56,296 research outputs found

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    Adaptive Dispatching of Tasks in the Cloud

    Full text link
    The increasingly wide application of Cloud Computing enables the consolidation of tens of thousands of applications in shared infrastructures. Thus, meeting the quality of service requirements of so many diverse applications in such shared resource environments has become a real challenge, especially since the characteristics and workload of applications differ widely and may change over time. This paper presents an experimental system that can exploit a variety of online quality of service aware adaptive task allocation schemes, and three such schemes are designed and compared. These are a measurement driven algorithm that uses reinforcement learning, secondly a "sensible" allocation algorithm that assigns jobs to sub-systems that are observed to provide a lower response time, and then an algorithm that splits the job arrival stream into sub-streams at rates computed from the hosts' processing capabilities. All of these schemes are compared via measurements among themselves and with a simple round-robin scheduler, on two experimental test-beds with homogeneous and heterogeneous hosts having different processing capacities.Comment: 10 pages, 9 figure

    Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures

    Get PDF
    Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments

    QoS-Aware Middleware for Web Services Composition

    Get PDF
    The paradigmatic shift from a Web of manual interactions to a Web of programmatic interactions driven by Web services is creating unprecedented opportunities for the formation of online Business-to-Business (B2B) collaborations. In particular, the creation of value-added services by composition of existing ones is gaining a significant momentum. Since many available Web services provide overlapping or identical functionality, albeit with different Quality of Service (QoS), a choice needs to be made to determine which services are to participate in a given composite service. This paper presents a middleware platform which addresses the issue of selecting Web services for the purpose of their composition in a way that maximizes user satisfaction expressed as utility functions over QoS attributes, while satisfying the constraints set by the user and by the structure of the composite service. Two selection approaches are described and compared: one based on local (task-level) selection of services and the other based on global allocation of tasks to services using integer programming

    QuLa: service selection and forwarding table population in service-centric networking using real-life topologies

    Get PDF
    The amount of services located in the network has drastically increased over the last decade which is why more and more datacenters are located at the network edge, closer to the users. In the current Internet it is up to the client to select a destination using a resolution service (Domain Name System, Content Delivery Networks ...). In the last few years, research on Information-Centric Networking (ICN) suggests to put this selection responsibility at the network components; routers find the closest copy of a content object using the content name as input. We extend the principle of ICN to services; service routers forward requests to service instances located in datacenters spread across the network edge. To solve this problem, we first present a service selection algorithm based on both server and network metrics. Next, we describe a method to reduce the state required in service routers while minimizing the performance loss caused by this data reduction. Simulation results based on real-life networks show that we are able to find a near-optimal load distribution with only minimal state required in the service routers
    • …
    corecore