7 research outputs found

    Solving Connectivity Problems Parameterized by Treedepth in Single-Exponential Time and Polynomial Space

    Get PDF
    A breakthrough result of Cygan et al. (FOCS 2011) showed that connectivity problems parameterized by treewidth can be solved much faster than the previously best known time ?^*(2^{?(twlog tw)}). Using their inspired Cut&Count technique, they obtained ?^*(?^tw) time algorithms for many such problems. Moreover, they proved these running times to be optimal assuming the Strong Exponential-Time Hypothesis. Unfortunately, like other dynamic programming algorithms on tree decompositions, these algorithms also require exponential space, and this is widely believed to be unavoidable. In contrast, for the slightly larger parameter called treedepth, there are already several examples of matching the time bounds obtained for treewidth, but using only polynomial space. Nevertheless, this has remained open for connectivity problems. In the present work, we close this knowledge gap by applying the Cut&Count technique to graphs of small treedepth. While the general idea is unchanged, we have to design novel procedures for counting consistently cut solution candidates using only polynomial space. Concretely, we obtain time ?^*(3^d) and polynomial space for Connected Vertex Cover, Feedback Vertex Set, and Steiner Tree on graphs of treedepth d. Similarly, we obtain time ?^*(4^d) and polynomial space for Connected Dominating Set and Connected Odd Cycle Transversal

    Funnelselect: Cache-Oblivious Multiple Selection

    Get PDF

    Domination and Cut Problems on Chordal Graphs with Bounded Leafage

    Get PDF

    Domination and Cut Problems on Chordal Graphs with Bounded Leafage

    Get PDF
    The leafage of a chordal graph GG is the minimum integer \ell such that GG can be realized as an intersection graph of subtrees of a tree with \ell leaves. We consider structural parameterization by the leafage of classical domination and cut problems on chordal graphs. Fomin, Golovach, and Raymond~[ESA~20182018, Algorithmica~20202020] proved, among other things, that \textsc{Dominating Set} on chordal graphs admits an algorithm running in time 2O(2)nO(1)2^{\mathcal{O}(\ell^2)} \cdot n^{\mathcal{O}(1)}. We present a conceptually much simpler algorithm that runs in time 2O()nO(1)2^{\mathcal{O}(\ell)} \cdot n^{\mathcal{O}(1)}. We extend our approach to obtain similar results for \textsc{Connected Dominating Set} and \textsc{Steiner Tree}. We then consider the two classical cut problems \textsc{MultiCut with Undeletable Terminals} and \textsc{Multiway Cut with Undeletable Terminals}. We prove that the former is \textsf{W}[1]-hard when parameterized by the leafage and complement this result by presenting a simple nO()n^{\mathcal{O}(\ell)}-time algorithm. To our surprise, we find that \textsc{Multiway Cut with Undeletable Terminals} on chordal graphs can be solved, in contrast, in nO(1)n^{\mathcal{O}(1)}-time

    Tight Complexity Bounds for Counting Generalized Dominating Sets in Bounded-Treewidth Graphs

    Full text link
    We investigate how efficiently a well-studied family of domination-type problems can be solved on bounded-treewidth graphs. For sets σ,ρ\sigma,\rho of non-negative integers, a (σ,ρ)(\sigma,\rho)-set of a graph GG is a set SS of vertices such that N(u)Sσ|N(u)\cap S|\in \sigma for every uSu\in S, and N(v)Sρ|N(v)\cap S|\in \rho for every v∉Sv\not\in S. The problem of finding a (σ,ρ)(\sigma,\rho)-set (of a certain size) unifies standard problems such as Independent Set, Dominating Set, Independent Dominating Set, and many others. For all pairs of finite or cofinite sets (σ,ρ)(\sigma,\rho), we determine (under standard complexity assumptions) the best possible value cσ,ρc_{\sigma,\rho} such that there is an algorithm that counts (σ,ρ)(\sigma,\rho)-sets in time cσ,ρtwnO(1)c_{\sigma,\rho}^{\sf tw}\cdot n^{O(1)} (if a tree decomposition of width tw{\sf tw} is given in the input). For example, for the Exact Independent Dominating Set problem (also known as Perfect Code) corresponding to σ={0}\sigma=\{0\} and ρ={1}\rho=\{1\}, we improve the 3twnO(1)3^{\sf tw}\cdot n^{O(1)} algorithm of [van Rooij, 2020] to 2twnO(1)2^{\sf tw}\cdot n^{O(1)}. Despite the unusually delicate definition of cσ,ρc_{\sigma,\rho}, we show that our algorithms are most likely optimal, i.e., for any pair (σ,ρ)(\sigma, \rho) of finite or cofinite sets where the problem is non-trivial, and any ε>0\varepsilon>0, a (cσ,ρε)twnO(1)(c_{\sigma,\rho}-\varepsilon)^{\sf tw}\cdot n^{O(1)}-algorithm counting the number of (σ,ρ)(\sigma,\rho)-sets would violate the Counting Strong Exponential-Time Hypothesis (#SETH). For finite sets σ\sigma and ρ\rho, our lower bounds also extend to the decision version, showing that our algorithms are optimal in this setting as well. In contrast, for many cofinite sets, we show that further significant improvements for the decision and optimization versions are possible using the technique of representative sets

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore