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In the K-best perfect matching problem (KM) one wants to find K pairwise different, perfect 

matchings M,, . . . . Mk such that w(M,)? w(Mz) ?...z w(Mk)? w(M), vA4#M,, M2, . . . . Mk. 

The procedure discussed in this paper is based on a binary partitioning of the matching solution 

space. We survey different algorithms to perform this partitioning. The best complexity bound 

of the resulting algorithms discussed is 0(Kn3), where n is the number of nodes in the graph. 

1. Introduction 

Let G = (V, E) represent an undirected graph with vertex set V and edge set E. A 

matching MC E has the property that no two edges in M share the same node. Let 

/S/ denote the cardinality of any set S. A matching is said to be perfect if 

IMl=IVj/2. w e assume without loss of generality that 1 VI is even and that a perfect 

matching always exists. Let w : e+ R + U (0) be a weight function assigning non- 

negative weights for all e E E. (If some of the weights w(e) are negative, we can com- 

pute W= min{ w(e) 1 eE E} and update all weights by w(e) = w(e) - W to make them 

nonnegative.) The weight of any matching M is denoted by CeEMw(e). The pro- 

blem of finding the K-best perfect matchings (KM) can now be stated as finding all 

distinct perfect matchings M,, . . . , Mk such that w(!&,) 2 w(M2) 2 =.. 2 w(Mk) 2 

w(M), VM#M,, M2, . . . , Mk. We discuss algorithms for finding such K-best 

perfect matchings given G and positive integer K. 
In Section 2 we introduce a general procedure to solve KM which is formulated 

in terms of finding second best solutions in some restricted solution spaces. We pre- 

sent the complexity of the general procedure and propose alternative implementa- 

tions for finding such second best solutions in Section 3. For each of these 

alternatives, we present the worst case complexity of solving KM. In Section 4, the 

special case of bipartite matchings is considered. 
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2. General algorithm for K-best perfect matchings 

The general algorithm for finding the K-best perfect matchings can easily be obtain- 

ed from the algorithm for any K-best combinatorial optimization problem [12, 131. 

Lawler [I31 presented a generalization of Murty’s algorithm [15] for ranking the 

solutions of an assignment problem, and their partitioning strategy is slightly dif- 

ferent from the way the solution space is partitioned in the procedure presented by 

Hamacher and Queyranne [ 121. 

Let B denote the whole solution space and let sets I and 0 be subsets of E. We 

define a restricted solution space Qn, o = (M: M a perfect matching, 1~ M, 

OnM=0}. The algorithm builds the sets I and 0 iteratively and finds the second 

best matchings in each of the two branches created in every iteration, as shown in 

Fig. 1. 

Fig. 1. Partitioning of solution space. 

Let MP and NP be the best and second best matchings at any node selected in 

iteration k for further partitioning. We choose an element in MP - NP, say ek, and 

set Ik+t =IP, ‘P”PU {ek} and Ok+, = P 0 U {ek} (see Fig. 1). By iteratively apply- 

ing such a branching procedure we obtain the following algorithm for KM. 

K-Best Matching Algorithm (AKM) 

Input. 

Output. 

Start. 

Step 1. 

Step 2. 

G = (V, E) undirected graph; w(e) 2 0, e E E edge weights; 

K total number of ranked solutions desired 

K-best matchings M,, . . . , Mk 

Z,=O,=O; k=l 

Find best matching M, and second best matching N, in G. 

Let w(N,,)=min{w(N,)Ii=l,...,k} 

If w(N,) = - 03 
Then stop {Only k - 1 matchings exist} 
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Else Mk = NP 

If k=K 

Then stop 
Else Choose ek E MP - NP 

Step 3. Update sets I and 0 

Z k+l =ZP9 ZP=Z& {ek), Ok+, =O,U @kl 
Set k=k+l 

Step 4. Compute the second best matchings NP and Nk in Qcl,,Oi, and Q2,L,o,,, 

resp. 

Goto Step 2 

The fact that this algorithm indeed gives us the K-best perfect matchings can be 

verified very easily. We can observe that at each iteration k, {OI,,o, 1 i = 1, . . . , k} is 

a partition of the solution space Q. We are choosing the best solution among all 

these restricted solution spaces excluding Ml, . . . , Mk_ , , yielding the desired result, 

namely Mk. 
We see that the algorithm AKM involves finding the second best matchings in 

some restricted solution spaces as specified in Step 4. If the complexity of solving 

one such second best matching problem is A,, the overall complexity of KM is of 

the order 0(n3 + (K- l)A,), since at most (K- 1) many such problems need to be 

solved and since the complexity of solving the best perfect matching is 0(n3) 

[8, 14, 51. We propose three different approaches to solve such a problem in the next 

section. For the special case of bipartite matchings, one of these approaches, the 

shortest alternating cycle approach is detailed in Section 4. 

3. Algorithms for second best perfect matchings 

In this section we outline different approaches to obtain a second best perfect 

matching in a solution subspace 52 ,, o given the best matching in that subspace. For 

this purpose, we transform this problem into finding a second best matching in a 

graph without any restrictions by restructuring the graph as follows. We delete all 

the end nodes of eE I and their incident edges. For the edges e E 0, we set 

w(e) = - 03. It can be easily seen that the second best solution of this subproblem 

together with the edges in I, provided its weight is larger than - 03, will yield the 

second best solution in Q2,, o. From now on, we assume that the graph G = (V, E) 

has been transformed as above and we will deal with the problem of finding a se- 

cond best perfect matching without any restrictions. The general algorithm can be 

thought of as one partitioning step in the algorithm of Lawler and Murty [13, 151. 

Second Best Matching Algorithm (ASBM) 

Input. G graph; M, = {e,, . . . , e,} best matching 

output. M2 second best matching 
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Step I. 
Step 2. 
Step 3. 
Step 4. 
Step 5. 
Step 6. 

Comment. 
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i= 1 

Delete { cj 1 j< i} and all incident nodes and adjacent edges from G. 

Set w(ei) = - 03 

Find best matching N, in the new graph 

Let N;=N,U {ejl j<i} 

If i<n 
Then i=i+ 1; goto Step 2 

Else M2=Np where w(N,)=max{w(N,)Ij=l,...,n}. 

If w(N,) = - 03, then G has only a single perfect matching. 

We can see that the essential idea of this algorithm is to partition the solution 

space by forbidding one by one edges in the best matching and forcing in all the 

edges considered before into the solution. We can derive different algorithms from 

this basic procedure as follows. 

Solving from Scratch. Step 4 of the above algorithm is a matching problem. An ob- 

vious implementation is to solve each problem from scratch, making each iteration 

an O(n3) procedure. Since we have at most n/2 many such iterations, the complexi- 

ty of ASBM is 0(n4). From the analysis in Section 2, we obtain the overall com- 

plexity of AKM to be 0(n3 + (K- l)n4), which is 0(Kn4). This bound can be 

improved. 

Sensitivity Analysis Approach. We describe the application of sensitivity analysis to 

obtain a second best matching in the situation where one edge weight is set to - 03 

and that edge is in the matching. If we denote with r the family of all odd node 

sets with cardinality not less than three and if 6(T) = {(i, j) E El i E T, je T], 
a(T) = {(i, j) E E) i and j E T}, VTE I-, then the linear programming (LP) formula- 

tion of the matching problem [8] can be stated as 

Maximize c WljX;, 
(;,J)EE 

subject to C X,= 1 Vi, 
j:(t,j)eE 

c X,jL 1 VTE r, 
U,J)EW) 

x;jzo b’(i,j) E E. 

It is well known that this LP has a O-l optimal solution M* and XjT= 1 if and only 

if (i, j) EM*. 
The dual of this linear program is 
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The complementary slackness conditions become 

X;~=l+w,--,Ll,-/l- (;,j)E&), Jr=0 V(&j)EE, 

pr=O or c X;_=l VTEl-. 
(Lj)E6(T) 

We define new weights w,> = W- W;j, where W> w,~, for all (i, j) E E. With this 

weights, we can use the Shortest Augmenting Path procedure (SAP) [5] to solve the 

above problem and obtain the optimal solution, which is primally and dually feasi- 

ble and satisfies the complementary slackness conditions. Let us denote by (r, t), the 

edge whose weight is being changed to - 03. We set w:, = W- w,( = M and adopt 

the sensitivity analysis procedure of Derigs [6], to find the next best matching as 

follows. 

Step 1. If the vertex r is shrunk in a pseudonode 

Then Expand the blossoms containing r 
Modify the dual variables accordingly. 

Step 2. Set w:[=o3, 6=w:t-pu,-,uul- CCI,,,E6CTj~T=03, ,uC(r=iUr+6=03 

Step 3. Make vertex r the new root and grow an alternating tree, using the SAP 

procedure. 

In Step 1, the expansion of all the blossoms containing node r, can be done as 

follows [6]. We add two nodes a and b and two edges (a, r) and (b, t) with the dual 

variables and the edge weights as shown in Fig. 2 and find an alternating path bet- 

ween the two nodes a and b using the SAP procedure. 

Fig. 2. Auxiliary graph to expand blossoms containing r. 

The edge weight whl is set such that when edge (b, t) becomes part of the alter- 

nating path, all the blossoms containing r are expanded. A detailed discussion of 

how the edge weights affect the expansion of blossoms is given in Weber [17]. 

The advantage of this procedure as opposed to the solution from scratch lies in 
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the fact that finding the second best matching involves at most two shortest augmen- 

ting path iterations, which are O(n2) operations. The complexity of ASBM reduces 

to O(n3) making the overall complexity of algorithm AKM O(Kn3). 

An alternative implementation of the sensitivity analysis is to use the primal 

algorithm of Cunningham and Marsh [2]. We make use of an equivalent blossom 

inequality in the LP formulation, which can be stated as 

This will result in a dual constraint pj+ pj+ C TET,(i,jIEa(T)~~~ Wij, and the com- 
plementary slackness conditions become 

FIT>- c A-,=+(ITl - 1). 
(i,j)EaV) 

When we set wrl= -M (M a large integer) the complementary slackness condi- 

tion rVrt=-w,t+pu,+fiut+ C (Tr t)Ea(T)il(r= 0 is obviously violated. We update pT by 

#4= -(p,+ c (Tr t)Ea(TJ pu,+ M) to reestablish it. Therefore we get a pair of primal 

and dual solutions of the matching LP which is primally feasible, satisfies the com- 

plementary slackness conditions and violates the dual constraint only for the edges 

with r as an end point. A single iteration of Cunningham and Marsh’s primal 

algorithm will therefore yield an updated optimal solution in O(n2). The resulting 

implementation of AKM is therefore of order O(Kn’). Both the implementations 

of the sensitivity analysis approach are an order of magnitude better than solving 

the second best matching problems from scratch for small values of K (i.e., 

polynomial in n). If K itself is exponential, which is not uncommon in some applica- 

tions, the effect of this reduction will be substantial in terms of actual computa- 

tional time. 

Shortest Alternating Cycles. A path from node i to node j is the sequence of edges 

from i to j. A path is said to be a cycle if i and j happen to be the same node. A 

path is said to be alternating with respect to a given matching M, if the edges in the 

path alternately are in the matching M and not. The symmetric difference of two 

sets is indicated by the symbol 0 and is the set of all elements contained in either 

one of them but not in both. We can obtain the second best matching by interchang- 

ing the matched and unmatched edges along the shortest weight alternating cycle 

with respect to the best matching as illustrated by the following theorem. 

Given a matching M and an alternating cycle C with respect to M, define the in- 

cremental weight 6(C) as 

d(C)=w(CnM)-w(C-M) 

where 6(C) indicates the increase or decrease in the weight of the resulting matching 

when the edges along C are interchanged in M. The shortest alternating cycle with 
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respect to A4 is the alternating cycle whose 6(C) is minimal. The following theorem 

shows the use of shortest alternating cycles in finding second best matchings. 

Theorem 1. Let M, be the best matching in G and let C, be the shortest alternating 

cycle. Then the symmetric difference M, @C, is a second best matching in G. 

Proof. Let M be any matching different from M, in G. Since both M and M, are 

perfect matchings the M, @M decomposes into pairwise disjoint cycles D,, . . . , D, 

which alternately contain edges in M and M, . Now the weight of A4 can be written 

as w(M)=w(M,)-6(D,)-... -6(D,). Since C, is the shortest alternating cycle 

with respect to M, we have S(C,)SS(D;) for i=l,...,q. Hence 

w(M,@C,)= w(M,)-6(C,)r w(M), making M, @C, a second best matching. 

Notice that the shortest alternating cycle C, of M, satisfies 6(C,)>O. Otherwise a 

contradiction to the optimality of MI would follow. q 

An immediate consequence of the preceding theorem is to reduce the problem of 

finding the second best matching to the problem of finding the shortest alternating 

cycle. There are some algorithms to find the shortest alternating cycles in general 

graphs developed by Brown [3] but they are very tedious computationally as they 

employ a Branch and Bound strategy and have a worst case bound which is ex- 

ponential. We can use the sensitivity analysis approach by forbidding each of the 

edges in the matching in turn, and combine it with the shortest alternating path ob- 

tained in that iteration, to find the shortest alternating cycle involving that par- 

ticular edge. The minimum over all such cycles yields the shortest alternating cycle 

with respect to the best matching. But this process will not improve the worst case 

bound or the number of computations required. For the special case of bipartite 

matchings, we can reduce the problem of finding a shortest alternating cycle to that 

of finding a shortest cycle in a transformed graph. This is demonstrated in the next 

section. 

4. K-best bipartite matchings 

The graph G is called a bipartite graph if the nodes can be partitioned into two 

sets S and T, such that no two nodes in S and Tare adjacent, i.e., all edges extend 

between S and T. We denote such a bipartite graph as G = (S, T, E) where V= S U T. 

We make use of the matching M to construct a directed graph G’ = (S, T, E’) 

from G. The node sets remain the same and the arc e’E E’ is oriented from S to T 

if edge e is not in M and the cost of e’, denoted by c(e’)= -w(e). The arcs e’ in 

E’ corresponding to eeA4 get an orientation from T to S and a cost c(e’) = w(e). 

Theorem 2. A graph G’ constructed as above with respect to the best matching M,, 

does not contain any negative cycles. 
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Proof. Suppose it does. Notice that any cycle in G’ corresponds to an alternating 

cycle in G, because we can leave S only on unmatched edges and get back to S on 

matched edges which are the only arcs with the reverse orientation and the weight 

of this cycle is equal to the incremental weight 6(C) of Theorem 1. We also know 

that we can augment along this cycle and obtain a different matching M, with 

w(A&) > w(M,) which contradicts the assumption that M, is the best matching. 0 

Finding Shortest Cycles in G’. For bipartite graphs we have reduced the problem 

of finding a shortest alternating cycle in G to the problem of finding a shortest cycle 

in G’ where some edge weights are negative but no negative cycles exist. We can 

therefore apply the Floyd-Warshall algorithm to find shortest paths between all 

pairs of nodes [lo]. The cycle corresponding to the minimal weight diagonal entry 

after the final iteration will yield the shortest cycle. The computational complexity 

of the Floyd-Warshall algorithm is 0(n3) and it is well known that this bound is 

tight. It also has a storage requirement of 0(n2). 

A second approach involves finding the shortest distance between nodes p and q 
such that (p, q) EM. If d(p, q) denotes the distance of the node p to node q, 
d(p, q) + cq,, will give us the length of the shortest cycle including the nodes p and 

q. We can find the shortest distance for each such pair of nodes (p, q) E A4 and the 

minimum over all the d(p, q) + cyP will yield the shortest cycle. This approach can 

also be classified as a sequential all pairs problem [l 11. This involves one iteration 

of a label correcting algorithm [16], which allows the edge costs to be non-positive, 

to compute the shortest path tree rooted at an arbitrary node. The node labels cor- 

respond to the dual variables in the following linear programming formulation of 

the shortest path problem from the node p to node q: 

minimize C C;jXij 
ij 

subject to 1 if i=p, 

C xlj- I$ xki= 0 if i#p and i#q, 
.i -1 if i=q, 

X,jLO Vi,i,j. 

The dual of this problem is 

maximize 
nP-% 

subject to 71; - ~~ % Cij ~~, j, 

Tci unrestricted. 

After the first iteration we make use of the node labels or dual variables to modify 

the costs to be non-negative using the transformation c,> = cij + nj- ~j [ 1, 91, to 
make all the costs non-negative. This transformation leaves the weight of the cycles 

unchanged but enables us to apply a label setting algorithm (e.g. [7]) to the remain- 
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ing pairs of nodes. The formal algorithm can be stated as follows: 

Label Correcting - Label Setting Algorithm (ALCLS) 

Input. G’= (V, E) graph; c: E+R cost function 

Step 1. Compute shortest path tree T(p) rooted at any node PE V using a 

Label Correcting algorithm. 

Let d(p, i) be the distance of node i from p. 
Let 7~; be the optimal dual variables. 

The length of the minimum cycle including p is given by d(p, q)+ cqP 
such that (p, q) E A4. 

Set c,> = cij + 7~; - ~j to transform the costs such that c,;> 0. 

Step 2. For i E S, i+p repeat 

Apply the label setting algorithm with cl> as the new costs to find the 

shortest distances between i and j, V{ (i, j) 1 (i, j) EM}. 
Obtain the length of each minimum cycle. 

Step 3. Find the minimum weight of all the cycles and the cycle corresponding 

to that will be the shortest cycle. 

This algorithm will perform better than the Floyd-Warshall algorithm, since com- 

putationally label correcting and label setting algorithms are faster when compared 

to the Floyd-Warshall algorithm [4]. The worst case complexity is the summation 

of the bound for one label correcting iteration which is 0(n3) and at most n/2 

iterations of a label setting algorithm each of order 0(n2), resulting in an complex- 

ity of O(n3) for obtaining a second best matching. 

In the last approach we avoid the label correcting algorithm by using the linear 

programming formulation of the weighted bipartite matching problem which is 

maximize 5, wjjXjj 

subject to g X;j= 1 bi’, 

X;jrO V(i, j)EE. 

The dual of this linear program is 

minimize C pj+ C aj 
i .i 

subject to pj + oj> w;, Ui,(i,)EE, 

pi, oJ unrestricted. 

The complementary slackness condition is 

X,=l1~;+aj=Wij V(i,j)EE. 

(1) 

(2) 
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Since MI is the best matching in G = (S, T, E) and pj and aj are the optimum dual 

matching variables for i E S, j E T, we have 

,U;+q,ZW[j or -W,+~;+~jjO (3) 

from the dual feasibility of equation (1). 

Moreover (i, j) EM, implies Xi1 = 1 and therefore 

wij-fi,-o,=o (4) 

from the complementary slackness condition. Recall that in the construction of the 

G’ for transforming the alternating cycle problem to the shortest cycle problem we 

defined 

Cj] = l WiJ if (i,j)~M,, 

- W;j if (i,j)$Mt (5) 

and we want to find a feasible dual vector T[;, zj for id S, Jo T such that 

c,~ - nei+ ~jj’0 for the shortest path problem. Now we define 

77,~ -p, if YES, 
(6) 

7lj = aj if je T. 

There are two cases possible here. 

Case I: i E S, j E T. From (5) and (6) we have 

Case 2: i E T, j E S. From (4), (5) and (6) we have 

Hence the TI, defined as in (6) are dually feasible for the shortest path formula- 

tion. We can now revise the cij to c,> = cy - n, + njr 0, using the optimum matching 

dual variables, and avoid the application of label correcting algorithm in ALCLS. 

Since the complexity of each application of label setting algorithm is O(n2), the 

complexity of obtaining the second best matching is 0(n3). 

All the approaches presented above for bipartite graphs have a worst case com- 

plexity of 0(n3) for finding the second best matching. From the analysis of Section 

2, the overall complexity of finding the K best bipartite matchings will be 

0(n3 + (K- l)n3), which is O(Kn3), the best bound that we could obtain so far. 

Note that this is the same as the bound obtained using the sensititivity analysis ap- 

proach for the non-bipartite matchings. 
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