46 research outputs found

    Modeling the relationship between network operators and venue owners in public Wi-Fi deployment using non-cooperative game theory

    Get PDF
    Wireless data demands keep rising at a fast rate. In 2016, Cisco measured a global mobile data traffic volume of 7.2 Exabytes per month and projected a growth to 49 Exabytes per month in 2021. Wi-Fi plays an important role in this as well. Up to 60% of the total mobile traffic was off-loaded via Wi-Fi (and femtocells) in 2016. This is further expected to increase to 63% in 2021. In this publication, we look into the roll-out of public Wi-Fi networks, public meaning in a public or semi-public place (pubs, restaurants, sport stadiums, etc.). More concretely we look into the collaboration between two parties, a technical party and a venue owner, for the roll-out of a new Wi-Fi network. The technical party is interested in reducing load on its mobile network and generating additional direct revenues, while the venue owner wants to improve the attractiveness of the venue and consequentially generate additional indirect revenues. Three Wi-Fi pricing models are considered: entirely free, slow access with ads or fast access via paid access (freemium), and paid access only (premium). The technical party prefers a premium model with high direct revenues, the venue owner a free/freemium model which is attractive to its customers, meaning both parties have conflicting interests. This conflict has been modeled using non-cooperative game theory incorporating detailed cost and revenue models for all three Wi-Fi pricing models. The initial outcome of the game is a premium Wi-Fi network, which is not the optimal solution from an outsider's perspective as a freemium network yields highest total payoffs. By introducing an additional compensation scheme which corresponds with negotiation in real life, the outcome of the game is steered toward a freemium solution

    Power Control in Two-Tier Femtocell Networks

    Full text link
    In a two tier cellular network -- comprised of a central macrocell underlaid with shorter range femtocell hotspots -- cross-tier interference limits overall capacity with universal frequency reuse. To quantify near-far effects with universal frequency reuse, this paper derives a fundamental relation providing the largest feasible cellular Signal-to-Interference-Plus-Noise Ratio (SINR), given any set of feasible femtocell SINRs. We provide a link budget analysis which enables simple and accurate performance insights in a two-tier network. A distributed utility-based SINR adaptation at femtocells is proposed in order to alleviate cross-tier interference at the macrocell from cochannel femtocells. The Foschini-Miljanic (FM) algorithm is a special case of the adaptation. Each femtocell maximizes their individual utility consisting of a SINR based reward less an incurred cost (interference to the macrocell). Numerical results show greater than 30% improvement in mean femtocell SINRs relative to FM. In the event that cross-tier interference prevents a cellular user from obtaining its SINR target, an algorithm is proposed that reduces transmission powers of the strongest femtocell interferers. The algorithm ensures that a cellular user achieves its SINR target even with 100 femtocells/cell-site, and requires a worst case SINR reduction of only 16% at femtocells. These results motivate design of power control schemes requiring minimal network overhead in two-tier networks with shared spectrum.Comment: 29 pages, 10 figures, Revised and resubmitted to the IEEE Transactions on Wireless Communication

    Optimal resource allocation in femtocell networks based on Markov modeling of interferers' activity

    Get PDF
    Femtocell networks offer a series of advantages with respect to conventional cellular networks. However, a potential massive deployment of femto-access points (FAPs) poses a big challenge in terms of interference management, which requires proper radio resource allocation techniques. In this article, we propose alternative optimal power/bit allocation strategies over a time-frequency frame based on a statistical modeling of the interference activity. Given the lack of knowledge of the interference activity, we assume a Bayesian approach that provides the optimal allocation, conditioned to periodic spectrum sensing, and estimation of the interference activity statistical parameters. We consider first a single FAP accessing the radio channel in the presence of a dynamical interference environment. Then, we extend the formulation to a multi-FAP scenario, where nearby FAP's react to the strategies of the other FAP's, still within a dynamical interference scenario. The multi-user case is first approached using a strategic non-cooperative game formulation. Then, we propose a coordination game based on the introduction of a pricing mechanism that exploits the backhaul link to enable the exchange of parameters (prices) among FAP's

    Resource Allocation and Service Management in Next Generation 5G Wireless Networks

    Get PDF
    The accelerated evolution towards next generation networks is expected to dramatically increase mobile data traffic, posing challenging requirements for future radio cellular communications. User connections are multiplying, whilst data hungry content is dominating wireless services putting significant pressure on network's available spectrum. Ensuring energy-efficient and low latency transmissions, while maintaining advanced Quality of Service (QoS) and high standards of user experience are of profound importance in order to address diversifying user prerequisites and ensure superior and sustainable network performance. At the same time, the rise of 5G networks and the Internet of Things (IoT) evolution is transforming wireless infrastructure towards enhanced heterogeneity, multi-tier architectures and standards, as well as new disruptive telecommunication technologies. The above developments require a rethinking of how wireless networks are designed and operate, in conjunction with the need to understand more holistically how users interact with the network and with each other. In this dissertation, we tackle the problem of efficient resource allocation and service management in various network topologies under a user-centric approach. In the direction of ad-hoc and self-organizing networks where the decision making process lies at the user level, we develop a novel and generic enough framework capable of solving a wide array of problems with regards to resource distribution in an adaptable and multi-disciplinary manner. Aiming at maximizing user satisfaction and also achieve high performance - low power resource utilization, the theory of network utility maximization is adopted, with the examined problems being formulated as non-cooperative games. The considered games are solved via the principles of Game Theory and Optimization, while iterative and low complexity algorithms establish their convergence to steady operational outcomes, i.e., Nash Equilibrium points. This thesis consists a meaningful contribution to the current state of the art research in the field of wireless network optimization, by allowing users to control multiple degrees of freedom with regards to their transmission, considering mobile customers and their strategies as the key elements for the amelioration of network's performance, while also adopting novel technologies in the resource management problems. First, multi-variable resource allocation problems are studied for multi-tier architectures with the use of femtocells, addressing the topic of efficient power and/or rate control, while also the topic is examined in Visible Light Communication (VLC) networks under various access technologies. Next, the problem of customized resource pricing is considered as a separate and bounded resource to be optimized under distinct scenarios, which expresses users' willingness to pay instead of being commonly implemented by a central administrator in the form of penalties. The investigation is further expanded by examining the case of service provider selection in competitive telecommunication markets which aim to increase their market share by applying different pricing policies, while the users model the selection process by behaving as learning automata under a Machine Learning framework. Additionally, the problem of resource allocation is examined for heterogeneous services where users are enabled to dynamically pick the modules needed for their transmission based on their preferences, via the concept of Service Bundling. Moreover, in this thesis we examine the correlation of users' energy requirements with their transmission needs, by allowing the adaptive energy harvesting to reflect the consumed power in the subsequent information transmission in Wireless Powered Communication Networks (WPCNs). Furthermore, in this thesis a fresh perspective with respect to resource allocation is provided assuming real life conditions, by modeling user behavior under Prospect Theory. Subjectivity in decisions of users is introduced in situations of high uncertainty in a more pragmatic manner compared to the literature, where they behave as blind utility maximizers. In addition, network spectrum is considered as a fragile resource which might collapse if over-exploited under the principles of the Tragedy of the Commons, allowing hence users to sense risk and redefine their strategies accordingly. The above framework is applied in different cases where users have to select between a safe and a common pool of resources (CPR) i.e., licensed and unlicensed bands, different access technologies, etc., while also the impact of pricing in protecting resource fragility is studied. Additionally, the above resource allocation problems are expanded in Public Safety Networks (PSNs) assisted by Unmanned Aerial Vehicles (UAVs), while also aspects related to network security against malign user behaviors are examined. Finally, all the above problems are thoroughly evaluated and tested via a series of arithmetic simulations with regards to the main characteristics of their operation, as well as against other approaches from the literature. In each case, important performance gains are identified with respect to the overall energy savings and increased spectrum utilization, while also the advantages of the proposed framework are mirrored in the improvement of the satisfaction and the superior Quality of Service of each user within the network. Lastly, the flexibility and scalability of this work allow for interesting applications in other domains related to resource allocation in wireless networks and beyond

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Inter-Operator Spectrum Sharing from a Game Theoretical Perspective

    Get PDF
    International audienceWe address the problem of spectrum sharing where competitive operators coexist in the same frequency band. First, we model this problem as a strategic non-cooperative game where operators simultaneously share the spectrum according to theNash Equilibrium (NE). Given a set of channel realizations, several Nash equilibria exist which renders the outcome of the game unpredictable. Then, in a cognitive context with the presence of primary and secondary operators, the inter-operator spectrum sharing problem is reformulated as a Stackelberg game using hierarchy where the primary operator is the leader. The Stackelberg Equilibrium (SE) is reached where the best response of the secondary operator is taken into account upon maximizing the primary operator's utility function. Moreover, an extension to the multiple operators spectrum sharing problem is given. It is shown that the Stackelberg approach yields better payoffs for operators compared to the classical water-filling approach. Finally, we assess the goodness of the proposed distributed approach by comparing its performance to the centralized approach

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio
    corecore