6,270 research outputs found

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph D∈LD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/5−1(n/2)^{1/5}-1 leaves

    Finding Pairwise Intersections Inside a Query Range

    Get PDF
    We study the following problem: preprocess a set O of objects into a data structure that allows us to efficiently report all pairs of objects from O that intersect inside an axis-aligned query range Q. We present data structures of size O(n(polylogn))O(n({\rm polylog} n)) and with query time O((k+1)(polylogn))O((k+1)({\rm polylog} n)) time, where k is the number of reported pairs, for two classes of objects in the plane: axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes in R^3, we present a data structures of size O(nn(polylogn))O(n\sqrt{n}({\rm polylog} n)) and query time O((n+k)(polylogn))O((\sqrt{n}+k)({\rm polylog} n)). When the objects and query are fat, we obtain O((k+1)(polylogn))O((k+1)({\rm polylog} n)) query time using O(n(polylogn))O(n({\rm polylog} n)) storage

    Finding an induced subdivision of a digraph

    Get PDF
    We consider the following problem for oriented graphs and digraphs: Given an oriented graph (digraph) GG, does it contain an induced subdivision of a prescribed digraph DD? The complexity of this problem depends on DD and on whether GG must be an oriented graph or is allowed to contain 2-cycles. We give a number of examples of polynomial instances as well as several NP-completeness proofs

    Finding pairwise intersections inside a query range

    Get PDF
    We study the following problem: preprocess a set O of objects into a data structure that allows us to efficiently report all pairs of objects from O that intersect inside an axis-aligned query range Q . We present data structures of size O(n⋅polylogn) and with query time O((k+1)⋅polylogn) time, where k is the number of reported pairs, for two classes of objects in R2 : axis-aligned rectangles and objects with small union complexity. For the 3-dimensional case where the objects and the query range are axis-aligned boxes in R3 , we present a data structure of size O(nn−−√⋅polylogn) and query time O((n−−√+k)⋅polylogn) . When the objects and query are fat, we obtain O((k+1)⋅polylogn) query time using O(n⋅polylogn) storage

    Area-Universal Rectangular Layouts

    Get PDF
    A rectangular layout is a partition of a rectangle into a finite set of interior-disjoint rectangles. Rectangular layouts appear in various applications: as rectangular cartograms in cartography, as floorplans in building architecture and VLSI design, and as graph drawings. Often areas are associated with the rectangles of a rectangular layout and it might hence be desirable if one rectangular layout can represent several area assignments. A layout is area-universal if any assignment of areas to rectangles can be realized by a combinatorially equivalent rectangular layout. We identify a simple necessary and sufficient condition for a rectangular layout to be area-universal: a rectangular layout is area-universal if and only if it is one-sided. More generally, given any rectangular layout L and any assignment of areas to its regions, we show that there can be at most one layout (up to horizontal and vertical scaling) which is combinatorially equivalent to L and achieves a given area assignment. We also investigate similar questions for perimeter assignments. The adjacency requirements for the rectangles of a rectangular layout can be specified in various ways, most commonly via the dual graph of the layout. We show how to find an area-universal layout for a given set of adjacency requirements whenever such a layout exists.Comment: 19 pages, 16 figure

    Algorithms for finding K-best perfect matchings

    Get PDF
    AbstractIn the K-best perfect matching problem (KM) one wants to find K pairwise different, perfect matchings M1,…,Mk such that w(M1) ≥ w(M2) ≥ ⋯ ≥ w(Mk) ≥ w(M), ∀M ≠ M1, M2,…, Mk. The procedure discussed in this paper is based on a binary partitioning of the matching solution space. We survey different algorithms to perform this partitioning. The best complexity bound of the resulting algorithms discussed is O(Kn3), where n is the number of nodes in the graph

    A bijection for rooted maps on general surfaces

    Full text link
    We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, that is orientable and non-orientable as well. This general construction requires new ideas and is more delicate than the special orientable case, but it carries the same information. In particular, it leads to a uniform combinatorial interpretation of the counting exponent 5(h−1)2\frac{5(h-1)}{2} for both orientable and non-orientable rooted connected maps of Euler characteristic 2−2h2-2h, and of the algebraicity of their generating functions, similar to the one previously obtained in the orientable case via the Marcus-Schaeffer bijection. It also shows that the renormalization factor n1/4n^{1/4} for distances between vertices is universal for maps on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation on any fixed surface converge in distribution when the size nn tends to infinity. Finally, we extend the Miermont and Ambj{\o}rn-Budd bijections to the general setting of all surfaces. Our construction opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.Comment: v2: 55 pages, 22 figure

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page
    • …
    corecore