Tight Complexity Bounds for Counting Generalized Dominating Sets in Bounded-Treewidth Graphs

Abstract

We investigate how efficiently a well-studied family of domination-type problems can be solved on bounded-treewidth graphs. For sets σ,ρ\sigma,\rho of non-negative integers, a (σ,ρ)(\sigma,\rho)-set of a graph GG is a set SS of vertices such that N(u)Sσ|N(u)\cap S|\in \sigma for every uSu\in S, and N(v)Sρ|N(v)\cap S|\in \rho for every v∉Sv\not\in S. The problem of finding a (σ,ρ)(\sigma,\rho)-set (of a certain size) unifies standard problems such as Independent Set, Dominating Set, Independent Dominating Set, and many others. For all pairs of finite or cofinite sets (σ,ρ)(\sigma,\rho), we determine (under standard complexity assumptions) the best possible value cσ,ρc_{\sigma,\rho} such that there is an algorithm that counts (σ,ρ)(\sigma,\rho)-sets in time cσ,ρtwnO(1)c_{\sigma,\rho}^{\sf tw}\cdot n^{O(1)} (if a tree decomposition of width tw{\sf tw} is given in the input). For example, for the Exact Independent Dominating Set problem (also known as Perfect Code) corresponding to σ={0}\sigma=\{0\} and ρ={1}\rho=\{1\}, we improve the 3twnO(1)3^{\sf tw}\cdot n^{O(1)} algorithm of [van Rooij, 2020] to 2twnO(1)2^{\sf tw}\cdot n^{O(1)}. Despite the unusually delicate definition of cσ,ρc_{\sigma,\rho}, we show that our algorithms are most likely optimal, i.e., for any pair (σ,ρ)(\sigma, \rho) of finite or cofinite sets where the problem is non-trivial, and any ε>0\varepsilon>0, a (cσ,ρε)twnO(1)(c_{\sigma,\rho}-\varepsilon)^{\sf tw}\cdot n^{O(1)}-algorithm counting the number of (σ,ρ)(\sigma,\rho)-sets would violate the Counting Strong Exponential-Time Hypothesis (#SETH). For finite sets σ\sigma and ρ\rho, our lower bounds also extend to the decision version, showing that our algorithms are optimal in this setting as well. In contrast, for many cofinite sets, we show that further significant improvements for the decision and optimization versions are possible using the technique of representative sets

    Similar works

    Full text

    thumbnail-image

    Available Versions