
QoS-Aware Middleware for
Web Services Composition

Liangzhao Zeng, Boualem Benatallah, Member, IEEE, Anne H.H. Ngu,

Marlon Dumas, Member, IEEE Computer Society, Jayant Kalagnanam, and Henry Chang

Abstract—The paradigmatic shift from a Web of manual interactions to a Web of programmatic interactions driven by Web services is

creating unprecedented opportunities for the formation of online Business-to-Business (B2B) collaborations. In particular, the creation

of value-added services by composition of existing ones is gaining a significant momentum. Since many available Web services

provide overlapping or identical functionality, albeit with different Quality of Service (QoS), a choice needs to be made to determine

which services are to participate in a given composite service. This paper presents a middleware platform which addresses the issue of

selecting Web services for the purpose of their composition in a way that maximizes user satisfaction expressed as utility functions

over QoS attributes, while satisfying the constraints set by the user and by the structure of the composite service. Two selection

approaches are described and compared: one based on local (task-level) selection of services and the other based on global allocation

of tasks to services using integer programming.

Index Terms—Web services, quality of service, service composition, integer programming.

�

1 INTRODUCTION

WEB services are autonomous software systems identi-

fied by URIs which can be advertised, located, and

accessed through messages encoded according to XML-

based standards (e.g., SOAP, WSDL, and UDDI [11]) and

transmitted using Internet protocols [36]. Web services

encapsulate application functionality and information re-
sources and make them available through programmatic

interfaces, as opposed to the interfaces provided by

traditional Web applications which are intended for manual

interactions. In addition, since they are intended to be

discovered and used by other applications across the Web,

Web services need to be described and understood both in

terms of functional capabilities and Quality of Service (QoS)

properties.
The emergence of Web services (e.g., for order procure-

ment, finance, accounting, human resources, supply chain,

and manufacturing) has created unprecedented opportu-

nities for organizations to establish more agile and versatile

collaborations with other organizations. Widely available

and standardized Web services make it possible to realize

Business-to-Business Interoperability (B2Bi) by inter-con-

necting Web services provided by multiple business

partners according to some business process: a practice

known as Web Services Composition [9], [5], [1], [24]. For

example, an integrated financial management Web service

can be created by composing more specialized Web services

for payroll, tax preparation, and cash management.
Our work aims at advancing the current state of the art in

technologies for Web service composition, by addressing

the following key issues:

1. QoS modeling. In the presence of multiple Web

services with overlapping or identical functionality,

users will discriminate these alternatives based on

their QoS. QoS is a broad concept that encompasses a

number of nonfunctional properties such as price,

availability, reliability, and reputation [28]. These
properties apply both to standalone Web services

and to Web services composed of other Web services

(i.e., composite Web services). In order to reason about

QoS properties in Web services, a model is needed

which captures the descriptions of these from a user

perspective. Such framework must take into account

the fact that QoS involves multiple dimensions, and

the fact that the QoS of composite services is
determined by the QoS of its underlying component

services. Also, it is worth noting that services are

usually distributed across the Internet and that some

of their QoS properties (e.g., availability and success-

ful execution rate) are affected by the communication

link and should be measured from the perspective of

the requestor rather than the provider.
2. QoS-aware composition of Web services. When

creating a composite service and, subsequently,
when executing it following a user request, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004 311

. L. Zeng, J. Kalagnanam, and H. Chang are with the IBM T.J. Watson
Research Center, 1101 Kitchawan Rd., RTE 134, PO Box 218, Yorktown
Heights, NY 10598. E-mail: {lzeng, jayant, hychang}@us.ibm.com.

. B. Benatallah is with the School of Computer Science and Engineering,
University of New South Wales, Sydney 2052, Australia.
E-mail: boualem@cse.unsw.edu.au.

. A.H.H. Ngu is with the Department of Computer Science, Texas State
University, 601 University Dr., San Marcos TX 78666.
E-mail: hn12@txstate.edu.

. M. Dumas is with the Centre for IT Innovation, Queensland University of
Technology, GPO Box 2434, Brisbane QLD 4001, Australia.
E-mail: m.dumas@qut.edu.au.

Manuscript received 24 Sept. 2003; revised 18 Feb. 2004; accepted 15 Mar.
2004.
Recommended for acceptance by J. Offutt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0150-0903.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10872835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

number of component services involved in this
composite service may be large, and the number of
Web services from which these component services
are selected is likely to be even larger. On the other
hand, the QoS of the resulting composite service
executions is a determinant factor to ensure custo-
mer satisfaction, and different users may have
different requirements and preferences regarding
QoS. For example, a user may require to minimize
the execution duration while satisfying certain
constraints in terms of price and reputation, while
another user may give more importance to the price
than to the execution duration. A QoS-aware
approach to service composition is therefore needed,
which maximizes the QoS of composite service
executions by taking into account the constraints
and preferences of the users.

3. Composite service execution in a dynamic environ-
ment. Web services operate autonomously within a
highly variable environment (the Web). As a result,
their QoS may evolve relatively frequently, either
because of internal changes or because of changes in
their environment (i.e., higher system loads). In
particular, during an execution of a composite
service, the component services involvedmay change
their QoS properties, others may become unavailable,
and still others may emerge. Consequently, ap-
proaches whereWeb services are statically composed
are inappropriate. Instead, a dynamic composition
approach is needed, in which runtime changes in the
QoS of the component services are taken into account.

In this paper, we present AgFlow [39], [41], [40]: a
middleware platform that enables the quality-driven
composition of Web services. In AgFlow, the QoS of Web
services is evaluated by means of an extensible multi-
dimensional QoS model, and the selection of component
services is performed in such a way as to optimize the
composite service’s QoS given a set of user requirements
(i.e., constraints on QoS) and a set of candidate component
services. Furthermore, AgFlow adapts to changes that occur
during the execution of a composite service, by revising the
execution plan in order to conform the user’s constraints on
QoS. The salient features of AgFlow are:

1. A multidimensional QoS model which captures non-
functional properties that are inherent to Web
services in general, e.g., availability and reputation.
This model defines a number of QoS properties and
methods for attaching values for these properties in
the context of both stand-alone and composite Web
services.

2. Two alternative QoS driven service selection approaches
for composite service execution: one based on local
optimization and the other on global planning. The
local optimization approach performs optimal ser-
vice selection for each individual task in a composite
service without considering QoS constraints span-
ning multiple tasks and without necessarily leading
to optimal overall QoS. The global planning
approach on the other hand considers QoS con-
straints and preferences assigned to a composite

service as a whole rather than to individual tasks,
and uses integer programming to compute optimal
plans for composite service executions.

3. An adaptive execution engine which reacts to changes
occurring during the execution of a composite
service (e.g., component services that become un-
available or change their predicted QoS), by replan-
ning the execution in order to ensure that the QoS is
optimal given the available information about the
component services.

It should be noted that the proposed service composition
and selection approaches can be applied to other distributed
computing paradigms than Web services. However, the
proposal has been designed to address certain aspects which
appear more prominently in Web services (or more broadly
in service-oriented architectures). First, the issue of optimiz-
ing the design and execution of composite services is more
prominent for service-oriented architectures than for con-
ventional middleware where composition technologies have
also been developed but have not gained wide acceptance
[1]. Second and foremost, in service-oriented architectures
the need to capture QoS properties is more pronounced than
in conventional middleware, since services are developed
independently of their client applications, typically by
different organizational units, and they operate in an open
environment (the Web) where competition and differentia-
tion are major factors. In any case, it is possible to leverage
our approach to compose distributed components devel-
oped using conventional middleware, by exposing them as
Web services and adding the QoS information required for
the composition.

The remainder of the paper is organized as follows:
Section 2 provides an overview of the AgFlow system and
basic concepts of the underlying service composition model.
Section 3 describes the proposed service quality model. In
Section 3, two alternative service selection approaches are
presented and compared. An implementation of the service
composition and service selection model is then presented
in Section 4, and experimental results are documented in
Section 5. Finally, Section 6 discusses related work and
Section 7 concludes the paper.

2 PRELIMINARIES

In this section, the AgFlow system architecture is presented
and some basic concepts and definitions are explained.

2.1 System Architecture

The architectural diagram of the AgFlow system is
presented in Fig. 1. There are three distinct components in

312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

Fig. 1. AgFlow’s architecture.

the AgFlow system, namely, Web services, service broker, and
service composition manager.

The service broker allows providers to register their
service descriptions in an UDDI registry. A service
description contains metadata that describe, among others,
the capabilities and QoS of a Web service. The service
composition manager is made up of an execution planner
and an execution engine. When an instance of a composite
service is initiated, the execution planner contacts the
service broker to search for candidate component services,
and, based on the candidate services retrieved, it generates
an execution plan, i.e., an assignment of component services
to the tasks in the schema of the composite service. Based on
the execution plan, the adaptive execution engine then
orchestrates the component services to execute the instance
of the composite service. At runtime, the execution engine
also monitors the component services. When the current
status of the execution violates the execution plan, the
execution engine triggers the execution planner to revise the
current plan and resumes the execution using the new plan.

2.2 Service Ontologies and Service Description

A service ontology (see Fig. 2) consists of a common
language agreed by a community (e.g., automobile indus-
try). It defines a terminology that is used by all participants
in that community. Within a community, service providers
describe their services using the terms of the community’s
ontology, while service requesters use the terms of the
ontology to formulate queries over the registry(ies) of the
community.

Concretely, a service ontology specifies a domain (e.g.,
Automobile, Healthcare, Insurance), a set of syno-
nyms, used to facilitate flexible search for the domain (e.g.,
the domain Automobile may have synonyms like Car)
and a set of service classes that are used to define the
properties of services. A service class is further specified by
its attributes and operations. For example, the attributes of a
service class may include access information such as URL.
Each operation is specified by its name and signature (i.e.,
inputs and outputs). A service ontology also specifies a
service quality model that is used to describe non-functional
properties of services, e.g., execution duration of an
operation. The service quality model consists of a set of
quality dimensions (or criteria). For each quality criterion,
there are three basic elements: its definition, the service
elements (e.g., services or operations) to which it is related,
and how to compute or measure the value of the criteria.
The service quality model is presented in Section 3.

There are two important elements in a service description:

1. Service ontology and service class. A Web service
provider needs to specify which service ontology is
used and which service classes are supported. For
example, a travel service provider may specify that it
uses the service ontology Trip-planning and
support the service class FlightTicketBooking.
The service ontology specifies the concepts and
terminology used in the service description, and
service class describes the capabilities (e.g., opera-
tions) of Web services and how to access them.
Therefore, published services have the same attri-
butes as the service class in the service ontology to
which they belong, plus additional attributes to
describe the provided capabilities.

2. Service Level Agreements (SLA). An SLA defines
the terms and conditions of service quality that a
Web service delivers to service requesters. The major
constituent of an SLA is the QoS information. There
are a number of criteria (e.g., execution duration,
availability) that contribute to a Web service’s QoS in
a SLA as discussed later in the paper. Some Web
service providers publish QoS information in SLAs.
Other Web service providers may not publish their
QoS information in their service descriptions for
confidential reasons. In this case, service providers
need to provide interfaces that only authorized
requesters can use to query the QoS information.

2.3 Composite Service Specifications

A composite service is specified as a collection of generic
service tasks described in terms of service ontologies and
combined according to a set of control-flow and data-flow
dependencies. AgFlow uses statecharts [17] to represent
these dependencies. This choice is motivated by several
reasons. First, statecharts possess a formal semantics, which
is essential for analyzing composite service specifications.
Second, statecharts are a well-known and well-supported
behavior modeling notation, following their integration into
the Unified Modeling Language (UML). Finally, statecharts
offer most of the control-flow constructs found in existing
process modeling languages (branching, concurrent
threads, structured loops) and they have been shown to
be suitable for expressing typical control-flow dependencies
[12]. Hence, it is possible to adapt the QoS-aware service
selection mechanisms developed using statecharts to fit
other alternative languages.

A statechart is made up of states and transitions.
Transitions of a statechart are labeled with events, condi-
tions, and operations. States can be basic or compound. Basic
states (also called tasks in the sequel) are labeled with an
operation name of a given service class (which is defined in
a service ontology). Intuitively, when the basic state is
entered, the operation that labels this state is invoked over
one of the services belonging to the designated service class.

Compound states on the other hand provide means to
structure the statechart into regions, and to express
concurrent execution of regions. Compound states come
in two flavors: OR-states and AND-states. An OR-state
contains a single region whereas an AND-state contains
several regions (separated by dashed lines) which are
intended to be executed concurrently. Accordingly,

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 313

Fig. 2. UML class diagram for service ontologies.

OR-states are used as a grouping mechanism for modularity

purposes, while AND-states are used to express concur-

rency: they encode a fork/join pair. The initial state of a

statechart is denoted by a filled circle, while the final state is

denoted by two concentric circles.
A simplified statechart W specifying a “Travel Planner”

composite Web service is depicted in Fig. 3. In this example,

a search for attractions is done in parallel with a flight and

an accommodation booking. After the searching and book-

ing operations complete, the distance from the hotel to the

accommodation is computed, and either a car or a bike

rental service is invoked. (Note that when two transitions

stem from the same state, such as t4, they denote a

conditional branching and the transitions should be labeled

with disjoint conditions.) In this example, it is assumed that

the attractions do not change from one day to the next, so

there is no need to know the flight arrival date and time to

search for attractions.

Instance variables can be used in a composite service

specification to capture the data manipulation perspective.

Specifically, they can be used to express branching

conditions and to provide (store) input (output) parameters

to (from) the service operations invoked by the tasks. They

can also be manipulated in the actions attached to the

transitions of the statechart. Note that the data perspective

is not relevant for the purposes of AgFlow since the

methods for allocating services to tasks only need to

consider the control-flow dependencies and the QoS of

the component services. Data-flow is relevant for the

execution of composite services by platforms such as Self-

Serv [5].

2.4 Execution Paths and Plans

In this section, we define two concepts used in the

remainder of the paper: execution path and execution plan.

To simplify the discussion, we initially assume that all the

statecharts that we deal with are acyclic. If a statechart

contains cycles, a technique for “unfolding” it into an

acyclic statechart needs to be applied beforehand. Details of

the unfolding process are given in Section 4.2.3.

Definition 1: (Execution path). An execution path of a

statechart is a sequence of states ½t1; t2; ::tn�, such that t1 is

the initial state, tn is the final state, and for every state ti
(1 < i < n):

. ti is a direct successor of one of the states in
½t1; . . . ; ti�1�.

. ti is not a direct successor of any of the states in
½tiþ1; . . . ; tn�.

. There is no state tj in ½t1; . . . ; ti�1� such that tj and ti
belong to two alternative branches of the statechart.

. If ti is the initial state of one of the concurrent regions
of an AND-state AST, then, for every other concurrent
region C in AST, one of the initial states of C belongs
to the set ft1; . . . ; ti�1; tiþ1; . . . ; tng. In other words,
when an AND-state is entered, all the concurrent
branches of this AND-state are executed.

This definition relies on the concept of a direct successor of

a state. Roughly stated, a basic state tb in a statechart is a

direct successor of another basic state ta if there is a

sequence of adjacent transitions1 going from ta to tb without

traversing any other basic state. In other words, the first

transition in the sequence stems from ta, the last transition

leads to tb, and all intermediate transitions stem from and

lead to either compound, initial, or final states (but are not

incident to a basic state).
Since it is assumed that the underlying statechart is

acyclic, it is possible to represent an execution path as a

Directed Acyclic Graph (DAG) as follows.

Definition 2: (DAG representation of an execution path).

Given an execution path ½t1; t2; ::tn� of a statechart ST, the

DAG representation of this execution path is a graph obtained

as follows:

. The DAG has one node for each task ft1; t2; ::tng.

. The DAG contains an edge from task ti to task tj iff tj
is a direct successor of ti in the statechart ST.

If a statechart contains conditional branchings, it has

multiple execution paths. Each execution path represents a

sequence of tasks to complete a composite service execu-

tion. Fig. 4 gives an example of statechart’s execution paths.

In this example, since there is one conditional branching

after task t4, there are two paths, called We1 and We2

respectively. In the execution path We1, task t5 is executed

after task t4, while in the execution path We2, task t6 is

executed after task t4.
As stated earlier, each basic state of a statechart

describing a composite service is labeled with an invocation

to an operation provided by a given service class. Actual

Web services belonging to the required service classes are

selected during the execution of the composite service.

Hence, it is possible to execute an execution path of a

statechart in different ways by allocating different Web

services to the basic states in the path. The concept of

execution plan defined below captures the various ways of

executing a given execution path.

314 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

1. Two transitions are adjacent if the target state of one is the source state
of the other.

Fig. 3. Statechart of a “Travel Planner” composite service.

Fig. 4. DAG representation of the execution paths of the statechart of

Fig. 3.

Definition 3: (Execution plan). A set of pairs p ¼ f< t1; s1 >
;< t2; s2 >; . . . ; < tn; sn >g is an execution plan of an
execution path We iff:

. ft1; t2; . . . tng is the set of tasks in We.

. For each pair < ti; si > in p, service si belongs to the
service class associated with task ti. In other words,
service si provides the operation required by task ti.

It should be noted that, according to this definition, each
task can be executed by a number of alternative services,
but it is not possible for a service to execute a combination
of tasks in a “single shot.” To express that a combination of
tasks can be executed by a single service, these tasks need to
be assembled into a single one.

3 WEB SERVICE QUALITY MODEL

In the composition model presented in the previous section,

Web services will typically be grouped together in a single

community. To differentiate the members of a community

during service selection, their nonfunctional properties

need to be considered. For this purpose, we adopt a Web

service quality model based on a set of quality criteria (i.e.,

nonfunctional properties) that are applicable to all Web

services, for example, their pricing and reputation.

Although the adopted quality model has a limited number

of criteria (for the sake of illustration), it is extensible: new

criteria can be added without fundamentally altering the

service selection techniques built on top of the model. In

particular, it is possible to extend the quality model to

integrate nonfunctional service characteristics such as those

proposed by O’Sullivan et al. [28].
In this section, we first present the quality criteria in the

context of elementary services, before turning our attention
to composite services. For each criterion, we provide a
definition, indicate its granularity (i.e., whether it is defined
for an entire service or for individual service operations),
and we provide rules to compute its value for a given
service.

3.1 Quality Criteria for Elementary Services

We consider five generic quality criteria for elementary
services:

1. Execution price. Given an operation op of a service s,
the execution price qprðs; opÞ is the fee that a service
requester has to pay for invoking the operation op.
Web service providers either advertise the execution
price of their operations, or provide means for
potential requesters to inquire about it.

2. Execution duration. Given an operation op of a
service s, the execution duration qduðs; opÞ measures
the expected delay in seconds between the moment
when a request is sent and the moment when the
results are received. The execution duration is
computed using the expression

qduðs; opÞ ¼ Tprocessðs; opÞ þ Ttransðs; opÞ;

meaning that the execution duration is the sum of the
processing time Tprocessðs; opÞ and the transmission

time Ttransðs; opÞ. Services advertise their processing
time or provide methods to inquire about it. The
transmission time is estimated based on past execu-
tions of the service operations, i.e.,

Ttransðs; opÞ ¼
Pn

i¼1 Tiðs; opÞ
n

;

where Tiðs; opÞ is a past observation of the transmis-
sion time, and n is the number of execution times
observed in the past.

3. Reputation. The reputation qrepðsÞ of a service s is a
measure of its trustworthiness. It mainly depends on
end user’s experiences of using the service s.
Different end users may have different opinions on
the same service. The value of the reputation is
defined as the average ranking given to the service
by end users, i.e.,

qrep ¼
Pn

i¼1 Ri

n
;

where Ri is the end user’s ranking on a service’s

reputation, n is the number of times the service has

been graded. Usually, end users are given a range to

rank Web services. For example, in Amazon.com,

the range is ½0; 5�. Detail discussion on moderation of

reputation rating is out of the scope of this paper.
4. Successful execution rate. The successful execution

rate qratðsÞ of a service s is the probability that a

request is correctly responded (i.e., the operation is
completed and a message indicating that the execu-

tion has been successfully completed is received by

service requestor) within the maximum expected

time frame indicated in the Web service description.

The successful execution rate (or success rate for

short) is a measure related to hardware and/or

software configuration of Web services and the

network connections between the service requesters
and providers. The value of the success rate is

computed from data of past invocations using the

expression qratðsÞ ¼ NcðsÞ=K, where NcðsÞ is the

number of times that the service s has been

successfully completed within the maximum ex-

pected time frame, and K is the total number of

invocations.
5. Availability. The availability qavðsÞ of a service s is

the probability that the service is accessible. The
value of the availability of a service s is computed

using the following expression qavðsÞ ¼ TaðsÞ=�,
where Ta is the total amount of time (in seconds)

in which service s is available during the last �

seconds (� is a constant set by an administrator of the

service community). The value of � may vary

depending on a particular application. For example,

in applications where services are more frequently
accessed (e.g., stock exchange), a small value of �

gives a more accurate approximation for the avail-

ability of services. If the service is less frequently

accessed (e.g., online bookstore), using a larger �

value is more appropriate. Here, we assume that

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 315

Web services send notifications to the system about

their running states (i.e., available, unavailable).

Alternatively, if a given Web service does not
support notification of its running state, the compo-

site service manager can probe the service at certain

intervals (determined by the system administrator)

or obtain uptime information from a monitoring

service. This aspect however is outside the scope of

this paper (see for example reference [22]).

Given the above considerations, the quality vector of an

operation op of a service s is defined as

qðs; opÞ ¼ ðqprðs; opÞ; qduðs; opÞ; qavðsÞ; qratðsÞ; qrepðsÞÞ:

Note that the method for computing the value of the

quality criteria is not unique. Other computation methods

can be designed to fit the needs of specific applications. The

service selection approaches presented in Section 4 are

independent of these computation methods.

3.2 Quality Criteria for Composite Services

The quality criteria defined above in the context of

elementary Web services, are also used to evaluate the

QoS of composite services. Table 1 provides aggregation

functions for the computation of the QoS of a composite

service CS when executed using plan

p ¼ f< t1; s1 >;< t2; s2 >; . . . ; < tn; sn >g:

A brief explanation of each criterion’s aggregation function

follows:

1. Execution price: The execution price qprðpÞ of an
execution plan p is a sum of the execution prices of
the operations invoked over the services that
participate in p. In the equation for the execution
price given in Table 1, opðtiÞ denotes the operation
invoked by task ti.

2. Execution duration: The execution duration qduðpÞ of
an execution plan p is computed using the Critical

Path Algorithm (CPA) [32]. Specifically, the CPA is

applied to the the execution path We of execution

plan p, seen as a project digraph. The critical path of

a project digraph is a path from the initial state to the

final state which has the longest total sum of weights
labeling its nodes. In the case at hand, a node

corresponds to a task t in We, and its weight is the

execution duration of the service operation invoked

by t, that is: qduðsvpðtÞ; opðtÞÞ, where svpðtÞ is the

service assigned to task t in plan p, and opðtÞ denotes

the operation invoked by task t. A task that belongs

to the critical path is called a critical task, while a

service assigned to a task that belongs to the critical
path is called a critical service.

Fig. 5 provides an example of a critical path. This

figure depicts an execution path as a project digraph,

and an associated execution plan p, where

p¼f<t1; s1>;<t2; s2>;<t3; s3>;<t4; s4>;<t5; s5>g:

For each service, its execution duration is shown

next to it. There are two project paths in this project

digraph, where project path 1 is < t1; t4; t5 > and

project path 2 is < t2; t3; t4; t5 > . The execution time

of project path 1 (project path 2) is 37 seconds

(62 seconds). The critical path is therefore path 2 and

the execution duration of the plan is 62 seconds.

Task t2, t3, t4 and t5 are critical tasks while services

s2, s3, s4 and s5 are critical services.
3. Reputation: The reputation qrepðpÞ of an execution

plan p is the average of the reputations of the

services that participate in p.
4. Successful execution rate: The successful execution

rate qratðpÞ of an execution plan p is the product of

the factors qratðsiÞzi , where zi is equal to 1 if service si
is a critical service in the execution plan p, or 0

otherwise. If zi ¼ 0, i.e., service si is not a critical

service, then qratðsiÞzi ¼ 1. Here, we assume that
when the execution of noncritical services is not

successful, the task can be re-executed without

delaying the whole composite service execution.

Hence, the success rates of noncritical services do

not affect the overall plan’s success rate.
5. Availability: The availability qavðpÞ of an execution

plan p is given by the product of the factors qavðsiÞzi ,
where qavðsiÞ is the availability of service si and zi
indicates whether the service is a critical service or

not. Again, we assume that, when the noncritical
service is unavailable, a service can be reselected

without delaying the whole composite service

execution; hence, the availability of service si will

not directly affect the overall plan’s availability.

Given these functions, the quality vector of a composite

service’s execution plan is defined as

qðpÞ ¼ ðqprðpÞ; qduðpÞ; qavðpÞ; qratðpÞ; qrepðpÞÞ:

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

TABLE 1
Aggregation Functions for Computing

the QoS of Execution Plans

Fig. 5. Example of a critical path.

4 QoS-DRIVEN SERVICE SELECTION FOR WEB

SERVICE COMPOSITION

In this section, we present two service selection approaches,

namely, local optimization and global planning.

4.1 Service Selection by Local Optimization

In this approach, the selection of the Web service that will

execute a given task of a composite service specification is

done at the last possible moment and without taking into

account the other tasks involved in the composite service.

When a task actually needs to be executed, the system

collects information about the QoS of each of the Web

services that can execute this task (namely the candidate Web

services for this task). After collecting this QoS information,

a quality vector is computed for each of the candidate Web

services, and, based on these quality vectors, the system

selects one of the candidate Web services by applying a

Multiple Criteria Decision Making (MCDM) [7] technique.

This selection process is based on the weight assigned by the

user to each criterion, and a set of user-defined constraints

expressed using a simple expression language. Examples of

constraints that can be expressed include duration con-

straints and price constraints. However, constraints can

only be expressed on individual tasks and not on combina-

tions of tasks. In other words, it is not possible to express

the fact that the sum of the durations for two or more tasks

should not exceed a given threshold.
To illustrate the local optimization approach, we use the

five quality dimensions discussed earlier, but other quality

dimensions can be used instead without any fundamental

changes. The dimensions are numbered from 1 to 5, with

1 = price, 2 = duration, 3 = availability, 4 =

success rate, and 5 = reputation. Given a task tj in a

composite service, there is a set of candidate Web services

Sj ¼ fs1j; s2j; . . . ; snjg that can be used to execute this task.

By merging the quality vectors of all these candidate Web

services, a matrix Q ¼ Qi;j; 1 � i � n; 1 � j � 5
� �

is built, in

which each row Qj corresponds to a Web service sij while

each column corresponds to a quality dimension.
A Simple Additive Weighting (SAW) [7] technique is

used to select an optimal Web service. There are two phases

in applying SAW:

1. Scaling Phase. Some of the criteria could be negative,
i.e., the higher the value, the lower the quality. This
includes criteria such as execution time and execu-
tion price. Other criteria are positive, i.e., the higher
the value, the higher the quality. For negative
criteria, values are scaled according to (1). For
positive criteria, values are scaled according to (2).

Vi;j ¼
Qmax

j �Qi;j

Qmax
j �Qmin

j

if Qmax
j �Qmin

j 6¼ 0

1 if Qmax
j �Qmin

j ¼ 0;

(
ð1Þ

Vi;j ¼
Qi;j�Qmin

j

Qmax
j

�Qmin
j

if Qmax
j �Qmin

j 6¼ 0

1 if Qmax
j �Qmin

j ¼ 0:

8<
: ð2Þ

In the above equations, Qmax
j is the maximal value

of a quality criteria in matrix Q, i.e., Qmax
j ¼

MaxðQi;jÞ; 1 � i � n. While Qmin
j is the minimal

value of a quality criteria in matrix Q, i.e., Qmin
j ¼

MinðQi;jÞ; 1 � i � n. By applying these two equa-
tions on Q, we obtain a matrix

V ¼ Vi;j; 1 � i � n; 1 � j � 5
� �

;

in which each row Vj corresponds to a Web service
sij while each column corresponds to a quality
dimension.

As an example, assume that there are eight Web
services in S5 for task t5 and that their values for
service reputation are given by the vector
Q5 ¼ ð7:5; 8:4; 9; 8:3; 8:7; 9:1; 9:4; 9:2; 9:5Þ. Since repu-
tation is a positive criteria, (2) is used for scaling and,
thus, Qmax

5 ¼ 9:5, Qmin
5 ¼ 7:5, and

V5 ¼ ð0; 0:55; 0:45; 0:75; 0:4; 0:6; 0:8; 0:95; 1Þ:

2. Weighting Phase. The following formula is used to
compute the overall quality score for each Web
service:

ScoreðsiÞ ¼
X5
j¼1

ðVi;j �WjÞ; ð3Þ

where Wj 2 ½0; 1� and
P5

j¼1 Wj ¼ 1. Wj represents
the weight of criterion j. End users express their
preferences regarding QoS by providing values for
the weights Wj.

For a given task, the system will choose the Web
service which satisfies all the user constraints for
that task and which has the maximal score. If there
are several services with maximal score, one of them
is selected randomly. If no service satisfies the user
constraints for a given task, an execution exception
will be raised and the system will propose the user
to relax these constraints.

4.2 Service Selection by Global Planning

In the local optimization approach, service selection is done
for each task individually. Although service selection is
locally optimized, the global quality of the execution may be
suboptimal. For example, if two tasks A and B are executed
in parallel and need to synchronize upon completion, then
it is not worth optimizing the duration of A, if it is known
that B takes considerably more time to execute. Instead, it is
preferable to optimize (for example) the price of A, while
optimizing the duration of B. Furthermore, as explained
above, when applying local optimization it is not possible to
enforce intertask constraints over the composite service
execution such as: “the total price of the composite service
execution should be at most $500.” In this section, we
present a global planning approach for Web services
selection which overcomes these limitations. We first
present a naive approach for global planning, and then
present a novel integer programming approach that avoids
some obvious computational problems associated with the
naive approach.

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 317

4.2.1 Optimal Execution Plan of an Execution Path

For each task tj in an execution path, there is a set of
candidate services Sj ¼ fs1j; s2j; . . . ; snjg that can execute
task tj. Assigning a candidate service sij to each task tj in an
execution path leads to a possible execution plan. In the
global planning approach, all possible plans associated to a
given execution path are generated (at least conceptually
speaking) and the one which maximizes the user’s
preferences while satisfying the imposed constraints is then
selected. The selection of an execution plan relies on the
application of a MCDM technique on the quality matrix
Q ¼ Qi;j; 1 � i � n; 1 � j � 5

� �
of the execution path. In this

matrix, a row corresponds to the quality vector of a possible
execution plan for the execution path.

As in the local selection approach, a SAW technique is
used to select an optimal execution plan. The two phases of
applying SAW are:

1. Scaling Phase. As in the previous section, we first
scale the values of each quality criterion. For
negative criteria, values are scaled according to (1).
For positive criteria, values are scaled according to
(2). Note that we can compute the value of Qmax

j

and Qmin
j in these equations without generating all

possible execution plans. For example, in order to
compute the maximum execution price (i.e., Qmax

pr)
of all the execution plans, we select the most
expensive Web service for each task and sum up
all these execution prices to compute Qmax

pr . In
order to compute the minimum execution duration
(i.e., Qmin

du) of all the execution plans, we select the
service with the shortest execution duration for
each task and use CPA to compute Qmin

du . The
computation cost of Qmax

j and Qmin
j is thus

polynomial. After the scaling phase, we obtain
the matrix V ¼ Vi;j; 1 � i � n; 1 � j � 5

� �
.

2. Weighting Phase. The following formula is used to
compute the overall quality score for each execution
plan:

ScoreðpiÞ ¼
X5
j¼1

ðVi;j �WjÞ; ð4Þ

where Wj 2 ½0; 1� and
P5

j¼1 Wj ¼ 1. Wj represents
the weight of each criterion. End users can give their
preferences on QoS (i.e., balance the impact of the
different criteria) to select a desired execution plan
by adjusting the value of Wj. The global planner will
choose the execution path which has the maximal
value of ScoreðpiÞ (i.e., maxðScoreðpiÞÞ). If there is
more than one execution plan which has the same
maximal value of ScoreðpiÞ, then an execution plan
will be selected from them randomly.

4.2.2 Handling Multiple Execution Paths

Assume that a statechart has multiple execution paths. For

each of these paths, an optimal execution plan can be

selected using the method described above. Since each of

the selected plans only covers a subset of the statechart, the

global planner needs to aggregate these “partial” execution

plans into an overall execution plan. For example, for the

Travel Planner statechart W (see Fig. 3), there are two

execution paths We1 and We2, each of which has its own

optimal execution plan, say p1 and p2. Neither p1 nor p2
covers all tasks in W , so they need to be merged somehow.

Assume that statechart W has n tasks (i.e., t1; t2; . . . ; tk)
and m execution paths (i.e., We1;We2; . . . ;Wem). For each
execution path, the global planner selects an optimal
execution plan. Consequently, we obtain m optimal execu-
tion plans (i.e., p1; p2; . . . ; pm) for these execution paths. The
global planner adopts the following approach to aggregate
multiple execution plans into an overall execution plan.

1. Given a task ti, if ti only belongs to one execution
path (e.g., Wej), then the global planner selects Wej’s
execution plan pj to execute the task ti. We denote
this as <ti; pj>. For example, in the Travel

Planner example, task t5 (i.e., BikeRental) only
belongs to execution path We2. In this case, We2’s
execution plan p2 is used to determine the service
that will execute t5. This fact is denoted by <t5; p2>.

2. Given a task ti, if ti belongs to more than one
execution paths (e.g.,Wej;Wejþ1; . . . ;Wem), then there
is a set of execution plans (i.e., pj; pjþ1; . . . ; pm) that
can be used to executeWsi. Hence, the global planner
needs to select one of these execution plans. The
selection can be done by identifying the hot path for
task ti.

For example, the hot path of a task ti can be
defined as the execution path that has been most
frequently used to execute the task ti in past
instances of the composite service. For example, in
the Travel Planner statechart, task t4 (Driving-
TimeCalcultation) belongs to both execution
paths We1 and We2. Assume that the composite
service has been executed 25 times, 20 of which have
followed execution path We1, while the other five
have followed We2. Since the execution path We1 is
used more frequently to execute task t4 (i.e., We1 is
the hot path for t2), We1’s optimal execution plan p1
is used to determine the service that will execute t4.
This is denoted by <t4; p1>. The system keeps the
execution traces of the composite service. These
traces allow the global planner to identify the hot
path for each task. In the absence of (enough) traces,
a human expert must indicate the hot path. It should
be noted that hot path can also be defined based on a
QoS criterion or a user defined utility function
involving multiple QoS criteria. For example, the hot
path can be defined as the path which has the
highest execution price.

4.2.3 Unfolding Cyclic Statecharts

Hitherto, we have assumed that the statecharts are acyclic.
If a statechart contains cycles, these need to be “unfolded”
so that the resulting statechart has a finite number of
execution paths. The method used to unfold a statechart is
to examine the logs of past executions to determine the
maximum number of times that each cycle is taken. The
states appearing between the beginning and end of a cycle
are then cloned as many times as the transition causing the

318 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

cycle is taken.2 This unfolding method works if the
beginning and end of each cycle in the statechart can be
identified. This is not the case for example in Fig. 6. In this
example, it is not clear which is the first state and which is
the last state in the cycle (is it t2 or t3?). However, an
equivalent statechart which can be unfolded using the
above method is shown in Fig. 7.

It can be proven that any arbitrary statechart can be
transformed into an equivalent statechart in which the
cycles do not cross the boundaries of conditional branches
(as illustrated above). This proof is similar to that of the
theorem stating that any program written using “goto”
statements, can be transformed into an equivalent program
which only uses structured loops (i.e., “while” statements).
Oulsman [29], for example, describes a method for
performing this kind of transformation with minimal
number of auxiliary Boolean variables. Kiepuszewski et al.
[19] points out to the fact that the algorithms for transform-
ing “arbitrary cycles” into “structured” ones do not always
apply in the presence of parallel branches. However, they
do apply for statecharts since in statecharts it is not possible
to have arbitrary transitions going from a parallel branch to
another such as those put forward by reference [19].

Given the statechart with structured cycles of Fig. 7, the
unfolding process proceeds by determining the maximum
number of times that the transition causing the cycle is taken
(i.e., the transition labeled with condition “not E”). If for
example this transition has been taken a maximum of two
times, then three copies of the compound state W will
appear in the resulting acyclic statechart. From this acyclic
statechart, we can then generate all possible execution paths.

4.2.4 Integer Programming Solution

The global planning approach by exhaustive searching
outlined above requires the generation of all possible
execution plans. Assuming that there are n tasks and m
candidate Web services for each task, the total number of
execution plans is mn, making this approach impractical.
Accordingly, we propose a method based on Integer
Programming (IP) [18] for selecting an optimal execution
plan without generating all possible execution plans.

There are three inputs in an IP problem: a set of variables,
an objective function, and a set of constraints, where both the
objective function and the constraints must be linear. IP
attempts to maximize or minimize the value of the objective
function by adjusting the values of the variables while
enforcing the constraints. The output of an IP problem is the
maximum (or minimum) value of the objective function and
the values of variables at this maximum (minimum).

The problem of selecting an optimal execution plan is
mapped into an IP problem as follows. First, for every Web
service sij that can be used to execute a task tj, we include in
the IP problem an integer variable yij, such that by
convention yij is 1 if service sij is selected for executing
task tj, 0 otherwise. We also introduce a set of integer
variables xj, such that xj denotes the expected start time of
task tj (if tj is executed at all). This set of variables are used
to express the constraints on the execution duration.

Next, since we rely on MCDM and SAW to determine
the desirability of an execution plan, we use the following
objective function, which is based on (1), (2), and (4):

Max
X2
l¼1

Qmax
l �Qi;l

Qmax
l �Qmin

l

�Wl

� �
þ
X5
l¼3

Qi;l �Qmin
l

Qmax
l �Qmin

l

�Wl

� � !
;

ð5Þ

where Wl 2 ½0; 1� and
P5

j¼1 Wj ¼ 1. Wl is the weight
assigned to the quality criteria. The remainder of this
subsection describes the constraints of the IP problem.

Allocation constraint. For each task tj, there is a set of
Web services Sj that can be assigned (allocated) to it.
However, for each task tj, we should only select one Web
service to execute this task. Given that yij denotes the
selection of Web service sij to execute task tj, the following
constraint must be satisfied:X

i2Sj

yij ¼ 1; 8j 2 A; ð6Þ

where A is the set of tasks in the statechart. For example,
assume that there are 100 potential Web services that can
execute task j. Since only one of them will be selected to
execute task j, we have that

P100
i¼1 yij ¼ 1.

Constraints on Execution Duration, Price, and Reputa-
tion. Let xj denote the expected start time of task tj, pij
denote the execution duration of task tj when assigned to
service sij, and pj denote the expected duration of task tj
knowing which service has been assigned to it. Also, let
tj ! tk denote the fact that task tk is a direct successor of
task tj. We have the following constraints:X

i2Sj

pij yij ¼ pj; 8j 2 A; ð7Þ

xk � ðpj þ xjÞ � 0; 8tj ! tk; j; k 2 A; ð8Þ

qdu � ðxj þ pjÞ � 0; 8j 2 A: ð9Þ

Constraint (7) indicates that the execution duration of a
given task tj must be the execution duration of one of the
Web services in A since one and only one of these services
will be selected to execute task tj. Constraint (8) indicates

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 319

2. The idea of cloning the states in a loop for the purpose of transforming
a cyclic statechart into an acyclic one has been proposed by Gillmann et al.
[15].

Fig. 6. “Unfoldable” statechart. Fig. 7. Foldable statechart equivalent to that in Fig. 6.

that if task tk is a direct successor of task tj, then the
execution of tk must start after task tj has been completed.
Constraint (9) indicates that the execution of a composite
service plan is completed only when all the tasks in the plan

are completed.
Now, let zij be an integer variable that has value 1 or 0: 1

indicates that Web service sij is a critical service and 0

indicates otherwise. The relationship between the duration
of an execution plan and the duration of the critical services

of the plan is captured by the following equation.

qdu ¼
X
j2A

X
i2Sj

pijzij: ð10Þ

Similarly, assuming that variable cij represents the execu-

tion price of Web service sij, we impose the following
constraint to capture the total execution price of a composite
service:

qpr ¼
X
j2A

X
i2Sj

cijyij: ð11Þ

An alternative constraint (11) is the following:X
j2A

X
i2Sj

cijyij � B;B > 0; ð12Þ

where B is the budget set by the user. This constraint

indicates that the execution price of the composite service
should not be greater than B.

Finally, assuming that variable rij represents the reputa-
tion of Web service sij, we impose the following constraint
to capture the overall reputation of an execution plan:

qrep ¼
X
j2A

X
i2Sj

rijyij: ð13Þ

Note that other criteria with a simple linear aggregation
function could be integrated in the same way as the

reputation.
Constraints on Success Rate and Availability. Among

the criteria used to select Web services, the availability
and the success rate are associated with nonlinear
aggregation functions (see Table 1). In order to capture

them in the IP problem, we need to transform nonlinear to
linear function. Assume that variable aij represents the
success rate of Web service sij. Since zij indicates whether
Web service sij is a critical service or not, the success rate
of the execution plan is:

qrat ¼ �j2A �i2Sj
a
zij
ij

� �
:

By applying the logarithm function ln, we obtain:

lnðqratÞ ¼
X
j2A

ln �i2Sj
a
zij
ij

� �
:

Since for each task tj,
P

i2Sj zij ¼ 1 and zij ¼ 0 or 1, we have

that:

lnðqratÞ ¼
X
j2A

X
i2Sj

lnðaijÞzij
� �0

@
1
A:

Let q0rat ¼ lnðqratÞ, we introduce the following constraint into
the IP problem in order to capture the success rate criterion:

q0rat ¼
X
j2A

X
i2Sj

lnðaijÞzij
� �

: ð14Þ

It should be noted that by transforming nonlinear functions
to linear functions, we actually change the objective
function if the weight of the other criteria is not equal to
zero. However, the constraints on the success rate still hold.
Similarly, assume that bij represents the availability of the
Web service sij. We introduce the following constraint:

q0av ¼
X
j2A

X
i2Sj

lnðbijÞzij
� �

; ð15Þ

where q0av ¼ lnðqavÞ.
Constraints on the Uncertainty of Execution Duration.

Hitherto, we have assumed that the execution duration pij
of a Web service is deterministic. In reality, the execution
duration pij of a Web service sij is uncertain, in the sense
that some deviations between the actual duration and pij
are likely to occur. In order to capture this uncertainty, we
assume that pij is a random variable that follows a normal
distribution with mean �ij and standard deviation �ij,
which can be computed from the history of past executions.

Since qdu ¼
P

i2A
P

i2Sj
pijzij is a linear combination of

random variables with normal distribution, qdu itself is a
random variable with normal distribution [35] and its
deviation �du is �2

du ¼
P

j2A
P

i2Sj
�2
ijzij. With this equation

at hand, it is possible to extend the objective function in
order to incorporate the deviation from the expected
execution duration as an optimization criteria. The ex-
tended objective function is:

Max
X2
l¼0

Qmax
l �Qi;l

Qmax
l �Qmin

l

�Wl

� �
þ
X5
l¼3

Qi;l �Qmin
l

Qmax
l �Qmin

l

�Wl

� � !
;

ð16Þ

where Q0 ¼ �2du and W0 2 ½0; 1� are the values assigned to
the criterion “deviation from expected execution duration.”
Given the above variables, objective function, and con-
straints, an IP solver is able to compute the values of yij
corresponding to an optimal execution plan. As a side
effect, the IP solver will also provide a tentative schedule for
the tasks in the statechart by assigning values to the
variables xj. This assignment of variables can be used by the
execution engine, but they are not strictly necessary since
the execution engine can schedule the tasks using its own
scheduling mechanisms.

Note that the proposed method for translating the
problem of selecting an optimal execution plan into an IP
problem is generic and, although it has been illustrated with
the five criteria introduced in Section 3 (plus the “duration
deviation” criterion), other criteria can be accommodated.

4.2.5 Replanning the Execution of Composite Services

When using the global planning approach, an execution
plan is built at the beginning of the execution of the
composite service. Once the execution has started, several
contingencies may occur, e.g., a component service becomes
unavailable or the QoS of one of the component services

320 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

changes significantly. In these situations, a replanning
procedure may be triggered in order to ensure that the
QoS of the composite service execution remains optimal.
Note that it is conceivable that the computation time spent
on replanning is more than the duration of the remaining
tasks. Even in this situation, however, replanning may be
beneficial as it may improve the values of the other QoS
criteria, e.g., lower execution price. In this section, we
discuss how this replanning procedure is conducted.

Consider a composite service consisting of a set of tasks
T ¼ ft1; t2; . . . ; tng. Based on the execution status, T can be
partitioned into four regions:

1. region R� containing tasks that have been com-
pleted;

2. region R� containing tasks that are being executed;
3. region R� containing tasks that have not yet started;

and
4. region R� containing tasks which belong to a

conditional branch that is no longer accessible from
any of the tasks in R� (i.e., tasks that have not been
executed but will not be executed).

An example of a partitioning of a composite service is given
in Fig. 8. Note that this composite service has no conditional
branches, so R� ¼ ;.

When using the global planning approach, the composite
service execution needs to be replanned in the following
cases:

1. One or several exceptions have occurred during the
execution of component services in region R�.
Execution exceptions include 1) component services
failing to execute tasks and 2) a service not being
able to attain its expected QoS.

2. Changes have been reported in the expected QoS of
candidate services for tasks in region R� . Changes
include: 1) services selected during the global
planning becoming unavailable or changing their
QoS properties, 2) new candidate services offering
better QoS than existing services appearing, and
3) existing services raising their advertised QoS.

As discussed in Section 4.2.4, there are three inputs in an
IP problem: a set of variables, an objective function, and a set
of constraints. When an execution plan is revised at runtime,
the variables and the objective function are not modified, but
instead, a number of additional constraints are introduced
in order to capture the current execution status (i.e., the fact
that some of the tasks have already completed). Specifically,
the actual QoS delivered by the tasks in region R�, and the
fact that the tasks in region R� and R� cannot be reassigned
to new candidate services, need to be encoded in the
constraints of the IP problem. For example, assuming that

task t1 has been successfully completed by service s41, that

the actual execution duration was 20 seconds, and that the

actual execution cost was $10, the following constraints will

be added to the IP problem by the global planner:

y41 ¼ 1; ð17Þ

a41 ¼ 1; b41 ¼ 1; ð18Þ

p41 ¼ 20; c41 ¼ 10: ð19Þ

Constraint (17) indicates that service s41 executed task t1.

Constraint (18) indicates that service s41 was available and

reliable when invoked. Finally, constraint (19) encodes the

actual execution duration and cost of t1. The introduction of

these constraints force the IP solver to select an execution

plan for region R� which takes into account what has

already been accomplished during the composite service

execution.

4.3 Comparison of Service Selection Approaches

In the following, we compare the local and the global

service selection approaches based on the following metrics:

1. QoS of Composite Service. This is measured along
two perspectives:

. Quality Criteria. As we discussed in earlier
section, QoS of composite service is measured
by a set of quality criteria. And since there are
often trade offs among different quality criterion
(e.g., execution time and cost), it is important
that the system is able to find a combination of
these dimensions that fits the user’s preferences.

. Ability to satisfy user’s requirements. Although
good quality composite service execution re-
quires optimal QoS of services, the satisfaction of
end users’ constraints is an equally important
aspect. There are two kinds of constraints:
constraints on a single task and constraints on
multiple tasks. The system’s ability to accept
both kinds of constraints is key to satisfying user
requirements.

2. System Cost. When the system receives a request to
execute a composite service, it utilizes resources to
locate candidate Web services for the required tasks
and to select among them. Specifically, the system
consumes network resources (bandwidth cost) to
contact the service broker(s) to identify candidate
Web services. It then consumes computational
resources (computational cost) to process the search
results and select one among the candidate Web
services. Also, when the composite service is being
executed, the system interacts with the Web services
in order to orchestrate them which also consumes
bandwidth and computational resources.

The computational cost of local optimization is poly-

nomial. The bandwidth cost is very limited: for each task,

there are two messages that flow between the composite

service execution engine and the service broker (query and

result) and three that flow between the execution engine

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 321

Fig. 8. Partition of a composite service into regions for replanning.

and the selected Web services (enable, start, and
completed).

On the negative side, the local optimization approach has
two shortcomings:

1. It cannot consider global trade offs between
quality dimensions, especially in the case of
composite services involving concurrent threads.
For example, in the Travel Planner statechart,
task t2 (AttractionSearching) and task t3
(FlightTicketBooking) are executed concur-
rently. If the execution duration of task t3 is
always longer than that of task t2, the system
should select for task t2 the candidate service that
offers the lowest price, regardless of the duration.
In the local selection approach however, the
system does not take advantage of this fact.

2. When selecting Web services, the local optimization

approach can consider constraints on individual

tasks, but it cannot consider global constraints, i.e.,

constraints that cover multiple (or all) tasks in the

composite service. Also, although it is always able to
select a Web service with minimal execution price or

minimal execution duration for each task, it fails

when both the execution price and execution

duration need to be considered at a global level.

For example, it cannot enforce a constraint stating

that the composite service’s execution price cannot

exceed $500 and the execution duration cannot

exceed three days.

The global planning approach overcomes these short-

comings, but at the price of higher computational and

bandwidth cost. Indeed, the global planner first needs to

select an optimal execution plan using an expensive

algorithm (exponential in some cases). It then needs to

monitor all the candidate Web services (whether they are

included in the plan or not) thereby consuming considerable

bandwidth resources. Finally, when it detects exceptions or

changes, it may need to revise the execution plan, again

using an expensive algorithm. Another issue with global

planning is that users are required to provide relatively

complex input (i.e., global constraints and trade offs).
An experimental comparison between local optimization

and global planning is given in Section 6.

5 IMPLEMENTATION

In this section, we describe the implementation of two
major components of the AgFlow architecture (shown in
Fig. 1): the service broker and the service composition
manager.

5.1 Implementing the Service Broker

There are two metadata repositories in the AgFlow system,
namely, the service ontology repository and the Web service
repository. We adopt the UDDI registry to implement both
metadata repositories. In the UDDI registry, every Web
service is assigned to a tModel. A tModel provides a
semantic classification of a service’s functionality and a
canonical description of its interface.

We define an XML schema for service ontologies. Each
service ontology is represented as an XML document
conforming to this XML schema. A separate tModel of
type serviceOntologySpec is created for each service
ontology. The information that makes up a serviceOn-

tologySpec tModel is simple. There is a tModel key, a
name (i.e., service ontology’s name), an optional descrip-
tion, and a URL that points to the location of the service
ontology description document. In the Web service
repository, we adopt WSDL to specify services. It should
be noted that the Web service’s tModel contains the key of
a service ontology’s tModel in categoryBag.

Using the UDDI API, the service broker provides two
kinds of interfaces for both repositories, namely the publish
interface and the search interface. The publish interface is to
used to create and edit service ontologies. The search
interface is used to search and browse service ontologies.

5.2 Implementation of the Service Composition
Manager

The service composition manager consists of two modules,
namely, the Execution Planner, and Execution Engine.

. Execution Planner is the module that selects a Web
service for each task in a composite service using
either local optimization or global planning. It
provides a specific method called select() that
can be used to perform local optimization or IP-
based global planning. The IP-based global planning
approach is implemented as an integer program-
ming solver based on IBM’s Optimization Solutions
and Library (OSL) [27].

. Execution Engine is the heart of the service
composition manager. It manages composite service
executions from beginning to the end. It determines
which tasks need to be executed based on the control
and data dependencies. It also maintains the state of
the composite service, including the execution state
and the events/messages triggered by Web services.
The prototype uses the execution engine of the Self-
Serv system [5].

6 EXPERIMENTATION

In order to evaluate the proposed service selection
approaches, we developed a travel planning application
based on the one presented in Zeng et al. [42] and
conducted experiments using the prototype system. Ser-
vices were developed using IBM’s Web Services Toolkit [37]
and deployed on a cluster of PCs. All PCs had the same
configuration: Pentium III 933MHz with 512M RAM,
Windows 2000, Java 2 Enterprise Edition V1.3.0, and Oracle
XML Developer Kit. They were connected to a LAN
through 100Mbits/sec Ethernet cards.

QoS data is retrieved by the service execution engine in
different ways depending on the QoS dimension. The
execution duration and the execution cost are retrieved via
two operations: getExecutionDuration() and getExecution-
Price(), respectively. These operations are defined in the
underlying service ontology. The reliability and reputation
on the other hand are calculated by the service composition

322 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

manager using the formulas presented in Section 3.1. For
this purpose, the service composition manager logs appro-
priate QoS information during task executions. Finally, the
availability is calculated by the service broker based on the
information that it records about the up and down time of
each service.

Experiments were conducted in two types of environ-
ments: static and dynamic. In a static environment, there is
no change in the QoS of any component service during a
given composite service execution. In addition, all compo-
nent services are able to execute the tasks successfully and
in conformance with their expected QoS. In a dynamic
environment, on the other hand, the QoS of component
services may undergo changes during the execution of a
composite service. Existing component services may be-
come unavailable, new component services with better QoS
may become available, component services may not be able
to complete the execution of tasks, or they may complete
them but without meeting their expected QoS.

The experiments involved composite services with
varying numbers of basic states. The composite services
were created by randomly repeating existing states in the
composite service shown in Fig. 3. The number of states
varied from 10 to 80 with steps of 10 (e.g., 10, 20, ... 80). Also,
we varied the number of candidate component services per
task from 10 to 40 with steps of 10.

6.1 Measuring Computation Cost

The first series of experiments aimed at comparing the three
selection approaches previously described (local optimiza-
tion, global planning by exhaustive search, and global
planning by integer programming) with respect to the
computational overhead involved by their planning phase.
The idea is to provide a basis for determining when should
global planning be preferred over local optimization.
Accordingly, we measured the computation cost (in
seconds) of selecting component services to create execution
plans under different selection approaches. For each test
case, we executed the composite service 10 times and
computed the average computation cost.

6.1.1 Static Environments

In a static environment and when using a global planning
approach, once a process execution plan is created the
execution planner does not need to replan the process
execution. So, the global planner is invoked only once
during a composite service execution. In the case of local
optimization, on the other hand, if we assume that the
number of tasks that are executed is N , then the service
selector in the execution planner is invoked N times to
select a component service for each task.

Fig. 9 plots computation cost (in seconds) of selecting
services for composite services with only one execution
path. In this experiment, we varied the number of tasks and
the number of candidate services per task. In all the
approaches, the computation cost increases when the
number of tasks increases and the number of candidate
services increases. The computation cost of global planning
by exhaustive searching is very high even in very small
scale in aspect of the number of tasks and candidate service.
Although the computation cost of global planning by IP is
higher than that of local optimization, it still acceptable if

the number of tasks and candidate services is not very large.
For example, when there are 40 tasks and 40 candidate Web
services for each task, the computation cost of the global
planning by IP (1.6 seconds) is almost 1.5 times higher than
the local optimization approach (0.7 seconds).

We also conducted experiments involving composite
services with more than one execution path. Using IP-based
global planning, we observed that the computation cost
increases proportionally to the number of the execution
paths given a constant number of tasks in each execution
path. This is normal since for each execution path, an
optimal execution plan needs to be generated. It should be
noted that the number of execution paths does not affect the
computation cost of the local optimization approach since
the selection is done incrementally and, therefore, only for
the execution path taken.

6.1.2 Dynamic Environments

Dynamic environments were simulated by randomly
changing the QoS of the component services during a
composite service execution according to three QoS proper-
ties: execution price, duration, and availability. Changes are
done so that, if the global planning approach is used, the
execution of a composite service needs to be replanned
whenever a task is completed. Hence, the global planner
needs to be invoked as many times as there are tasks in the
composite service.

Fig. 10 presents computation cost (in seconds) of service
selection for composite services with only one execution
path, where we vary the number of tasks and the number of
candidate services per task. In both selection approaches,
the computation cost increases with the number of tasks
and the number of candidate services. The computation cost
of global planning using IP is much higher than in a static
one. For 80 tasks and 40 candidate services per task, the

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 323

Fig. 9. Experimental results (computation cost) in a static environment,
varying the number of tasks in the statechart and the number of

candidate services per task.

computation cost of the global planning using IP in a
dynamic environment (190 seconds) is almost 25 times
higher than in a static one (7.8 seconds). However, this may
be considered to be an extreme case, and for reasonably
sized cases, global planning delivers acceptable computa-
tion cost. Furthermore, the computation cost in a dynamic
environment is spread across the lifespan of the composite
service execution.

6.2 Measuring QoS of Composite Services

The second series of experiments aimed at evaluating the
QoS of composite service executions in both static and
dynamic environments. Table 2 presents experiment results
on composites’ execution duration (i.e., QduðCSÞ, in
seconds) and execution price (i.e., QpriceðCSÞ, in dollars) in
static environment, where we vary the number of tasks. The
experiment results show that the global planning approach
yields significantly better QoS than the local optimization
approach. For example, the execution duration is consis-
tently shorter when using global planning approach than
that of local optimization approach.

Table 3 shows that global planning approach gives better
QoS of composite services than that of local optimization
approach in most of the cases in dynamic environments (for
clarity and space reasons, we only show the execution
duration and price in the table). At the same time, the
average QoS of composite services in the global planning
approach is better than that of the local optimization
approach. However, in some cases (see left side of Table 3,
composite service 4), the global planning approach may
create worse execution result compared to the local
optimization approach. The reason is that the global
planning approach makes the decision based on the set of
currently available Web services. Since the availability of
Web services is dynamic, some services that are selected by
the optimal execution plan may become unavailable when
the task needs to be executed. Although the system can
replan the unexecuted part of composite services, the
executed part may become suboptimal, making the entire
composite service execution suboptimal. Note also that,
even in dynamic environments, the global planner is still
able to handle constraints spanning multiple tasks when

324 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

TABLE 2
Experimental Results on QoS of Composite Services in Static Environments

TABLE 3
Experimental Results on QoS of Composite Services in Dynamic Environments

Fig. 10. Experimental results (computation cost) in a dynamic environ-

ment and static environment, varying the number of tasks and the

number of candidate services per task.

performing execution replanning (see Section 4.2.5). For
example, in the left side of Table 3, the composite service
executions are performed under a execution duration
constraint (Qdu < 7; 500 sec).

6.3 Discussion

From the experimental results, we conclude that the IP-
based global planning approach leads to significantly better
QoS of composite service executions with little extra system
cost in static environments. For example, in a static
environment, a composite service execution with 40 tasks
spends: 1) 1.6 seconds for selecting Web services using
global planning; 2) 0.7 seconds using local optimization. In
a dynamic environment, however, global planning imposes
a perceivable overhead. For example, a composite service
with 80 tasks spends 190 seconds for selecting Web services
using global planning, while it spends 4.9 seconds using
local optimization.

These results reinforce the conclusions of the analytical

considerations of Section 4.3. If there is no requirement for

specifying global constraints, then local optimization is

preferable, especially in dynamic environments. On the

other hand, global planning is superior when it comes to

selecting services that satisfy certain global constraints and

which optimize global tradeoffs. Given the fact that, a

global selection approach considers both local and global

selection constraints, the results clearly demonstrate the

benefit of using a IP-based method for global service

execution planning, even if we take into consideration the

modest planning overhead.

7 RELATED WORK

In this section, we first review some related work on
QoS management in middleware before discussing the
relationship between our work and research and standar-
dization efforts in the area of (Web) service composition.

QoS management has been widely discussed in the area

of middleware systems [3], [25], [15]. The focus of these

works is essentially on the following issues: QoS specifica-

tion to allow description of application behavior and

QoS parameters, QoS translation and compilation to

translate specified application behavior into candidate

application configurations for different resource conditions,

QoS setup to appropriately select and instantiate a

particular configuration, and, finally, QoS adaptation to

runtime resource fluctuations. Most efforts in QoS-aware

middleware however are centered on the network transport

and system level. Very limited work has been done at the

application and business process levels.
Other work in the area of QoS-aware middleware

include those of Mecella et al. [23] and Naumann et al.
[26] which consider data quality management in coopera-
tive information systems. They investigate techniques to
select the best available data from various service providers
based on dimensions such as accuracy, completeness, and
consistency. However, they do not consider QoS-based
selection for service composition.

Service composition is a very active area of research and

standardization [4], [10]. Notations for service description

and composition have also been proposed in other

standardization efforts such as ebXML [30] and DAML-S

[2]. DAML-S supports the description of Semantic Web-

enabled services based on a generic ontology in which both

functional and QoS aspects of services are expressed as

rule-based preconditions and postconditions on service

operations. This rule-driven approach is also adopted in

SWORD [33] where forward chaining is proposed as a

mechanism for deriving composite service schemas given a

set of required preconditions and postconditions. Unlike

our proposal, however, neither DAML-S nor SWORD

consider specific QoS criteria nor do they address the issue

of dynamic service selection using these criteria. BPEL4WS

[31] provides a process-based language for service compo-

sition. Our approach builds upon the building blocks of

these standards to provide a QoS-aware and dynamic

service composition model. In fact, our proposal could be

applied to composite services specified in BPEL4WS, as

statecharts support similar control-flow primitives as

BPEL4WS.
Despite the relatively large body of work in the area of

service composition, few efforts have specifically addressed
the topic of QoS-aware service composition. A notable
exception is the work by Gu and Nahrstedt [16] and Xu and
Nahrstedt [38]. In this work, the authors propose global
planning algorithms for dynamic QoS-aware service com-
position which, like our approach, compute an initial plan
at the start of a composite service execution and then revise
the plan as necessary during the execution. Unlike our
approach however, the underlying service composition
model does not support parallelism nor branching. Instead,
a composite service (called a service path by the authors) is
defined as a chain of service operations. Still, many of the
ideas proposed in [16], [38] could be integrated into our
approach. In particular, the probing techniques of Xu and
Narhstedt [38] could be used to efficiently collect QoS
information during composite service execution.

CMI [14] and eFlow [9] have investigated the possibility

of performing dynamic service selection based on user

requirements. CMI’s service definition model features the

concept of a placeholder activity to cater for dynamic

composition of services. A placeholder is an abstract

activity replaced at runtime by a concrete activity type. A

selection policy determines the activity that should be

executed in lieu of the placeholder. In eFlow, the definition

of a service node contains a search recipe represented in a

query language. When a service node is invoked, a search

recipe is executed in order to select a specific service. Both

CMI and eFlow focus on optimizing service selection at a

task level. In addition, no QoS model is explicitly

supported. In contrast, our approach focuses on optimizing

service selection at the composite service level and handles

various types of QoS criteria.
The SAHARA [34] project proposed a reference model

for service composition which recognizes two different
models: the cooperative composition model and the
brokered composition model. Our approach can be seen
as adding dynamic QoS-aware service selection to SA-
HARA’s brokered model. Indeed, the service composition

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 325

manager in our architecture acts as a broker between the
composite service clients and the services participating in
the composition.

Some related work on QoS has been done in the area of

workflow. Most efforts in this area focus on specifying and

enforcing temporal constraints [13], [6], [15]. Some projects

such as METEOR [8] and CrossFlow [21] consider other

QoS criteria than time. METEOR [8] considers four quality

dimensions: time, cost, reliability, and fidelity. However, it

does not consider the dynamic composition of services.

Instead, it focuses on analyzing, predicting, and monitoring

workflow QoS. CrossFlow proposes the use of continuous-

time Markov chains to estimate execution time and cost of

workflow instances. However, the contributions of Cross-

Flow on this topic are complementary to ours, insofar as

they do not deal with dynamic service selection. Klinge-

mann [20] proposes modeling primitives for capturing

points of flexibility in workflows where dynamic selection

can occur, but does not propose specific selection methods

as we do.

8 CONCLUSION

AgFlow is a QoS-aware middleware supporting quality
driven Web service compositions. The main features of the
AgFlow system are: 1) a service quality model to evaluate
overall quality of (composite) Web services and 2) two
service selection approaches for composite service execution.

AgFlow has been implemented as a platform that
provide tools for: 1) defining service ontologies, 2) specify-
ing composite services using statecharts, 3) assigning
services to the tasks of a composite service. The AgFlow
platform has been used to validate the feasibility and
benefits of the proposed approaches. The experimental
results show that the computation cost of IP-based global
planning is acceptable when the number of tasks and
candidate services is not very large. The results also show
that the global planning approach leads to better QoS and,
specifically, to lower execution prices and execution
durations. We argue that large scale service composition
should be done in a hierarchical fashion [43], in such a way
that a global planning approach can be used in each layer of
the composition without major performance penalty.

The proposed global planning approach does not take
into account the computation cost of the planning/replan-
ning algorithm as part of QoS of the composite service. This
is a limitation of the current solution as the computation
cost affects the composite service’s execution time. A
possible extension to the approach is to develop techniques
for estimating the computation cost of global planning in
order to evaluate its benefit and to determine if it outweighs
its overhead in a given situation. Another direction for
further work is to combine global planning and local
optimization approaches in order to leverage their relative
advantages.

ACKNOWLEDGMENTS

The authors would like to thank Phuong Nguyen for the
fruitful discussions regarding the QoS criteria.

REFERENCES

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services.
Springer Verlag, 2003.

[2] A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. McDermott,
D. Martin, S.A. McIlraith, S. Narayanan, M. Paolucci, T. Payne,
and K. Sycara, “DAML-S: Web Service Description for the
Semantic Web,” Proc. First Int’l Semantic Web Conf. (ISWC 02),
2002.

[3] C. Aurrecoechea, A.T. Campbell, and L. Hauw, “A Survey of QoS
Architectures,” Multimedia Systems, vol. 6, no. 3, pp. 138-151, 1998.

[4] Distributed and Parallel Database, special issue on Web Services,
B. Benatallah and F. Casati, eds., Kluwer Academic, 2002.

[5] B. Benatallah, M. Dumas, Q.Z. Sheng, and A.H. Ngu, “Declarative
Composition and Peer-to-Peer Provisioning of Dynamic Web
Services,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 297-308, Feb. 2002.

[6] C. Bettini, X. Wang, and S. Jajodia, “Temporal Reasoning in
Workflow Systems,” Distributed and Parallel Databases, vol. 11,
no. 3, pp. 269-306, 2002.

[7] H.C.-L and, K. Yoon, “Multiple Criteria Decision Making,” Lecture
Notes in Economics and Mathematical Systems. Springer-Verlag,
1981.

[8] J. Cardoso, “Quality of Service and Semantic Composition of
Workflows,” PhD thesis, Univ. of Georgia, 2002.

[9] F. Casati and M.-C. Shan, “Dynamic and Adaptive Composition of
E-Services,” Information Systems, vol. 26, no. 3, pp. 143-162, May
2001.

[10] Very Large Databases J., special issue on E-Services, F. Casati et al.,
eds., Springer-Verlag, 2001.

[11] F. Curbera et al., “Unraveling the Web Services: An Introduction
to SOAP,WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 2,
Mar./Apr. 2002.

[12] M. Dumas and A.t. Hofstede, “UML Activity Diagrams as a
Workflow Specification Language,” Proc. Int’l Conf. Unified
Modeling Language (UML), pp. 86-90, Oct. 2001.

[13] J. Eder, E. Panagos, and M. Rabinovich, “Time Constraints in
Workflow Systems,” Lecture Notes in Computer Science, vol. 1626,
1999.

[14] D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker,
“Managing Process and Service Fusion in Virtual Enterprises,”
Information System, special issue on Information System Support
for Electronic Commerce, vol. 24, no. 6, pp. 429-456, 1999.

[15] M. Gillmann, G. Weikum, and W. Wonner, “Workflow Manage-
ment with Service Quality Guarantees,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 228-239, June 2002.

[16] X. Gu and K. Nahrstedt, “A Scalable QoS-Aware Service
Aggregation Model for Peer-to-Peer Computing Grids,” Proc.
11th IEEE Int’l Symp. High Performance Distributed Computing
(HPDC), pp. 73-82, July 2002.

[17] D. Harel and A. Naamad, “The STATEMATE Semantics of
Statecharts,” ACM Trans. Software Eng. and Methodology, vol. 5,
no. 4, pp. 293-333, 1996.

[18] H. Karloff, Linear Programming. Birkhauser, 1991.
[19] B. Kiepuszewski, A.t. Hofstede, and C. Bussler, “On Structured

Workflow Modelling,” Proc. Int’l Conf. Advanced Information
Systems Eng. (CAiSE), June 2000.

[20] J. Klingemann, “Controlled Flexibility in Workflow Manage-
ment,” Proc. Int’l Conf. Advanced Information Systems Eng. (CAiSE),
pp. 126-141, June 2000.

[21] J. Klingemann, J. Wásch, and K. Aberer, “Deriving Service Models
in Cross-Organizational Workflows,” Proc. Ninth Int’l Workshop
Research Issues in Data Eng.: Virtual Enterprise (RIDE-VE ’99), Mar.
1999.

[22] Y. Liu, A.H.H. Ngu, and L. Zeng, “QoS Computation and Policing
in Dynamic Web Service Selection,” Proc. 13th Int’l Conf. World
Wide Web (WWW), May 2004.

[23] M. Mecella, M. Scannapieco, A. Virgillito, R. Baldoni, T. Catarci,
and C. Batini, “Managing Data Quality in Cooperative Informa-
tion Systems,” Proc. 10th Int’l Conf. Cooperative Information Systems
(CoopIS), 2002.

[24] B. Medjahed, A. Bouguettaya, and A.K. Elmagarmid, “Composing
Web Services on the Semantic Web,” The VLDB J., vol. 12, no. 4,
pp. 333-351, 2003.

[25] K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li, “QoS-Aware
Middleware for Ubiquitous and Heterogeneous Environments,”
IEEE Comm. Magazine, vol. 39, no. 11, pp. 2-10, 2001.

326 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 5, MAY 2004

[26] F. Naumann, U. Leser, and J.C. Freytag, “Quality-Driven Integra-
tion of Heterogenous Information Systems,” Proc. Int’l Conf. Very
Large Databases (VLDB), pp. 447-458, 1999.

[27] IBM Optimization Solutions and Library, http://www-3.ibm.
com/software/data/bi/osl/index.html, 2003.

[28] J. O’Sullivan, D. Edmond, and A.t. Hofstede, “What’s in a
Service?” Distributed and Parallel Databases, vol. 12, nos. 2-3,
pp. 117-133, Sept. 2002.

[29] G. Oulsnam, “Unravelling Structured Programs,” The Computer J.,
vol. 25, no. 3, pp. 379-387, 1982.

[30] S. Patil and E. Newcomer, “ebXML and Web Services,” IEEE
Internet Computing, vol. 7, no. 3, pp. 74-82, May/June 2003.

[31] C. Peltz, “Web Services Orestrestration and Choreography,”
Computer, vol. 36, no. 10, pp. 46-52, Oct. 2003.

[32] M. Pinedof, Scheduling: Theory, Algorithms, and Systems, second ed.
Prentice Hall, 2001.

[33] S. Ponnekanti and A. Fox, “SWORD: A Developer Toolkit for
Building Composite Web Services,” Proc. Alternate Tracks of the
11th World Wide Web Conf., May 2002.

[34] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson,
K. Lai, T. Lavian, S. Machiraju, Z. Morley-Mao, G. Porter, T.
Roscoe, M. Seshadri, J.S. Shih, K. Sklower, L. Subramanian, T.
Suzuki, S. Zhuang, A.D. Joseph, R.H. Katz, and I. Stoica, “The
SAHARA Model for Service Composition Across Multiple
Providers,” Proc. First Int’l Conf. Pervasive Computing, pp. 1-14,
May 2002.

[35] D.D. Wackerly, W. Mendenhall, and R.L. Scheaffer, Mathematical
Statistics with Application. Duxbury Press, 1996.

[36] Web Services Architecture Requirements Working Group, http://
www.w3.org/TR/wsa-reqs, 2004.

[37] IBM Web Services Toolkit, http://alphaworks.ibm.com/tech/
webservicestoolkit, 2003.

[38] D. Xu and K. Nahrstedt, “Finding Service Paths in a Media Service
Proxy Network,” Proc. SPIE/ACM Multimedia Computing and
Networking Conf. (MMCN), Jan. 2002.

[39] L. Zeng, “Dynamic Web Services Composition,” PhD thesis, Univ.
of New South Wales, 2003.

[40] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q.Z. Sheng,
“Quality Driven Web Services Composition,” Proc. 12th Int’l Conf.
World Wide Web (WWW), May 2003.

[41] L. Zeng, B. Benatallah, and A.H.H. Ngu, “On Demand Business-
to-Business Integration,” Proc. Ninth Int’l Conf. Cooperative
Information Systems, 2001.

[42] L. Zeng, B. Benatallah, A.H.H. Ngu, and P. Nguyen, “AgFlow:
Agent-Based Cross-Enterprise Workflow Management System
(Demonstration Paper),” Proc. 27th Int’l Conf. Very Large Data
Bases, 2001.

[43] L. Zeng, J.-J. Jeng, S. Kumaran, and J. Kalagnanam, “Reliable
Execution Planning and Exception Handling for Business Pro-
cess,” Proc. VLDB Workshop Technologies for E-Services (VLDB-TES),
2003.

Liangzhao Zeng received the PhD degree in
computer science from University of New South
Wales, Sydney, Australia in 2003. He is a
postdoctorial researcher in the Business Infor-
matics department in IBM T.J. Watson Research
Center. His research interests are in the areas of
web services, business process management,
and data stream management.

Boualem Benatallah received the PhD degree
in computer science from Grenoble University
(IMAG, France). He is senior lecturer at the
University of New South Wales, Sydney, Aus-
tralia. His research interests lie in the areas of
Web services, Workflows semantics Web, and
mobile data management. He was a visiting
scholar at Purdue University, West Lafeyette,
Indiana, and a visiting professor at INRIA-Loria,
France. He is member of the editorial board of

the International Journal of Business Process Integration and Manage-
ment. He has been a program committee member of several
conferences. He was guest editor for the special issue on E-Services
of the Journal on Parallel and Distributed Databases and for the special
issue on M-Services, Web Services for the Wireless World of IEEE
Transactions on Systems, Man, and Cybernetics. He is a member of
ACM and IEEE.

Anne H.H. Ngu currently is an associate
professor with the Department of Computer
Science at Texas State University—San Mar-
cos. She has over 15 years of experience in
research and development in IT with expertise in
integrating data and applications, automating
business processes on the web, databases, and
object-oriented technologies. From 1992-2000,
she worked as a senior lecturer in the School of
Computer Science and Engineering, University

of New South Wales (UNSW). She had held research scientist positions
with Telecordia Technologies and MCC. She has been awarded
summer faculty scholarship by Lawrence Livermore National Laboratory
in 2003 and 2004.

Marlon Dumas received the PhD degree in
computer science from the University of Greno-
ble, France, in 2000. Since then he has been
taken successive positions as postdoctoral
fellow and lecturer at the Queensland University
of Technology, Brisbane, Australia. His research
interests are in the areas of Web services and
business process technologies. He is member of
the IEEE Computer Society. More information
can be found at his web page: http://www.fit.qut.

edu.au/dumas He is a member of the IEEE Computer Society.

Jayant Kalagnanam received the PhD degree
in engineering and public policy from Carnegie
Mellon University in 1991. He is a research staff
member in the Mathematical Sciences Depart-
ment at IBM T.J. Watson Research Center. His
research interests include business analytics
and optimization. He is a member of the Institute
for Operations Research and Management
Science (INFORMS). His home page is http://
www.research.ibm.com/people/j/Jayant.

Henry Chang received the PhD degree in
computer sciences from UW-Madison in 1987.
He is a senior technical staff member in the
Business Informatics department in IBM T.J.
Watson Research Center. His recent research
interests include business process monitoring
and management and business collaboration
infrastructure across design chain and supply
chains. He is a member of the ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZENG ET AL.: QOS-AWARE MIDDLEWARE FOR WEB SERVICES COMPOSITION 327

