In a two tier cellular network -- comprised of a central macrocell underlaid
with shorter range femtocell hotspots -- cross-tier interference limits overall
capacity with universal frequency reuse. To quantify near-far effects with
universal frequency reuse, this paper derives a fundamental relation providing
the largest feasible cellular Signal-to-Interference-Plus-Noise Ratio (SINR),
given any set of feasible femtocell SINRs. We provide a link budget analysis
which enables simple and accurate performance insights in a two-tier network. A
distributed utility-based SINR adaptation at femtocells is proposed in order to
alleviate cross-tier interference at the macrocell from cochannel femtocells.
The Foschini-Miljanic (FM) algorithm is a special case of the adaptation. Each
femtocell maximizes their individual utility consisting of a SINR based reward
less an incurred cost (interference to the macrocell). Numerical results show
greater than 30% improvement in mean femtocell SINRs relative to FM. In the
event that cross-tier interference prevents a cellular user from obtaining its
SINR target, an algorithm is proposed that reduces transmission powers of the
strongest femtocell interferers. The algorithm ensures that a cellular user
achieves its SINR target even with 100 femtocells/cell-site, and requires a
worst case SINR reduction of only 16% at femtocells. These results motivate
design of power control schemes requiring minimal network overhead in two-tier
networks with shared spectrum.Comment: 29 pages, 10 figures, Revised and resubmitted to the IEEE
Transactions on Wireless Communication