
Discrete Applied Mathematics 18 (1987) 155-165

North-Holland

155

ALGORITHMS FOR FINDING K-BEST PERFECT MATCHINGS *

Chandra R. CHEGIREDDY and Horst W. HAMACHER

Department of Industrial & Systems Engineering and Center for Optimization and Combina-

torics, University of Florida, Gainesville, FL 32611, USA

Received 6 March 1987

In the K-best perfect matching problem (KM) one wants to find K pairwise different, perfect

matchings M,, Mk such that w(M,)? w(Mz) ?...z w(Mk)? w(M), vA4#M,, M2, Mk.

The procedure discussed in this paper is based on a binary partitioning of the matching solution

space. We survey different algorithms to perform this partitioning. The best complexity bound

of the resulting algorithms discussed is 0(Kn3), where n is the number of nodes in the graph.

1. Introduction

Let G = (V, E) represent an undirected graph with vertex set V and edge set E. A

matching MC E has the property that no two edges in M share the same node. Let

/S/ denote the cardinality of any set S. A matching is said to be perfect if

IMl=IVj/2. w e assume without loss of generality that 1 VI is even and that a perfect

matching always exists. Let w : e+ R + U (0) be a weight function assigning non-

negative weights for all e E E. (If some of the weights w(e) are negative, we can com-

pute W= min{ w(e) 1 eE E} and update all weights by w(e) = w(e) - W to make them

nonnegative.) The weight of any matching M is denoted by CeEMw(e). The pro-

blem of finding the K-best perfect matchings (KM) can now be stated as finding all

distinct perfect matchings M,, . . . , Mk such that w(!&,) 2 w(M2) 2 =.. 2 w(Mk) 2

w(M), VM#M,, M2, . . . , Mk. We discuss algorithms for finding such K-best

perfect matchings given G and positive integer K.
In Section 2 we introduce a general procedure to solve KM which is formulated

in terms of finding second best solutions in some restricted solution spaces. We pre-

sent the complexity of the general procedure and propose alternative implementa-

tions for finding such second best solutions in Section 3. For each of these

alternatives, we present the worst case complexity of solving KM. In Section 4, the

special case of bipartite matchings is considered.

* This research was partially supported by NSF grant No. ECS 8412926

0166-218X/87/$3.50 0 1987, Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82129717?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 C.R. Chegireddy, H. W. Hamacher

2. General algorithm for K-best perfect matchings

The general algorithm for finding the K-best perfect matchings can easily be obtain-

ed from the algorithm for any K-best combinatorial optimization problem [12, 131.

Lawler [I31 presented a generalization of Murty’s algorithm [15] for ranking the

solutions of an assignment problem, and their partitioning strategy is slightly dif-

ferent from the way the solution space is partitioned in the procedure presented by

Hamacher and Queyranne [121.

Let B denote the whole solution space and let sets I and 0 be subsets of E. We

define a restricted solution space Qn, o = (M: M a perfect matching, 1~ M,

OnM=0}. The algorithm builds the sets I and 0 iteratively and finds the second

best matchings in each of the two branches created in every iteration, as shown in

Fig. 1.

Fig. 1. Partitioning of solution space.

Let MP and NP be the best and second best matchings at any node selected in

iteration k for further partitioning. We choose an element in MP - NP, say ek, and

set Ik+t =IP, ‘P”PU {ek} and Ok+, = P 0 U {ek} (see Fig. 1). By iteratively apply-

ing such a branching procedure we obtain the following algorithm for KM.

K-Best Matching Algorithm (AKM)

Input.

Output.

Start.

Step 1.

Step 2.

G = (V, E) undirected graph; w(e) 2 0, e E E edge weights;

K total number of ranked solutions desired

K-best matchings M,, . . . , Mk

Z,=O,=O; k=l

Find best matching M, and second best matching N, in G.

Let w(N,,)=min{w(N,)Ii=l,...,k}

If w(N,) = - 03
Then stop {Only k - 1 matchings exist}

Algorithms for finding K-best perfect matchings 157

Else Mk = NP

If k=K

Then stop
Else Choose ek E MP - NP

Step 3. Update sets I and 0

Z k+l =ZP9 ZP=Z& {ek), Ok+, =O,U @kl
Set k=k+l

Step 4. Compute the second best matchings NP and Nk in Qcl,,Oi, and Q2,L,o,,,

resp.

Goto Step 2

The fact that this algorithm indeed gives us the K-best perfect matchings can be

verified very easily. We can observe that at each iteration k, {OI,,o, 1 i = 1, . . . , k} is

a partition of the solution space Q. We are choosing the best solution among all

these restricted solution spaces excluding Ml, . . . , Mk_ , , yielding the desired result,

namely Mk.
We see that the algorithm AKM involves finding the second best matchings in

some restricted solution spaces as specified in Step 4. If the complexity of solving

one such second best matching problem is A,, the overall complexity of KM is of

the order 0(n3 + (K- l)A,), since at most (K- 1) many such problems need to be

solved and since the complexity of solving the best perfect matching is 0(n3)

[8, 14, 51. We propose three different approaches to solve such a problem in the next

section. For the special case of bipartite matchings, one of these approaches, the

shortest alternating cycle approach is detailed in Section 4.

3. Algorithms for second best perfect matchings

In this section we outline different approaches to obtain a second best perfect

matching in a solution subspace 52 ,, o given the best matching in that subspace. For

this purpose, we transform this problem into finding a second best matching in a

graph without any restrictions by restructuring the graph as follows. We delete all

the end nodes of eE I and their incident edges. For the edges e E 0, we set

w(e) = - 03. It can be easily seen that the second best solution of this subproblem

together with the edges in I, provided its weight is larger than - 03, will yield the

second best solution in Q2,, o. From now on, we assume that the graph G = (V, E)

has been transformed as above and we will deal with the problem of finding a se-

cond best perfect matching without any restrictions. The general algorithm can be

thought of as one partitioning step in the algorithm of Lawler and Murty [13, 151.

Second Best Matching Algorithm (ASBM)

Input. G graph; M, = {e,, . . . , e,} best matching

output. M2 second best matching

158

Step I.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.

Comment.

C.R. Chegireddy, H. W. Hamacher

i= 1

Delete { cj 1 j< i} and all incident nodes and adjacent edges from G.

Set w(ei) = - 03

Find best matching N, in the new graph

Let N;=N,U {ejl j<i}

If i<n
Then i=i+ 1; goto Step 2

Else M2=Np where w(N,)=max{w(N,)Ij=l,...,n}.

If w(N,) = - 03, then G has only a single perfect matching.

We can see that the essential idea of this algorithm is to partition the solution

space by forbidding one by one edges in the best matching and forcing in all the

edges considered before into the solution. We can derive different algorithms from

this basic procedure as follows.

Solving from Scratch. Step 4 of the above algorithm is a matching problem. An ob-

vious implementation is to solve each problem from scratch, making each iteration

an O(n3) procedure. Since we have at most n/2 many such iterations, the complexi-

ty of ASBM is 0(n4). From the analysis in Section 2, we obtain the overall com-

plexity of AKM to be 0(n3 + (K- l)n4), which is 0(Kn4). This bound can be

improved.

Sensitivity Analysis Approach. We describe the application of sensitivity analysis to

obtain a second best matching in the situation where one edge weight is set to - 03

and that edge is in the matching. If we denote with r the family of all odd node

sets with cardinality not less than three and if 6(T) = {(i, j) E El i E T, je T],
a(T) = {(i, j) E E) i and j E T}, VTE I-, then the linear programming (LP) formula-

tion of the matching problem [8] can be stated as

Maximize c WljX;,
(;,J)EE

subject to C X,= 1 Vi,
j:(t,j)eE

c X,jL 1 VTE r,
U,J)EW)

x;jzo b’(i,j) E E.

It is well known that this LP has a O-l optimal solution M* and XjT= 1 if and only

if (i, j) EM*.
The dual of this linear program is

Algorithms for finding K-best perfect matchings 159

The complementary slackness conditions become

X;~=l+w,--,Ll,-/l- (;,j)E&), Jr=0 V(&j)EE,

pr=O or c X;_=l VTEl-.
(Lj)E6(T)

We define new weights w,> = W- W;j, where W> w,~, for all (i, j) E E. With this

weights, we can use the Shortest Augmenting Path procedure (SAP) [5] to solve the

above problem and obtain the optimal solution, which is primally and dually feasi-

ble and satisfies the complementary slackness conditions. Let us denote by (r, t), the

edge whose weight is being changed to - 03. We set w:, = W- w,(= M and adopt

the sensitivity analysis procedure of Derigs [6], to find the next best matching as

follows.

Step 1. If the vertex r is shrunk in a pseudonode

Then Expand the blossoms containing r
Modify the dual variables accordingly.

Step 2. Set w:[=o3, 6=w:t-pu,-,uul- CCI,,,E6CTj~T=03, ,uC(r=iUr+6=03

Step 3. Make vertex r the new root and grow an alternating tree, using the SAP

procedure.

In Step 1, the expansion of all the blossoms containing node r, can be done as

follows [6]. We add two nodes a and b and two edges (a, r) and (b, t) with the dual

variables and the edge weights as shown in Fig. 2 and find an alternating path bet-

ween the two nodes a and b using the SAP procedure.

Fig. 2. Auxiliary graph to expand blossoms containing r.

The edge weight whl is set such that when edge (b, t) becomes part of the alter-

nating path, all the blossoms containing r are expanded. A detailed discussion of

how the edge weights affect the expansion of blossoms is given in Weber [17].

The advantage of this procedure as opposed to the solution from scratch lies in

160 C. R. Chegireddy, H. W. Humacher

the fact that finding the second best matching involves at most two shortest augmen-

ting path iterations, which are O(n2) operations. The complexity of ASBM reduces

to O(n3) making the overall complexity of algorithm AKM O(Kn3).

An alternative implementation of the sensitivity analysis is to use the primal

algorithm of Cunningham and Marsh [2]. We make use of an equivalent blossom

inequality in the LP formulation, which can be stated as

This will result in a dual constraint pj+ pj+ C TET,(i,jIEa(T)~~~ Wij, and the com-
plementary slackness conditions become

FIT>- c A-,=+(ITl - 1).
(i,j)EaV)

When we set wrl= -M (M a large integer) the complementary slackness condi-

tion rVrt=-w,t+pu,+fiut+ C (Tr t)Ea(T)il(r= 0 is obviously violated. We update pT by

#4= -(p,+ c (Tr t)Ea(TJ pu,+ M) to reestablish it. Therefore we get a pair of primal

and dual solutions of the matching LP which is primally feasible, satisfies the com-

plementary slackness conditions and violates the dual constraint only for the edges

with r as an end point. A single iteration of Cunningham and Marsh’s primal

algorithm will therefore yield an updated optimal solution in O(n2). The resulting

implementation of AKM is therefore of order O(Kn’). Both the implementations

of the sensitivity analysis approach are an order of magnitude better than solving

the second best matching problems from scratch for small values of K (i.e.,

polynomial in n). If K itself is exponential, which is not uncommon in some applica-

tions, the effect of this reduction will be substantial in terms of actual computa-

tional time.

Shortest Alternating Cycles. A path from node i to node j is the sequence of edges

from i to j. A path is said to be a cycle if i and j happen to be the same node. A

path is said to be alternating with respect to a given matching M, if the edges in the

path alternately are in the matching M and not. The symmetric difference of two

sets is indicated by the symbol 0 and is the set of all elements contained in either

one of them but not in both. We can obtain the second best matching by interchang-

ing the matched and unmatched edges along the shortest weight alternating cycle

with respect to the best matching as illustrated by the following theorem.

Given a matching M and an alternating cycle C with respect to M, define the in-

cremental weight 6(C) as

d(C)=w(CnM)-w(C-M)

where 6(C) indicates the increase or decrease in the weight of the resulting matching

when the edges along C are interchanged in M. The shortest alternating cycle with

Algorithms for finding K-best perfect matchings 161

respect to A4 is the alternating cycle whose 6(C) is minimal. The following theorem

shows the use of shortest alternating cycles in finding second best matchings.

Theorem 1. Let M, be the best matching in G and let C, be the shortest alternating

cycle. Then the symmetric difference M, @C, is a second best matching in G.

Proof. Let M be any matching different from M, in G. Since both M and M, are

perfect matchings the M, @M decomposes into pairwise disjoint cycles D,, . . . , D,

which alternately contain edges in M and M, . Now the weight of A4 can be written

as w(M)=w(M,)-6(D,)-... -6(D,). Since C, is the shortest alternating cycle

with respect to M, we have S(C,)SS(D;) for i=l,...,q. Hence

w(M,@C,)= w(M,)-6(C,)r w(M), making M, @C, a second best matching.

Notice that the shortest alternating cycle C, of M, satisfies 6(C,)>O. Otherwise a

contradiction to the optimality of MI would follow. q

An immediate consequence of the preceding theorem is to reduce the problem of

finding the second best matching to the problem of finding the shortest alternating

cycle. There are some algorithms to find the shortest alternating cycles in general

graphs developed by Brown [3] but they are very tedious computationally as they

employ a Branch and Bound strategy and have a worst case bound which is ex-

ponential. We can use the sensitivity analysis approach by forbidding each of the

edges in the matching in turn, and combine it with the shortest alternating path ob-

tained in that iteration, to find the shortest alternating cycle involving that par-

ticular edge. The minimum over all such cycles yields the shortest alternating cycle

with respect to the best matching. But this process will not improve the worst case

bound or the number of computations required. For the special case of bipartite

matchings, we can reduce the problem of finding a shortest alternating cycle to that

of finding a shortest cycle in a transformed graph. This is demonstrated in the next

section.

4. K-best bipartite matchings

The graph G is called a bipartite graph if the nodes can be partitioned into two

sets S and T, such that no two nodes in S and Tare adjacent, i.e., all edges extend

between S and T. We denote such a bipartite graph as G = (S, T, E) where V= S U T.

We make use of the matching M to construct a directed graph G’ = (S, T, E’)

from G. The node sets remain the same and the arc e’E E’ is oriented from S to T

if edge e is not in M and the cost of e’, denoted by c(e’)= -w(e). The arcs e’ in

E’ corresponding to eeA4 get an orientation from T to S and a cost c(e’) = w(e).

Theorem 2. A graph G’ constructed as above with respect to the best matching M,,

does not contain any negative cycles.

162 C.R. Chegireddy, H. W. Hamacher

Proof. Suppose it does. Notice that any cycle in G’ corresponds to an alternating

cycle in G, because we can leave S only on unmatched edges and get back to S on

matched edges which are the only arcs with the reverse orientation and the weight

of this cycle is equal to the incremental weight 6(C) of Theorem 1. We also know

that we can augment along this cycle and obtain a different matching M, with

w(A&) > w(M,) which contradicts the assumption that M, is the best matching. 0

Finding Shortest Cycles in G’. For bipartite graphs we have reduced the problem

of finding a shortest alternating cycle in G to the problem of finding a shortest cycle

in G’ where some edge weights are negative but no negative cycles exist. We can

therefore apply the Floyd-Warshall algorithm to find shortest paths between all

pairs of nodes [lo]. The cycle corresponding to the minimal weight diagonal entry

after the final iteration will yield the shortest cycle. The computational complexity

of the Floyd-Warshall algorithm is 0(n3) and it is well known that this bound is

tight. It also has a storage requirement of 0(n2).

A second approach involves finding the shortest distance between nodes p and q
such that (p, q) EM. If d(p, q) denotes the distance of the node p to node q,
d(p, q) + cq,, will give us the length of the shortest cycle including the nodes p and

q. We can find the shortest distance for each such pair of nodes (p, q) E A4 and the

minimum over all the d(p, q) + cyP will yield the shortest cycle. This approach can

also be classified as a sequential all pairs problem [l 11. This involves one iteration

of a label correcting algorithm [16], which allows the edge costs to be non-positive,

to compute the shortest path tree rooted at an arbitrary node. The node labels cor-

respond to the dual variables in the following linear programming formulation of

the shortest path problem from the node p to node q:

minimize C C;jXij
ij

subject to 1 if i=p,

C xlj- I$ xki= 0 if i#p and i#q,
.i -1 if i=q,

X,jLO Vi,i,j.

The dual of this problem is

maximize
nP-%

subject to 71; - ~~ % Cij ~~, j,

Tci unrestricted.

After the first iteration we make use of the node labels or dual variables to modify

the costs to be non-negative using the transformation c,> = cij + nj- ~j [1, 91, to
make all the costs non-negative. This transformation leaves the weight of the cycles

unchanged but enables us to apply a label setting algorithm (e.g. [7]) to the remain-

Algorithms for finding K-best perfect matchings 163

ing pairs of nodes. The formal algorithm can be stated as follows:

Label Correcting - Label Setting Algorithm (ALCLS)

Input. G’= (V, E) graph; c: E+R cost function

Step 1. Compute shortest path tree T(p) rooted at any node PE V using a

Label Correcting algorithm.

Let d(p, i) be the distance of node i from p.
Let 7~; be the optimal dual variables.

The length of the minimum cycle including p is given by d(p, q)+ cqP
such that (p, q) E A4.

Set c,> = cij + 7~; - ~j to transform the costs such that c,;> 0.

Step 2. For i E S, i+p repeat

Apply the label setting algorithm with cl> as the new costs to find the

shortest distances between i and j, V{ (i, j) 1 (i, j) EM}.
Obtain the length of each minimum cycle.

Step 3. Find the minimum weight of all the cycles and the cycle corresponding

to that will be the shortest cycle.

This algorithm will perform better than the Floyd-Warshall algorithm, since com-

putationally label correcting and label setting algorithms are faster when compared

to the Floyd-Warshall algorithm [4]. The worst case complexity is the summation

of the bound for one label correcting iteration which is 0(n3) and at most n/2

iterations of a label setting algorithm each of order 0(n2), resulting in an complex-

ity of O(n3) for obtaining a second best matching.

In the last approach we avoid the label correcting algorithm by using the linear

programming formulation of the weighted bipartite matching problem which is

maximize 5, wjjXjj

subject to g X;j= 1 bi’,

X;jrO V(i, j)EE.

The dual of this linear program is

minimize C pj+ C aj
i .i

subject to pj + oj> w;, Ui,(i,)EE,

pi, oJ unrestricted.

The complementary slackness condition is

X,=l1~;+aj=Wij V(i,j)EE.

(1)

(2)

164 C. R. Chegireddy, H. W. Hamacher

Since MI is the best matching in G = (S, T, E) and pj and aj are the optimum dual

matching variables for i E S, j E T, we have

,U;+q,ZW[j or -W,+~;+~jjO (3)

from the dual feasibility of equation (1).

Moreover (i, j) EM, implies Xi1 = 1 and therefore

wij-fi,-o,=o (4)

from the complementary slackness condition. Recall that in the construction of the

G’ for transforming the alternating cycle problem to the shortest cycle problem we

defined

Cj] = l WiJ if (i,j)~M,,

- W;j if (i,j)$Mt (5)

and we want to find a feasible dual vector T[;, zj for id S, Jo T such that

c,~ - nei+ ~jj’0 for the shortest path problem. Now we define

77,~ -p, if YES,
(6)

7lj = aj if je T.

There are two cases possible here.

Case I: i E S, j E T. From (5) and (6) we have

Case 2: i E T, j E S. From (4), (5) and (6) we have

Hence the TI, defined as in (6) are dually feasible for the shortest path formula-

tion. We can now revise the cij to c,> = cy - n, + njr 0, using the optimum matching

dual variables, and avoid the application of label correcting algorithm in ALCLS.

Since the complexity of each application of label setting algorithm is O(n2), the

complexity of obtaining the second best matching is 0(n3).

All the approaches presented above for bipartite graphs have a worst case com-

plexity of 0(n3) for finding the second best matching. From the analysis of Section

2, the overall complexity of finding the K best bipartite matchings will be

0(n3 + (K- l)n3), which is O(Kn3), the best bound that we could obtain so far.

Note that this is the same as the bound obtained using the sensititivity analysis ap-

proach for the non-bipartite matchings.

Algorithms for finding K-best perfect matchings 165

Acknowledgement

We thank Ulrich Derigs for several comments clarifying the sensitivity analysis

for matching problems.

References

[1] M.S. Bazaraa and R.W. Langley, A dual shortest path algorithm, J. SIAM 26 (3) (1974) 496-501.

[2] W.H. Cunningham and A.B. Marsh III, A primal method for solving minimal perfect matching

problems, Math. Programming Study 8 (1978) 50-72.

[3] J.R. Brown, Shortest alternating path algorithms, Networks 4 (1974) 314-334.

[4] C.R. Chegireddy and H.W. Hamacher, Algorithms and programs for K-th best weighted bipartite

matching problem, Technical Report, Dept. of Industrial & Systems Engineering, University of

Florida, 1985, to appear.

[5] U. Derigs, A shortest augmenting path method for solving minimal perfect matching problems, Net-

works 11 (1981) 379-390.

[6] U. Derigs, Shortest augmenting paths and sensititivity analysis for optimal matchings, Report No

82222-OR, Universitat Bonn, April 1982.

[7] E.W. Dijkstra, A note on two problems in connection with graphs, Numer. Math. 1 (1959) 269-271.

[S] J. Edmonds, Paths, trees and flowers, Canad. J. Math. 17 (1965) 449-467.

[9] J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for network flow

problems, J. ACM 19 (2) (1972) 248-264.

[lo] R.W. Floyd, Algorithm 97: shortest path, Comm. ACM 5 (6) (1962) 345.

[ll] G. Gallo and S. Pallotino, Shortest path methods: A unifying approach, Netflow 83 (1983).

[12] H.W. Hamacher and M. Queyranne, K-best solutions to combinatorial optimization problems,

Research Report No 83-5 Industrial and Systems Engineering Department, University of Florida,

1983 Ann. Oper. Res. 4 (1985/6) 123-143.

[13] E.L. Lawler, A procedure for computing the K-th best solutions to discrete optimization problems

and its application to the shortest path problem, Management Sci. 18 (7) (1972) 401-405.

[14] E.L. Lawler, Combinatorial Optimization: Networks and Matroids (Holt, Rinehart and Winston,

New York, 1976).

1151 K.G. Murty, An algorithm for ranking all the assignments in order of increasing cost, Operations

Research 16 (1968) 682-687.

[16] U. Pape, Algorithm 562: shortest path lengths, ACM Trans. Math. Software 5 (1980) 450-455.

[17] G.M. Weber, Sensitivity analysis of optimal matchings, Networks 11 (1981) 41-56.

