251 research outputs found

    Inducing Implicit Arguments via Cross-document Alignment: A Framework and its Applications

    Get PDF
    Natural language texts frequently contain related information in different positions in discourse. As human readers, we can recognize such information across sentence boundaries and correctly infer relations between them. Given this inference capability, we understand texts that describe complex dependencies even if central aspects are not repeated in every sentence. In linguistics, certain omissions of redundant information are known under the term ellipsis and have been studied as cohesive devices in discourse (Halliday and Hasan, 1976). For computational approaches to semantic processing, such cohesive devices are problematic because methods are traditionally applied on the sentence level and barely take surrounding context into account. In this dissertation, we investigate omission phenomena on the level of predicate-argument structures. In particular, we examine instances of structures involving arguments that are not locally realized but inferable from context. The goal of this work is to automatically acquire and process such instances, which we also refer to as implicit arguments, to improve natural language processing applications. Our main contribution is a framework that identifies implicit arguments by aligning and comparing predicate-argument structures across pairs of comparable texts. As part of this framework, we develop a novel graph-based clustering approach, which detects corresponding predicate-argument structures using pairwise similarity metrics. To find discourse antecedents of implicit arguments, we further design a heuristic method that utilizes automatic annotations from various linguistic pre-processing tools. We empirically validate the utility of automatically induced instances of implicit arguments and discourse antecedents in three extrinsic evaluation scenarios. In the first scenario, we show that our induced pairs of arguments and antecedents can successfully be applied to improve a pre-existing model for linking implicit arguments in discourse. In two further evaluation settings, we show that induced instances of implicit arguments, together with their aligned explicit counterparts, can be used as training material for a novel model of local coherence. Given discourse-level and semantic features, this model can predict whether a specific argument should be explicitly realized to establish local coherence or whether it is inferable and hence redundant in context

    ParaPhraser: Russian paraphrase corpus and shared task

    Get PDF
    The paper describes the results of the First Russian Paraphrase Detection Shared Task held in St.-Petersburg, Russia, in October 2016. Research in the area of paraphrase extraction, detection and generation has been successfully developing for a long time while there has been only a recent surge of interest towards the problem in the Russian community of computational linguistics. We try to overcome this gap by introducing the project ParaPhraser.ru dedicated to the collection of Russian paraphrase corpus and organizing a Paraphrase Detection Shared Task, which uses the corpus as the training data. The participants of the task applied a wide variety of techniques to the problem of paraphrase detection, from rule-based approaches to deep learning, and results of the task reflect the following tendencies: the best scores are obtained by the strategy of using traditional classifiers combined with fine-grained linguistic features, however, complex neural networks, shallow methods and purely technical methods also demonstrate competitive results.Peer reviewe

    Event structures in knowledge, pictures and text

    Get PDF
    This thesis proposes new techniques for mining scripts. Scripts are essential pieces of common sense knowledge that contain information about everyday scenarios (like going to a restaurant), namely the events that usually happen in a scenario (entering, sitting down, reading the menu...), their typical order (ordering happens before eating), and the participants of these events (customer, waiter, food...). Because many conventionalized scenarios are shared common sense knowledge and thus are usually not described in standard texts, we propose to elicit sequential descriptions of typical scenario instances via crowdsourcing over the internet. This approach overcomes the implicitness problem and, at the same time, is scalable to large data collections. To generalize over the input data, we need to mine event and participant paraphrases from the textual sequences. For this task we make use of the structural commonalities in the collected sequential descriptions, which yields much more accurate paraphrases than approaches that do not take structural constraints into account. We further apply the algorithm we developed for event paraphrasing to parallel standard texts for extracting sentential paraphrases and paraphrase fragments. In this case we consider the discourse structure in a text as a sequential event structure. As for event paraphrasing, the structure-aware paraphrasing approach clearly outperforms systems that do not consider discourse structure. As a multimodal application, we develop a new resource in which textual event descriptions are grounded in videos, which enables new investigations on action description semantics and a more accurate modeling of event description similarities. This grounding approach also opens up new possibilities for applying the computed script knowledge for automated event recognition in videos.Die vorliegende Dissertation schlägt neue Techniken zur Berechnung von Skripten vor. Skripte sind essentielle Teile des Allgemeinwissens, die Informationen über alltägliche Szenarien (wie im Restaurant essen) enthalten, nämlich die Ereignisse, die typischerweise in einem Szenario vorkommen (eintreten, sich setzen, die Karte lesen...), deren typische zeitliche Abfolge (man bestellt bevor man isst), und die Teilnehmer der Ereignisse (ein Gast, der Kellner, das Essen,...). Da viele konventionalisierte Szenarien implizit geteiltes Allgemeinwissen sind und üblicherweise nicht detailliert in Texten beschrieben werden, schlagen wir vor, Beschreibungen von typischen Szenario-Instanzen durch sog. “Crowdsourcing” über das Internet zu sammeln. Dieser Ansatz löst das Implizitheits-Problem und lässt sich gleichzeitig zu großen Daten-Sammlungen hochskalieren. Um über die Eingabe-Daten zu generalisieren, müssen wir in den Text-Sequenzen Paraphrasen für Ereignisse und Teilnehmer finden. Hierfür nutzen wir die strukturellen Gemeinsamkeiten dieser Sequenzen, was viel präzisere Paraphrasen-Information ergibt als Standard-Ansätze, die strukturelle Einschränkungen nicht beachten. Die Techniken, die wir für die Ereignis-Paraphrasierung entwickelt haben, wenden wir auch auf parallele Standard-Texte an, um Paraphrasen auf Satz-Ebene sowie Paraphrasen-Fragmente zu extrahieren. Hier betrachten wir die Diskurs-Struktur eines Textes als sequentielle Ereignis-Struktur. Auch hier liefert der strukturell informierte Ansatz klar bessere Ergebnisse als herkömmliche Systeme, die Diskurs-Struktur nicht in die Berechnung mit einbeziehen. Als multimodale Anwendung entwickeln wir eine neue Ressource, in der Text-Beschreibungen von Ereignissen mittels zeitlicher Synchronisierung in Videos verankert sind. Dies ermöglicht neue Ansätze für die Erforschung der Semantik von Ereignisbeschreibungen, und erlaubt außerdem die Modellierung treffenderer Ereignis-Ähnlichkeiten. Dieser Schritt der visuellen Verankerung von Text in Videos eröffnet auch neue Möglichkeiten für die Anwendung des berechneten Skript-Wissen bei der automatischen Ereigniserkennung in Videos

    Recognizing Textual Entailment Using Description Logic And Semantic Relatedness

    Get PDF
    Textual entailment (TE) is a relation that holds between two pieces of text where one reading the first piece can conclude that the second is most likely true. Accurate approaches for textual entailment can be beneficial to various natural language processing (NLP) applications such as: question answering, information extraction, summarization, and even machine translation. For this reason, research on textual entailment has attracted a significant amount of attention in recent years. A robust logical-based meaning representation of text is very hard to build, therefore the majority of textual entailment approaches rely on syntactic methods or shallow semantic alternatives. In addition, approaches that do use a logical-based meaning representation, require a large knowledge base of axioms and inference rules that are rarely available. The goal of this thesis is to design an efficient description logic based approach for recognizing textual entailment that uses semantic relatedness information as an alternative to large knowledge base of axioms and inference rules. In this thesis, we propose a description logic and semantic relatedness approach to textual entailment, where the type of semantic relatedness axioms employed in aligning the description logic representations are used as indicators of textual entailment. In our approach, the text and the hypothesis are first represented in description logic. The representations are enriched with additional semantic knowledge acquired by using the web as a corpus. The hypothesis is then merged into the text representation by learning semantic relatedness axioms on demand and a reasoner is then used to reason over the aligned representation. Finally, the types of axioms employed by the reasoner are used to learn if the text entails the hypothesis or not. To validate our approach we have implemented an RTE system named AORTE, and evaluated its performance on recognizing textual entailment using the fourth recognizing textual entailment challenge. Our approach achieved an accuracy of 68.8 on the two way task and 61.6 on the three way task which ranked the approach as 2nd when compared to the other participating runs in the same challenge. These results show that our description logical based approach can effectively be used to recognize textual entailment

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches
    • …
    corecore