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Area-Universal Rectangular Layouts∗

David Eppstein† Elena Mumford‡ Bettina Speckmann‡ Kevin Verbeek‡

Abstract

A rectangular layout is a partition of a rectangle into
a finite set of interior-disjoint rectangles. A layout is
area-universal if any assignment of areas to rectan-
gles can be realized by a combinatorially equivalent
rectangular layout. We identify a simple necessary
and sufficient condition for a rectangular layout to be
area-universal: a rectangular layout is area-universal
if and only if it is one-sided. More generally, given
any rectangular layout L and any assignment of areas
to its regions, we show that there can be at most one
layout (up to horizontal and vertical scaling) which is
combinatorially equivalent to L and achieves a given
area assignment. We also investigate similar ques-
tions for perimeter assignments. The adjacency re-
quirements for the rectangles of a rectangular layout
can be specified in various ways, most commonly via
the dual graph of the layout. We show how to find
an area-universal layout for a given set of adjacency
requirements whenever such a layout exists.

1 Introduction

Motivation. Raisz [7] introduced rectangular car-
tograms in 1934 as a way of visualizing spatial infor-
mation, such as population or economic strength, of a
set of regions like countries or states. Rectangular
cartograms represent geographic regions by rectan-
gles; the positioning and adjacencies of the rectangles
are chosen to suggest their geographic locations, while
their areas are chosen to represent the numeric values
being communicated by the cartogram.

Often more than one numeric quantity should be
displayed as a cartogram for the same set of ge-
ographic regions. To make the visual comparison
of multiple related cartograms easier, it is desirable
that the arrangement of rectangles be combinatori-
ally equivalent in each cartogram, although the rela-
tive sizes of the rectangles will differ. This naturally
raises the question: when is this possible?
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Figure 1: Three area assignments.

Mathematically, a rectangular cartogram is a rec-
tangular layout : a partition of a rectangle into finitely
many interior-disjoint rectangles. We call a layout L
area-universal if, for any area requirement for its re-
gions, some combinatorially equivalent layout L′ has
regions with the specified areas. For instance, the
four-region rectangular layout shown above with three
different area assignments is area-universal: any four
numbers can be used as the areas of the rectangles in
a combinatorially equivalent layout.

Area-universal rectangular layouts are useful not
only for displaying multiple side-by-side cartograms
for different sets of data on the same regions, but
also for dynamically morphing from one cartogram
into another. Additionally, rectangular layouts have
other applications in which being able to choose a lay-
out first and then later assigning varying areas while
keeping the combinatorial type of the layout fixed may
be an advantage: in circuit layout applications of rec-
tangular layouts [10], each component of a circuit may
have differing implementations with differing tradeoffs
between area, energy use, and speed; and in building
design it is desirable to be able to determine the areas
of different rooms according to their function [3].

Results. We identify a simple necessary and suf-
ficient condition for a rectangular layout to be area-
universal: a rectangular layout is area-universal if and
only if it is one-sided. One-sided layouts are charac-
terized via their maximal line segments. A line seg-
ment of a layout L is formed by a sequence of con-
secutive inner edges of L. A segment of L that is not
contained in any other segment is maximal. In a one-
sided layout every maximal line segment smust be the

s

Figure 2: The left layout is one-sided, but the right
one is not: s is not the side of any rectangle.
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side of at least one rectangle R; any vertices interior
to s are T-junctions that all have the same orienta-
tion, pointing away from R (Fig. 2). Given an area-
universal layout L and an assignment of areas for its
regions, we describe a numerical algorithm that finds
a combinatorially equivalent layout L′ whose regions
have a close approximation to the specified areas.

More generally, given any rectangular layout L and
any assignment of areas to its regions, we show that
there can be at most one layout (up to horizontal and
vertical scaling) which is combinatorially equivalent
to L and achieves the given area assignment. This re-
sult was previously known only for two special classes
of rectangular layouts, namely sliceable layouts (lay-
outs that can be obtained by recursively partitioning a
rectangle by horizontal and vertical lines) and L-shape
destructable layouts [9] (layouts where the rectangles
can be iteratively removed such that the remaining
rectangles form an L-shaped polygon).

We also investigate perimeter cartograms in which
the perimeter of each rectangle is specified rather than
its area. Again, any rectangular layout can have
at most one combinatorially equivalent layout for a
given perimeter assignment; it is possible in polyno-
mial time to find this equivalent layout, if it exists.

The rectangles of a rectangular cartogram should
have the same adjacencies as the regions of the under-
lying map. Hence, the dual graph of the cartogram
should be the same as the dual graph of the map. The
dual of a rectangular cartogram or layout must be a
triangulated plane graph satisfying certain additional
conditions. We call such graphs proper graphs. Every
proper graph G has at least one rectangular dual : a
rectangular layout L whose dual graph is G. How-
ever, not every proper graph has an area-universal
rectangular dual; Rinsma [8] described an outerpla-
nar proper graph G and an assignment of weights to
the vertices of G such that no rectangular dual of G
can have these weights as the areas of its regions. We
describe algorithms that, given a proper graph G, find
an area-universal rectangular dual of G if it exists.
These algorithms are not fully polynomial, but are
fixed-parameter tractable for a parameter related to
the number of separating four-cycles in G.

In the following we can only sketch our results, a
full version of the paper can be found here [2].

2 Preliminaries

A rectangular layout is a partition of a rectangle into
a finite set of interior-disjoint rectangles, where no
four regions meet in a single point. We denote the
dual graph of a layout L by G(L). A layout L such
that G = G(L) is called a rectangular dual of graph
G. G(L) is a plane triangulated graph and is unique
for any layout L. Not every plane triangulated graph
has a rectangular dual, and if it does, then the rectan-

Figure 3: A proper graph G, an extended graph E(G),
and a rectangular dual L of E(G).

gular dual is not necessarily unique. Kozminski and
Kinnen [6] proved that a plane triangulated graph G
has a rectangular dual if and only if we can augment G
with four external vertices in such a way that the ex-
tended graph E(G) has the following two properties:
(i) every interior face is a triangle and the exterior
face is a quadrangle; (ii) E(G) has no separating tri-
angles. If a plane triangulated graph G allows such an
augmentation, then we say that G is a proper graph.
A rectangular dual of an extended graph of a proper
graph G can be constructed in linear time [5] and it
immediately implies a rectangular dual for G (Fig. 3).

An extended graph E(G) determines uniquely
which vertices of a proper graph G are associated with
the corner rectangles of every rectangular dual of G
that corresponds to E(G). For a given proper graph
there might be several possible extended graphs and
hence several possible corner assignments. In many
cases we assume that a corner assignment, and hence
an extended graph, has already been fixed, but if this
is not the case then it is possible to test all corner
assignments in polynomial time.

A rectangular layout L naturally induces a labeling
of its extended dual graph E(G). If two rectangles of
L share a vertical segment, then we color the corre-
sponding edge in E(G) blue (solid) and direct it from
left to right. Correspondingly, if two rectangles of L
share a horizontal segment, then we color the corre-
sponding edge in E(G) red (dashed) and direct it from
bottom to top (Fig. 4). This labeling has the following
properties: (i) around each inner vertex in clockwise
order we have four contiguous sets of incoming blue
edges, outgoing red edges, outgoing blue edges, and
incoming red edges; (ii) the left exterior vertex has

Figure 4: A rectangular layout and the regular edge
labeling of its extended dual.
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Figure 5: Two inequivalent but order-equivalent rec-
tangular layouts.

only blue outgoing edges, the top exterior vertex has
only red incoming edges, the right exterior vertex has
only blue incoming edges, and the bottom exterior
vertex has only red outgoing edges.

Such a labeling is called a regular edge labeling. It
was introduced by Kant and He [5] who showed that
every regular edge labeling of an extended graph E(G)
uniquely defines an equivalence class of rectangular
duals of a proper graph G. Given any extended graph
E(G), a regular edge labeling for E(G) can be found
in linear time and the rectangular dual defined by it
can also be constructed in linear time [5].

Two layouts L and L′ are equivalent, denoted by
L ∼ L′, if they induce the same regular edge labeling
of the same dual graph. We say that a rectangular
layout L with n rectangles R1, ..., Rn realizes a weight
function w : R1, ..., Rn → R, w(i) > 0 as a rectangular
cartogram if there exists a layout L′ ∼ L such that for
any 1 ≤ i ≤ n the area of rectangle Ri equals w(ri).
Correspondingly, we say that a layout L realizes w as
a perimeter cartogram if there exists a layout L′ ∼ L
such that the perimeter of each rectangle of L′ equals
the prescribed weight. A layout L is area-universal if
it realizes every possible weight function.

It is convenient to define a weaker equivalence rela-
tion on layouts than equivalence, which we call order-
equivalence. For a layout L, we define a partial order
on the vertical maximal segments, in which s1 ≤ s2
if there exists an x-monotone curve that has its left
endpoint on s1, its right endpoint on s2, and that does
not cross any horizontal maximal segments. We de-
fine a partial order on the horizontal segments in a
symmetric way. L and L′ are order-equivalent if their
rectangles and maximal segments correspond one-for-
one in a way that preserves these partial orders.

Observation 1 A rectangular layout with n rectan-
gular regions has n− 1 maximal segments.

3 There can be only one

We first show that for any combination of layout and
weight function there can be at most one rectangular
cartogram or perimeter cartogram. More generally, if
two geometrically different but order-equivalent lay-
outs share the same bounding box, there is a rectan-
gle in one of the layouts that is larger in both of its
dimensions than the corresponding rectangle in the
other layout. Thus, let L and L′ be two geometri-
cally different order-equivalent layouts with the same

Figure 6: Two equivalent layouts in which corre-
sponding rectangles have the same perimeter.

bounding box. The push graph H of L and L′ is a
directed graph that has a vertex for each rectangle
in L and an edge from vertex Ri to vertex Rj if the
rectangles Ri and Rj are adjacent and the maximal
segment in L that separates Ri from Rj is shifted in
L′ towards Rj and away from Ri.

Lemma 1 The push graph for L and L′ contains a
node with no incoming or no outgoing edges.

Theorem 2 For any layout L and any weight func-
tion w there is at most one layout L′ (up to affine
transformations) that is order-equivalent to L and
that realizes w as a rectangular cartogram.

For perimeter, such strong uniqueness does not hold:
there are equivalent layouts that are not affine trans-
formations of each other in which the perimeters of
corresponding rectangles are equal (Fig. 6). However,
if we fix the outer bounding box of the layout, the
same proof method works:

Theorem 3 For any layout L and any weight func-
tion w there is at most one layout L′ that is order-
equivalent to L with the same bounding box and that
realizes w as a perimeter cartogram.

More generally the same result holds for any type
of cartogram in which rectangle sizes are measured
by any strictly monotonic function of the height and
width of the rectangles.

4 Area-universality and one-sidedness

All layouts are area-universal in a weak sense involv-
ing order-equivalence in place of equivalence. The
proof of Lemma 4 uses Theorem 2 to invert the map
W from vectors of positions of segments in a layout to
vectors of rectangle areas, along a line segment from
the area vector of L to the desired area vector.

Lemma 4 For any layout L and weight function w,
there exists a layout L′ that has a square outer rec-
tangle, is order-equivalent to L, and realizes w as a
rectangular cartogram.

One may find L′ by hill-climbing to reduce the Euclid-
ean distance between the current weight function
and the desired weight function. No layout L can
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be locally but not globally optimal, because within
any neighborhood of L the inverse image of the line
segment connecting its weight vector to the desired
weight vector contains layouts that are closer to w.
Alternatively, one can find L′ by a numerical proce-
dure that follows this inverse image by inverting the
Jacobean matrix of W at each step. We do not know
whether it is always possible to find L′ exactly by
an efficient combinatorial algorithm (as may easily be
done for the subclass of sliceable layouts), or whether
the general solution involves roots of high-degree poly-
nomials that can be found only numerically.

Theorem 5 The following three properties of a lay-
out L are equivalent:

1. L is area-universal.

2. Every layout that is order-equivalent to L is
equivalent to L.

3. L is one-sided.

5 Finding perimeter cartograms

Although our proof of uniqueness for rectangular car-
tograms generalizes to perimeter, our proof that any
layout and weight function have a realization as an
order-equivalent cartogram does not generalize: there
exist one-sided layouts and weight functions that can-
not be realized as a perimeter cartogram (Fig. 7).

2
5

2

2

2

Figure 7: The outer rectangles contribute at most
one unit of shared boundary to the perimeter of the
central rectangle, which is too large to be realized.

Nevertheless, one can test in polynomial time
whether a solution exists for any layout and weight
function. The technique involves describing the con-
straints on the perimeters of rectangles as linear
equalities that reduce the dimension of the space of
layouts to at most two, and forming a low-dimensional
linear program from inequality constraints expressing
the equivalence to L of the other layouts within this
low-dimensional space.

Theorem 6 For any layout L and any weight func-
tion w we can find a layout L′ that is equivalent to L
and that realizes w as a perimeter cartogram, if one
exists.

The same algorithm can be used to find an order-
equivalent layout rather than an equivalent layout,
by restricting the inequality constraints to the subset
that determine order-equivalence.

6 Finding one-sided layouts

Recall that every proper triangulated plane graph has
a rectangular dual, but not necessarily a one-sided
rectangular dual. Since one-sided duals are area-
universal, it is of interest to find a one-sided dual for
a proper graph if one exists. Our overall approach
is, first, to partition the graph on its separating four-
cycles; second, to represent the family of all layouts
for a proper graph as a distributive lattice, following
Fusy [4]; third, to represent elements of the distrib-
utive lattice as partitions of a partial order accord-
ing to Birkhoff’s theorem [1]; fourth, to characterize
the ordered partitions that correspond to one-sided
layouts; and fifth, to search in the partial order for
partitions of this type. This approach does not yield
polynomial time algorithms, but they are polynomial
whenever the number of separating four-cycles in the
given proper graph is bounded by a fixed constant, or
more generally when such a bound can be given sepa-
rately within each of the pieces found in the partition
we find in the first stage of our algorithms.
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