

Finding pairwise intersections inside a query range

Citation for published version (APA):
Berg, de, M. T., Gudmundsson, J., & Mehrabi, A. D. (2015). Finding pairwise intersections inside a query range.
(arXiv; Vol. 1502.06079 [cs.DS]). s.n.

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/357352dc-22a0-403e-8c23-741ac70045f1

Finding Pairwise Intersections Inside a Query
Range?

Mark de Berg1, Joachim Gudmundsson2, and Ali D. Mehrabi1

1 Department of Computer Science, TU Eindhoven, the Netherlands
2 Department of Computer Science, University of Sydney, Australia

Abstract. We study the following problem: preprocess a set O of objects
into a data structure that allows us to efficiently report all pairs of
objects from O that intersect inside an axis-aligned query range Q.
We present data structures of size O(npolylogn) and with query time
O((k+1) polylogn) time, where k is the number of reported pairs, for two
classes of objects in the plane: axis-aligned rectangles and objects with
small union complexity. For the 3-dimensional case where the objects and
the query range are axis-aligned boxes in R3, we present a data structures
of size O(n

√
npolylogn) and query time O((

√
n + k) polylogn). When

the objects and query are fat, we obtain O((k + 1) polylogn) query time
using O(npolylog n) storage.

1 Introduction

The study of geometric data structures is an important subarea within com-
putational geometry, and range queries form one of the most widely studied
topics within this area [1,11]. In a range query, the goal is to report or count
all points from a given set O that lie inside a query range Q. The more general
version, where O contains other objects than just points and the goal is to report
all objects intersecting Q, is often called intersection searching and it has been
studied extensively as well.

A common characteristic of the range-searching and intersection-searching
problems studied so far, is that whether an object oi ∈ O should be reported (or
counted) depends only on oi and Q. In this paper we study a range-searching
variant where we are interested in reporting pairs of objects that satisfy a certain
criterion. In particular, we want to preprocess a set O = {o1, . . . , on} of n objects
in the plane such that, given a query range Q, we can efficiently report all pairs
of objects oi, oj that intersect inside Q. An obvious approach is to precompute
all intersections between the objects and store the intersections in a suitable
intersection-searching data structure. This may give fast query times, but in the
worst case any two objects intersect, so Ω(n2) is a lower bound on the storage
for this approach. The main question is thus: can we achieve fast query times

? M. de Berg and A. D. Mehrabi were supported by the Netherlands Organization for
Scientific Research (NWO) under grants 024.002.003 and 612.001.118, respectively.

ar
X

iv
:1

50
2.

06
07

9v
1

 [
cs

.D
S]

 2
1

Fe
b

20
15

2 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

with a data structure that uses subquadratic (and preferably near-linear) storage
in the worst case?

We answer this question affirmatively when Q is an axis-aligned rectangle
in the plane and the objects are either axis-aligned rectangles or objects with
small union complexity. For axis-aligned rectangles our data structure uses
O(n log n) storage and has O((k + 1) log n log∗ n) query time,3 where k is the
number of reported pairs of objects. Our data structure for classes of objects with
small union complexity—disks and other types of fat objects are examples—uses
O(U(n) log n) storage, where U(n) is maximum union complexity of n objects
from the given class, and it has O((k+1) log2 n) query time. We also consider a 3-
dimensional extension of the planar case, where the range Q and the objects in O
are axis-aligned boxes. Our data structures for this setting has size O(n

√
n log n)

and query time O((k+ 1) log2 log∗ n). For the special case where the query range
and the objects are fat, we present a data structure of O(n log2 n) size and
O((k + 1) log2 n log∗ n) query time.

2 Axis-aligned objects

In this section we study the case where the set O is a set of n axis-aligned
rectangles in the plane or boxes in R3. Our approach for these cases is the same
and uses the following two-step query process.

1. Compute a seed set O∗(Q) ⊆ O of objects such that the following holds: for
any two objects oi, oj in O such that oi and oj intersect inside Q, at least
one of oi, oj is in O∗(Q).

2. For each seed object oi ∈ O∗(Q), perform an intersection query with the
range oi ∩Q in the set O, to find all objects oj 6= oi intersecting oi inside Q.

To make this approach efficient, we need that the seed set O∗(Q) does not contain
too many objects that do not give an answer in Step 2. For the planar case our
seed set will satisfy |O∗(Q)| = O(1 + k), where k denotes the number of pairs
of objects in O that intersect inside Q, while for the 3-dimensional case we will
have |O∗(Q)| = O(

√
n+ k).

2.1 The planar case

Axis-aligned segments. As a warm-up exercise we start with the case where
O consists of axis-aligned segments. Let O = {s1, . . . , sn} be a set of axis-aligned
segments, and let V(O) and H(O) denote the set of vertical and horizontal
segments in O, respectively. We assume for simplicity that we are only interested
in intersections between horizontal and vertical segments; the solution can easily
be adapted to the case where we also want to report intersections between two
horizontal (or two vertical) segments.

3 Here log∗ n denotes the iterated logarithm.

Finding Pairwise Intersections Inside a Query Range 3

The key to our approach is to be able to efficiently find the seed set O∗(Q).
To this end, during the preprocessing we compute an O(n)-sized subset W of
the intersection points in O. We call intersection points in W witnesses. The
witness set W is defined as follows: for each line segment si ∈ V(O) we put the
topmost and bottommost intersection points of si with a segment from H(O) (if
any) into W ; for each line segment si ∈ H(O) we put the leftmost and rightmost
intersection points of si with a segment from V(O) (if any) into W . Since we
take at most two witness points for each line segment, the size of W is clearly at
most 2n.

Our data structure to find the seed set O∗(Q) now consists of three compo-
nents: First, we store W in a data structure D1 for 2-dimensional orthogonal
range reporting. Second, we store V(O) in a data structure D2 that allows us
to decide if there are any segments that completely cross the query rectangle Q
from top to bottom, and that can report all such segments. Third, we store H(O)
in a data structure D3 that allows us to decide if there are any segments that
completely cross the query rectangle Q from left to right.

Step 1 of the query procedure, where we compute O∗(Q), proceeds as follows.

1(i) Perform a query in D1 to find all witness points inside Q. For each reported
witness point, insert the corresponding segment into O∗(Q).

1(ii) Perform queries in D2 and D3 to decide if the number of segments crossing
Q completely from top to bottom, and the number of segments crossing Q
completely from left to right, are both non-zero. If so, report all segments
crossing completely from top to bottom, and put them into O∗(Q).

Lemma 1. Let si, sj be two segments in O such that si ∩ sj ∈ Q. Then at least
one of si, sj is put into O∗(Q) by the above query procedure.

Proof. If si crosses Q completely from left to right and sj crosses Q completely
from top to bottom (or vice versa), then one of them will be put into O∗(Q)
in Step 1(ii). Otherwise at least one of the segments, say si, has an endpoint v
inside Q. But then the intersection point on si closest to v, which is a witness
point, must lie inside Q. Hence, si is put into O∗(Q) in Step 1(i). �

In Step 2 of the query procedure we need to report, for each segment si in the
seed set O∗(Q), the segments sj ∈ O intersecting si ∩Q. Thus we store O in a
data structure D4 that can report all segments intersecting an axis-aligned query
segment. Putting everything together we obtain the following theorem.

Theorem 1. Let O be a set of n axis-aligned segments in the plane. Then there is
a data structure that uses O(n log n) storage and can report, for any axis-aligned
query rectangle Q, all pairs of segments si, sj in O such that si intersects sj
inside Q in O((k + 1) log n log∗ n) time, where k denotes the number of answers.

Proof. For the data structure D1 on the set W we can take a standard 2-
dimensional range tree [3], which uses O(n log n) storage. If we apply fractional
cascading [3], reporting the witness points inside Q takes O(log n+ #answers)
time. For D2 (and, similarly, D3) we note that a vertical segment si := xi× [yi, y

′
i]

4 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

crosses Q := [xQ, x
′
Q] × [yQ, y

′
Q] if and only if the point (xi, yi, y

′
i) lies in the

range [xQ, x
′
Q] × [−∞, yQ] × [y′Q,∞]. Hence, we can use the data structure

of Subramanian and Ramaswamy [13], which uses O(n log n) storage and has
O(log n log∗ n + #answers) query time. Hence, the supporting data structures
for Step 1 use O(n log n) storage, and finding the seed set takes O(log n log∗ n+
|O∗(Q)|) time.

It remains to analyze Step 2 of the query procedure. First notice that the
problem of finding for a given si ∈ O∗(Q) all sj ∈ O such that si ∩Q intersects
sj , is the same range-searching problem as Step 1(ii), except that the query range
is a line segment this time. Hence, we again transform the problem to a 3D
range-searching problem on points and use the data structure of Subramanian and
Ramaswamy [13]. Thus the running time of Step 2 is

∑
si∈O∗(Q)O(log log∗ n+ki),

where ki denotes the number of segments in O that intersect si inside Q. Since
|O∗(Q)| 6 2k where k is the total number of reported pairs—each segment in
O∗(Q) intersects at least one other segment inside Q and for every reported
pair we put at most two segments into the seed set—the time for Step 2 is
O(|O∗(Q)| log n log∗ n+ k) = O((k + 1) log n log∗ n). �

Axis-aligned rectangles. We now extend our approach to axis-aligned rectan-
gles. Let O = {r1, . . . , rn} be a set of axis-aligned rectangles in the plane. Similar
to the case of axis-aligned segments we need to find the seed set O∗(Q) efficiently.

ri

Fig. 1: Gray areas are in-
tersections with ri, black
segments indicate wit-
ness segments.

As before, we first define a witness set W . The
witnesses in W are now axis-aligned segments rather
than just points. For each rectangle ri ∈ O we define
at most ten witness segments, two for each edge of ri
and two in the interior of ri, as follows—see also Fig. 1.
Let e be an edge of ri, and consider the set S(e) :=
e∩ (∪j 6=irj), that is, the part of e covered by the other
rectangles. The set S(e) consists of a number of sub-
edges of e. If e is vertical then we add the topmost and
bottommost sub-edge from S(e) (if any) to W ; if e is
horizontal we add the leftmost and rightmost sub-edge
to W . The two witness segments in the interior of ri
are defined as follows. Suppose there are vertical edges
(belonging to other rectangles rj) completely crossing ri from top to bottom.
Then we put e′∩ri into W , where e′ is the rightmost such crossing edge. Similarly,
we put into W the topmost horizontal edge e′′ completely crossing ri from left to
right. Our data structure to find the seed set O∗(Q) now consists of the following
components.

– We store the witness set W in a data structure D1 that allows us to report
the set of segments that intersect the query rectangle Q.

– We store the vertical edges of the rectangles in O in a data structure D2 that
allows us to decide if the set V(Q) of edges that completely cross a query

Finding Pairwise Intersections Inside a Query Range 5

rectangle Q from top to bottom, is non-empty. The data structure should
also be able to report all (rectangles corresponding to) the edges in V(Q).

– We store the horizontal edges of the rectangles in O in a data structure D3

that allows us to decide if the set H(Q) of edges that completely cross a query
rectangle Q from left to right, is non-empty.

– We store O in a data structure D4 that allows us to report the set of rectangles
that contain a query point q.

Step 1 of the query procedure, where we compute O∗(Q), proceeds as follows.

1(i) Perform a query in D1 to find all witness segments intersecting Q. For each
reported witness segment, insert the corresponding rectangle into O∗(Q).

1(ii) Perform queries in D2 and D3 to decide if the sets V(Q) and H(Q) are both
non-empty. If so, report all rectangles corresponding to edges in V(Q) and
put them into O∗(Q).

1(iii) For each corner point q of Q, perform a query in D4 to report all rectangles
in O that contain q, and put them into O∗(Q).

The next lemma can be proved using a case analysis—see the Appendix A.

Lemma 2. Let ri, rj be two rectangles in O such that (ri ∩ rj) ∩Q 6= ∅. Then
at least one of ri, rj is put into O∗(Q) by the above query procedure.

In the second part of the query procedure we need to report, for each rectangle ri
in the seed set O∗(Q), the rectangles rj ∈ O intersecting ri ∩Q. Thus we store
O in a data structure D5 that can report all rectangles intersecting a query
rectangle. Putting everything together we obtain the following theorem.

Theorem 2. Let O be a set of n axis-aligned rectangles in the plane. There is a
data structure that uses O(n log n) storage and can report, for any axis-aligned
query rectangle Q, all pairs of rectangles ri, rj in O such that ri intersects rj
inside Q in O((k + 1) log n log∗ n) time, where k denotes the number of answers.

Proof. For the data structure D1 on the set W we use the data structure
developed by Edelsbrunner et al. [9], which uses O(n log n) preprocessing time
and storage, and has O(log n+ #answers) query time.

Data structure D2 (and, similarly, D3) answers the same type of query we
needed when O contains segments. Hence, we can use the same data structure [13]
which uses O(n log n) space and has O(log n log∗ n + #answers) query time.
For data structure D4 we use the point-enclosure data structure developed by
Chazelle [4], which uses O(n) storage and can be used to report all rectangles in
O containing a query point in O(log n+ #answers) time.

The analysis of Step 2 is similar to the analysis for the case of axis-aligned
segments, except that we now have |O∗(Q)| 6 2k+4, where k is the total number
of pairs of rectangles that will be reported; the extra term “+4” is because in
Step 1(iii) we may report at most one rectangle per corner of Q that does not
have an intersection inside Q. Again, finding the rectangles in O intersecting
ri∩Q, for a given ri ∈ O∗(Q), can be done in O(log n log∗ n+#answers), leading
to an overall query time of O((k + 1) log n log∗ n). �

6 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

2.2 The 3-dimensional case

We now study the case where the set O of objects and the query range Q are
axis-aligned boxes in R3. We first present a solution for the general case, and
then an improved solution for the special case where the input as well as the
query are cubes. Both solutions use the same query strategy as above: we first
find a seed set O∗(Q) that contains at least one object oi from every pair that
intersects inside Q and then we find all other objects intersecting oi inside Q.

The general case. Let O := {b1, . . . , bn} be a set of axis-aligned boxes. The
pairs of boxes bi, bj intersecting inside Q come in three types: (i) bi ∩ bj fully
contains Q, (ii) bi ∩ bj lies completely inside Q, (iii) bi ∩ bj intersects a face of Q.

Type (i) is easy to handle without using seeds sets: we simply store O in a
data structure for 3-dimensional point-enclosure queries [4], which allows us to
report all boxes bi ∈ O containing a query point in O(log2 n+ #answers) time.
If we query this structure with a corner q of Q and report all pairs of boxes
containing q then we have found all intersecting pairs of Type (i).

Lemma 3. We can find all intersecting pairs of boxes of Type (i) in O(log2 n+k)
time, where k is the number of such pairs, with a structure of size O(n log n).

For Type (ii) we proceed as follows. Note that a vertex of bi ∩ bj is either a
vertex of bi or bj , or it is the intersection of an edge e of one of these two boxes
and a face f of the other box. To handle the first case we create a set W of
witness points, which contains for each box bi all its vertices that are contained
in at least one other box. We store W in a data structure for 3-dimensional
orthogonal range reporting [13]. In the query phase we then query this data
structure with Q, and put all boxes corresponding to the witness vertices inside Q
into the seed set O∗(Q). For the second case we show next how to find the
intersecting pairs e, f where e is a vertical edge (that is, parallel to the z-axis)
and f is a horizontal face (that is, parallel to the xy-plane); the intersecting pairs
with other orientations can be found in a similar way.

Let E be the set of vertical edges of the boxes in O and let F be the set of
horizontal faces. We sort F by z-coordinate—we assume for simplicity that all
z-coordinates of the faces are distinct—and partition F into O(

√
n) clusters : the

cluster F1 contains the first
√
n faces in the sorted order, the second cluster F2

contains the next
√
n faces, and so on. We call the range between the minimum

and maximum z-coordinate in a cluster its z-range. For each cluster Fi we store,
besides its z-range and the set Fi itself, the following information. Let Ei ⊆ E
be the subset of edges that intersect at least one face in Fi, and let Ei denote
the set of points obtained by projecting the edges in Ei onto the xy-plane. We
store Ei in a data structure D(Ei) for 2-dimensional orthogonal range reporting.
Note that an edge e ∈ E intersects at least one face f ∈ Fi inside Q if and only
if e ∈ Ei and e lies in Q, the projection of Q onto the xy-plane.

A query with a box Q = [x1 : x2] × [y1 : y2] × [z1 : z2] is now answered as
follows. We first find the clusters Fi and Fj whose z-range contains z1 and z2,
respectively, and we put (the boxes corresponding to) the faces in these clusters
into the seed set O∗(Q). Next we perform, for each i < t < j, a query with the

Finding Pairwise Intersections Inside a Query Range 7

projected range Q in the data structure D(Ei). For each of the reported points e
we put the box corresponding to the edge e into the seed set O∗(Q). Finally, we
remove any duplicates from the seed set.

We obtain the following lemma, whose proof is in the Appendix A.

Lemma 4. Using a data structure of size O(n
√
n log n) we can find in time

O(log n log∗ n+ k) a seed set O∗(Q) of O(
√
n+ k) boxes containing at least one

box from every intersecting pair of Type (ii), where k is the number of such pairs.

It remains to handle the Type (iii) pairs, in which bi ∩ bj intersects a face of Q.
We describe how to find the pairs such that bi ∩ bj intersects the bottom face of
Q; the pairs intersecting the other faces can be found in a similar way.

We first sort the z-coordinates of the horizontal faces of the boxes in O. For
1 6 i 6 2

√
n, let hi be a horizontal plane containing the i

√
n-th horizontal

face in the ordering. These planes partition R3 into O(
√
n) horizontal slabs

Σ0, . . . , Σ2
√
n+1. We call a box b ∈ O short for a slab Σi if it has a horizontal

face inside Σi, and we call it long if it completely crosses Σi. For each Σi, we
store the short boxes in a list. We store the projections of the long boxes onto the
xy-plane in a data structure D(Σi) for the 2-dimensional version of the problem,
namely the structure Theorem 2.

A query with the bottom face of Q is now answered as follows. We first find
the slab Σi containing the face. We put all short boxes of Σi into our seed set
O∗(Q). We then perform a query with Q, the projection of Q onto the xy-plane,
in the data structure D(Σi). For each answer we get from this 2-dimensional
query—that is, each pair of projections intersecting inside Q—we directly report
the corresponding pair of long boxes. (There is no need to go through the seed
set for these pairs.) This leads to the following lemma for the Type (iii) pairs.

Lemma 5. Using a data structure of size O(n
√
n log n) we can find in time

O(
√
n+ (k + 1) log∗ n log n) a seed set O∗(Q) of O(

√
n) boxes plus a collection

B(Q) of pairs of boxes intersecting inside Q such that, for each pair of Type (iii)
boxes, either at least one of these boxes is in O∗(Q) or bi, bj is a pair in B(Q).

In the second step of our query procedure we need to be able to report all boxes
bj ∈ O intersecting a query box B of the form Q ∩ bi, where bi ∈ O∗(Q). Note
that B and bj intersect if and only if their projections onto the z-axis intersect
and their projections onto the xy-plane intersect. Hence, we can answer the
queries with a data structure D∗ whose main tree is a (hereditary) segment
tree [6] and whose associated structures are the data structure of Subramanian
and Ramaswamy [13]. This leads to a structure using O(n log2 n) storage and
O(log2 n log∗ n+ #answers) query time.

Putting everything together we obtain the following theorem.

Theorem 3. Let O be a set of n axis-aligned boxes in R3. Then there is a data
structure that uses O(n

√
n log n) storage and that allows us to report, for any

axis-aligned query box Q, all pairs of boxes bi, bj in O such that bi intersects bj
inside Q in O(

√
n+ (k + 1) log2 n log∗ n) time, where k denotes the number of

answers.

8 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

Fat boxes. Next we obtain better bounds when the boxes in O and the query
box Q are fat, that is, when their aspect ratio—the ratio between the length of
the longest edge and the length of the shortest edge—is bounded by a constant α.
First we consider the case of cubes.

Let O := {c1, · · · , cn} be a set of n cubes in R3 and let Q be the query cube.
We compute a set W of witness points for each cube ci, as follows. Let e be an
edge of ci, and consider the set S(e) := e∩ (∪j 6=icj), that is, the part of e covered
by the other cubes. We put the two extreme points from S(e)—in other words,
the two points closest to the endpoints of e—into W . Similarly, we assign each
face f of ci at most four witness points, namely points from S(f) := f ∩ (∪j 6=icj)
that are extreme in the directions parallel to f . For example, if f is parallel to
the xy-plane, then we take points of maximum and minimum x-coordinate in
S(f) and points of maximum and minimum y-coordinate in S(f) as witnesses.
We store W in a data structure D1 for orthogonal range queries, and we store O
in a data structure D2 for point-enclosure queries.

To compute O∗(Q) in the first phase of the query procedure, we query D1 to
find all witness points inside Q and for each reported witness point, we insert the
corresponding cube into O∗(Q). Furthermore, for each corner point q of Q, we
query D2 to find the cubes in O that contain q, and we put them into O∗(Q).

Lemma 6. Let ci, cj be two cubes in O such that (ci ∩ cj)∩Q 6= ∅. Then at least
one of ci, cj is put into O∗(Q) by the above query procedure.

Proof. Suppose ci ∩ cj intersects Q, and assume without loss of generality that ci
is not larger than cj . If ci or cj contains a corner q of Q then the corresponding
cube will be put into the seed set when we perform a point-enclosure query
with q, so assume ci and cj do not contain a corner. We have two cases.

Case A: ci does not intersect any edge of Q. Because ci and Q are cubes, this
implies that ci is contained in Q or ci intersects exactly one face of Q. Assume
that ci intersects the bottom face of Q; the cases where ci intersects another face
and where ci is contained in Q can be handled similarly. We claim that at least
one of the vertical faces of ci contributes a witness point inside Q. To see this,
observe that cj will intersect at least one vertical face, f , of ci inside Q, since cj
intersects ci inside Q and ci is not larger than cj . Hence, the witness point on f
with maximum z-coordinate will be inside Q. Thus ci will be put into O∗(Q).

Case B: ci intersects one edge of Q. (If ci intersects more than one edge of
Q then it would contain a corner of Q.) Assume without loss of generality that
ci intersects the bottom edge of the front face of Q; see Fig. 2. Observe that if
cj intersects the top face of ci then the witness point of the face with minimum
x-coordinate is inside Q. Similarly, if cj intersects the back face of ci (the face
parallel to the yz-plane and with minimum x-coordinate) then the witness point
of the face with maximum z-coordinate is inside Q. Otherwise, as illustrated in
Fig 3, cj must have an edge e parallel to the y-axis that intersects ci inside Q,
and one of the witness points on e will be inside Q—note that e lies fully inside
Q because cj does not contain a corner of Q. �

Finding Pairwise Intersections Inside a Query Range 9

x-axis

y-axis

z-axis

ci

Q

Fig. 2: Case B in the proof of
Lemma 6; cj is not shown.

Q
ci cj

e

Fig. 3: Cross-section of Q, ci, and cj
with a plane parallel to the xz-plane.
The gray area indicates Q ∩ ci in the
cross-section.

To adapt the above solution to boxes of aspect ratio at most α, we cover
each box bi ∈ O by O(α2) cubes, and preprocess the resulting collection Õ of
cubes as described above, making sure we do not introduce witness points for
pairs of cubes used in the covering of the same box bi. To perform a query, we
cover Q by O(α2) query cubes and compute a seed set for each query cube. We

take the union of these seed sets, replace the cubes from Õ in the seed set by the
corresponding boxes in O, and filter out duplicates. This gives us our seed set
O∗(Q) for the second phase of the query procedure.

In the second phase we take each bi ∈ O∗(Q) and report all bj ∈ O intersect-
ing bi ∩Q, using the data structure D∗ described in Subsection 2.2. We obtain
the following theorem.

Theorem 4. Let O be a set of n axis-aligned boxes in R3 of aspect ratio at most α.
Then there is a data structure that uses O(α2n log2 n) storage and that allows us
to report, for any axis-aligned query box Q of aspect ratio at most α, all pairs of
cubes ci, cj in O such that ci intersects cj inside Q in O(α2(k + 1) log2 log∗ n)
time, where k denotes the number of answers.

Proof. The data structures D1 and D2 can be implemented such that they use
O(n log n) storage, and have O(log n log∗ n+#answers) and O(log2 n+#answers)
query time, respectively [13,4]. In Step 2 of the query procedure we use the
data structure D∗ of Subsection 2.2, which uses O(n log2 n) storage and has
O(log2 log∗ n+ #answers) query time. The conversion of boxes of aspect ratio α
to cubes give an additional factor O(α2). �

3 Objects with small union complexity in the plane

In the previous section we presented efficient solutions for the case where O
consists of axis-aligned rectangles. In this section we obtain results for classes
of constant-complexity objects (which may have curved boundaries) with small

10 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

union complexity. More precisely, we need that U(n), the maximum union
complexity of any set of n objects from the class, is small. This is for instance
the case for disks (where U(m) = O(m) [12]) and for locally fat objects (where
U(m) = m2O(log∗m) [2]).

In Step 2 of the query algorithm of the previous section, we performed a
range query with oi ∩Q for each oi ∈ O∗(Q). When we are dealing with arbitrary
objects, this will be expensive, so we modify our query procedure.

1. Compute a seed set O∗(Q) ⊆ O of objects such that, for any two objects
oi, oj in O intersecting inside Q, both oi and oj are in O∗(Q).

2. Compute all intersecting pairs of objects in the set {oi ∩Q : oi ∈ O∗(Q)} by
a plane-sweep algorithm.

Next we describe how to efficiently find O∗(Q), which should contain all objects
intersecting at least one other object inside Q, when the union complexity U(n)
is small. For each object oi ∈ O we define o∗i :=

⋃
oj∈O,j 6=i(oi ∩ oj) as the union

of all intersections between oi and all other objects in O. Let |o∗i | denote the
complexity (that is, number of vertices and edges) of o∗i .

Lemma 7.
∑n
i=1 |o∗i | = O(U(n)).

Proof. Consider the arrangement induced by the objects in O. We define the
level of a vertex v in this arrangement as the number of objects from O that
contain v in their interior. We claim that every vertex of any o∗i is a level-0 or
level-1 vertex. Indeed, a level-k vertex for k > 1 is in interior of more than one
object, which is easily seen to imply that it cannot be a vertex of any o∗i .

Since the level-0 vertices are exactly the vertices of the union of O, the total
number of level-0 vertices is U(n). It follows from the Clarkson-Shor technique [7]
that the number of level-1 vertices is O(U(n)) as well. The lemma now follows,
because each level-0 or level-1 vertex contributes to at most two different o∗i ’s. �

Our goal in Step 1 is to find all objects oi such that o∗i intersects Q. To this end
consider the connected components of o∗i . If o∗i intersects Q then one of these
components lies completely inside Q or an edge of Q intersects o∗i .

Lemma 8. We can find all o∗i that have a component completely inside Q in
O(log n+k) time, where k is the number of pairs of objects that intersect inside Q,
with a data structure that uses O(U(n) log n) storage.

Proof. For each oi, take an arbitrary representative point inside each component
of o∗i , and store all the representative points in a structure for orthogonal range
reporting. By Lemma 7 we store O(U(n)) points, and so the structure for
orthogonal range reporting uses O(U(n) log n) storage.

The query time is O(log n + t), where t is the number of representative
points inside Q. This implies the query time is O(log n+ k), because if o∗i has
ti representative points inside Q then oi intersects Ω(ti) other objects inside Q.
This is true because the objects have constant complexity, so a single object oj
cannot generate more than a constant number of components of o∗i . �

Finding Pairwise Intersections Inside a Query Range 11

Next we describe a data structure for reporting all o∗i intersecting a vertical edge
of Q; the horizontal edges of Q can be handled similarly. The data structure is a
balanced binary tree T , whose leaves are in one-to-one correspondence to the
objects in O. For an (internal or leaf) node ν in T , let T (ν) denote the subtree
rooted at ν and let O(ν) denote the set of objects corresponding to the leaves
of T (ν). Define U(ν) := ∪oi∈O(ν)o

∗
i . At node ν, we store a point-location data

structure [8] on the trapezoidal map of U(ν). (If the objects are curved, then the
“trapezoids” may have curved top and bottom edges.)

Lemma 9. The tree T uses O(U(n) log n) storage and allows us to report all
o∗i intersecting a vertical edge s of Q in O((t + 1) log2 n) time, where t is the
number of answers.

Proof. To report all o∗i intersecting s we walk down T , only visiting the nodes ν
such that s intersects U(ν). This way we end up in the leaves corresponding to
the o∗i intersecting s. To decide if we have to visit a child ν of an already visited
node, we do a point location with both endpoints of s in the trapezoidal map
of U(ν). Now s intersects U(ν) if and only if one of these endpoints lies in a
trapezoid inside U(ν) and/or the two endpoints lie in different trapezoids. Thus
we spend O(log n) time for the decision. Since we visit O(k log n) nodes, the total
query time is as claimed.

To analyze the storage we claim that the sum of the complexities of U(ν) over
all nodes ν at any fixed height of T is O(U(n)). The bound on the storage then
follows because the point-location data structures take linear space [8] and the
height of T is O(log n). It remains to prove the claim. Consider a node ν at a
given height h in T . Lemma 5 in Appendix A proves that each vertex in U(ν) is
either a level-0 or level-1 vertex of the arrangement induced by the objects in
O(ν), or a vertex of o∗i , for some oi in O(ν). The proof of the claim then follows
from the following two facts. First, the number of vertices of the former type
is O(U(|O(ν)|)), which sums to O(U(n)) over all nodes at height h. Second, by
Lemma 7 the number of vertices of the latter type over all nodes at height h
sums to O(U(n)). �

Theorem 5. Let O be a set of n constant-complexity objects in the plane from
a class of objects such that the maximum union complexity of any m objects
from the class is U(m). Then there is a data structure that uses O(U(n) log n)
storage and that allows us to report for any axis-aligned query rectangle Q, in
O((k + 1) log2 n) time all pairs of objects oi, oj in O such that oi intersects oj
inside Q, where k denotes the number of answers.

4 Concluding remarks

We presented data structures for finding intersecting pairs of objects inside
a query rectangle. An obvious open problem is whether our bounds can be
improved. In particular, one would hope that better solutions are possible for

12 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

3-dimensional boxes, where we obtained O((k +
√
n) polylog n) query time with

O(n
√
n log n) storage. (It is possible to reduce the query time in our solution

to O((k +m) polylog n), for any 1 6 m 6
√
n, but at the cost of increasing the

storage to O((n2/m) polylog n).)
Two settings where we have not been able to obtain efficient solutions are

when O is a set of balls in R3, and when O is a set of arbitrary segments in the
plane. Especially the latter setting seems challenging. Indeed, consider the special
case where O consist of n/2 horizontal lines and n/2 lines of slope 1. Suppose
furthermore that the query is a vertical line ` and that we only want to check
if ` contains at least one intersection. A data structure for this setting could
be used to solve the following 3Sum-hard problem: given three sets of parallel
lines, decide if there is a triple intersection [10]. Thus it is unlikely that we can
obtain a solution with (significantly) sublinear query time and (significantly)
subquadratic preprocessing time in the setting just described. However, storage
is not the same as preprocessing time. This raises the following question: is it
possible to obtain sublinear query time with subquadratic storage?

References

1. P. K. Agarwal, and J. Erickson. Geometric Range Searching and Its Relatives.
Contemporary Mathematics. 223:1-56 (1999).

2. B. Aronov, M. de. Berg, E. Ezra, and M. Sharir. Improved bounds for the union of
locally fat objects in the plane. SIAM J. Comput. 43(2):543–572 (2014).

3. M. de. Berg, O. Cheong, M. v. Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications (3rd edition). Springer-Verlag, 2008.

4. B. Chazelle. Filtering search: A new approach to query-answering. SIAM J.
Comput. 15:703–724 (1986).

5. B. Chazelle. A functional approach to data structures and its use in multidimensional
searching. SIAM J. Comput. 17:427–462 (1988).

6. B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. Algorithms for bichro-
matic line-segment problems and polyhedral terrains. Algorithmica 11: 116–132
(1994).

7. K. L. Clarkson and P. W. Shor. Applications of random sampling in computational
geometry, II. Discr. Comput. Geom. 4:387–421 (1989).

8. H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone
subdivision. SIAM J. Comput. 15:317-340 (1986).

9. H. Edelsbrunner, M. H. Overmars, and R. Seidel. Some methods of computational
geometry applied to computer graphics. Comput. Vision, Graphics and Image
Proc. 28:92–108 (1984).

10. A. Gajentaan and M.H. Overmars. On a class of O(n2) problems in computational
geometry. Comput. Geom. Theory Appl. 5: 165–185 (1995).

11. J. E. Goodman and J. O’Rourke. Range Searching. Chapter 36 of Handbook of
Discrete and Computational Geometry (2nd edition), 2004.

12. K. Keden, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discr. Comput.
Geom. 1:59-71 (1986).

13. S. Subramanian, and S. Ramaswamy. The P-range tree: A new data structure for
range searching in secondary memory. In Proc. 6th ACM-SIAM Symp. Discr. Alg.,
pages 378–387, 1995.

Finding Pairwise Intersections Inside a Query Range 13

Q

e1 e2

rj

Fig. 4: A possible situation in Case B-3-I.

A Omitted proofs

Lemma 2. Let ri, rj be two rectangles in O such that (ri ∩ rj) ∩Q 6= ∅. Then
at least one of ri, rj is put into O∗(Q) by the above query procedure.

Proof. Let I := (ri ∩ rj) ∩Q. Each edge of I is either contributed by ri or rj , or
by Q. Let E(I) denote the set of edges of ri and rj that contribute an edge to I.
We distinguish two cases, with various subcases.

Case A: At least one edge e ∈ E(I) has an endpoint, v, inside Q. Now the
witness sub-edge on e closest to v must intersect Q and, hence, the corresponding
rectangle will be put into O∗(Q) in Step 1(i).

Case B: All edges in E(I) cross Q completely. We now have several subcases.
Case B-1: |E(I)| 6 1. Now Q contributes at least three edges to I, so at

least one corner of I is a corner of Q. Hence, both ri and rj are put into O∗(Q)
in Step 1(iii).

Case B-2: |E(I)| > 3. Since each edge of E(I) crosses Q completely and
|E(I)| > 3, both V(Q) and H(Q) are non-empty. Thus at least one of ri and rj is
put into O∗(Q) in Step 1(ii).

Case B-3: |E(I)| = 2. Let e1 and e2 denote the segments in E(I). If one
of e1, e2 is vertical and the other is horizontal, we can use the argument from
Case B-2. It remains to handle the case where e1 and e2 have the same orientation,
say vertical.

Case B-3-i: Edges e1 and e2 belong to the same rectangle, say ri, as in Fig. 4.
If e1 has an endpoint, v, inside rj , then e1 has a witness sub-edge starting at v
that intersects Q, so ri is put into O∗(Q) in Step 1(i). If rj contains a corner of
Q then rj will be put into O∗(Q) in Step 1(iii). In the remaining case the right
edge of rj crosses Q and there are vertical edges completely crossing rj (namely
e1 and e2). Hence, the rightmost edge completely crossing rj , which is a witness
for rj , intersects Q. Thus rj is put into O∗(Q) in Step 1(i).

Case B-3-ii: Edge e1 is an edge of ri and e2 is an edge of rj (or vice versa).
Assume without loss of generality that the y-coordinate of the top endpoint of e1
is less than or equal to the y-coordinate of the top endpoint of e2. Then the top
endpoint, v, of e1 must lie in rj , and so e1 has a witness sub-edge starting at v
that intersects Q. Hence, ri is put into O∗(Q) in Step 1(i). �

14 Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi

oi oj

ok

(a) Case A in the proof
of Lemma 5.

oi oj

ok

(b) Case B in the proof
of Lemma 5.

Fig. 5: Different cases in the proof of Lemma 5. To simplify the presentation we
assumed the objects are disks. o∗i and o∗j are surrounded by dark green and dark
red, respectively. Regular arcs are in solid and irregular arcs are in dashed. The
blue vertex refers to vertex u in the proof.

Lemma 4. Using a data structure of size O(n
√
n log n) we can find in time

O(log n log∗ n+ k) a seed set O∗(Q) of O(
√
n+ k) boxes containing at least one

box from every intersecting pair of Type (ii), where k is the number of such pairs.

Proof. The Type (ii) intersections bi ∩ bj either have a vertex that is a vertex of
bi or bj inside Q, or they have an edge-face pair intersecting inside Q. To find
seed objects for the former pairs we used O(n log n) storage and O(log n log∗ n+
#answers) query time, and we put O(k) boxes into the seed set. For the latter
pairs, we used an approach based on clusters. For each cluster Fi we have a
data structure D(Ei) that uses O(n log n) storage, giving O(n

√
n log n) storage

in total. Besides the O(
√
n) boxes in the two clusters Fi and Fj , we put boxes

into the seed set for the clusters Ft with i < t < j, namely when querying the
data structures D(Ei). This means that the same box may be put into O∗(Q) up
to
√
n times. (Note that these duplicates are later removed.) However, each copy

we put into the seed set corresponds to a different intersecting pair. Together
with the fact that the query time in each D(Et) is O(log n log∗ n + #answers)
this means the total query time and size of the seed set are as claimed. �

Lemma 5. Each vertex in U(ν) is either a level-0 or level-1 vertex of the ar-
rangement induced by the objects in O(ν), or a vertex of o∗i , for some oi in
O(ν).

Proof. Define O∗(ν) := {o∗i : oi ∈ O(ν)}. Any vertex u of U(ν) that is not
a vertex of some o∗i ∈ O∗(ν) must be an intersection of the boundaries of some
o∗i , o

∗
j ∈ O(ν). Note that the boundary ∂o∗i of an object o∗i consists of two types

of pieces: regular arcs, which are parts of the boundary of oi itself, and irregular
arcs, which are parts of the boundary of some other object ok. To bound the
number of vertices of U(ν) of the form ∂o∗i ∩ ∂o∗j we now distinguish three cases.

Finding Pairwise Intersections Inside a Query Range 15

Case A: Intersections between two regular arcs. In this case u is either a
level-0 vertex of the arrangement defined by O(ν) (namely when u is contained
in no other object ok ∈ O(ν)), or a level-1 vertex of that arrangement (when u is
contained in a single object ok ∈ O(ν)). Note that u cannot be contained in two
objects from O(ν), because then u would be in the interior of some o∗k ∈ O∗(ν),
contradicting that u is a vertex of U(ν). See Fig 5a.

Case B: Intersections between a regular arc and an irregular arc. Without
loss of generality, assume that u is the intersection of a regular arc of ∂o∗i and
an irregular arc of ∂o∗j . Note that this implies that u lies in the interior of oj . If
there is no other object ok ∈ O containing u then u would be a vertex of o∗j , and
if there is at least one object ok ∈ O containing u then u would not lie on ∂o∗j .
So, under the assumption that u is not already a vertex of o∗j , Case B does not
happen. See Fig 5b.

Case C: Intersections between two irregular arcs. In this case u lies in the
interior of both oi and oj . But then u should also be in the interior of o∗i and o∗j ,
so this case cannot happen. �

	Finding Pairwise Intersections Inside a Query Range

