7 research outputs found

    Multivariate Fine-Grained Complexity of Longest Common Subsequence

    Full text link
    We revisit the classic combinatorial pattern matching problem of finding a longest common subsequence (LCS). For strings xx and yy of length nn, a textbook algorithm solves LCS in time O(n2)O(n^2), but although much effort has been spent, no O(n2ε)O(n^{2-\varepsilon})-time algorithm is known. Recent work indeed shows that such an algorithm would refute the Strong Exponential Time Hypothesis (SETH) [Abboud, Backurs, Vassilevska Williams + Bringmann, K\"unnemann FOCS'15]. Despite the quadratic-time barrier, for over 40 years an enduring scientific interest continued to produce fast algorithms for LCS and its variations. Particular attention was put into identifying and exploiting input parameters that yield strongly subquadratic time algorithms for special cases of interest, e.g., differential file comparison. This line of research was successfully pursued until 1990, at which time significant improvements came to a halt. In this paper, using the lens of fine-grained complexity, our goal is to (1) justify the lack of further improvements and (2) determine whether some special cases of LCS admit faster algorithms than currently known. To this end, we provide a systematic study of the multivariate complexity of LCS, taking into account all parameters previously discussed in the literature: the input size n:=max{x,y}n:=\max\{|x|,|y|\}, the length of the shorter string m:=min{x,y}m:=\min\{|x|,|y|\}, the length LL of an LCS of xx and yy, the numbers of deletions δ:=mL\delta := m-L and Δ:=nL\Delta := n-L, the alphabet size, as well as the numbers of matching pairs MM and dominant pairs dd. For any class of instances defined by fixing each parameter individually to a polynomial in terms of the input size, we prove a SETH-based lower bound matching one of three known algorithms. Specifically, we determine the optimal running time for LCS under SETH as (n+min{d,δΔ,δm})1±o(1)(n+\min\{d, \delta \Delta, \delta m\})^{1\pm o(1)}. [...]Comment: Presented at SODA'18. Full Version. 66 page

    Algorithms for Computing the Longest Parameterized Common Subsequence

    No full text
    Abstract. In this paper, we revisit the classic and well-studied longest common subsequence (LCS) problem and study some new variants, first introduced and studied by Rahman and Iliopoulos [Algorithms for Computing Variants of the Longest Common Subsequence Problem, ISAAC 2006]. Here we define a generalization of these variants, the longest parameterized common subsequence (LPCS) problem, and show how to solve it in O(n 2) and O(n + R log n) time. Furthermore, we show how to compute two variants of LCS, RELAG and RIFIG in O(n + R) time.

    Multivariate Fine-Grained Complexity of Longest Common Subsequence

    No full text
    We revisit the classic combinatorial pattern matching problem of finding a longest common subsequence (LCS). For strings xx and yy of length nn, a textbook algorithm solves LCS in time O(n2)O(n^2), but although much effort has been spent, no O(n2ε)O(n^{2-\varepsilon})-time algorithm is known. Recent work indeed shows that such an algorithm would refute the Strong Exponential Time Hypothesis (SETH) [Abboud, Backurs, Vassilevska Williams + Bringmann, K\"unnemann FOCS'15]. Despite the quadratic-time barrier, for over 40 years an enduring scientific interest continued to produce fast algorithms for LCS and its variations. Particular attention was put into identifying and exploiting input parameters that yield strongly subquadratic time algorithms for special cases of interest, e.g., differential file comparison. This line of research was successfully pursued until 1990, at which time significant improvements came to a halt. In this paper, using the lens of fine-grained complexity, our goal is to (1) justify the lack of further improvements and (2) determine whether some special cases of LCS admit faster algorithms than currently known. To this end, we provide a systematic study of the multivariate complexity of LCS, taking into account all parameters previously discussed in the literature: the input size n:=max{x,y}n:=\max\{|x|,|y|\}, the length of the shorter string m:=min{x,y}m:=\min\{|x|,|y|\}, the length LL of an LCS of xx and yy, the numbers of deletions δ:=mL\delta := m-L and Δ:=nL\Delta := n-L, the alphabet size, as well as the numbers of matching pairs MM and dominant pairs dd. For any class of instances defined by fixing each parameter individually to a polynomial in terms of the input size, we prove a SETH-based lower bound matching one of three known algorithms. Specifically, we determine the optimal running time for LCS under SETH as (n+min{d,δΔ,δm})1±o(1)(n+\min\{d, \delta \Delta, \delta m\})^{1\pm o(1)}. [...

    Fusion of Data from Heterogeneous Sensors with Distributed Fields of View and Situation Evaluation for Advanced Driver Assistance Systems

    Get PDF
    In order to develop a driver assistance system for pedestrian protection, pedestrians in the environment of a truck are detected by radars and a camera and are tracked across distributed fields of view using a Joint Integrated Probabilistic Data Association filter. A robust approach for prediction of the system vehicles trajectory is presented. It serves the computation of a probabilistic collision risk based on reachable sets where different sources of uncertainty are taken into account
    corecore