since dKL(., .) ≥ 0 and d(u, v) = 0 ⇐⇒ M (u) = M (v).2

For the actual clustering step, we optimize the k-means objective. The centroid

of the cluster πk is computed as

Mk =
1

|πk|
∑
u∈πk

M (u), (4.2)

where |πk| denotes the number of users assigned to cluster k. Note that Mk ∈

M and we use Mk as the Markov model for the kth cluster.

In Figure 4.2, we show three behavioral clusters discovered in one of our

experimental datasets consisting of logs of artists played by users of an online

radio station (see Section 4.3.1).3 The clusters are computed using k-means

with the KL-divergence measure (4.1). Observe that different clusters of users

exhibit distinct navigational patterns among the top-20 artists.

4.2.3 Incorporating Interactional Context

We motivate our approach from a classical memory-based collaborative

filtering model. Memory-based algorithms predict ratings for a given user

2In practice, many of Mij ’s are 0 and to have a well-defined dKL(·, ·), we add a relatively
tiny value to all the entries of the transition matrices.

3For clarity, we only show the top-20 artists with the highest play counts in the training
data and omit edges whose transition probability is lower than a certain threshold.

83

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(a) Cluster 1.

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(b) Cluster 2.

Radiohead

The Beatles

Nine Inch Nails

Muse

Coldplay

Death Cab For Cutie

Pink Floyd

Depeche Mode

Placebo

Elliott Smith

The Cure

David Bowie

The Smiths

Britney Spears

RHCP

The Killers

Sigur Rós

Interpol
Björk

Metallica

(c) Cluster 3.

Figure 4.2: Behavioral clusters in lastfm dataset (see Section 4.3.1). We see
how different clusters of users move between the top-20 artists with the highest
play counts in the training data. Thicker edges represent higher transition
probabilities.

based on past ratings of the user and other users in the system [88, 12]. The

neighborhood models are a classical example, where the predicted rating of

an item by a user is given by a weighted combination of “k-nearest neighbor”

items (or users). The weights are proportional to the “similarity” between

items, which is represented by the vector of observed user ratings. The Pearson

correlation coefficient and cosine similarity are two commonly used similarity

measures. The similarities between all item pairs are computed offline, and

the predicted rating r̂u,i for a user u and an item i is given by

r̂u,i = bu,i +
∑
j∈N(i)

w(i, j)(ru,j − bu,j), (4.3)

where N(i) denotes the “neighborhood” set of item i. For example, in the

cosine similarity case, the top-k items with highest cosine similarity with item

i constitute N(i). Typically, a rating bias term bu,i is included to account for

the user bias (some users are predisposed to rate higher in general) and item

bias (some movies get higher ratings than others). The weights are usually

84

normalized for rating prediction tasks.

Let us focus on the item recommendation problem in the interactional

context setting, where the knowledge of the current session is available. First,

we want to use the cluster Markov models computed using (4.2) to learn

a ranking of items given the user u and the current session s. Second, we

want to incorporate interactional context in (4.3). In particular, we want to

introduce a context bias term cu,i in addition to the rating bias bu,i. In the

implicit feedback setting, we interpret bu,i as accounting for click bias rather

than rating bias. To this end, we want a scoring function fu,i using both past

sessions and current session s for the user u. Suitably modifying (4.3), we

have,

fu,i = bu,i + α
∑
j∈N(i)

w(i, j)(fu,j − bu,j) + (1− α)cu,i, (4.4)

where the nonnegative weight α controls the tradeoff between the current con-

text and information from the past sessions. Notice the recurrence nature of

the above equation — we want to estimate all user-item scores as the ses-

sion progresses, as against the context-aware model suggested in [9] based on

attribute-based context variables.

Define zu,i = fu,i − bu,i for all u ∈ U and i ∈ I, so that we can remove

the click bias from the equation resulting in a simpler model:

zu,i = α
∑
j∈N(i)

w(i, j)zu,j + (1− α)cu,i. (4.5)

From the graph corresponding to the Markov model with transition probability

matrix M , we set w(i, j) = Mji. This gives an intuitive interpretation that

85

items tend to transition to i more often should receive higher similarity than

items that do not. Given the choice of w(i, j), N(i) corresponds to items

that are adjacent to i in the Markov graph. Estimating cu,i using the click

sequences can be hard and expensive. However, it is easy to specify what

items appear in the current session s. We let cu,i = 1 if the item ai appears

in s or 0 otherwise. Let cu denote the indicator vector with ith entry equal

to cu,i, and let the vector of item scores for a user u be zu. Rewriting (4.5) in

matrix form: zu = αMTzu + (1 − α)cu. Letting 1 denote vector of all ones,

and normalizing zu to sum to 1, the above equation can be rewritten as:

zu = (αM + (1− α)1cTu)Tzu. (4.6)

The quantity zu is nothing but the personalized PageRank vector for user u,

using the graph M and personalization vector cu. Thus we have an efficient

way to estimate zu,i. Recall that the click bias bu,i was obviated to compute

cu. So, the final score is given by fu,i = zu,i + bu,i. A standard way to estimate

click bias is to average the launch count of item ai over users.4 However, a

better choice would be to use transition probabilities of item ait to other items,

where it is the index of the last item in s, since we focus on item transitions.

We find in our experiments that M
(u)
it,i

is an effective choice for click bias. The

final score for user-item pair (u, i), given the current session s = 〈ai1 , · · · , ait〉

is:

fu,i = zu,i +M
(u)
it,i
, (4.7)

4Note that user bias need not be added as we only need to rank items.

86

where zu,i is the solution to (4.6).

4.2.4 iConRank Algorithm

We are now ready to give our algorithm iConRank for recommending

items in the collaborative filtering with interactional context setting. Given

a current session s = 〈ai1 , ai2 , . . . , ait〉 executed by a given user u, history of

sessions S for all users in U, and number of behavioral clusters K, the iConRank

algorithm is specified as follows:

1. (Offline step) Cluster U using the sessions history S into K clusters by

first forming the per-user transition matrices and then using the k-means

algorithm as described in Section 4.2.2. Compute the corresponding

Markov transition probabilities Mk for each cluster k ∈ [K] using (4.2).

2. Let π(u) denote the cluster to which user u belongs. Set cu to be the

normalized indicator vector of items appearing in s. Compute the per-

sonalized PageRank zu by (4.6) with M = Mπ(u) and current cu.

3. Compute scores fu,i, for all i 6= it using (4.7).

4. Rank items using the computed scores and return the top-N items as

recommendations for ait+1 .

A few remarks on the iConRank algorithm are in order:

87

Efficiency: Note that the clustering step is done offline as it is indepen-

dent of current session s. Steps 2 through 4 are executed every time the user

clicks, i.e., as session s progresses, so that the recommendations can be up-

dated. Computing the personalized PageRank in Step 2 can be expensive if

|I| is of the order of tens of thousands, even if the matrices Mk are sparse.

Scalability is even more of a concern if the algorithm is to be implemented in

real-time systems with small processing capabilities like mobile phones. The

linearity property of personalized PageRank [40] stated below can be exploited

to implement Step 2 in a scalable way. Let zu(v) denote the solution to (4.6)

computed with the personalization vector cu = v. Then:

zu(βv1 + (1− β)v2) = βzu(v1) + (1− β)zu(v2)

for nonnegative β and distributions v1 and v2. We can pre-compute zu(ei) for

i = 1, 2, . . . , |I|, where ei denotes the ith column of the identity matrix. Then,

for a given session s = 〈ai1 , ai2 , . . . , ait〉, and chosen cu = v we can compute

zu efficiently as:

zu(v) =
t∑

j=1

vij . zu(eij)

It is easy to see why the above equality holds: Our choice of cu = v is such

that it is non-zero only in the positions corresponding to items that appear in

s, and is normalized to sum to 1.

Cold Start: The algorithm can seamlessly deal with new users. In partic-

ular, we can choose cu to be the uniform distribution over items and use the

global Markov model instead of Mπ(u).

88

4.3 Experiments

In this section we present experimental results of our proposed algo-

rithm, iConRank, on two real-life datasets: Apps and LastFM. We first give a

detailed description of the two datasets and the experimental setting. Next we

compare the recommendation performance of iConRank to a number of other

successful methods. We also evaluate the methods on recommending existing

and new items and study how performance is influenced by current session

length.

For testing, we measure the accuracy of recommending the next item

ait+1 , given the current session s = 〈ai1 , ai2 , . . . , ait〉 of a user. Thus, there is

only one correct item for each test case. A user is usually presented with a small

list of recommended items. Therefore, we measure recall at top-N (Recall@N)

for N = 5, 10, 15, 20. For the sake of completeness, we also report the ROC

curve (recall vs. precision plot up to N = 1, 000), which is the standard

measure for comparing the recommendation qualities of different methods for

recommender systems. Recall and precision are measured in the standard way

for top-N recommendation tasks [21].

4.3.1 Dataset Description

The datasets used in this study consist of user event logs with times-

tamps, where the events are launching mobile apps or streaming tracks of

an artist. Sessions are formed from the user logs. We note that consecutive

uses of the same item are considered as a single interaction for methods us-

89

ing sequences, including ours. However, launch counts are retained for use by

methods based on the user-item matrix. Training data consists of all sessions

before a chosen date.5

Apps Dataset: The Apps dataset is a proprietary dataset obtained from a

manufacturer of mobile devices. It consists of mobile app usage patterns of

17,062 smart phone users over 9,583 apps.6 The dataset spans over a one year

period and each log record consists of user, timestamp information and one of

the two events, app launch and screen on/off. The screen on/off event is used

as an indicator of a new session, i.e., a new session is started when the screen

is on and the current session is ended when the screen is off and at least one

minute has elapsed.7 In the end, we have 1,167,171 training and 459,899 test

sessions. Figure 4.3(a) plots the distribution of item count, which corresponds

to launch count of apps. Apps in the horizontal axis are ordered by their

launch counts, with the most frequently launched app on the left. We can see

in Figure 4.3(a) that top 1% of the most frequently launched apps cover about

85% of total launch counts. Figure 4.3(b) shows the CDF of the length of

sessions. About 87% of sessions have at most length 10. Our statistics align

with the findings in [90] that interactions with smart phones are mostly brief.

5Date was chosen to maximize the number of users appearing in both training and testing
sets.

6We emphasize that the data provided to us was highly anonymized and contained only
generic identifiers that cannot be correlated or traced back to actual users.

7 Time lapses were tuned to achieve the most meaningful session statistics.

90

0.01% 0.1% 1% 10% 100%
0

20

40

60

80

100

% of items

%
 o

f
c
o
u
n
ts

Apps

LastFM

(a) Item count distribution (most frequent
item on the left).

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Session length t

P
r(

le
n
g
th

≥
 t
)

Apps

LastFM

(b) CDF of the length of sessions.

Figure 4.3: Item count and session length distributions for LastFM and Apps

datasets.

LastFM Dataset: The LastFM (last.fm) dataset consists of listening habits

of about 1,000 users, where each log contains user, track, artist and times-

tamp (98,412 artists appear in the dataset). It has been used in many studies

[41, 106]. Here, the task is to recommend the next artist to listen to. Unlike

the Apps dataset, the LastFM dataset lacks any explicit indication of start or

end of a session. So, we mark sessions by periods of inactivity. We end a ses-

sion if there is no other artist streamed within an hour from the last artist and

start a new one with the next artist resulting in 644,001 training and 95,038

test sessions.7 Listening to music is a more time consuming activity than using

a smart phone. Furthermore, preference over artists is more diverse than the

apps case, where pre-installed apps are more commonly used. These differ-

ences show up in Figure 4.3. Sessions in LastFM tend to be longer and more

diverse — about 50% of sessions have at least length 10 and top 1% of the

most frequent artists cover only about 55% of total counts.

91

4.3.2 Experimental Results

We compare iConRank to the following collaborative filtering (CF) meth-

ods:

• NNCosNgbr: Non-Normalized Cosine Neighborhood [21] is a neighborhood-

based model using cosine similarity between items (represented as vectors

of launch counts). The score for item ai for a given user is calculated

as a weighted average of the k-nearest neighbor items of ai as in (4.3),

where we set k = 5 and use cosine similarity as the weights.

• SVD(r): The scores are computed as R̂ = UΣV T ≈ A, where A ∈

R|U|×|I| is the user-item count matrix, r is the number of latent factors,

U ∈ R|U|×r, V ∈ R|I|×r are orthonormal matrices and Σ ∈ Rr×r is a

diagonal matrix of the top r singular values. Missing values of A are set

to zero.

• Markov: The recommended item at∗ depends on the last item at in the

current session via the global Markov model. Formally, t∗ = argmaxjMtj,

where M is the global transition probability matrix estimated from the

sessions of all users.

• ContextNgbr: Identical to NNCosNgbr except that the k-nearest neigh-

bors are computed from the set of items in the current session. We use

k = 5 (include all items in the current session if its length is less than

k).

92

• SeqPattern: Sequence mining algorithm used in [38].8 We use the last 10

items as the user’s active session.

The last three methods are context-aware approaches that consider user’s cur-

rent session. We note that ranking items by popularity (i.e. number of times

an item is accessed in the training phase), which is known to perform reason-

ably well in recommendation tasks, does significantly worse in our setting than

the methods we compare here.

Table 4.1 reports the Recall@N of the methods on both datasets for

N = 5, 10, 15, 20. Our algorithm, iConRank, significantly outperforms all other

methods with impressive recall rates. It achieves the highest recall of 0.8632

for the Apps dataset, which means the app ait+1 that a user will use has a prob-

ability of about 86% to be ranked in the top-20 results returned by iConRank.

The next best performing method for the Apps dataset is SeqPattern followed

by ContextNgbr, both of which use current context. However, they are the

two worst performing methods for the LastFM dataset. This can be expected

as the number of items is much larger than in the Apps dataset. SeqPattern

suffers from the sheer diversity of artists and lack of adequate representative

patterns in the training data. Among the two CF based techniques, SVD per-

forms better than NNCosNgbr in both the datasets confirming the findings of

[21].9 Surprisingly, the simple Markov model performs better than CF based

8[38] applies sequence mining on latent topics discovered from playlists, but we mine
sequence of items directly as we don’t have item features.

9We tested SVD with various ranks r, and chose r = 200 for the Apps dataset and r = 300
for the LastFM dataset. Larger ranks yielded only marginal performance improvements.

93

Method
Apps dataset LastFM dataset

N = 5 N = 10 N = 15 N = 20 N = 5 N = 10 N = 15 N = 20

NNCosNgbr 0.4301 0.5478 0.6167 0.6636 0.0691 0.1044 0.1328 0.1560
SVD 0.4574 0.5853 0.6480 0.6851 0.0810 0.1286 0.1633 0.1922

Markov 0.4592 0.5744 0.6370 0.6754 0.0631 0.0905 0.1113 0.1285
ContextNgbr 0.5266 0.6248 0.6739 0.7045 0.0597 0.0775 0.0884 0.0971
SeqPattern 0.5517 0.6451 0.6899 0.7223 0.0371 0.0536 0.0656 0.0748
iConRank 0.6701 0.7927 0.8386 0.8632 0.1277 0.1882 0.2304 0.2633

Table 4.1: Recall@N results on Apps and LastFM datasets for N = 5, 10, 15, 20.
iConRank outperforms the other methods in all cases, achieving 20% and 37%
improvement in Recall@20 over the next best method on Apps and LastFM

datasets, respectively.

methods for the Apps dataset, but fails in the LastFM dataset conforming to

our intuition that a single global Markov model is not enough. In evaluat-

ing the methods on the Apps dataset, the recommended candidate apps for a

given user can contain apps that are not installed in the user’s device, which

is consistent with the evaluation on the LastFM dataset.10

We further study the performance in different categories: existing and

new items. Specifically, evaluation is restricted to items that appeared at

least once in the training data (“existing”) or those that were not seen in the

training data (“new”) for each user. The results are presented in Figure 4.4.

We can see that iConRank not only performs well on existing items, but is also

capable of recommending new items to users significantly better than the rest.

A desirable property of our algorithm is that it is able to make more

accurate recommendations as more items are observed in a given session. We

10The Apps dataset did not contain information about which apps are installed in the
user device.

94

Existing New Existing New
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll@
2

0

Apps LastFM

Markov

ContextNgbr

SeqPattern

iConRank

Figure 4.4: Recall@20 for existing
and new items. iConRank performs
the best in all cases.

2 4 6 8 10 12 14 16 18 20
0.75

0.8

0.85

0.9

0.95

Session length t

R
e

c
a
ll@

2
0

2 4 6 8 10 12 14 16 18 20
0.3

0.35

0.4

0.45

0.5

Apps

LastFM

Figure 4.5: Recall@20 of different
session lengths. Performance in-
creases as the session length in-
creases showing that iConRank effec-
tively captures the current context.

examine how iConRank performs as more of the current session is revealed.

In particular, we measure Recall@20 when t (length of s) varies as shown in

Figure 4.5. As the session length increases, Recall@20 also increases for both

datasets, illustrating that iConRank effectively captures the current context of

the session. Especially, the performance greatly increases after observing just

two items in a given session. However, we also find that recall rates can drop

when t becomes very large (not shown in the figure) — the personalization

vector tends to a uniform distribution and context ceases to have relevance.

In practice, most of the sessions are short as shown in Figure 4.3(b).

95

4.4 Conclusions

We have considered the problem of collaborative filtering with inter-

actional context to recommend potential items of interest to a user already

engaged in a session, using past sessions of the user and of other users. We are

given implicit feedback in the form of clicks and a session that establishes the

current context of a user. Our problem setting differs from the traditional set-

ting of collaborative filtering in crucial respects. We propose iConRank, a novel

method that is motivated by introducing ‘context bias’ in the neighborhood-

based model. Our formulation essentially leads to the personalized PageRank,

where context is captured by the personalization vector. Experimental results

on real-life datasets demonstrate that our algorithm achieves superior recom-

mendation performance illustrating its ability to capture the context of a given

session.

96

Chapter 5

Collaborative Filtering with Side Information

The range of side-information sources of users and items stretching be-

yond the user-item matrix is quite broad and varied. One of the most common

side information sources is attribute information, which reflects properties of

users and items (e.g., user’s age and gender, item’s category) [3]. More re-

cently, two sources of information that have increased in importance in recom-

mender systems are social networks and user-generated information. Social

networks introduce information in the form of user-user relationships such as

trust or friendship. Recommender systems that attempt to leverage social

networks, both directed or undirected, apply the assumption that users who

stand in a positive relationship with each other also share similar interests

[47, 70]. User-generated information has also become widely available in rec-

ommender systems and its volume has grown exponentially. Examples include

tags, geotags, multimedia content and reviews or comments, which has been

shown to be highly beneficial for improving the recommendation performance

[35, 76, 64]. Here, we examine the problem of recommending blogs to fol-

low, which naturally entails rich side information as blog posts contain user

The materials presented in this chapter have been published in [92, 93]. Donghyuk Shin
formulated the problems, developed the algorithms, and conducted experiments.

97

generated text and multimedia content.

In this chapter, we explore rich side-information of users and items

additional to the user-item matrix in the context of blog recommendation.

Microblogging services have emerged as a leading content sharing and commu-

nication platform combining both traditional blogging and social networking

characteristics. Tumblr1 is one of the most popular microblogging services

with more than 200 million users, where users can create and share posts with

the followers of their blogs. Conversely, users consume shared content by fol-

lowing blogs of interest, which has become an overwhelming task due to the

sheer number of options. Thus, one of the core problems in microblogging sites

is predicting whether a user will follow a blog or not. Improved blog recom-

mendations would not only lead to higher user engagement by assisting users

to discover interesting content, but also attract more appealing followers for

sponsored or advertisers blogs. Figure 5.1(a) shows the blog recommendation

module in Tumblr.

The problem of recommending blogs differs from traditional collabora-

tive filtering settings, such as the Netflix rating prediction problem [11], in two

main aspects. First, interactions between users and blogs are binary in the

form of follows and there is no explicit rating information available about user

preferences. The “follow” information can be represented as a unidirectional

unweighted graph and popular proximity measures based on the structural

1www.tumblr.com

98

(a) Blog recommendation module in
Tumblr

(b) Example post with high note
count.

Figure 5.1: The blog recommendation module (a) and an example post (b)
with high note count (i.e., like and reblog count) in Tumblr.

properties of the graph can then be applied to the problem [108]. Secondly,

an important but beneficial difference is that blog recommendation inherently

entails rich side information in addition to the conventional user-item matrix

(i.e., follower graph). There are two main categories of side information: (1)

user generated content such as images, tags and text (e.g., Figure 5.1(b)) and

(2) user activity including likes and reblogs. In the case of Tumblr, incorpo-

rating image features is crucial as majority of posts contain photos. Text data

is also rich in Tumblr, since posts have no limitation in length, compared to

other microblogging sites such as Twitter2. While such user generated con-

2www.twitter.com; posts (or tweets) are restricted to 140 characters.

99

tent characterizes various blogs, user activity is a more direct and informative

signal of user preference as users can explicitly express their interests by lik-

ing and reblogging a post. This implies that users who liked or reblogged the

same posts are likely to follow similar blogs. In fact, as shown in many existing

studies, such side information not only improves recommendation quality, but

also alleviates sparsity issues in the user-item matrix [70, 42, 91].

On the other hand, rigorous approaches for incorporating side-information

in a recommender system setting are lacking. Consider the standard matrix

completion (MC), one of the most widely used and theoretically well-studied

method for recommendation tasks, for which there have been several rigor-

ous guarantees established in the recent past [53, 15, 46, 18]. However, MC

is exposed to data sparsity issues and restricted to the transductive setting,

i.e., predictions can only be made for existing users/items, as it only considers

observations from the user-item matrix. More recently, the inductive matrix

completion (IMC) was proposed and theoretically analyzed by [45] motivated

by settings where side information of users/items is available in the form of

feature vectors. However, IMC assumes that observed entries are fully ex-

plained by such features, which is not always the case especially with noisy

features that do not support the user-item matrix. Furthermore, IMC cannot

make meaningful recommendations for users or items without any features,

which is often the case in Tumblr (see Section 5.1).

To this end, we propose a novel Boosted Inductive Matrix Completion

(BIMC) model for blog recommendation that combines the power of an in-

100

ductive matrix completion model together with a standard matrix completion

model via boosting. Specifically, BIMC first applies the MC model to smooth

the input matrix and reduce the noise level by low-rank approximation, and

then further models the residual of the approximation with the IMC model.

That is, BIMC captures both the low-rank structure of follow relationships

as well as the latent structure using side-information of users and items in

an additive manner capturing entries in the follower graph where MC fails to

learn.

By incorporating user/blog features, BIMC is also capable of making

recommendations in the inductive setting, i.e., make predictions for users or

blogs not seen at training time, which includes cold-start3 cases. This is par-

ticularly important for Tumblr as users and blogs often have very few or no

links in the follower graph as shown in Section 5.1. Experiments on large-scale

real-world proprietary data from Tumblr show that our proposed BIMC sig-

nificantly outperforms MC, IMC and several other standard methods for the

blog recommendation task.

Lastly, an important issue is how to effectively represent the three side-

information sources (image, text and activity) as features. Recently, deep

learning approaches have emerged as a powerful class of models that under-

stand semantic content of images, giving state-of-the-art performance on im-

age recognition tasks [57, 26, 50]. This is also the case for text data, where

3Cold-start refers to users or items without any known entries in the user-item matrix.

101

vectorial representations of words capturing semantic relations between them

are learned from neural networks [73, 103]. Encouraged by these results, we

employ deep learning features for both images and tags/text as a useful and

robust representation of users and blogs. For activity features, we represent

likes and reblogs as a weighted graph similar to the follower graph and we com-

pute principal components of the activity graph as features. To our knowledge,

we are the first to consider image as well as activity features. Furthermore,

adopting deep learned features for recommender systems is still unexplored.

Our contributions are summarized as follows:

• We propose a Boosted Inductive Matrix Completion based blog recom-

mendation system that combines the power of an inductive matrix com-

pletion model together with a standard matrix completion model.

• We represent users and blogs with an extensive set of side information

sources such as the user activity, text/tags, and images; and extract a

comprehensive set of features using state-of-the-art deep learning meth-

ods.

• We show that the proposed BIMC model effectively combines hetero-

geneous user and blog features from multiple sources for more accurate

recommendations.

• We conduct extensive experiments as well as detailed analysis on large-

scale real-world data from Tumblr, and demonstrate the superiority of

the proposed BIMC method over several state-of-the-art baselines.

102

5.1 Tumblr Dataset

In this section, we analyze some important characteristics of different

aspects of the Tumblr data.4 As a social network service, Tumblr users can

follow blogs of interest without mutual confirmation similar to Twitter, but

different from Facebook5. The follow information can be represented as a

directed bipartite graph where nodes correspond to users and blogs and an edge

from node i to j represents user i following blog j. We use a snapshot of the

follower graph sampled from June 2014, which consists of 76.86 million nodes

with 2.27 billion edges. We find similar characteristics as in [16] including the

in/out degree distributions shown in Figure 5.2(a). The in-degree follows a

power-law distribution, while the out-degree does not and shows a sharp drop

when the out-degree is around 5,000, which is the maximum number of blogs

a user can follow in Tumblr. About 50% of nodes are without any followers

(i.e., 0 in-degree) and the maximum in-degree is 5.22 million, while about 25%

of nodes are not following any blogs (i.e., 0 out-degree) and the maximum

out-degree is 14,208.

As a microblogging platform, Tumblr provides useful tools close to that

of traditional blogging sites for creating longer, richer and higher quality con-

tent. Specifically, it allows users to create 8 different types of posts: photo,

text, answer, link, quote, video, audio and chat. Furthermore, posts in Tumblr

4The reported datasets and results are deliberately incomplete and subject to anonymiza-
tion, and thus do not necessarily reflect the real portfolio at any particular time.

5www.facebook.com

103

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
C

D
F

:
P

r(
x
 ≥

 d
)

In−Degree / Out−Degree (d)

In−Degree
Out−Degree

(a) In/out degree distribu-
tion of the follower graph.

photo: 78.35%

text: 14.43%

quote: 2.54%

video: 1.34%

audio: 1.15%

answer: 0.82%

chat: 0.79%

link: 0.58%

(b) Distribution of different
post types.

photo text answer link quote video audio chat
0

5

10

15

20

25

30

35

A
v
g
.
n
u
m

b
e
r

o
f
re

b
lo

g
s
 p

e
r

n
e
w

 p
o
s
t

Month1

Month2

Month3

Month4

(c) Average number of re-
blogs per new post for each
post type.

Figure 5.2: Statistics of Tumblr data.

have no limitation in length unlike other microblogging sites such as Twitter,

which is restricted to 140 characters per post. It also supports the use of tags

for each post, which are separate from the post content. Lastly, users can like

a post or re-broadcast the post to its own followers by reblogging. While these

two activities have different intentions to the user, both directly reflect the

user’s interest which should be utilized for better recommendation quality.

We processed 5 months of Tumblr data, where each month contains

about 1.5 TB of sampled records of posts created, reblogged and liked. Note

that we restrict to users with at least 5 records in each month. On average,

there are more than 150 million newly created posts, 2.5 billion reblogged posts

and 2 billion likes per month. We show the distribution of each post type in

Figure 5.2(b). Almost 80% of posts are photo posts suggesting image features

are a crucial component for analyzing posts. Figure 5.2(c) reports the average

number of reblogs a new post gets for each post type. We can see in the figure

that photo, quote and chat posts are reblogged significantly more than other

104

types of posts. Overall, a new post gets reblogged more than 15 times on

average illustrating the high sharing activity in Tumblr. We have also found

that about 8.3% of users do not have any posts and about 12.2% of users do

not have any activity information. More detailed analysis of the Tumblr data

can be found in [16].

5.2 Methods

In this section, we describe a natural way of combining various user/blog

features and the follower graph to enable the inductive setting, i.e., recom-

mendations for new users and blogs. We first describe the Inductive Matrix

Completion method for blog recommendation, which is based on the proposi-

tion that user-blog follow behavior arises from applying a low-rank matrix to

user and blog features. Next we motivate and present our proposed Boosted

Inductive Matrix Completion method. We briefly establish the notation used

before describing our proposed approaches.

Notation: We denote the follower graph by G = (V1,V2,E), where V1 (m =

|V1|) and V2 (n = |V2|) is the set of users and blogs, respectively; E = {eij|i ∈

V1, j ∈ V2} is the set of edges indicating user i follows blog j. Let A ∈ Rm×n

be the adjacency matrix of G, where each row corresponds to a user and each

column corresponds to a blog, such that Aij = 1, if user i is following blog

j and 0 otherwise. That is, we treat missing values as zeros. Note that G is

a directed graph, i.e., A is non-symmetric. Let X ∈ Rm×fu and Y ∈ Rn×fb

105

denote the user and blog feature matrices, respectively.

5.2.1 Matrix Completion

The low rank matrix completion (MC) approach is one of the most

popular and successful collaborative filtering methods for recommender sys-

tems [56]. The goal is to recover the underlying low rank matrix by using the

observed entries of A, which is typically formulated as follows:

min
U,V

∑
(i,j)∈Ω

(Aij − (UV T)ij)
2 +

λ

2
(‖U‖2

F + ‖V ‖2
F), (5.1)

where U ∈ Rm×r and V ∈ Rn×r with r being the dimension of the latent

feature space; Ω ∈ [m]× [n] is the set of observed entries; λ is a regularization

parameter. Note that matrix completion only utilizes samples from the fol-

lower graph A and ignores the side information that might be present in the

system.

5.2.2 Inductive Matrix Completion

The standard matrix completion formulation is restricted to the trans-

ductive setting, i.e., predictions can only be made for existing users and items

without re-training for latent factors of new users or items. Furthermore, the

standard formulation suffers performance with extreme sparsity in the data,

which is the case for Tumblr as about 50% of users do not have any followers

and about 25% of users are not following any blogs. One simple way to make

predictions for such users is to use a popularity based global ranking of blogs

106

and recommend the top ranked ones. In order to make meaningful predic-

tions, one would need more information about users and blogs. For Tumblr,

such information can be obtained from rich content (photos, text) and activity

(reblog, like) information.

Recently, a novel inductive matrix completion (IMC) approach was

proposed and theoretically analyzed by [45] to alleviate data sparsity issues

as well as enable predictions for new users and items by incorporating side

information of users and items given in the form of feature vectors. The main

idea is to model Aij using user i’s feature vector xi ∈ Rfu , item j’s feature

vector yj ∈ Rfb and a low-rank matrix Z ∈ Rfu×fb as

Aij = xTi Zyj. (5.2)

That is, the interaction between user i and item j is generated by applying

their respective feature vectors to Z. For a new item b, the predictions Aib for

each user i can be calculated with the feature vector yb available.

By factoring Z = WHT , the goal of IMC is to recover W ∈ Rfu×r and

H ∈ Rfb×r using the observed entries in A. The IMC objective is given as

min
W,H

∑
(i,j)∈Ω

`(Aij,x
T
i WHTyj) +

λ

2
(‖W‖2

F + ‖H‖2
F),

for some loss function ` that measures the difference between the observations

and predictions, e.g., squared loss `s(a, b) = (a − b)2 or logistic loss `l(a, b) =

log(1 + e−ab). The number of parameters to learn is (fu + fb) × r depending

only on the number of user and item features, whereas there are (m + n)× r

107

parameters in the standard matrix completion. Note that matrix completion

is a special case of IMC when X = I and Y = I.

For a convex loss function `, the above IMC objective becomes a con-

vex function when either W or H is fixed (similar to the standard matrix

completion case). The computational cost to solve the optimization problem

differs based on the choice of the loss function `. In our experiments, we use

the squared loss in the objective and employ the alternative minimization ap-

proach in [109]. Under this setting, the computational cost for each step is

O((nnz(A) + mfu + nfb)r
2c), where nnz(A) is the number of non-zeros in A

and c is a small constant. In our experiments, fu, fb and r are very small (few

hundreds) and the solution converges in less than 10 iterations.

5.2.3 Boosted Inductive Matrix Completion

Next we present our method called Boosted Inductive Matrix Comple-

tion (BIMC). One issue with IMC is that the model is too rigid as it heavily

depends on the user features X and item features Y . That is, user and item

features from different sources should support the underlying structure of the

follower graph A in order to make good predictions. Let X = UXΣXV
T
X , where

UXΣXV
T
X is the SVD of X. Similarly, let Y = UY ΣY V

T
Y be the SVD of Y .

From the IMC formulation, we have

A = XZY T = UX(ΣXV
T
XZVY ΣY)UT

Y = UXẐU
T
Y ,

where Ẑ = ΣXV
T
XZVY ΣY . Thus, the subspace spanned by UX must have

significant overlap with that of A to achieve small error. For example, like

108

and reblog activity features can be quite helpful as a direct reflection of user

interest. Similar arguments can be made for Y as well.

However, features from various sources may not always support the

matrix A and IMC can suffer performance significantly in such case. For

instance, text data in Tumblr is extremely sparse and noisy, and thus may not

directly reveal user preference. Moreover, it is not always the case that all

users and items have features (as shown in Section 5.1), in which IMC would

not be able to make any predictions.

To address these problems, we propose to combine both standard ma-

trix completion and inductive matrix completion, and thereby better utilize

the power of both approaches. That is, we combine the power of MC to reduce

the noise level in the input data as well as the advantage of IMC to incorporate

side information of users and items. Our idea is to model Aij as

Aij = (UV T)ij + αxTi Zyj, (5.3)

where the parameter α adjusts the contribution of features in the final pre-

diction. Choosing a good α is crucial for both performance and solving the

optimization problem, which can be difficult to tune. Furthermore, simulta-

neously solving for all four latent factor matrices U , V , W and H will lead to

slower convergence due to the increased number of parameters.

Thus, our strategy is to first learn the latent factor matrices U and V

of the MC model as in (5.1). The resulting approximation error or residual

matrix R = A − UV T represents links in the follower graph that MC could

109

not fully capture. Then we model Rij with IMC as

Rij = Aij − (UV T)ij = xTi Zyj. (5.4)

In other words, we first try to find the support of the follower graph A with

the latent factors U and V and focus on the part that it can not accurately

model using IMC. This is especially useful when the norm of the residual from

(5.1) is large, which suggests a significant deviation from low rank structure

in A. Our objective is

min
W,H

∑
(i,j)∈Ω

`(Aij − (UV T)ij,x
T
i WHTyj) +

λ

2
(‖W‖2

F + ‖H‖2
F).

With ` being the squared loss and fixing H, the gradient of the above objective

in matrix form is given as

XT (A− UV T −XWHTY)Y TH + λW.

Note that we do not have to explicitly form A−UV T , which would be a dense

matrix and infeasible to store in memory.

Our approach eliminates the need to fine tune the parameter α. Fur-

thermore, existing efficient solvers for MC and IMC with theoretical guarantees

[46, 109] can be directly applied. An overview of our proposed BIMC model

can be found in Figure 5.3, where we can see that BIMC can handle both

sparsity in A as well as users/items without features. Given a user i with

features xi and blog j with features yj, we use (5.3) to obtain predictions with

the learned factors and α set to 1. Finally, we note that a converse approach

110

≈

W HT

r fu fb

Users

1,2,… ,fu

1,2,…
,fb

y1, y2,…

…
, x

2
, x

1

Aij � (UV T)ij = xT
i Zyj

U

VT

Like and Reblog Graphs

Photo

Text and Tags

lat
en

t

deep learning

word vec

…
 …
 …

A

Blogs

Figure 5.3: Boosted Inductive Matrix Completion model. Shaded areas rep-
resent available information.

can also be used, i.e., learn the IMC model first, and then train the MC model

on the resulting residual matrix; we found the results to be comparable, so we

only present results for the former.

We illustrate the advantages of BIMC compared to IMC when features

are noisy with the following experiment on the MovieLens-100K6 dataset. We

compute the rank-20 SVD of the user-movie matrix A = UAΣAV
T
A and set

X = UA and Y = VA, i.e., the left and right singular vectors of A to be the

user and movie features, respectively. Then we perturb the columns of X

by adding noise and measure the relative approximation error for IMC: ‖A−

XWHTY T‖F/‖A‖F and for BIMC: ‖A−UV T −XWHTY T‖F/‖A‖F . Results

are given in Figure 5.4 confirming that BIMC achieves lower approximation

error rates than IMC due to modeling the residual matrix R as in (5.4). This

6100,000 ratings from 1,000 users on 1,700 movies; https://grouplens.org/datasets/
movielens/

111

shows that BIMC is robust to noisy features whereas IMC suffers performance

as the noise level increases in the user features X.

0 10 20 40 80
65

70

75

80

% of columns perturbed in X

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r
(%

)

IMC approx. error

BIMC approx. error

Figure 5.4: Relative approximation error for IMC and BIMC with different
levels of noise in features.

5.3 Feature Extraction

As described in Section 5.1, Tumblr data contains three main sources

of side information of users and blogs: (1) likes and reblogs, (2) tags and text,

and (3) images. Extracting useful features from these sources is a crucial step

of the recommender system. We discuss the details of how we extract these

user and blog features as follows.

User Activity: For user activity information, we use likes and reblogs from

Tumblr of the 1 million sampled users and blogs. Both like and reblog activities

can be represented as a weighted graph similar to the follower graph A, where

the edge weight between a user i and blog j is set to be the number of liked

112

and reblogged posts of blog j by user i. The edge weights in both cases follow

a power-law distribution. Each user likes or reblogs about 340 posts from 27

blogs and each blog gets a total of 410 likes or reblogs on average. In the

experiments, we aggregate like and reblog graphs to a single activity graph

from the training data and use a log-scale of the edge weights. One way to

obtain useful and robust features is to consider the principal components of the

adjacency matrix corresponding to the activity graph. That is, we compute p

principal components and use them as latent user and blog features for IMC.

Thus, we have fu = fb = p user activity features for users and blogs, where we

empirically set p = 500 in the experiments.

Tags and Text: Tags and text used in posts of Tumblr are extremely sparse

and noisy. There are an average of 28.7 words and 4.8 tags per post. Fur-

thermore, tags are unconstrained in Tumblr, where a user can put in any

arbitrary text. Existing models based on bag-of-words (e.g., LSA, LDA) can

suffer from such issues. Therefore, we utilize word2vec, which is a recent neu-

ral network inspired method that learns word embeddings in the vector space

[73]. word2vec utilizes the technique called skip-gram with negative samples,

which tries to represent each of the words by a vector such that words in

similar contexts are close to each other. This representation is accomplished

by maximizing the predicted probability of words co-occurring in the training

corpus. In our work, we first compute d-dimensional vector representations

of each word using word2vec, and then cluster these words into c clusters by

113

the k-means algorithm. Using the cluster information, we finally create a his-

togram of word clusters for each post as a compact representation of tags and

text used in that blog. We set d = 300 and c = 1, 000 and processed both

textual features for each month in the training data.

Images: Images are an important part of Tumblr data as shown in Section

5.1. We randomly sampled about 800K images per month from blogs that ap-

pear in the training data. We trained a convolutional neural network (CNN)

[57, 26] on 1.5M Flickr images with labels due to the unavailability of image

labels for the Tumblr dataset. The CNN is composed of seven hidden lay-

ers, which consist of five successive convolutional layers followed by two fully

connected layers, plus a final soft-max layer. The nonlinearity of each neuron

in this CNN is modeled by Rectified Linear Units (ReLUs) f(x) = max(0, x),

which accelerates learning compared with saturating nonlinearity such as tanh

units. The CNN takes a 224 × 224 pixel RGB image as input. Each convolu-

tional layer convolves the output of its previous layer with a set of learned ker-

nels, followed by ReLU non-linearity, and two optional layers, local response

normalization and max pooling. The local response normalization layer is

applied across feature channels, and the max pooling layer is applied over

neighboring neurons. The output of the 7th layer is fed into the last soft-max

layer, which outputs confidence scores over the pre-defined 958 categories for

a given input image. Using the neural network, we extracted deep learning

features from the sampled Tumblr images. For users, we averaged the resulting

114

feature vector over all images that the user posted, liked and reblogged. For

blogs, only posted and reblogged images were considered as reblogged posts

also become a post of the blog.

5.4 Experiments

In this section, we present the experimental setup used to evaluate our

proposed method BIMC in comparison to IMC as well as several other base-

line methods on the Tumblr dataset for blog recommendation with additional

side information of users and blogs. From the Tumblr follower graph, we ran-

domly sampled 1 million users and blogs resulting in about 12 million follows,

i.e., nonzero elements in A. Both user activity and user generated content

information were collected over a 5 month period from Tumblr post data.

5.4.1 Baselines and Evaluation Metrics

We perform both offline and temporal evaluations. For the offline evalu-

ation, we use 10-fold cross-validation. Temporal evaluation is used to simulate

online evaluations, where we use data from preceding 4 months as training

and the remaining month as testing.

In both cases, we compare BIMC against the standard matrix comple-

tion formulation (MC) and the Singular Value Decomposition (SVD), which

has been shown to perform well for top-N recommendation tasks [21]. We

also compare with methods that incorporate side information including the

inductive matrix completion (IMC). Another popular approach is the collec-

115

tive matrix completion (CMC) [96, 14]. The goal of CMC is to jointly recover

a collection of matrices with shared low rank structure, which is different from

IMC. Specifically, given user-item matrix A, user features X and item features

Y , CMC finds a joint factorization as:

A = UV T , X = UP T and Y = V QT .

That is, the shared user latent factor matrix U is obtained from both A and

X (similarly V is obtained from A and Y). Recent work by [33] provides

consistency guarantees for CMC, thus we use the algorithm presented in [33].

The Katz7 measure [100, 94], which is one of the most successful proximity

measures for link prediction, is also included in the comparison as a graph-

based approach. We compute Katz scores between users and blogs on the

combined (symmetric) matrix C =

[
Su A
AT Sb

]
, where Su and Sb are similarity

matrices between users and blogs, respectively, computed from their features.

Lastly, we report results of using a simple global popularity ranking (Global)

for recommendation as a baseline, where blogs are ranked by the number of

followers. We use rank r = 10 for MC and SVD, rank r = 100 for CMC,

IMC and BIMC, and set λ = 0.1 for all methods, which are determined using

cross-validation.

We measure the recommendation performance using precision (PRC@10)

and recall (RCL@10) at top-10 generated by each method, which is the region

7The Katz measure is defined as
∑∞

i=1 β
iCi, and we set β = 10−6.

116

of practical interest for recommender systems. We also report the AUC (area

under the ROC curve) of each method for completeness.

5.4.2 Experimental Results

Results of the proposed BIMC method with user and blog features

are shown in comparison to the baselines: Global, SVD, MC, Katz, CMC, and

IMC for PRC@10, RCL@10 and AUC in Table 5.1 for the offline evaluation and

Table 5.2 for the temporal evaluation (that simulated A/B testing conditions).

Table 5.1: Offline evaluation results of the proposed Boosted Inductive Matrix
Completion method (BIMC) in comparison to several baselines.

Method PRC@10 RCL@10 AUC
Global 1.03% 4.80% 0.8687
SVD 1.28% 5.10% 0.8530
MC 1.28% 5.07% 0.8515
Katz 1.90% 8.15% 0.9209
CMC 0.49% 2.41% 0.8996
IMC 2.93% 11.33% 0.9075
BIMC 3.21% 12.28% 0.9221

Table 5.2: Temporal evaluation results of the proposed Boosted Inductive
Matrix Completion method (BIMC) in comparison to several baselines.

Method PRC@10 RCL@10 AUC
Global 1.01% 4.70% 0.8626
SVD 1.24% 4.82% 0.8479
MC 1.19% 4.53% 0.8464
Katz 1.33% 5.69% 0.9125
CMC 0.46% 1.81% 0.8932
IMC 2.85% 10.38% 0.8953
BIMC 3.12% 11.32% 0.9129

117

Performance Comparison

It is very interesting to see in Table 5.1 that the simple Global method

outperforms both SVD and MC baselines in terms of AUC. This can be ex-

plained by the facts that most users follow highly popular blogs such as institu-

tions or celebrities [16] and that both SVD and MC suffer from data sparsity.

Yet, it is important to note that Global is outperformed by both SVD and

MC for precision and recall results. Table 5.1 also shows that our proposed

method, BIMC, achieves the best performance in all three evaluation metrics

out of all methods. Note that the two best performing methods, BIMC and

IMC, both utilize side information of users and blogs. This implies that such

information is crucial to improve the recommendation quality.

In contrast, CMC performs the worst in the top-k list as seen in Table

5.1 showing that there does not exist significant shared low-rank structure

between the follower graph and user/item features. Moreover, textual features

in Tumblr are extremely sparse and noisy, which makes the CMC formulation

more problematic. This clearly demonstrates that BIMC and IMC incorporate

user/item features more effectively in a robust manner. Nonetheless, CMC still

achieves similar AUC results compared with IMC. Katz performs comparably

to BIMC in terms of AUC, but not in the top-k list, which can also be explained

by the fact that similarities in Su and Sb are affected by noisy features. In sum,

we can see that BIMC achieves superior performance than other methods by

successfully incorporating rich user and blog features.

118

Temporal Evaluation

Although cross-validation is a widely accepted evaluation methodology,

it can produce biased results when temporal effects are not considered when

splitting the data into training and testing sets. Thus, we evaluated all meth-

ods using another dataset divided into training and testing using a fixed date

and time. Specifically, we use data from a 4-month period as training and the

following 5th month data as testing. This evaluation is more similar than the

offline-evaluation to A/B testing, which is broadly used in industry. Results

for the temporal evaluation is given in Table 5.2, in which we can observe very

similar results to the offline case in Table 5.1. This suggests that our proposed

methods would also perform well in production settings.

Performance for Users and Items with Different Levels of Sparsity

In order to better understand the effect of utilizing rich information

about users and items in BIMC, we divide users as well as blogs into differ-

ent categories based on the number of people they follow and the number of

people who follow them. In other words, user and blog segmentation is done

based on the number of nonzero elements in A, to examine how the methods

perform under different levels of sparsity in the data. Specifically, users are

partitioned into three groups based on the number of followees nf : nf ≤ 40

(Low), 40 < nf ≤ 100 (Medium) and nf > 100 (High), where each group con-

sists of about 89.36%, 7.81% and 2.83% of users. Similarly, we also partition

the blog dimension (with the same thresholds), where each group consists of

119

about 95.12%, 3.26% and 1.63% blogs respectively.

Table 5.3: AUC results for different groups of users of the proposed Boosted
Inductive Matrix Completion method (BIMC) in comparison to several base-
lines.

Method Low Medium High
Global 0.8639 0.8623 0.8403
SVD 0.8488 0.8782 0.8715
MC 0.8473 0.8767 0.8709
Katz 0.9199 0.9304 0.9194
CMC 0.8978 0.9063 0.9058
IMC 0.9040 0.9299 0.9162
BIMC 0.9209 0.9316 0.9198

For each user category, we present Recall@k in Figure 5.5 for k =

1, 2, · · · , 20. As shown in Figure 5.5, BIMC outperforms all other baselines for

all user groups in terms of Recall@k. The second best method is IMC followed

by Katz. This explicitly shows that utilizing both user and item features

significantly helps in dealing with different sparsity conditions including cold-

start. For the Low user group in Figure 5.5, it is interesting to see that SVD

and MC suffers from severe sparsity and therefore perform comparably with

the Global baseline. Note that the performance decreases for all methods as we

move from Low to High user groups. This can be explained by the facts that

users who already follow many popular blogs would need to be recommended

more diverse blogs in the long-tail, which is generally a much harder task.

Table 5.3 presents AUC results on all three user groups, where we can see that

BIMC achieves the largest AUC values across all user categories. As discussed

in Section 5.4.2, CMC is not able to make any good predictions in the top-k

list, but still achieves reasonable AUC levels as shown in Table 5.3. This set of

120

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

k

re
c
a
ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(a) Users with low activity

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

k

re
c
a
ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(b) Users with medium activ-
ity

2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

k

re
c
a
ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(c) Users with high activity

Figure 5.5: Recall@k results for user groups with different activity lev-
els (low/medium/high) the proposed Boosted Inductive Matrix Completion
method (i.e., BIMC) in comparison to several baselines (k = 1, 2, · · · , 20).

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8
x 10

−4

k

re
c
a
ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(a) Blogs with low popular-
ity

2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

k

re
c
a

ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(b) Blogs with medium popu-
larity

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

re
c
a
ll
@

k

Global

SVD

MC

Katz

CMC

IMC

BIMC

(c) Blogs with high popularity

Figure 5.6: Recall@k results for blog groups with different popularity levels
(low/medium/high) of the proposed Boosted Inductive Matrix Completion
method (i.e., BIMC) in comparison to several baselines (k = 1, 2, · · · , 20).

results shows that BIMC successfully handles data sparsity by incorporating

rich user and blog features, and significantly improves over other methods.

Next, we analyze the performance of all methods for blog groups with

different popularity levels as shown in Figure 5.6, where we can observe similar

trends as found in Figure 5.5 with different user groups. It can be seen in

Figure 5.6 that BIMC and IMC outperforms all other baselines for all blog

121

groups in terms of Recall@k, while all other baselines suffer from data sparsity,

and cannot make any correct retrieval. For blogs with high popularity, their

performances are much better. For this group, SVD and MC perform slightly

better than the Global, but still much worse than BIMC and IMC. Another

set of interesting results is the fact that IMC performs comparably with BIMC

for items with low and medium popularity. This can be explained by the fact

that the MC step in BIMC is suffering from data sparsity in both of these

cases, and is not helping the BIMC as much as in the case of items with high

popularity.

Finally, we analyze the performance of all methods for user groups and

item groups jointly. Specifically, Figures 5.7 and 5.8 show the performances

of all methods for all user and item groups jointly in terms of Precision@k

and Recall@k respectively. It can be observed that both precision and recall

increases significantly for users and items with high activity/popularity. For

users with low and medium activity, all methods other than BIMC and IMC

severely suffer from data sparsity. For users with high activity, BIMC outper-

forms IMC, both of which significantly outperform other baselines. Another

interesting result is the fact that IMC outperforms or performs comparably

with BIMC for user and items with low activity/popularity, showing that the

the MC step in BIMC suffers from data sparsity and cannot effectively help

IMC, in which case all prediction from BIMC depends on IMC step alone.

Overall, this set of experiments clearly demonstrate the power of BIMC over

IMC, as well as utilizing rich set of user and item features in BIMC and IMC

122

over other baselines.

5 10 15 20
0

2

4

6
x 10

−6

k

p
re

c
is

io
n
@

k

5 10 15 20
0

1

x 10
−4

k

p
re

c
is

io
n
@

k

5 10 15 20
0

0.05

0.1

k

p
re

c
is

io
n
@

k

5 10 15 20
0

0.5

1

1.5
x 10

−4

k

p
re

c
is

io
n
@

k

5 10 15 20
0

0.5

1

1.5

2
x 10

−3

k

p
re

c
is

io
n
@

k

5 10 15 20
0

0.05

0.1

0.15

0.2

k

p
re

c
is

io
n
@

k

5 10 15 20
0

2

4

6

8
x 10

−4

k

p
re

c
is

io
n
@

k

5 10 15 20
0

2

4

6
x 10

−3

k

p
re

c
is

io
n
@

k

5 10 15 20
0

0.1

0.2

0.3

0.4

k

p
re

c
is

io
n
@

k

Global SVD MC Katz CMC IMC BIMC

Figure 5.7: Precision at top-k results for different user and blog groups. Both
users and blogs are divided into three groups (nd: the number of links): (1)
nd ≤ 40, (2) 40 < nd ≤ 100, and (3) nd > 100. From left to right are blog
groups 1, 2 and 3, and from top to bottom are user groups 1, 2 and 3. BIMC
outperforms other methods in most user-blog group combinations.

123

5 10 15 20
0

1

2

3

4
x 10

−4

k

re
c
a

ll
@

k

5 10 15 20
0

0.005

0.01

0.015

k

re
c
a

ll
@

k

5 10 15 20
0

0.1

0.2

0.3

k

re
c
a

ll
@

k

5 10 15 20
0

0.5

1

1.5

2
x 10

−3

k

re
c
a

ll
@

k

5 10 15 20
0

0.01

0.02

0.03

k

re
c
a

ll
@

k

5 10 15 20
0

0.1

0.2

0.3

k

re
c
a

ll
@

k

5 10 15 20
0

1

2

3
x 10

−3

k

re
c
a

ll
@

k

5 10 15 20
0

0.01

0.02

0.03

k

re
c
a

ll
@

k

5 10 15 20
0

0.1

0.2

0.3

0.4

k

re
c
a

ll
@

k

Global SVD MC Katz CMC IMC BIMC

Figure 5.8: Recall at top-k results for different user and blog groups. Both
users and blogs are divided into three groups (nd: the number of links): (1)
nd ≤ 40, (2) 40 < nd ≤ 100, and (3) nd > 100. From left to right are blog
groups 1, 2 and 3, and from top to bottom are user groups 1, 2 and 3. BIMC
outperforms other methods in most user-blog group combinations.

5.5 Conclusions

Recommending blogs to follow is one of the core tasks for online mi-

croblogging sites such as Tumblr for improving user engagement as well as

advertising revenue. In this chapter, we propose a novel boosted inductive

124

matrix completion (BIMC) model for the task that combines the power of an

inductive matrix completion model together with a standard matrix comple-

tion model. The proposed BIMC model focuses on the residual matrix that

is calculated from the approximation matrix of a standard matrix completion

(MC) model, and learns an inductive matrix completion model (IMC) to effec-

tively utilize the rich side information of users and blogs to learn the missing

links in the follower graph where a standard MC fails to learn. We utilize

state-of-the art deep learning methods such as word2vec and convolutional

neural networks to extract a comprehensive set of features. An extensive set

of experiments conducted on large-scale real-world data from Tumblr demon-

strate the effectiveness of the proposed BIMC over MC and IMC methods as

well as several other baselines.

125

Appendix

126

Appendix 1

Appendix

1.1 Proof of Theorem 2.2.1

Proof. The proof is based on the sin θ theorem in [23]. Let the eigenvectors of

the n× n symmetric matrices D and D + ∆ be E = [E0|E1] and F = [F0|F1],

respectively, where E0, F0 ∈ Rn×k and E1, F1 ∈ Rn×(n−k). Then

D = E

[
ΛD

0 0
0 ΛD

1

]
ET ,

D + ∆ = F

[
ΛD+∆

0 0
0 ΛD+∆

1

]
F T ,

ET
0 F0 = U cos ΘV T ,

where Θ are the principal angles between E0 and F0. Assume that ΛD
0 ⊆ [a, b]

and ΛD+∆
1 ⊆ (−∞, a− δ) ∪ (b+ δ,∞). Then

‖F T
1 E0‖ = ‖F T

0 E1‖ = ‖ sin Θ‖.

Assume that the eigenvalues ΛD
0 lie in some interval, while the eigenvalues

ΛD+∆
1 lie in some distance η ≥ 0 from that interval (possibly on both sides of

it). Then

‖ sin(Θ(E0, F0))‖2 ≤
‖∆E0‖2

η
≤ ‖∆‖2

η
,

‖ sin(Θ(E0, F0))‖F ≤
‖∆E0‖F

η
≤
√
k
‖∆‖F
η

.

127

We can set η = min |λ− λ̂| with λ ∈ ΛD
0 and λ̂ ∈ ΛD+∆

1 .

1.2 Proof of Theorem 2.2.3

Proof. According to Lemma 1.2.1,

‖A− ŪkΛ̄kŪ
T
k ‖2 = ‖A−QQTAQQT‖2 ≤ 2‖A−QQTA‖2.

where Q is an orthogonal basis for the Krylov subspace [Ω, AΩ, · · · , AqAΩ].

First, let Z = [Ω, AΩ, · · · , AqAΩ], QBQ
T
B is a projector for B = Aq+1

and QZQ
T
Z is a projector for Z. Since we know that

range(AqAΩ) ⊂ range([Ω, AΩ, · · · , AqAΩ]),

by Lemma 1.2.4, we have

‖(I −QZQ
T
Z)A‖ ≤ ‖(I −QBQ

T
B)A‖.

Furthermore, by Lemma 1.2.2, we have

‖(I −QBQ
T
B)A‖ ≤ ‖(I −QBQ

T
B)B‖ 1

(q+1) .

Next, we need to bound ‖(I − QBQ
T
B)B‖ 1

(q+1) . According to Lemma

1.2.3, we have

‖(I −QBQ
T
B)B‖ 1

q+1 ≤ (‖ΛB
2 ‖2 + ‖ΛB

2 ΩB
2 (ΩB

1)†‖2)
1

2(q+1)

≤ (‖ΛB
2 ‖2(1 + ‖ΩB

2 ‖2‖(ΩB
1)†‖2))

1
2(q+1)

= σk+1(1 + ‖ΩB
2 ‖2‖(ΩB

1)†‖2))
1

2(q+1) ,

128

where σk+1 is the (k + 1)-th largest singular value of A.

Next, we show how to bound the error for both ‖ΩB
2 ‖ and ‖(ΩB

1)†‖. We

already know Ω1 = UT
1 Ω, Ω2 = UT

2 Ω and Ω← diag(U
(1)
k1
, U

(2)
k2
, . . . , U

(c)
kc

), which

shows that Ω is the top-k eigenvectors for the (unperturbed) matrix D. With

Theorem 2.2.1, we can now bound ‖ΩB
2 ‖ and ‖(ΩB

1)†‖ as

‖ΩB
2 ‖ = ‖ sin Θ‖ ≤ ‖∆‖

η
,

‖(ΩB
1)†‖ = ‖ 1

cos Θ
‖ =

1√
1− ‖ sin Θ‖2

≤ 1√
1− ‖∆‖2

η2

.

As a consequence, we have

‖A− ŪkΛ̄kŪ
T
k ‖2 ≤ 2‖A−QZQ

T
ZA‖

≤ 2‖(I −QBQ
T
B)A‖

≤ 2‖(I −QBQ
T
B)B‖ 1

(q+1)

≤ 2σk+1

(
1 +

sin2 θ

1− sin2 θ

) 1
2(q+1)

,

where θ is the largest principal angle of Θ.

Lemmas used in the above proof are listed as follows [36]:

Lemma 1.2.1. Suppose A is Hermitian and Q is an orthogonal basis, then

‖A−QQ∗AQQ∗‖ ≤ 2‖A−QQ∗A‖ = 2‖(I −QQ∗)A‖.

129

Lemma 1.2.2. Let A be an m × m matrix and Ω be an m × ` matrix. Fix

a non-negative integer q, from B = AqA, and compute the sample matrix

Z = BΩ. For an orthogonal basis Q for Z,

‖(I −QQ∗)A‖ ≤ ‖(I −QQ∗)B‖ 1
q+1 ,

where ‖ · ‖ represents unitary-invariant norm including the spectral norm and

the Frobenius norm.

Lemma 1.2.3. Let A be an m× n matrix with singular value decomposition

A = UΛV ∗ = U

[
Λ1

Λ2

] [
V ∗1
V ∗2

]
and fix k ≥ 0, where the size of V1 and V2 are n× k and n× (n− k), respec-

tively. Choose a test matrix Ω and construct the sample matrix Y = AΩ. Let

Ω1 = V ∗1 Ω and Ω2 = V ∗2 Ω. Assuming Ω1 and Ω2 has full column rank, the

approximation error satisfies

‖(I − PY)A‖2 ≤ ‖Λ2‖2 + ‖Λ2Ω2Ω†1‖2,

where ‖ · ‖ denotes either the spectral norm or the Frobenius norm and PY is

the projector for Y .

Lemma 1.2.4. Suppose range(N) ⊂ range(M). Then, for a matrix A, it

holds that ‖PNA‖ ≤ ‖PMA‖ and ‖(I −PM)A‖ ≤ ‖(I −PN)A‖, where PN and

PM are projectors for range(N) and range(M), respectively.

130

Bibliography

[1] Lada A. Adamic and Eytan Adar. Friends and neighbors on the web.

Social Networks, 25(3):211–230, 2003.

[2] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next gen-

eration of recommender systems: A survey of the state-of-the-art and

possible extensions. IEEE Transactions on Knowledge and Data Engi-

neering, 17(6):734–749, 2005.

[3] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor

models. In Proceedings of the 15th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 19–28, 2009.

[4] Gaurav Agarwal and David Kempe. Modularity-maximizing graph com-

munities via mathematical programming. European Physical Journal B,

66(3):409–418, 2008.

[5] Marcelo G. Armentano, Daniela Godoy, and Anaĺıa A. Amandi. Fol-

lowee recommendation based on text analysis of micro-blogging activity.

Information Systems, 38(8):1116–1127, 2013.

[6] Lars Backstrom and Jure Leskovec. Supervised random walks: predict-

ing and recommending links in social networks. In Proceedings of the 4th

131

ACM International Conference on Web Search and Data Mining, pages

635–644, 2011.

[7] James Baglama, Daniela Calvetti, and Lothar Reichel. IRBL: An im-

plicitly restarted block-Lanczos method for large-scale hermitian eigen-

problems. SIAM Journal on Scientific Computing, 24(5):1650–1677,

2003.

[8] Linas Baltrunas. Context-aware collaborative filtering recommender sys-

tems. PhD thesis, Free University of Bozen-Bolzano, 2011.

[9] Linas Baltrunas, Bernd Ludwig, and Francesco Ricci. Matrix factor-

ization techniques for context aware recommendation. In Proceedings

of the 5th ACM Conference on Recommender Systems, pages 301–304,

2011.

[10] Linas Baltrunas and Francesco Ricci. Context-based splitting of item

ratings in collaborative filtering. In Proceedings of the 3rd ACM Con-

ference on Recommender Systems, pages 245–248, 2009.

[11] Robert M. Bell and Yehuda Koren. Lessons from the Netflix Prize

Challenge. ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007.

[12] Robert M. Bell and Yehuda Koren. Scalable collaborative filtering with

jointly derived neighborhood interpolation weights. In Proceedings of

the 7th IEEE International Conference on Data Mining, pages 43–52,

2007.

132

[13] Francesco Bonchi, Pooya Esfandiar, David F. Gleich, Chen Greif, and

Laks V. S. Lakshmanan. Fast matrix computations for pair-wise and

column-wise commute times and Katz scores. Internet Mathematics,

8(1-2):73–112, 2012.

[14] Guillaume Bouchard, Dawei Yin, and Shengbo Guo. Convex collective

matrix factorization. In Proceedings of the 16th International Confer-

ence on Artificial Intelligence and Statistics, pages 144–152, 2013.

[15] Emmanuel Candès and Benjamin Recht. Exact matrix completion

via convex optimization. Communications of the ACM, 55(6):111–119,

2012.

[16] Yi Chang, Lei Tang, Yoshiyuki Inagaki, and Yan Liu. What is Tumblr:

A statistical overview and comparison. ACM SIGKDD Explorations

Newsletter, 16(1):21–29, 2014.

[17] Annie Chen. Context-aware collaborative filtering system: Predicting

the user’s preference in the ubiquitous computing environment. In Pro-

ceedings of the 1st International Conference on Location and Context-

Awareness, pages 1110–1111, 2005.

[18] Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, and Rachel Ward.

Coherent matrix completion. In Proceedings of the 31st International

Conference on Machine Learning, pages 674–682, 2014.

133

[19] Aaron Clauset, Cristopher Moore, and Mark E. J. Newman. Hierarchi-

cal structure and the prediction of missing links in networks. Nature,

453(7191):98–101, 2008.

[20] Alan Kaylor Cline and Inderjit S. Dhillon. Computation of the singular

value decomposition. In Handbook of Linear Algebra, chapter 45, pages

1–13. CRC Press, 2006.

[21] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of

recommender algorithms on top-N recommendation tasks. In Proceed-

ings of the 4th ACM Conference on Recommender Systems, pages 39–46,

2010.

[22] J. J. M. Cuppen. A divide and conquer method for the symmetric tridi-

agonal eigenproblem. Numerische Mathematik, 36(2):177–195, 1980.

[23] Chandler Davis and William M. Kahan. The rotation of eigenvectors by

a perturbation. III. SIAM Journal on Numerical Analysis, 7(1):1–46,

1970.

[24] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph

cuts without eigenvectors: A multilevel approach. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 29(11):1944–1957, 2007.

[25] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolf-

gang Nejdl. Real-time top-N recommendation in social streams. In

134

Proceedings of the 6th ACM Conference on Recommender Systems, pages

59–66, 2012.

[26] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,

Eric Tzeng, and Trevor Darrell. DeCAF: A deep convolutional activa-

tion feature for generic visual recognition. In Proceedings of the 31st

International Conference on Machine Learning, pages 647–655, 2014.

[27] Paul Dourish. What we talk about when we talk about context. Per-

sonal and Ubiquitous Computing, 8(1):19–30, 2004.

[28] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link

prediction using matrix and tensor factorizations. ACM Transactions

on Knowledge Discovery from Data, 5(2):10:1–10:27, 2011.

[29] Ernesto Estrada and Desmond J. Higham. Network properties revealed

through matrix functions. SIAM Review, 52(4):696–714, 2010.

[30] Omar U. Florez and Lama Nachman. Deep learning of semantic word

representations to implement a content-based recommender for the Rec-

Sys Challenge’14. In Proceedings of the Semantic Web Evaluation Chal-

lenge: SemWebEval at ESWC’14, 2014.

[31] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using

collaborative filtering to weave an information tapestry. Communica-

tions of the ACM, 35(12):61–70, 1992.

135

[32] Roger G. Grimes, John G. Lewis, and Horst D. Simon. A shifted block

Lanczos algorithm for solving sparse symmetric generalized eigenprob-

lems. SIAM Journal on Matrix Analysis and Applications, 15(1):228–

272, 1994.

[33] Suriya Gunasekar, Makoto Yamada, Dawei Yin, and Yi Chang. Con-

sistent collective matrix completion under joint low rank structure. In

Proceedings of the 18th International Conference on Artificial Intelli-

gence and Statistics, pages 306–314, 2015.

[34] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang,

and Reza Zadeh. WTF: The who to follow service at twitter. In

Proceedings of the 22nd International Conference on World Wide Web,

pages 505–514, 2013.

[35] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel.

Social media recommendation based on people and tags. In Proceed-

ings of the 33rd International ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 194–201, 2010.

[36] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding

structure with randomness: Probabilistic algorithms for constructing ap-

proximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[37] John Hannon, Mike Bennett, and Barry Smyth. Recommending twitter

users to follow using content and collaborative filtering approaches. In

136

Proceedings of the 4th ACM Conference on Recommender Systems, pages

199–206, 2010.

[38] Negar Hariri, Bamshad Mobasher, and Robin Burke. Context-aware

music recommendation based on latent topic sequential patterns. In

Proceedings of the 6th ACM Conference on Recommender Systems, pages

131–138, 2012.

[39] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed

Zaki. Link prediction using supervised learning. In Proceedings of

SDM’06 workshop on Link Analysis, Counter-terrorism and Security,

pages 556–559, 2006.

[40] Taher H. Haveliwala. Topic-sensitive PageRank: a context-sensitive

ranking algorithm for web search. IEEE Transactions on Knowledge

and Data Engineering, 15(4):784–796, 2003.

[41] Balázs Hidasi and Domonkos Tikk. Fast ALS-based tensor factorization

for context-aware recommendation from implicit feedback. In Proceed-

ings of the 2012 European Conference on Machine Learning and Knowl-

edge Discovery in Databases, pages 67–82, 2012.

[42] Liangjie Hong, Aziz S. Doumith, and Brian D. Davison. Co-factorization

machines: Modeling user interests and predicting individual decisions in

twitter. In Proceedings of the 6th ACM International Conference on

Web Search and Data Mining, pages 557–566, 2013.

137

[43] Rong Hu, Wanchun Dou, and Jianxun Liu. A context-aware collab-

orative filtering approach for service recommendation. In Proceedings

of the 2012 International Conference on Cloud and Service Computing,

pages 148–155, 2012.

[44] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for

implicit feedback datasets. In Proceedings of the 8th IEEE International

Conference on Data Mining, pages 263–272, 2008.

[45] Prateek Jain and Inderjit S. Dhillon. Provable inductive matrix com-

pletion. CoRR, abs/1306.0626, 2013.

[46] Prateek Jain, Praneeth Netrapalli, and Sujay Sanghavi. Low-rank ma-

trix completion using alternating minimization. In Proceedings of the

45th annual ACM Symposium on Theory of Computing, pages 665–674,

2013.

[47] Mohsen Jamali and Martin Ester. A matrix factorization technique with

trust propagation for recommendation in social networks. In Proceedings

of the 4th ACM Conference on Recommender Systems, pages 135–142,

2010.

[48] Masayuki Karasuyama and Hiroshi Mamitsuka. Manifold-based similar-

ity adaptation for label propagation. In Advances in Neural Information

Processing Systems 26, pages 1547–1555, 2013.

138

[49] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria

Oliver. Multiverse recommendation: N-dimensional tensor factorization

for context-aware collaborative filtering. In Proceedings of the 4th ACM

Conference on Recommender Systems, pages 79–86, 2010.

[50] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul

Sukthankar, and Li Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In Proceedings of the 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[51] George Karypis and Vipin Kumar. A fast and high quality multilevel

scheme for partitioning irregular graphs. SIAM Journal on Scientific

Computing, 20(1):359–392, 1998.

[52] Leo Katz. A new status index derived from sociometric analysis. Psy-

chometrika, 18(1):39–43, 1953.

[53] Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Ma-

trix completion from noisy entries. Journal of Machine Learning Re-

search, 11:2057–2078, 2010.

[54] Younghoon Kim and Kyuseok Shim. TWITOBI: A recommendation

system for twitter using probabilistic modeling. In Proceedings of the

11th IEEE International Conference on Data Mining, pages 340–349,

2011.

139

[55] Ioannis Konstas, Vassilios Stathopoulos, and Joemon M. Jose. On social

networks and collaborative recommendation. In Proceedings of the 32nd

International ACM SIGIR Conference on Research and Development in

Information Retrieval, pages 195–202, 2009.

[56] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization

techniques for recommender systems. Computer, 42(8):30–37, 2009.

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classi-

fication with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25, pages 1097–1105, 2012.

[58] Cornelius Lanczos. An iterative method for the solution of the eigen-

value problem of linear differential and integral. Journal of Research of

the National Bureau of Standards, 45:255–282, 1950.

[59] Rasmus M. Larsen. Lanczos bidiagonalization with partial reorthogo-

nalization. Technical Report DAIMI PB-357, Aarhus University, 1998.

[60] Dominique LaSalle and George Karypis. Multi-threaded modularity

based graph clustering using the multilevel paradigm. Journal of Par-

allel and Distributed Computing, 2014. To appear.

[61] Richard B. Lehoucq, Danny C. Sorensen, and Chao Yang. ARPACK

Users’ Guide. Society for Industrial and Applied Mathematics, 1998.

[62] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins.

Microscopic evolution of social networks. In Proceedings of the 14th

140

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 462–470, 2008.

[63] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Ma-

honey. Community structure in large letworks: natural cluster sizes

and the absence of large well-defined clusters. Internet Mathematics,

6(1):29–123, 2009.

[64] Asher Levi, Osnat Mokryn, Christophe Diot, and Nina Taft. Find-

ing a needle in a haystack of reviews: Cold start context-based hotel

recommender system. In Proceedings of the 6th ACM Conference on

Recommender Systems, pages 115–122, 2012.

[65] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A

new benchmark collection for text categorization research. Journal of

Machine Learning Research, 5:361–397, 2004.

[66] Ren-Cang Li. Relative perturbation theory: II. eigenspace and singular

subspace variations. SIAM Journal on Matrix Analysis and Applica-

tions, 20(2):471–492, 1998.

[67] David Liben-Nowell and Jon Kleinberg. The link prediction problem

for social networks. In Proceedings of the 2003 ACM International

Conference on Information and Knowledge Management, pages 556–559,

2003.

141

[68] Ryan N. Lichtenwalter, Jake T. Lussier, and Nitesh V. Chawla. New

perspectives and methods in link prediction. In Proceedings of the 16th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 243–252, 2010.

[69] Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for

scalable semi-supervised learning. In Proceedings of the 27th Interna-

tional Conference on Machine Learning, pages 679–686, 2010.

[70] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King.

Recommender systems with social regularization. In Proceedings of the

4th ACM International Conference on Web Search and Data Mining,

pages 287–296, 2011.

[71] Paolo Massa and Paolo Avesani. Trust-aware recommender systems.

In Proceedings of the 1st ACM Conference on Recommender Systems,

pages 17–24, 2007.

[72] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer.

Graph structure in the web — revisited: A trick of the heavy tail. In

Proceedings of the Companion Publication of the 23rd International Con-

ference on World Wide Web Companion, pages 427–432, 2014.

[73] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff

Dean. Distributed representations of words and phrases and their com-

positionality. In Advances in Neural Information Processing Systems

26, pages 3111–3119. 2013.

142

[74] Alan Mislove, Hema Swetha Koppula, Krishna P. Gummadi, Peter Dr-

uschel, and Bobby Bhattacharjee. Growth of the Flickr social network.

In Proceedings of the 1st Workshop on Online Social Networks, pages

25–30, 2008.

[75] Peter L. Montgomery. A block Lanczos algorithm for finding dependen-

cies over GF(2). In Proceedings of the 14th Annual International Con-

ference on Theory and Application of Cryptographic Techniques, pages

106–120, 1995.

[76] Yashar Moshfeghi, Benjamin Piwowarski, and Joemon M. Jose. Han-

dling data sparsity in collaborative filtering using emotion and seman-

tic based features. In Proceedings of the 34th International ACM SI-

GIR Conference on Research and Development in Information Retrieval,

pages 625–634, 2011.

[77] Nagarajan Natarajan and Inderjit S. Dhillon. Inductive matrix comple-

tion for predicting gene-disease associations. Bioinformatics, 30(12):i60–

i68, 2014.

[78] Nagarajan Natarajan, Donghyuk Shin, and Inderjit S. Dhillon. Which

app will you use next? collaborative filtering with interactional context.

In Proceedings of the 7th ACM Conference on Recommender Systems,

pages 201–208, 2013.

[79] Mark E. J. Newman. Clustering and preferential attachment in growing

networks. Physical Review E, 64(2):025102, 2001.

143

[80] Mark E. J. Newman. Power laws, Pareto distributions and Zipf’s law.

Contemporary Physics, 46(5):323–351, 2005.

[81] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-

tering: Analysis and an algorithm. In Advances in Neural Information

Processing Systems 14, pages 849–856, 2001.

[82] Aaron Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-

based music recommendation. In Advances in Neural Information Pro-

cessing Systems 26, pages 2643–2651, 2013.

[83] Dimitris Papailiopoulos, Ioannis Mitliagkas, Alexandros Dimakis, and

Constantine Caramanis. Finding dense subgraphs via low-rank bilinear

optimization. In Proceedings of the 31st International Conference on

Machine Learning, pages 1890–1898, 2014.

[84] Beresford N. Parlett. The Symmetric Eigenvalue Problem. Prentice-

Hall, 1980.

[85] Rob Patro and Carl Kingsford. Global network alignment using multi-

scale spectral signatures. Bioinformatics, 28(23):3105–3114, 2012.

[86] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust

management for the semantic web. In Proceedings of the 2nd Interna-

tional Semantic Web Conference, pages 351–368, 2003.

144

[87] Yousef Saad. On the rates of convergence of the Lanczos and the block-

Lanczos methods. SIAM Journal on Numerical Analysis, 17(5):687–706,

1980.

[88] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-

based collaborative filtering recommendation algorithms. In Proceedings

of the 10th International Conference on World Wide Web, pages 285–

295, 2001.

[89] Berkant Savas and Inderjit S. Dhillon. Clustered low rank approxima-

tion of graphs in information science applications. In Proceedings of the

2011 SIAM International Conference on Data Mining, pages 164–175,

2011.

[90] Clayton Shepard, Ahmad Rahmati, Chad Tossell, Lin Zhong, and Phillip

Kortum. LiveLab: Measuring wireless networks and smartphone users

in the field. ACM SIGMETRICS Performance Evaluation Review,

38(3):15–20, 2011.

[91] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering

beyond the user-item matrix: A survey of the state of the art and future

challenges. ACM Computing Surveys, 47(1):3:1–3:45, 2014.

[92] Donghyuk Shin, Suleyman Cetintas, and Kuang-Chih Lee. Recommend-

ing Tumblr blogs to follow with inductive matrix completion. In Poster

Proceedings of the 8th ACM Conference on Recommender Systems, 2014.

145

[93] Donghyuk Shin, Suleyman Cetintas, Kuang-Chih Lee, and Inderjit S.

Dhillon. Tumblr blog recommendation with boosted inductive matrix

completion. In Proceedings of the 24th ACM International on Confer-

ence on Information and Knowledge Management, pages 203–212, 2015.

[94] Donghyuk Shin, Si Si, and Inderjit S. Dhillon. Multi-scale link pre-

diction. In Proceedings of the 21st ACM International Conference on

Information and Knowledge Management, pages 215–224, 2012.

[95] Si Si, Donghyuk Shin, Inderjit S. Dhillon, and Beresford N. Parlett.

Multi-scale spectral decomposition of massive graphs. In Advances in

Neural Information Processing Systems 27, pages 2798–2806, 2014.

[96] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective

matrix factorization. In Proceedings of the 14th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages

650–658, 2008.

[97] Han H. Song, Tae W. Cho, Vacha Dave, Yin Zhang, and Lili Qiu. Scal-

able proximity estimation and link prediction in online social networks.

In Proceedings of the 9th ACM SIGCOMM Conference on Internet Mea-

surement Conference, pages 322–335, 2009.

[98] Han H. Song, Berkant Savas, Tae W. Cho, Vacha Dave, Zhengdong Lu,

Inderjit S. Dhillon, Yin Zhang, and Lili Qiu. Clustered embedding of

massive social networks. ACM SIGMETRICS Performance Evaluation

Review, 40(1):331–342, 2012.

146

[99] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. So-

ciety for Industrial and Applied Mathematics, 1997.

[100] Vishvas Vasuki, Nagarajan Natarajan, Zhengdong Lu, Berkant Savas,

and Inderjit S. Dhillon. Scalable affiliation recommendation using aux-

iliary networks. ACM Transactions on Intelligent Systems and Technol-

ogy, 3(1):1–20, 2011.

[101] Bo Wang, Zhuowen Tu, and John K. Tsotsos. Dynamic label prop-

agation for semi-supervised multi-class multi-label classification. In

Proceedings of the 2013 IEEE International Conference on Computer

Vision, pages 425–432, 2013.

[102] Chao Wang, Venu Satuluri, and Srinivasan Parthasarathy. Local prob-

abilistic models for link prediction. In Proceedings of the 7th IEEE

International Conference on Data Mining, pages 322–331, 2007.

[103] Jason Weston, Sumit Chopra, and Keith Adams. #TagSpace: Semantic

embeddings from hashtags. In Proceedings of the 2014 Conference on

Empirical Methods in Natural Language Processing, pages 1822–1827,

2014.

[104] Joyce J. Whang, Xin Sui, and Inderjit S. Dhillon. Scalable and memory-

efficient clustering of large-scale social networks. In Proceedings of the

12th IEEE International Conference on Data Mining, pages 705–714,

2012.

147

[105] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and Jie Liu.

Fast app launching for mobile devices using predictive user context. In

Proceedings of the 10th International Conference on Mobile Systems,

Applications, and Services, pages 113–126, 2012.

[106] Diyi Yang, Tianqi Chen, Weinan Zhang, Qiuxia Lu, and Yong Yu. Local

implicit feedback mining for music recommendation. In Proceedings of

the 6th ACM Conference on Recommender Systems, pages 91–98, 2012.

[107] Jaewon Yang and Jure Leskovec. Defining and evaluating network com-

munities based on ground-truth. In Proceedings of the 12th IEEE In-

ternational Conference on Data Mining, pages 745–754, 2012.

[108] Dawei Yin, Liangjie Hong, and Brian D. Davison. Structural link anal-

ysis and prediction in microblogs. In Proceedings of the 20th ACM

International Conference on Information and Knowledge Management,

pages 1163–1168, 2011.

[109] Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and Inderjit S. Dhillon.

Large-scale multi-label learning with missing labels. In Proceedings of

the 31st International Conference on Machine Learning, pages 593–601,

2014.

[110] Wayne W. Zachary. An information flow model for conflict and fission

in small groups. Journal of Anthropological Research, 33:452–473, 1977.

148

[111] Gang Zhao, Mong Li Lee, Wynne Hsu, Wei Chen, and Haoji Hu. Community-

based user recommendation in uni-directional social networks. In Pro-

ceedings of the 22nd ACM International Conference on Information and

Knowledge Management, pages 189–198, 2013.

[112] Yi Zhen, Wu-Jun Li, and Dit-Yan Yeung. TagiCoFi: Tag informed

collaborative filtering. In Proceedings of the 3rd ACM Conference on

Recommender Systems, pages 69–76, 2009.

[113] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,

and Bernhard Schölkopf. Learning with local and global consistency. In

Advances in Neural Information Processing Systems 17, pages 321–328,

2004.

149

