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Abstract We study the following problem: preprocess a set O of objects into a
data structure that allows us to efficiently report all pairs of objects from O that
intersect inside an axis-aligned query range Q. We present data structures of size
O(n · polylog n) and with query time O((k + 1) · polylog n) time, where k is the
number of reported pairs, for two classes of objects inR2: axis-aligned rectangles and
objects with small union complexity. For the 3-dimensional case where the objects
and the query range are axis-aligned boxes in R

3, we present a data structure of size
O(n

√
n · polylog n) and query time O((

√
n + k) · polylog n). When the objects and

query are fat, we obtain O((k + 1) · polylog n) query time using O(n · polylog n)

storage.

Keywords Data structures · Computational geometry · Intersection searching

1 Introduction

The study of geometric data structures is an important subarea within computational
geometry, and range searching forms one of the most widely studied topics within
this area [4,15]. In a range-searching query, the goal is to report or count all points

B Ali D. Mehrabi
amehrabi@win.tue.nl

Mark de Berg
mdberg@win.tue.nl

Joachim Gudmundsson
joachim.gudmundsson@gmail.com

1 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands

2 School of IT, University of Sydney, Sydney, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-017-0384-3&domain=pdf


3254 Algorithmica (2018) 80:3253–3269

from a given setO that lie inside a query range Q. The more general version, whereO
contains other objects than just points and the goal is to report all objects intersecting Q,
is often called intersection searching and it has been studied extensively as well.
A common characteristic of almost all range-searching and intersection-searching
problems studied so far, is that whether an object oi ∈ O should be reported (or
counted) depends only on oi and Q. In this paper we study a range-searching variant
where we are interested in reporting pairs of objects that satisfy a certain criterion.
In particular, we want to preprocess a set O = {o1, . . . , on} of n objects in R

2 or R3

such that, given a query range Q, we can efficiently report all pairs of objects oi , o j

that intersect inside Q.
Our motivation for studying these problems is the following. Suppose we are given

a collection of n discrete trajectories representing the movements of, say, people. Each
trajectory is a sequence of locations (points inR2)with a corresponding time stamp; for
discrete trajectories the movement in between consecutive locations is not considered.
The query we are interested in is: which pairs of people met inside a given rectangular
query region Q? A natural way to define that two people meet is to require that they
are within a given distance D from each other.When we restrict our attention to a fixed
time instance, we can place a disk of radius D/2 around the location of each person
and the question becomes: which pairs of disks intersect within Q?When we consider
the �∞ metric, we get the same problem but now for squares instead of disks. A more
general version of the query also specifies a time interval I : which pairs of people met
within a region Q′ during time interval I? To deal with the fact that the time stamps
may not be synchronized for the different trajectories, we assume that each location
is valid for some interval of time. If we then model time as the third dimension and
consider distances in the �∞ metric, we get the question: which pairs of boxes (which
are the product of a square around a location and a time interval) intersect with the
query box Q := Q′ × I?

An obvious approach to our problem is to precompute all intersections between the
objects and store the intersections in a suitable intersection-searching data structure.
This may give fast query times, but in the worst case any two objects intersect, so
�(n2) is a lower bound on the storage for this approach. The main question is thus:
can we achieve fast query times with a data structure that uses subquadratic (and
preferably near-linear) storage in the worst case?

Rahul et al. [21] answered this question affirmatively when Q is an axis-aligned
rectangle in R

2 and the objects are axis-aligned line segments. Their data structure
uses O(n log n) storage and answers queries in time O(log n + k), where k is the
number of answers. Our contribution is to obtain similar results for a broader class of
objects than those of [21], namely axis-aligned rectangles and objects with small union
complexity. For axis-aligned rectangles our data structure uses O(n log n) storage and
has O(log n log∗ n + k log n) query time,1 where k is the number of reported pairs
of objects. Our data structure for classes of objects with small union complexity—
disks and other types of fat objects are examples—uses O(U (n) log n) storage, where
U (n) is maximum union complexity of n objects from the given class, and it has

1 Here log∗ n denotes the iterated logarithm.
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O((k+1) log2 n) query time.We also consider a 3-dimensional version of the problem,
where the range Q and the objects inO are axis-aligned boxes. Here our data structure
uses O(n

√
n log n) storage and O((

√
n+k) log2 n) query time.When the query range

and the objects are fat, we improve this to O(n log2 n) storage and O((k + 1) log2 n)

query time.
Related work The paper by Rahul et al. [21] mentioned above studies the same

problem as we do (in a less general setting). There are a few more papers dealing with
related problems. Das et al. [10] have studied the problem of preprocessing a set H of n
horizontal and V of n vertical segments in the plane into a data structure such that given
an axis-parallel query rectangle Q and a parameter δ, all the triples (h, v, p) where
h ∈ H , v ∈ V , and p is an endpoint of either of the segments and h ∩ v ∩ Q �= ∅ and
dist (h ∩ v, p) � δ can be reported efficiently. Their data structure needs O(n log3 n)

space and is able to answer the desired queries in O(log2 n+#answers) time. Abam et
al. [1], Gupta [16], and Gupta et al. [17] have presented data structures that return the
closest pair inside a query range.

2 Axis-Aligned Objects

In this section we study the case where the set O is a set of n axis-aligned rectangles
in R

2 or boxes in R
3. We assume throughout the paper that the objects in O as well

as the query rectangles are closed sets. Our approach for these cases is the same and
uses the following two-step query process.

1. Compute a seed set O∗(Q) ⊆ O of objects such that the following holds: for any
two objects oi , o j inO such that oi and o j intersect inside Q, at least one of oi , o j

is in O∗(Q).
2. For each seed object oi ∈ O∗(Q), perform an intersection query with the range

oi ∩ Q in the set O, to find all objects o j �= oi intersecting oi inside Q.

For this approach to be efficient,O∗(Q) should not contain toomany objects that do
not give an answer in Step 2. For the planar case we will ensure |O∗(Q)| = O(1+ k),
where k is the number of pairs of objects intersecting inside Q, while for the 3-
dimensional case we will have |O∗(Q)| = O(

√
n + k).

2.1 The Planar Case

LetO = {r1, . . . , rn} be a set of axis-aligned rectangles inR2. The key to our approach
is to be able to efficiently find the seed setO∗(Q). To this end, during the preprocessing
we compute a set W of axis-aligned witness segments. For each rectangle ri ∈ O we
define at most ten witness segments, two for each edge of ri and two in the interior of
ri , as follows—see also Fig. 1.

Let e be an edge of ri , and consider the set S(e) := e ∩ (∪ j �=i r j
)
, that is, the part

of e covered by the other rectangles. The set S(e) consists of a number of sub-edges
of e. If e is vertical then we add the topmost and bottommost sub-edge from S(e) (if
any) to W ; if e is horizontal we add the leftmost and rightmost sub-edge to W . The
two witness segments in the interior of ri are defined as follows. Suppose there are
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Fig. 1 Gray areas are
intersections of other rectangles
with ri black segments indicate
witness segments

vertical edges (belonging to other rectangles r j ) completely crossing ri from top to
bottom. Then we put e′ ∩ ri into W , where e′ is the rightmost such crossing edge.
Similarly, we put into W the topmost horizontal edge e′′ completely crossing ri from
left to right. Our data structure to find the seed setO∗(Q) now consists of the following
components.

– We store the witness set W in a data structure D1 that allows us to report the
witness segments that intersect the query rectangle Q.

– We store the vertical edges of the rectangles inO in a data structureD2 that allows
us to decide if the set V(Q) of edges that completely cross a query rectangle Q
from top to bottom, is non-empty. The data structure should also be able to report
all (rectangles corresponding to) the edges in V(Q).

– We store the horizontal edges of the rectangles in O in a data structure D3 that
allows us to decide if the setH(Q) of edges that completely cross a query rectangle
Q from left to right, is non-empty.

– We store the set O in a data structure D4 that allows us to report the rectangles
that contain a query point q.
Step 1 of the query procedure, where we compute O∗(Q), proceeds as follows.
1(i) Perform a query in D1 to find all witness segments intersecting Q. For each

reported witness segment, insert the corresponding rectangle into O∗(Q).
1(ii) Perform queries in D2 and D3 to decide if the sets V(Q) and H(Q) are both

non-empty. If so, report all rectangles corresponding to edges in V(Q) and put
them into O∗(Q).

1(iii) For each corner point q of Q, perform a query inD4 to report all rectangles in
O that contain q, and put them into O∗(Q).

The following lemma proves the correctness of our query procedure.

Lemma 1 Let ri , r j be two rectangles inO such that (ri ∩ r j )∩ Q �= ∅. Then at least
one of ri , r j is put into O∗(Q) by the above query procedure.

Proof Let I := (ri ∩r j )∩Q. Each edge of I is either contributed by ri or r j , or by Q.
Let E(I ) denote the (possibly empty) set of edges of ri and r j that contribute an edge
to I . We distinguish two cases, with various subcases.

Case A:At least one edge e ∈ E(I ) has an endpoint, v, inside Q. Now the witness
sub-edge on e closest to v must intersect Q and, hence, the corresponding rectangle
will be put into O∗(Q) in Step 1(i).
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Fig. 2 Example of Case B-3-I

Case B: All edges in E(I ) cross Q completely. We now have several subcases.
Case B- 1: |E(I )| � 1. Now Q contributes at least three edges to I , so at least one

corner of I is a corner of Q. Hence, both ri and r j are put into O∗(Q) in Step 1(iii).
Case B- 2: |E(I )| � 3. Since each edge of E(I ) crosses Q completely and

|E(I )| � 3, both V(Q) and H(Q) are non-empty. Thus at least one of ri and r j
is put into O∗(Q) in Step 2(ii).

Case B- 3: |E(I )| = 2. Let e1 and e2 denote the segments in E(I ). If one of
e1, e2 is vertical and the other is horizontal, we can use the argument from Case B-2.
It remains to handle the case where e1 and e2 have the same orientation, say vertical.

Case B- 3- i: Edges e1 and e2 belong to the same rectangle, say ri , as in Fig. 2.
If e1 has an endpoint, v, inside r j , then e1 has a witness sub-edge starting at v that
intersects Q, so ri is put into O∗(Q) in Step 1(i). If r j contains a corner of Q then r j
will be put intoO∗(Q) in Step 1(iii). In the remaining case the right edge of r j crosses
Q and there are vertical edges completely crossing r j (namely e1 and e2). Hence, the
rightmost edge completely crossing r j , which is a witness for r j , intersects Q. Thus
r j is put into O∗(Q) in Step 1(i).

Case B- 3- ii: Edge e1 is an edge of ri and e2 is an edge of r j (or vice versa).
Assume without loss of generality that the y-coordinate of the top endpoint of e1 is
less than or equal to the y-coordinate of the top endpoint of e2. Then the top endpoint,
v, of e1 must lie in r j , and so e1 has a witness sub-edge starting at v that intersects Q.
Hence, ri is put into O∗(Q) in Step 1(i). �

In the second part of the query procedure we need to report, for each rectangle ri in
the seed set O∗(Q), the rectangles r j ∈ O intersecting ri ∩ Q. Thus we store O in a
data structure D5 that can report all rectangles intersecting a query rectangle. Putting
everything together we obtain the following theorem.

Theorem 1 LetO be a set of n axis-aligned rectangles inR2. There is a data structure
that uses O(n log n) storage and can report, for any axis-aligned query rectangle Q,
all pairs of rectangles ri , r j inO such that ri intersects r j inside Q in O((k+1) log n)

time, where k denotes the number of answers.

Proof For the data structure D1 on the set W we use the data structure developed by
Edelsbrunner et al. [13], which uses O(n log n) preprocessing time and storage, and
has O(log n+#answers) query time. For data structureD2 (and, similarly,D3) we note
that a vertical segment si := xi ×[yi , y′

i ] crosses Q := [xQ, x ′
Q]×[yQ, y′

Q] if and only
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if the point (xi , yi , y′
i ) lies in the range [xQ, x ′

Q]×[−∞, yQ]×[y′
Q,∞]. Hence,we can

use the data structure ofAfshani et al. [2], which uses O(n log n/ log log n) storage and
has O(log n+#answers) query time. For data structureD4 we use the point-enclosure
data structure developed by Chazelle [6], which uses O(n) storage and can be used to
report all rectangles in O containing a query point in O(log n + #answers) time.

Note that |O∗(Q)| � 2k + 4 where k is the total number of reported pairs. Indeed,
each rectangle inO∗(Q) intersects at least one other rectangle inside Q and for every
reported pair we put at most two rectangles into the seed set; the extra term “+4” is
because in Step 1 (iii) we may report at most one rectangle per corner of Q that does
not have an intersection inside Q. Hence, the time for Step 1 is O(log n+|O∗(Q)|) =
O(log n + k).

It remains to analyze Step 2 of the query procedure, where we need to find for a
given ri ∈ O∗(Q) all r j ∈ O such that ri ∩Q intersects r j . First notice that a rectangle
r j intersects a rectangle r ′

i := ri ∩ Q if and only if (i) a corner of r j is inside r ′
i , or

(ii) a corner of r ′
i is inside r j , or (iii) an edge of r j intersects an edge of r ′

i . Thus D5
consists of three components: All r j satisfying (i) can be found in O(log n+#answers)
time using a range tree with fractional cascading [11], which uses O(n log n) storage.
All r j satisfying (ii) and (iii) can be found using, respectively, the data structure by
Chazelle [6] and the one by Edelsbrunner et al. [13]. Thus the running time of Step 2
is

∑
ri∈O∗(Q) O(log n + ki ), where ki denotes the number of rectangles in O that

intersect ri inside Q, and so the total time for Step 2 is O((k + 1) log n). �

2.2 The 3-Dimensional Case

We now study the case where the set O of objects and the query range Q are axis-
aligned boxes in R

3. We first present a solution for the general case, and then an
improved solution for the special case where the input as well as the query are cubes.
Both solutions use the same query strategy as above: we first find a seed set O∗(Q)

that contains at least one object oi from every pair that intersects inside Q and then
we find all other objects intersecting oi inside Q.
The general case Let O := {b1, . . . , bn} be a set of axis-aligned boxes. The pairs of
boxes bi , b j intersecting inside Q come in three types: (i) bi ∩ b j fully contains Q,
(ii) bi ∩ b j lies completely inside Q, (iii) bi ∩ b j intersects a face of Q.

Type (i) is easy to handle without using seed sets: we simply store O in a data
structure for 3-dimensional point-enclosure queries [19], which allows us to report all
boxes bi ∈ O containing a query point in O(log2 n · log log n + #answers) time. If
we query this structure with a corner q of Q and report all pairs of boxes containing q
then we have found all intersecting pairs of Type (i).

Lemma 2 Wecanfindall intersecting pairs of boxes of Type (i) in O(log2 n·log log n+
k) time, where k is the number of such pairs, with a structure of size O(n log∗ n).

Remark The query bound in Lemma 2 can be improved to O(log2 n + k) at the cost
of O(n log n) storage, by using the data structure of Afshani et al. [3] instead of that
of Rahul [19].
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For Type (ii) we proceed as follows. Note that a vertex of bi ∩ b j is either a
vertex of bi or b j , or it is the intersection of an edge e of one of these two boxes
and a face f of the other box. To handle the first case we create a set W of witness
points, which contains for each box bi all its vertices that are contained in at least
one other box. We store W in a data structure for 3-dimensional orthogonal range
reporting [3]. In the query phase we then query this data structure with Q, and put
all boxes corresponding to the witness vertices inside Q into the seed setO∗(Q). For
the second case we show next how to find the intersecting pairs e, f where e is a
vertical edge (that is, parallel to the z-axis) and f is a horizontal face (that is, parallel
to the xy-plane); the intersecting pairs with other orientations can be found in a similar
way.

Let E be the set of vertical edges of the boxes inO and let F be the set of horizontal
faces. We sort F by z-coordinate—we assume for simplicity that all z-coordinates of
the faces are distinct—and partition F into O(

√
n) clusters: the cluster F1 contains

the first
√
n faces in the sorted order, the second cluster F2 contains the next

√
n faces,

and so on. We call the range between the minimum and maximum z-coordinate in
a cluster its z-range. For each cluster Fi we store, besides its z-range and the set Fi
itself, the following information. Let Ei ⊆ E be the subset of edges that intersect
at least one face in Fi , and let Ei denote the set of points obtained by projecting
the edges in Ei onto the xy-plane. We store Ei in a data structure D(Ei ) for 2-
dimensional orthogonal range reporting. Note that for a query box Q whose z-range
contains the z-range of Fi we have: an edge e ∈ E intersects at least one face f ∈
Fi inside Q if and only if e ∈ Ei and e lies in Q, the projection of Q onto the
xy-plane.

A query with a box Q = [x1 : x2]×[y1 : y2]×[z1 : z2] is now answered as follows.
We first find the clusters Fi and Fj whose z-range contains z1 and z2, respectively, and
we put (the boxes corresponding to) the faces in these clusters into the seed setO∗(Q).
Next we perform, for each i < t < j , a query with the projected range Q in the data
structureD(Et ). For each of the reported points e we put the box corresponding to the
edge e into the seed set O∗(Q). Finally, we remove any duplicates from the seed set.
This leads to the following lemma.

Lemma 3 Using a data structure of size O(n
√
n logε n) we can find in time

O(
√
n log n + k) a seed set O∗(Q) of O(

√
n + k) boxes containing at least one

box from every intersecting pair of Type (ii), where k is the number of such pairs. Here
ε > 0 is an arbitrary small, but fixed, positive constant.

Proof The Type (ii) intersections bi ∩ b j either have a vertex that is a vertex of bi
or b j inside Q, or they have an edge-face pair intersecting inside Q. To find seed
objects for the former pairs we used O(n(log n/ log log n)2) storage and O(log n+ k)
query time [3], and we put O(k) boxes into the seed set. For the latter pairs, we used
an approach based on clusters. For each cluster Fi we have a data structure D(Ei ),
namely the 2-dimensional orthogonal range reporting structure of Chazelle [7], that
uses O(n logε n) storage, giving O(n

√
n logε n) storage in total. Besides the O(

√
n)

boxes in the two clusters Fi and Fj , we put boxes into the seed set for the clusters Ft
with i < t < j , namely when querying the data structuresD(Et ). This means that the
same box may be put intoO∗(Q) up to

√
n times. (Note that these duplicates are later
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removed.) However, each copy we put into the seed set for some Ft corresponds to a
different intersecting pair. Together with the fact that the query time in each D(Et ) is
O(log n + #answers) this means the total query time and size of the seed set are as
claimed. �

It remains to handle the Type (iii) pairs, in which bi ∩ b j intersects a face of Q. We
describe how to find the pairs such that bi ∩ b j intersects the bottom face of Q; the
pairs intersecting the other faces can be found in a similar way.

We first sort the z-coordinates of the horizontal faces of the boxes inO. For 1 � i �
2
√
n, let hi be a horizontal plane containing the (i

√
n)th horizontal face. These planes

partitionR3 into O(
√
n) horizontal slabs�0, . . . , �2

√
n+1. We call a box b ∈ O short

at�i if it has a horizontal face inside�i , and we call it long if it completely crosses�i .
For each �i , we store the short boxes in a list. We store the projections of the long
boxes onto the xy-plane in a data structure D(�i ) for the 2-dimensional version of
the problem, namely the structure of Theorem 1.

A query with the bottom face of Q is now answered as follows. We first find the
slab �i containing the face. We put all short boxes of �i into our seed set O∗(Q).
We then perform a query with Q, the projection of Q onto the xy-plane, in the data
structureD(�i ). For each answer we get from this 2-dimensional query—that is, each
pair of projections intersecting inside Q—we directly report the corresponding pair
of long boxes. (There is no need to go through the seed set for these pairs.) This leads
to the following lemma for the Type (iii) pairs.

Lemma 4 Using a data structure of size O(n
√
n log n) we can find in time O(

√
n +

k log n) a seed set O∗(Q) of O(
√
n) boxes plus a collection B(Q) of pairs of boxes

intersecting inside Q such that, for each pair of Type (iii) boxes, either at least one of
these boxes is in O∗(Q) or bi , b j is a pair in B(Q).

In Step 2 of our query procedure we need to report all boxes b j ∈ O intersecting a
query box B := Q∩bi , where bi ∈ O∗(Q). Note that B intersects b j if (i) B contains
a vertex of b j , or (ii) a vertex of B is contained in b j , or (iii) an edge e of B intersects
a face of b j , or (iv) a face f of B intersects an edge of b j . We build a data structure
D∗ consisting of several components to handle all of the cases.

All r j satisfying (i) and (ii) can be found using a 3-dimensional range reporting data
structure and the 3-dimensional point-enclosure data structure of Afshani et al. [3].
Next we present the components of D∗ needed to deal with (iii) and (iv).

For (iii), assume e is parallel to the z-axis and consider the faces of b j parallel
to the xy-plane. Then we can use a 2-level structure whose first level is a tree on the
z-coordinates of the faces, and whose second-level structures are 2-dimensional point-
enclosure structures [6] on the projections onto the xy-plane. Note that e intersects a
face f if and only if the z-coordinate of f lies in the z-range of e, and the projection of
e onto the xy-plane lies inside the projection of f onto the xy-plane. A query with an
edge e is now answered as follows.We first query the first level of tree with the z-range
of e to locate O(log n) canonical nodes whose union covers the set of all faces whose
z-coordinates lie in the queried range. We then query the associated structures of each
of the selected nodes with the projection of e onto the xy-plane to report all faces that
contain the point corresponding to the projected edge. Since the point-enclosure data
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structure uses O(n log n) storage and has O(log n) query time, this component of D∗
needs O(n log2 n) storage and a query can be answered in O(log2 n+#answers) time.

For (iv), we build a 2-level structure whose first level is a segment tree storing all
the edges of all boxes. Each node ν of the first level is then associated with a 2D range
tree storing the points corresponding to projections of the edges stored at the subtree
rooted at ν onto the xy-plane. Now a query with a face f parallel to xy-plane can be
answered as follows.We first query the first level of the structure with the z-coordinate
of f to find a collection of O(log n) canonical nodes that together contain the set of
edges whose z-ranges contain the queried y-coordinate. We then query the associated
structures of each of the selected nodes with the projection of f onto the xy-plane
to report all edges whose corresponding projections onto the xy-plane lie inside the
queried projected range. Since this component of D∗ needs O(n log2 n) storage and
a query can be answered in only O(log2 n + #answers) time we end up with the
following theorem.

Theorem 2 LetO be a set of n axis-aligned boxes inR3. Then there is a data structure
that uses O(n

√
n log n) storage and that allows us to report, for any axis-aligned

query box Q, all pairs of boxes bi , b j in O such that bi intersects b j inside Q in
O((

√
n + k) log2 n) time, where k denotes the number of answers.

As observed by Rahul [20] one can prove a conditional lower bound for our 3-
dimensional queries by a reduction from set intersection queries. The set intersection
query problem is to preprocess m sets S1, S2, . . . , Sm of positive real numbers into
a data structure that supports set intersection queries asking whether or not the sets
Si and S j are disjoint, for given query indices i and j . Davoodi et al. [9] make the
following conjecture. Here Õ(·) and �̃(·) hide polylog-factors.
Conjecture 1 Given a collection of m sets of N real numbers in total, where the
maximum cardinality of the sets in polylogarithmic in m, any real-RAM data structure
that supports set intersection queries in Õ(t) time without using the floor function,
requires �̃((N/t)2) storage, for 1 � t � N.

Davoodi et al. [9] use this conjecture for a conditional lower bound for diameter
queries. As observed by Rahul [20], we can also use it to prove a conditional lower
bound for our problem, as described next.

Let S1, S2, . . . , Sm be a collection of sets and let N = ∑m
i=1 |Si |. We transform the

sets into a set of 2N boxes inR3.Wemap each element zr ∈ Si into two boxes b1(i, zr )
andb2(i, zr ) as follows, lettingM := 2m+1.We setb1(i, zr ) := [2i−1, 2i]×[0, M]×
zr , andwe set b2(i, zr ) := [0, M]×[2i−1, 2i]×zr . Note that the boxes of all elements
of Si will have the same xy-projections. Only their z-ranges are different. See Fig. 3a
for an example. In addition, notice that for zr ∈ Si and zr ∈ S j with i �= j the boxes
b1(i, zr ) and b2( j, zr ) (as well as the boxes b1( j, zr ) and b2(i, zr )) intersect each other
at z = zr . Also, for zr ∈ Si and z′r ∈ S j with zr �= z′r none of the corresponding boxes
of Si and S j intersect each other, since they have different z-ranges. Therefore, to verify
the disjointness of Si and S j , we ask to check if there is a pair of boxes that intersect
each other inside the range [2i−3/4, 2i −1/4]×[2 j −3/4, 2 j −1/4]×(−∞,+∞).
See Fig. 3b for an illustration.

The above reduction implies the following result.
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Fig. 3 Left figure: the two boxes at height zr (resp. zr ′ ) are the boxes b1(i, zr ) and b2(i, zr ) (resp.
b1(i, zr ′ ), b2(i, zr ′ )) for some integer 1 � i � m and zr ∈ Si (resp. zr ′ ∈ Si ). Right figure: the two blue
boxes are the boxes b1(i, zr ) and b2(i, zr ) for some integer 1 � i � m and zr ∈ Si . The two red boxes are
the boxes b1( j, zr ) and b2( j, zr ) for some integer 1 � j � m with j �= i and zr ∈ S j . Either of the two
red-blue intersections verifies the non-disjointness of Si and S j (Color figure online)

Theorem 3 Suppose we have a data structure storing a setO of n axis-aligned boxes
in R

3 that uses s(n) storage and that can decide in t (n) time for a given query axis-
aligned box Q if there is a pair of boxes from O that intersect inside Q. Then we can
build a data structure of size s(2N ) supporting set intersection queries in t (2N ) time,
for input sets containing N elements in total.

Now Theorem 3 along with Conjecture 1 imply the following result.

Theorem 4 Let O be a set of n axis-aligned boxes in R
3. Assuming Conjecture 1,

any real-RAM data structure that can decide for a given query box Q in Õ(t) time,
and without using the floor function, if there is a pair of boxes from O that intersect
inside Q, requires �̃((n/t)2) storage.

Fat boxes Next we obtain better bounds when the boxes inO and the query box Q are
fat, that is, when their aspect ratio—the ratio between the length of the longest edge
and the length of the shortest edge—is bounded by a constant α. First we consider the
case of cubes.

Let O := {c1, . . . , cn} be a set of n cubes in R
3 and let Q be the query cube. We

compute a set W of witness points for each cube ci , as follows. Let e be an edge
of ci , and consider the set S(e) := e ∩ (∪ j �=i c j

)
, that is, the part of e covered by the

other cubes. We put the two extreme points from S(e)—in other words, the two points
closest to the endpoints of e—into W . Similarly, we assign each face f of ci at most
four witness points, namely points from S( f ) := f ∩ (∪ j �=i c j ) that are extreme in
the axis-aligned directions parallel to f . For example, if f is parallel to the xy-plane,
then we take points of maximum and minimum x-coordinate in S( f ) and points of
maximum and minimum y-coordinate in S( f ) as witnesses. Our data structure to find
the seed set O∗(Q) now consists of the following components.

– We store the set W of witness points in a data structure D1 for 3-dimensional
orthogonal range queries.
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– We store O in a data structure D2 that allows us to report the set of cubes that
contain a query point q.

The first step of the query procedure, where we compute O∗(Q), now proceeds as
follows.

1(i) Perform a query in D1 to find all witness points inside Q. For each reported
witness point, insert the corresponding cube into O∗(Q).

1(ii) For each corner point q of Q, perform a query inD2 to report all cubes inO that
contain q, and put them into O∗(Q).

The next lemma proves correctness of this procedure.

Lemma 5 Let ci , c j be two cubes in O such that (ci ∩ c j ) ∩ Q �= ∅. Then at least
one of ci , c j is put into O∗(Q) by the above query procedure.

Proof Suppose ci ∩ c j intersects Q, and assume without loss of generality that ci is
not larger than c j . If ci or c j contains a corner q of Q then the corresponding cube will
be put into the seed set when we perform a point-enclosure query with q, so assume
ci and c j do not contain a corner. We have two cases.

Case A: ci does not intersect any edge of Q. Because ci and Q are cubes, this
implies that ci is contained in Q or ci intersects exactly one face of Q. Assume that
ci intersects the bottom face of Q; the cases where ci intersects another face and
where ci is contained in Q can be handled similarly. We claim that at least one of the
vertical faces of ci contributes a witness point inside Q. To see this, observe that c j
will intersect at least one vertical face, f , of ci inside Q, since c j intersects ci inside Q
and ci is not larger than c j . Hence, the witness point on f with maximum z-coordinate
will be inside Q. Thus ci will be put into O∗(Q).

Case B: ci intersects one edge of Q. (If ci intersects more than one edge of Q then
it would contain a corner of Q.) Assume without loss of generality that ci intersects
the bottom edge of the front face of Q; see Fig. 4. Observe that if c j intersects the top
face of ci then the witness point of the face with minimum x-coordinate is inside Q.
Similarly, if c j intersects the back face of ci (the face parallel to the yz-plane and with
minimum x-coordinate) then the witness point of the face withmaximum z-coordinate
is inside Q. Otherwise, as illustrated in Fig. 5, c j must have an edge e parallel to the

Fig. 4 Case B in the proof of
Lemma 5; c j is not shown
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Fig. 5 Cross-section of Q, ci ,
and c j with a plane parallel to
the xz-plane. The gray area
indicates Q ∩ ci in the
cross-section

y-axis that intersects ci inside Q, and one of the witness points on e will be inside
Q—note that e lies fully inside Q because c j does not contain a corner of Q. �

To handle fat boxes, we need the following observation.

Observation 1 Let b be a box of aspect ratio α. Then we can cover b by O(α2)

cubes such that any cube in the covering intersects at most three other cubes from the
covering.

To adapt the above solution to boxes of aspect ratio at most α, we cover each
box bi ∈ O by O(α2) cubes, and preprocess the resulting collection Õ of cubes as
described above, making sure we do not introduce witness points for pairs of cubes
used in the covering of the same box bi . To perform a query, we cover Q by O(α2)

query cubes and compute a seed set for each query cube. We take the union of these
seed sets, replace the cubes from Õ in the seed set by the corresponding boxes in O,
and filter out duplicates. This gives us our seed setO∗(Q) for the second phase of the
query procedure.

In the second phase we take each bi ∈ O∗(Q) and report all b j ∈ O intersect-
ing bi ∩ Q, using the data structure D∗ described just before Theorem 2. We obtain
the following theorem.

Theorem 5 Let O be a set of n axis-aligned boxes in R
3 of aspect ratio at most α.

Then there is a data structure that uses O(α2n log2 n) storage and that allows us to
report, for any axis-aligned query box Q of aspect ratio at most α, all pairs of cubes
ci , c j in O such that ci intersects c j inside Q in O(α2(k + 1) log2 n) time, where k
denotes the number of answers.

Proof The data structures D1 and D2 can be implemented such that they use
O(n(log n/ log log n)2) storage in total, and have O(log n + #answers) and
O(log2 n/ log log n + #answers) query time, respectively [3]. Since Step 2 of the
query procedure is the same as the second step of query procedure of Sect. 2.2 we
can use the data structures that we designed there, which need O(n log2 n) storage
and have O(log2 n + #answers) query time. The conversion of boxes of aspect ratio
α to cubes give an additional factor O(α2). Each input box now has O(α2) witness
points, but each witness point will be reported by at most three of the query cubes,
by Observation 1. Similarly, each corner of a query cube is inside at most two cubes
from the covering of any box bi ∈ O. �
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Fig. 6 An illustration of the
regions o∗

i for disks. Only o∗
1

and o∗
3 are shown. o∗

1 is shown
in red, and o∗

3 is shown in blue
(Color figure online)

3 Objects with Small Union Complexity in R
2

In the previous section we presented efficient solutions for the case where O consists
of axis-aligned rectangles. In this section we obtain results for classes of constant-
complexity objects (which may have curved boundaries) with small union complexity.
More precisely, we need that U (n), the maximum union complexity of any set of n
objects from the class, is small. This is for instance the case for disks (whereU (m) =
O(m) [18]) and for locally fat objects (where U (m) = m2O(log∗ m) [5]).

In Step 2 of the query algorithm of the previous section, we performed a range
query with oi ∩ Q for each oi ∈ O∗(Q). When we are dealing with arbitrary objects,
this will be expensive, so we modify our query procedure.

1. Compute a seed setO∗(Q) ⊆ O of objects such that, for any two objects oi , o j in
O intersecting inside Q, both oi and o j are inO∗(Q). (Contrary to before, where
we only required one of oi , o j to be in the seed set.)

2. Compute all intersecting pairs of objects in the set {oi ∩ Q : oi ∈ O∗(Q)} by a
plane-sweep algorithm.

Next we describe how to efficiently find O∗(Q), which should contain all objects
intersecting at least one other object inside Q, when the union complexity U (n) is
small. For each object oi ∈ O we define o∗

i := ⋃
o j∈O, j �=i (oi ∩ o j ) as the union of

all intersections between oi and all other objects in O. See Fig. 6 for an illustration.
Let |o∗

i | denote the complexity (that is, number of vertices and edges) of o∗
i .

Lemma 6
∑n

i=1 |o∗
i | = O(U (n)).

Proof Consider the arrangement induced by the objects in O. We define the level of
a vertex v in this arrangement as the number of objects fromO that contain v in their
interior. We claim that every vertex of any o∗

i is a level-0 or level-1 vertex. Indeed, a
level-k vertex for k > 1 is in the interior of more than one object, which implies it
cannot be a vertex of any o∗

i .
Since the level-0 vertices are exactly the vertices of the union ofO, the total number

of level-0 vertices is U (n). It follows from the Clarkson–Shor technique [8] that the
number of level-1 vertices is O(U (n)) as well. The lemma now follows, because each
level-0 or level-1 vertex contributes to at most two different o∗

i ’s. �
Our goal in Step 1 is to find all objects oi such that o∗

i intersects Q. To this end con-
sider the connected components of o∗

i . If o
∗
i intersects Q then one of these components

lies completely inside Q or an edge of Q intersects o∗
i .
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Lemma 7 We can find all o∗
i that have a component completely inside Q in O(log n+

k) time, where k is the number of pairs of objects that intersect inside Q, with a data
structure that uses O(U (n) log n) storage.

Proof For each oi , take an arbitrary representative point inside each component of o∗
i ,

and store all the representative points in a structure for orthogonal range reporting. By
Lemma 6we store O(U (n)) points, and so the structure for orthogonal range reporting
uses O(U (n) log n) storage.

The query time is O(log n + t), where t is the number of representative points
inside Q. This implies the query time is O(log n+k), because if o∗

i has ti representative
points inside Q then oi intersects �(ti ) other objects inside Q. This is true because
the objects have constant complexity, so a single object o j cannot generate more than
a constant number of components of o∗

i . �
Next we describe a data structure for reporting all o∗

i intersecting a vertical edge
of Q; the horizontal edges of Q can be handled similarly. The data structure is a
balanced binary tree T , whose leaves are in one-to-one correspondence to the objects
in O. For an (internal or leaf) node ν in T , let T (ν) denote the subtree rooted at ν

and let O(ν) denote the set of objects corresponding to the leaves of T (ν). Define
U(ν) := ∪oi∈O(ν)o∗

i . At node ν, we store a point-location data structure [12] on the
trapezoidal map of U(ν). (If the objects are curved, then the “trapezoids” may have
curved top and bottom edges.)

Lemma 8 The tree T uses O(U (n) log n) storage and allows us to report all o∗
i

intersecting a vertical edge s of Q in O((t + 1) log2 n) time, where t is the number of
answers.

Proof To report all o∗
i intersecting s we walk down T , only visiting the nodes ν such

that s intersects U(ν). This way we end up in the leaves corresponding to the o∗
i

intersecting s. To decide if we have to visit a child ν of an already visited node, we
do a point location with both endpoints of s in the trapezoidal map of U(ν). Now s
intersects U(ν) if and only if one of these endpoints lies in a trapezoid inside U(ν)

and/or the two endpoints lie in different trapezoids. Thus we spend O(log n) time for
the decision. Since we visit O(t log n) nodes, the total query time is as claimed.

To analyze the storage we claim that the sum of the complexities of U(ν) over all
nodes ν at any fixed height of T is O(U (n)). The bound on the storage then follows
because the point-location data structures take linear space [12] and the height of T
is O(log n). It remains to prove the claim. Consider a node ν at a given height h in
T . Lemma 9 argues that each vertex in U(ν) is either a level-0 or level-1 vertex of the
arrangement induced by the objects in O(ν), or a vertex of o∗

i , for some oi in O(ν).
The proof of the claim then follows from the following two facts. First, the number of
vertices of the former type is O(U (|O(ν)|)), which sums to O(U (n)) over all nodes
at height h. Second, by Lemma 6 the number of vertices of the latter type over all
nodes at height h sums to O(U (n)). �

Lemma 9 Each vertex in U(ν) is either a level-0 or level-1 vertex of the arrangement
induced by the objects in O(ν), or a vertex of o∗

i , for some oi in O(ν).
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(a) (b)

Fig. 7 Different cases in the proof of Lemma 9. To simplify the presentation we assumed the objects are
disks. o∗

i and o∗
j are surrounded by dark green and dark red, respectively. Regular arcs are in solid and

irregular arcs are in dashed. The blue vertex refers to vertex u in the proof. aCaseA in the Proof of Lemma 9.
b Case B in the Proof of Lemma 9 (Color figure online)

Proof DefineO∗(ν) := {o∗
i : oi ∈ O(ν)}. Any vertex u of U(ν) that is not a vertex of

some o∗
i ∈ O∗(ν) must be an intersection of the boundaries of some o∗

i , o
∗
j ∈ O(ν).

Note that the boundary ∂o∗
i of an object o∗

i consists of two types of pieces: regular
arcs, which are parts of the boundary of oi itself, and irregular arcs, which are parts
of the boundary of some other object ok . To bound the number of vertices of U(ν) of
the form ∂o∗

i ∩ ∂o∗
j we now distinguish three cases.

Case A: Intersections between two regular arcs. In this case u is either a level-0
vertex of the arrangement defined by O(ν) (namely when u is contained in no other
object ok ∈ O(ν)), or a level-1 vertex of that arrangement (when u is contained in a
single object ok ∈ O(ν)). Note that u cannot be contained in two objects from O(ν),
because then u would be in the interior of some o∗

k ∈ O∗(ν), contradicting that u is a
vertex of U(ν). See Fig. 7a.

Case B: Intersections between a regular arc and an irregular arc. Without loss of
generality, assume that u is the intersection of a regular arc of ∂o∗

i and an irregular arc
of ∂o∗

j . Note that this implies that u lies in the interior of o j . If there is no other object
ok ∈ O containing u then u would be a vertex of o∗

j , and if there is at least one object
ok ∈ O containing u then u would not lie on ∂o∗

j . So, under the assumption that u is
not already a vertex of o∗

j , Case B does not happen. See Fig. 7b.
Case C: Intersections between two irregular arcs. In this case u lies in the interior

of both oi and o j . But then u should also be in the interior of o∗
i and o∗

j , so this case
cannot happen. �

Putting everything together we obtain the following result.

Theorem 6 Let O be a set of n constant-complexity objects in R
2 from a class of

objects such that the maximum union complexity of any m objects from the class is
U (m). Then there is a data structure that uses O(U (n) log n) storage and that allows
us to report for any axis-aligned query rectangle Q, in O((k+1) log2 n) time all pairs
of objects oi , o j inO such that oi intersects o j inside Q, where k denotes the number
of answers.
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4 Discussion

We presented data structures for finding intersecting pairs of objects inside a query
rectangle. An obvious open problem is whether our bounds can be improved. In par-
ticular, one would hope that better solutions are possible for 3-dimensional boxes,
where we obtained O((k + √

n) · polylog n) query time with O(n
√
n log n) storage.

(We can reduce the query time to O((k + m) · polylog n), for any 1 � m � √
n, but

at the cost of increasing the storage to O((n2/m) · polylog n).)
Two settings where we have not been able to obtain efficient solutions are when

the objects are balls in R
3, and when they are arbitrary segments in R

2. Especially
the latter case is challenging. Indeed, suppose O consists of n/2 horizontal lines and
n/2 lines of slope 1. Suppose furthermore that the query is a vertical line � and that
we only want to check if � contains at least one intersection. A data structure for this
can be used to solve the following 3Sum-hard problem: given three sets of parallel
lines, decide if there is a triple intersection [14]. Thus it is unlikely that we can obtain
a solution with sublinear query time and subquadratic preprocessing time. However,
storage is not the same as preprocessing time. This raises the following question: is it
possible to obtain sublinear query time with subquadratic storage? Another interesting
question would be to see whether or not the query time in Theorem 1 can be improved
to O(log n + k).
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