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Abstract
We present the algorithm funnelselect, the first optimal randomized cache-oblivious algorithm for the
multiple-selection problem. The algorithm takes as input an unsorted array of N elements and q query
ranks r1 < · · · < rq, and returns in sorted order the q input elements of rank r1, . . . , rq, respectively.
The algorithm uses expected and with high probability O

(∑q+1
i=1

∆i
B

· logM/B
N
∆i

+ N
B

)
I/Os, where

B is the external memory block size, M ≥ B1+ε is the internal memory size, for some constant ε > 0,
and ∆i = ri − ri−1 (assuming r0 = 0 and rq+1 = N + 1). This is the best possible I/O bound in the
cache-oblivious and external memory models. The result is achieved by reversing the computation
of the cache-oblivious sorting algorithm funnelsort by Frigo, Leiserson, Prokop and Ramachandran
[FOCS 1999], using randomly selected pivots for distributing elements, and pruning computations
that with high probability are not expected to contain any query ranks.
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1 Introduction

We present the first optimal randomized cache-oblivious algorithm for the multiple-selection
problem. Our result combines ideas from the cache-oblivious sorting algorithm funnelsort
with existing multiple-selection algorithms. Many existing time- and comparison-optimal
multiple-selection algorithms are already cache oblivious, but they are not optimal with
respect to the number of I/Os performed when analyzed in the cache-oblivious model.

Let us start with a brief history of the multiple-selection problem. In 1961, Hoare
presented the classic randomized sorting algorithm quicksort, published as Algorithm 64 in
the Algorithms column of the Communications of the ACM [15]. Quicksort makes essential
use of the randomized algorithm partition (Algorithm 63 [14]), that picks a random element,
denoted a pivot, and partitions the elements into those smaller and larger than the pivot.
By recursing on each subproblem, quicksort sorts an input of size N in expected O(N lg N)
time and comparisons1. Hoare observed that if we are only interested in finding the rth
smallest element in the input, denoted the element of rank r, we do not need to sort
the input completely. By pruning recursive calls in quicksort not relevant for finding the
rth smallest element, the resulting algorithm find (Algorithm 65 [16]) achieves expected
O(N) time. Chambers [7] generalized this idea to finding q elements of q given ranks
1 ≤ r1 < r2 < · · · < rq ≤ N , in the following denoted the multiple-selection problem, by
just skipping all recursive problems not containing any query rank. The expected running
time is O(N lg q), but Prodinger [19] proved a tighter expected bound of O(B + N), where
B =

∑q+1
i=1 ∆i lg N

∆i
with ∆i = ri− ri−1, for 1 ≤ i ≤ q + 1, assuming r0 = 0 and rq+1 = N + 1.

1 lg denotes the binary logarithm.

© Gerth Stølting Brodal and Sebastian Wild;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 25;
pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gerth@cs.au.dk
https://orcid.org/0000-0001-9054-915X
mailto:wild@liverpool.ac.uk
https://orcid.org/0000-0002-6061-9177
https://doi.org/10.4230/LIPIcs.ESA.2023.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de
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We call B the entropy of the multiple-selection query [3]. Dobkin and Munro [8] achieved
matching asymptotic bounds for the worst-base time in the comparison model by using a
deterministic linear-time (single) selection algorithm [4, 20] for the partitioning steps.

1.1 Model of Computation
In this paper we study the multiple-selection problem in a hierarchical-memory model, where
we have an infinite external memory and an internal memory of capacity M elements, and
where data is transferred between the internal and external memory in blocks of B consecutive
elements. A block transfer is called an I/O (input/output operation). The I/O cost of an
algorithm is the number of I/Os it performs. Aggarwal and Vitter [1] introduced this as the
external-memory model and proved that sorting in this model requires Θ

(
N
B logM/B

N
B

)
I/Os.

The upper bound is, e.g., achieved by M/B-way mergesort and distributionsort algorithms,
where the algorithms exploit knowledge of the parameters M and B.

Frigo et al. [12, 13] introduced the cache-oblivious model, that essentially is the same as
the external-memory model, except that algorithms do not know M and B, and I/Os are
assumed to be performed automatically by an optimal paging algorithm. As a consequence,
cache-oblivious algorithms also adapt to multi-level memory hierarchies (under certain
conditions [13]). The same paper introduced the cache-oblivious sorting algorithm funnelsort
achieving the optimal external-memory I/O bound, assuming a “tall-cache”, M = Ω(B2).
Brodal and Fagerberg [6] observed that under the weaker tall-cache assumption M ≥ B1+ε,
for a constant ε > 0, the optimal I/O bound increases by a factor Θ(1/ε).

Multiple selection was studied in external-memory by Hu et al. [17] and Barbay et al. [3].
The algorithms have an I/O cost of O

(
BI/O + N

B

)
, where BI/O = B

B lg(M/B) . A matching
lower bound was sketched in [3] as a reduction from sorting, assuming the multiple-selection
algorithm partitions the input elements into the gaps between the queried elements (most
algorithms actually solve this problem, that Chambers denoted partial sorting). Hu et al. [17]
considered the case where the queried elements can be returned in arbitrary order without
partial sorting, and showed that without a tall-cache assumption, this problem can actually
be solved asymptotically faster for a small number of queries q.

1.2 Results
Our first result is a lower bound for the external-memory multiple-selection problem (and
not only for the partial-sorting problem as in the lower bound of Barbay et al. [3]).

▶ Theorem 1 (Lower bound). External-memory multiple selection in expectation requires
Ω(BI/O)−O

(
N
B logM/B B

)
I/Os.

Note that an external-memory lower bound is also a cache-oblivious lower bound (for
any online paging strategy), and that under a tall-cache assumption M ≥ B1+ε, for a
constant ε > 0, the last term O

(
N
B logM/B B

)
= O

( 1
ε ·

N
B

)
. The result is obtained by

combining the comparison lower bound for the multiple-selection problem by Dobkin and
Munro [8] with the general reduction technique of Arge et al. [2], that can derive an I/O-
decision-tree lower bound from a comparison-decision-tree lower bound.

Our second result is the cache-oblivious algorithm funnelselect.

▶ Theorem 2 (Funnelselect upper bound). There exists a randomized cache-oblivious algorithm
solving the multiple-selection problem using O

(
BI/O + N

B

)
I/Os in expectation and with high

probability.
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Table 1 Algorithms for selection and multiple selection. CO = cache-oblivious, E = expected,
wc = worst-case bounds. Note that Barbay et al. assume a tall cache, whereas Hu et al. do not.

Reference Comparisons I/Os Comments

Single selection
Hoare [16] E 2 ln 2B + 2N + o(N) O(N/B) CO, randomized
Floyd & Rivest [11] E N + min{r, N−r} + o(N) O(N/B) CO, randomized
Blum et al. [4] wc 5.4305N O(N/B) CO, deterministic
Schönhage et al. [20] wc 3N + o(N) ? deterministic, median
Dor & Zwick [9] wc 2.95 + o(N)N ? deterministic, median

Multiple selection
Chambers [7, 19] E 2 ln 2B + O(N) O((B + N)/B) CO, randomized
Dobkin & Munro [8] wc 3B + O(N) O((B + N)/B) CO, deterministic
Kaligosi et al. [18] wc B + o(B) + O(N) O((B + N)/B) CO, deterministic
Hu et al. [17] wc O(N lg(q)) O(N/B logM/B(q/B)) deterministic

wc O(B + N) O(BI/O + N/B) (from closer analysis)
Barbay et al. [3] wc B + o(B) + O(N) O(BI/O + N/B) online, determ., M ≥ B1+ε

New (Theorem 2) E O(B + N) O(BI/O + N/B) CO, randomized, M ≥ B1+ε

At the high level, the result is obtained by the standard approach of recursively partitioning
by pivots and pruning computations not containing any query ranks. To achieve good I/O
performance in the cache-oblivious model we pipeline the partitioning by essentially reversing
the computations done by funnelsort, and replace each merging node by a partitioning node.
Since we do not know the ranks of the pivots during the partitioning, we pick the pivots
carefully from a random sample such that a concentration bound guarantees approximate
ranks of the pivots, so we can truncate computations that with high probability do not
contain any query ranks. Table 1 summarizes known and the new results.

1.3 Preliminaries and Notation
Throughout the paper we assume that the input to a multiple-selection algorithm are two
arrays S and R, where S is an unsorted array of N elements from a totally ordered universe,
and R is a sorted array r1, . . . , rq of q distinct query ranks, where 1 ≤ r1 < · · · < rq ≤ N .
Our task is to report an array of the q order statistics S(r1), . . . , S(rq), where S(r) is the rth
smallest element in S, i.e., the element at index r in an array storing S after sorting it. If x

is an element and S a set, we let x < S denote that x < y for all y in S. Unless stated
otherwise, we assume that all elements in S are distinct.

1.4 Outline of Paper
In Section 2 we prove the I/O lower bound for multiple selection stated in Theorem 1. In
Section 3 we present internal-memory and external-memory algorithms as a warm-up for the
cache-oblivious algorithm in Section 4 achieving Theorem 2. In Section 5 we analyze the
algorithm. In Section 6, we discuss how to extend the algorithm to partially sort the input,
and in Section 7, we discuss how to deal with equal elements. Section 8 concludes with open
problems.

2 Lower Bound

In this section we prove Theorem 1. Dobkin and Munro [8, Theorem 1] observed that the
comparisons done by a comparison-based multiple-selection algorithm must classify the
remaining elements into “gaps” between the selected elements, and by sorting each of these
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gaps with ∆i − 1 elements using ∆i lg ∆i −O(∆i) additional comparisons, one can sort the
input. Together with the N lg N −O(N) lower bound on comparison based sorting, we have

#comparisons for multiple selection +
q+1∑
i=1

(∆i lg ∆i −O(∆i)) ≥ N lg N −O(N) ,

implying a lower bound of B −O(N) on the number of comparisons for multiple selection,
where B =

∑q+1
i=1 ∆i lg

(
N
∆i

)
. This holds for worst, average, and expected case.

To prove I/O lower bounds on external-memory algorithms, Arge et al. [2] presented
a general reduction that converts a comparison lower bound into an I/O lower bound, by
converting an I/O-decision tree T to a standard comparison decision tree Tc. An I/O-
decision tree consists of unary I/O-nodes moving B elements between internal and external
memory, and comparison nodes between two elements in internal memory. Their lower bound
reduction [2, Corollary 5] relates for any input x, the number of I/Os in T , #I/OsT (x), to
the number of comparisons in Tc, #comparisonsTc

(x), as

#comparisonsTc
(x) ≤ N lg B + #I/OsT (x) ·B

(
3 + lg M −B

B

)
. (1)

Since the reduction relates comparisons and I/Os for each input instance, the reduction can
be used to show worst-case, average-case, and expected-case lower bounds.

Plugging the B −O(N) comparison lower bound into eq. (1) we get

q+1∑
i=1

∆i lg N

∆i
−O(N) ≤ N lg B + #I/Os ·B

(
3 + lg M −B

B

)
,

implying the following I/O lower bound for multiple selection:

#I/Os ≥ 1
1 + 3

lg(M/B)
· BI/O −O

(
N

B
logM/B B

)
= Ω(BI/O)−O

(
N

B
logM/B B

)
,

for M ≥ 2B and BI/O =
∑q+1

i=1
∆i

B logM/B
N
∆i

= B
B lg(M/B) . This concludes the proof of

Theorem 1.
Aggarwal and Vitter [1, Theorem 3.1] proved that comparison-based external-memory

sorting requires Ω
(

N
B · logM/B

N
B

)
I/Os. This lower bound also applies to sorting in the

cache-oblivious model. Brodal and Fagerberg [6, Corollary 2] showed that for a cache-
oblivious sorting algorithm to be asymptotically optimal for all choices of M and B, a
“tall-cache” assumption M ≥ B1+ε is necessary. Since we can sort N elements using a
multiple-selection algorithm by querying all ranks 1, . . . , N , a tall-cache assumption is also
necessary for matching bounds for multiple selection in the cache-oblivious model.

3 Internal-Memory and External-Memory Multiple Selection

In this section we consider simple internal-memory and external-memory (cache-conscious)
algorithms for multiple selection as a warm-up for our cache-oblivous algorithm in Section 4,
which borrows ideas from both algorithms.

3.1 Internal Memory
A simple recursive internal-memory algorithm is MultiSelect (Algorithm 1). This is
essentially Chamber’s algorithm from 1971 [7], except for the choice of pivot. If there are no
query ranks in R, nothing needs to be reported. Otherwise, pick a pivot P from S, partition
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Algorithm 1 Internal-memory multiple selection.

1: procedure MultiSelect(S[1..N ], R[1..q])
2: if R ̸= ∅ then
3: P ← median of S (pivot)
4: Partition S into S1 < P < S2
5: r̄ ← |S1|+ 1 (the rank of P in S)
6: Partition R into R1 < r̄ < R2
7: MultiSelect(S1, R1)
8: if r̄ ∈ R then
9: Report P

10: MultiSelect(S2, {r − r̄ | r ∈ R2})

Algorithm 2 External-memory multiple selection (multi-way generalization of MultiSelect).

1: procedure MultiSelectI/O(S[1..N ], R[1..q])
2: if R ̸= ∅ then
3: Find k̄ − 1 ≤ k − 1 pivots P1 < · · · < Pk̄−1 in S

4: Partition S into S1, . . . , Sk̄ s. t. Pi−1 < Si < Pi (P0 = −∞, Pk̄ = +∞)
5: r̄i ← i + |S1|+ · · ·+ |Si| (the rank of Pi in S)
6: Partition R into R1, . . . , Rk̄ s. t. r̄i−1 < Ri < r̄i (r̄0 = 0, r̄k̄ = N + 1)
7: for i = 1, . . . , k̄ do
8: MultiSelectI/O(Si, {r − r̄i−1 | r ∈ Ri})
9: if r̄i ∈ R then

10: Report Pi

S \ {P} into S1 and S2, such that S1 < P < S2, compute the rank r̄ of the pivot P in S,
partition R \ {r̄} into R1 and R2, such that R1 < r̄ < R2, and recurse on the subproblems
(S1, R1) and (S2, R2). The pivot P is output before the second recursion if r̄ is a query rank
in R (so elements are reported in increasing rank order). This intuitively corresponds to a
distributionsort/quicksort, where we truncate recursive calls not containing any query ranks
in R.

In Algorithm 1, P is the exact median of S, but we could also have used an approximate
median, or a randomly sampled pivot. Chamber’s original algorithm uses a random element
from S. Finding the pivot can be done using the deterministic linear-time median finding
algorithms by Blum et al. [4] or the randomized algorithms by Hoare [16] or Floyd and
Rivest [11]. Prodinger [19] proved that selecting a random pivot leads to expected overall
O(B + N) time. Kaligosi et al. [18, Section 2] proved that Algorithm 1 achieves O(B + N)
worst-case time, if a linear time median selection algorithm is used.

Algorithm MultiSelect is cache oblivious, since it is designed independently of the
memory parameter B and M . All the above median algorithms are based on repeatedly
scanning arrays and (analyzed in the cache-oblivious model) require O(N/B) I/Os worst-case
and expected, respectively. Since the additional work of MultiSelect can be implemented
by repeatedly scanning arrays allocated on a stack, the I/O cost of the algorithm equals the
internal computation time divided by the external-memory block size, i.e., O(B/B) I/Os. Our
cache-oblivious algorithm from Section 4 improves upon this I/O cost by a factor Θ

(
lg M

B

)
.

ESA 2023
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r1 r2 r3 r4 r5 r6

S

S1S1 S2S2 S3S3 S4S4

P1 P2 P3

∆

Figure 1 Recursion for MultiSelectI/O with six query ranks and k = 4. Black squares are
pivots, arrows show rank queries, and shaded areas are skipped subproblems with no query ranks.

3.2 External Memory
A generalization of MultiSelect better suited for external memory is to replace the binary
partitioning by a multi-way partitioning. For a parameter k ≥ 2, we assume the set S is
partitioned into k̄ ≤ k subsets around k̄ − 1 pivots, where each set has size O(|S|/k). The
resulting algorithm is shown as MultiSelectI/O in Algorithm 2. Figure 1 shows a recursion
for MultiSelectI/O on an example with six query ranks. If all sets Si defined by the pivots
have size at most α|S|, where 1/k ≤ α < 1, we denote the partitioning a (k, α)-partitioning.
The algorithm MultiSelect (with exact medians) is the special case of MultiSelectI/O,
where we use a

(
2, 1

2
)
-partitioning.

There are several (k, O(1/k))-partitioning schemes described in the literature, e.g., a
(k, 1.5/k)-partitioning method with k =

√
M/B by Aggarwal and Vitter [1]. Here we describe

a simpler (k, 2/k)-partitioning that incrementally inserts the N elements of S into buckets
defined by a monotonically growing set of pivots, that also works for k = Θ(M/B). Initially
there is one empty bucket and no pivot. Whenever a bucket reaches size > 2N/k (i.e., the
size is 1 + ⌊2N/k⌋), the median of the bucket is selected as a new pivot, and the bucket
is split around the pivot into two buckets with the elements smaller than and larger than
the new pivot, respectively. Each new bucket has size at least ⌊N/k⌋. Therefore, the total
number of buckets created is at most k and each bucket contains at most 2N/k elements.

Crucial for the I/O effectiveness of this partitioning is that one memory block from each
bucket is in memory while scanning S and distributing elements to buckets, i.e., k ≤ c M

B for a
suitable constant 0 < c < 1. Since each bucket can be split using O(N/(kB)) I/Os using the
deterministic selection algorithm from [4], the total cost for creating a (k, 2/k)-partitioning
of S is O(N/B) I/Os, provided k ≤ c M

B . A binary search to find the bucket for an element
requires ≤ ⌈lg(k − 1)⌉ comparisons with pivots, i.e., in total O(N lg k) comparisons for
distributing to buckets. Since each of the at most k − 1 bucket splits requires O(N/k)
comparisons [4], creating a (k, 2k)-partitioning requires O(N lg k) comparisons.

3.3 Analysis
We now analyze the comparison and I/O cost of MultiSelectI/O. Assume creating a
(k, α)-partitioning has an (abstract) cost of C ·N , where C = C(k, α, M, B) does not depend
on N . For example, when counting comparisons we have C = Θ(lg k). The total cost of
MultiSelectI/O is the sum of the costs of all partitioning steps, i.e., C times the sum of
the sizes of all the subsets partitioned by the algorithm (the white rectangles in Figure 1).
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Consider any fixed gap ∆ between two query ranks. We assume that the right query
rank (but not the left) is part of the gap, so that all elements of S belong to exactly one gap.
At each level of the recursion, the gap ∆ intersects at most two subproblems that need to
be partitioned, namely the subproblems containing the query ranks at the boundary of ∆
(illustrated by the dashed lines in Figure 1). Since subproblems at depth d of the recursion
have size at most αdN , the total cost we need to charge within gap ∆ is at most C times

∞∑
d=0

min(∆, 2αdN) ≤ ∆
⌊

log1/α

2N

∆

⌋
+ ∆

∞∑
i=0

αi ≤ ∆ log1/α

2N

∆ + ∆
1− α

.

Here we use that 2αdN is geometrically decreasing and ∆ = 2αdN implies d = log1/α
2N
∆ ,

i.e., in the sum, ∆ is the term for the first
⌊
log1/α

2N
∆
⌋

levels, whereas the remaining terms
are geometrically decreasing, starting with at most ∆. Summing over all gaps we obtain
total cost at most

C ·

(
q+1∑
i=1

∆i log1/α

2N

∆i
+ N

1− α

)
. (2)

Recall that MultiSelect is the special case of MultiSelectI/O with k = 2 and α = 1/2.
For comparisons, we have C = O(1) per processed element in partitioning. By eq. (2), the
total number of comparisons in MultiSelect is O(B + N). For MultiSelectI/O we have
k = cM/B and α = 2/k, and a cost of C = O(1/B) I/Os per processed element, so by
eq. (2), MultiSelectI/O has a total cost of O

(
BI/O + N

B

)
I/Os. Alternatively, using the

multiway partitioning method of Aggarwal and Vitter [1] with k =
√

M/B, α = 1.5/k, and
cost C = O(1/B) for I/Os, we also get a total cost of O

(
BI/O + N

B

)
I/Os from eq. (2).

4 Cache-Oblivious Multiple Selection

In this section we present our cache-oblivious multiple-selection algorithm FunnelSelect
(Algorithm 4). We first recall funnels for merging (Section 4.1) and then show that they
can be used for partitioning (Section 4.2). FunnelSelect performs a single round of such
a funnel-based partitioning, splitting the input into k parts of expected size Θ(N/k) using
k − 1 pivots, where k = Θ(N1/d) and d = max{1 + 2/ε, 3} under the tall-cache assumption
M ≥ B1+ε. We then deal with each of the k parts with a non-empty set of rank queries by
fully sorting it and returning the sought ranks.

However, to stay within the allowed I/O bound, we have to truncate partitioning, namely
whenever neither side of the split is likely to contain a query rank (Section 4.4). To boost
the probability of “guessing correctly” which buckets query ranks fall into, we also have to
choose pivots judiciously (Section 4.3). Section 5 then proves Theorem 2.

4.1 Funnelsort
Since our cache-oblivious multiple-selection algorithm is heavily based on ideas from the
optimal cache-oblivious sorting algorithm funnelsort by Frigo et al. [12, Section 4], we
briefly recall funnelsort and in particular its k-merger construction here.2 Funnelsort uses

2 It should be noted that the cache-oblivious distributionsort algorithm in [12, Section 5] is a significantly
different approach than the one taken by funnelsort and our algorithm, even though our algorithm
highly resembles a classic internal-memory distributionsort algorithm.

ESA 2023
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v1 v3 v5 v7 v9 v11 v13 v15

v2 v6 v10 v14

v4 v12

v8

output arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput arrayoutput array

⌈
kd/2⌉

⌈
kd/4⌉

⌈
kd/4⌉

input
arrays

k′-merger

k′′-mergers

Figure 2 A k-merger in funnelsort for k = 16 input arrays. Content in the buffers is shaded;
elements are added to the bottom of buffers and consumed from the top of buffers. The figure shows
the situation where v6 is in the process of filling its output buffer, after being recursively called from
v4 during its merging, which in turn has been called by v8 during its merging. Buffer sizes for the
three internal levels are shown next to the buffers.

O( N
B logM/B

N
B ) I/Os, assuming the tall-cache assumption M ≥ B2. Brodal and Fagerberg [5,

Lemma 1] presented a lazy version of funnelsort, achieving the same I/O bound under the
weaker tall-cache assumption M ≥ B1+ε, for any constant ε > 0. Funnelsort sorts an array
of N elements by an outer recursion that partitions the input into k arrays each of size at
most ⌈N/k⌉, sorts these subarrays recursively, and then merges these arrays using a k-way
construction named a k-merger. The parameter k depends on the tall-cache assumption
(via ε) and the input size N : k = 2⌈lg(N)/d⌉ = Θ(N1/d) for d = 1 + 2/ε.

A k-merger (see Figure 2) consists of a perfectly balanced binary tree of height lg k of
binary merger-nodes, where each tree edge contains a buffer that is a sorted array of elements.
Each merger-node consumes elements from two child buffers and feeds into its parent output
buffer. When invoking a merger-node v, the node v fills its output buffer by merging the
content of its input buffers until either the output buffer is full or one of the input buffers is
exhausted. If the input buffer of a child w is exhausted, we recursively invoke w to fill its
output buffer; then v continues to fill its output buffer.

The I/O efficiency of funnelsort hinges entirely on a judicious choice of buffer sizes.
The buffers connecting the middle levels of binary mergers (between level ⌈lg(k)/2⌉ and
one below) can hold ⌈kd/2⌉ elements each. The construction is recursively applied to a
k′ = 2⌈lg(k)/2⌉ ≈

√
k-merger forming the top ⌈lg(k)/2⌉ levels and the k′ children each of

which is a k′′ = 2⌊lg(k)/2⌋ ≈
√

k-merger below the middle buffers; following a van-Emde-Boas
layout of the binary tree and recursively allocating buffers consecutively in memory in that
order.
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4.2 Funnels for Partitioning

Figure 3 A 256-partitioner; splitter nodes are shown as circles (as in Figure 2); buffers are only
shown as edges, but with the vertical length of the edges to scale with the buffer sizes for d = 2.
(Buffer sizes by level are 4, 16, 4, 256, 4, 16, 4).

A key innovation of this paper is the k-partitioner, which uses funnels in reverse: instead
of merging k runs, we push elements down the funnel while partitioning them around k − 1
pivots into k buckets. We use the same internal buffer sizes for a k-partitioner as in a
k-merger; each buffer is organized as a queue and maintains an element count. The k output
buffers at the bottom of a k-partitioner are conceptually unbounded (never full). Note that
in partitioning, we always know the number N of elements and can allocate output buffers as
linked lists of blocks of size Θ(N/k). Calling Partition (Algorithm 3) on a node v partitions
elements around v’s pivot and passes them to one of v’s children, recursively emptying these
whenever they become full. FunnelPartition starts with all elements in the root’s input
buffer and then calls Partition on the root. After that, Flush recursively empties any
remaining nonempty buffers.

Figure 2 can be read mutatis mutandi as a k-partitioner instead of a k-merger: Each
node vi stores a pivot Pi and Partition pushes elements towards the leaves. Buffers are
consumed from the bottom and filled at the top of the hatched area. Figure 2 shows an
overall Partition call at v8, where first v4 and then v6 had run full; currently v6 is moving
elements from its parent buffer to its child buffers. Note that buffer sizes in Figure 2 are not
drawn to scale; Figure 3 gives a more truthful representation.

The main property of k-partitioners is given in Lemma 3 below. It is similar to [6,
Lemma 1], but we give a self-contained proof here.

▶ Lemma 3 (Funnel lemma). There exists a constant c ≥ 1 so that the following holds.
Let d ≥ 2 be a constant. The size of a k-partitioner (excluding its output buffers) is bounded
by c · k(d+1)/2. Assume d ≥ 2 is such that B1+ε ≤ M/3 where ε = 2/(d− 1). Partitioning
N ≥ kd elements with FunnelPartition around k− 1 pivots uses N lg(k) comparisons and
incurs O

(
N
B (logM (k) + 1) + k

)
I/Os.
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Algorithm 3 Operations on k-partitioners. The full() method returns whether a buffer has
capacity for further elements. The clear() method removes all current elements from a buffer.

1: procedure FunnelPartition(S[1..N ], P [1..k − 1])
2: Sort P

3: Build k-partitioner, using P as pivots (assigned in in-order to nodes)
4: r ← root node of k-partitioner
5: Partition(r, S)
6: Flush(r)
7: Return k-partitioner output buffers

8: procedure Partition(v, S[1..N ])
9: for x ∈ S do

10: if x ≤ v.pivot then
11: if v.leftBuffer.full() then
12: Partition(v.left, v.leftBuffer)
13: v.leftBuffer.append(x)
14: else
15: if v.rightBuffer.full() then
16: Partition(v.right, v.rightBuffer)
17: v.rightBuffer.append(x)
18: S.clear()

19: procedure Flush(v)
20: if v ̸= null then
21: Partition(v.left, v.leftBuffer)
22: Flush(v.left)
23: Partition(v.right, v.rightBuffer)
24: Flush(v.right)

Proof. Let h = lg(k); by definition of k, we have h ∈ N. The space usage is given recursively
by s(k) = k′ · ⌈kd/2⌉+ s(k′) + k′ · s(k′′); where k′ = 2⌈h/2⌉ and k′′ = 2⌊h/2⌋ are the number
of leaves in the top funnel and the bottom funnels, respectively. Assuming k = 22i for
i ∈ N, this simplifies to s(k) = k(d+1)/2 + (k1/2 + 1)s(k1/2), which satisfies s(k) ≤ S(k) where
we set S(k) = ck(d+1)/2 for a constant c ≥ 1 that depends on initial conditions; if we use
s(4) = 2 · 4d/2 + 3 (space for the buffers and the 3 pivots), c ≥ 2.2 suffices. The bound
s(k) ≤ S(k) indeed remains valid even when h is not a power of 2.

For the analysis of the I/O bound, let M and B with B(d+1)/(d−1) ≤ M/3 (“tall-
cache assumption”) be given. We follow the recursive construction of the funnel until a
k̂-partitioner F̂ satisfies S(k̂) ≤ M/3, i.e., its it fits entirely into (a third of the) internal
memory. For that choice, by the tall-cache assumption, the whole k̂-partitioner and one
block per child and parent buffer fit into internal memory: S(k̂) + (k̂ + 1)B ≤M .

Call the edges/buffers connecting F̂ to its parent and children large (if they exist). For
the analysis, imagine removing all large edges; this leaves us with disconnected base trees,
which in the k-partitioner are connected only by the large edges. Note that between any two
levels, either none or all edges are large. However, unless k = 22i , the height ĥ = lg(k̂) of a
base tree can vary between h = lg(M/(3c))/(d + 1) and h = 2h.
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Now consider a call to Partition at the root of a base tree F̂ with k̂ leaves. Over the
course of (recursively) pushing elements down through F̂ , we incur I/Os for loading the
buffers and pivots of F̂ . Since base trees fit entirely into internal memory, unless there is
another call triggered on a child base tree upon a full (large) buffer, we will only load buffers
inside the k̂-partitioner into memory once, at a total cost of O(S(k̂)/B) I/Os; we also need
to bring one block for each parent and child buffer into memory, using O(k̂) I/Os. We now
distinguish two cases.

Case (1): If k̂ = k, i.e., F̂ is the entire k-partitioner. Since F̂ (as well as one block
per input and output buffer) fits into internal memory, we only need to load it once, at a
cost of O(S(k)/B + k) I/Os. This is O(k(d+1)/2/B + k) = O(kd/B + k) = O(N/B + k) =
O(N/B(logM (k) + 1) + k) as claimed.

Case (2): Otherwise, k̂ < k. We will argue that the following potential scheme pays for all
I/Os costs: Whenever an element is inserted into a large buffer, it releases Θ(1/B) potential.

We first show that charging all elements for this released potential yields the desired
bound. Between any two large buffers, one partitioning phase moves an element at least h

levels down the tree. Overall, the N elements need to travel at most h = lg(k) levels down,
hence each element can be inserted at most ⌈h/h⌉ = O(logM (k) + 1) times into a large buffer,
giving an overall potential of O

(
N
B (logM (k) + 1)

)
= O

(
N
B (logM (k) + 1) + k

)
as claimed.

It remains to prove that the released potential exceeds the incurred I/O cost. First observe
that we initially have to load each F̂ when it is first used; likewise, we have to potentially
load each F̂ an additional time during the final Flush calls. These two load events sum to
O(S(k)/B + k) I/Os, which is O(N/B + k) (as in case (1) above). Additionally, at any point
in time during a Partition call on F̂ , we can get recursive Partition calls on F̂ ’s child
base trees in case their buffer becomes full; such a recursive call can evict F̂ from the internal
memory, and it has to be loaded before Partition resumes on F̂ , causing additional I/Os. We
cannot say when these evictions will happen, but every eviction of F̂ implies that a batch of β

elements have been pushed down from F̂ ’s input buffer to a child’s buffer, where β is the size
of the buffers below F̂ . By the recursive funnel construction, β = Ω(k̂d), so we must have seen
a total release of Θ(β/B) = Ω(k̂d/B) in potential. Since k̂ is the first value with S(k̂) ≤M/3,
we have S(2k̂2) > M/3, which implies, M = O(k̂d+1). By the tall-cache assumption, this
implies B = O(M (d−1)/(d+1)) = O

(
(k̂(d+1))(d−1)/(d+1)) = O(k̂d−1), so k̂ = O(k̂d/B). Hence,

the cost of loading F̂ again after an eviction of O(S(k̂)/B + k̂) = O(k̂d/B) I/Os is covered
by a release in potential. ◀

On a conceptual level, a k-partitioner can be thought of as a cache-oblivious gadget for
repeatedly partitioning with (variable) fan-out in Ω(M1/(d+1)) ∩ O(M2/(d+1)) that, when
applied to Ω(Md/(d+1)) elements, uses O(1/B) I/Os per element and partitioning round.
This results from the bounds on k̂ in base trees in the proof above.

4.3 Selecting Pivots

For funnelselect, we choose pivots P1, . . . , Pk−1 as follows; see also Figure 4: We first sample
each element in the input S with probability p = 1/ lg N . The resulting sample S̄ is sorted.
Finally we select the pivots as the ideal pivots in the sample, using the (expected) sample
size pN : the ith pivot Pi is the ⌊1 + ipN/k⌋th smallest element of S̄. If S̄ is too small, i.e.,
if |S̄| < ⌊(k − 1)pN/k⌋ or |S̄| > 2pN , we declare the pivot selection failed and repeat the
sampling process.
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sample
input

r

Figure 4 Using sampling to select k − 1 pivots for a k-way partitioning of the input, when k = 4
and N = 30. The expected sample size was 9 elements, but only 7 were actually sampled. Top
shows the sorted input and k − 1 ideal pivots, whereas the bottom shows similarly k − 1 ideal pivots
for a sample of the input points. Note the input of rank r is in the 2nd block of white nodes defined
by the ideal pivots, but would be in the 3rd block defined by the actual pivots from the sample.

In Lemma 6 we prove that all pivots are expected “close” to the ideal pivots in S. We call
the ith pivot Pi “ξ-bad” if its rank is more than ξ away from its ideal rank, more formally

Pi is “ξ-bad” if and only if
∣∣S ∩ (−∞, Pi]

∣∣ /∈
[
⌊1 + iN/k⌋ − ξ , ⌊1 + iN/k⌋ + ξ

]
.

We will call Pi bad if it is ξ-bad; otherwise it is good. We call a pivot selection “bad” if any
of the pivots is bad, and “good” otherwise. We select ξ =

⌈
N1/2+δ

⌉
for a small constant δ,

where 0 < δ < 1/6. Since we assume d ≥ 3, k = Θ
(
N1/d

)
implies N/k = Ω

(
N2/3), and

ξ < 1
2 N/k for sufficiently large N . We get the following fact:

▶ Fact 4 (Good pivots). If ξ < 1
2 N/k and all pivots are good,

(a) no bucket Si contains more than N/k + 2ξ ≤ 2N/k elements, and
(b) a query for a rank r will fall into one of at most two buckets: the ⌈(r − ξ)/N · k⌉th or

the ⌈(r + ξ)/N · k⌉th bucket.

Our analysis makes iterated use of the following Chernoff bound.

▶ Lemma 5 ([10, Theorem 1.1]). If X1, . . . , Xn are independent random variables in [0, 1],
and X = X1 + · · ·+ Xn, then for all t > 0 we have

Pr[X < E[X]− t], Pr[X > E[X] + t] ≤ e−2t2/n .

▶ Lemma 6. The probability that Pi is ξ-bad is bounded by 2 exp
(
−2ξ2p2/N

)
.

Proof. Pi is bad if its rank in S is too small (“small bad”) or too big (“big bad”). We first
consider too small ranks. By choice, there are ipN/k elements in S̄ smaller than Pi; if Pi has
small-bad rank, all of these elements must be of rank < iN/k − ξ in S. That means, from
these iN/k − ξ − 1 smallest elements in S, we have chosen at least ipN/k into S̄. Since each
choice is done independently with probability p = 1/ lg N , the number chosen for the sample
is X D= Bin(iN/k − ξ − 1, p), a random variable with binomial distribution and expectation
E[X] = p(iN/k − ξ − 1). We have

P[Pi “small bad”] ≤ P[X ≥ piN/k] ≤ P[X > E[X] + pξ]

≤
Lemma 5

exp
(
−2 (pξ)2

iN/k − ξ − 1

)
≤ exp

(
−2ξ2p2

N

)
.

For the “big-bad” case, we must have chosen at most ipN/k elements from the iN/k + ξ + 1
smallest elements in S into S̄. With X ′ D= Bin(iN/k + ξ + 1, p), we obtain

P[Pi “big bad”] ≤ P[X ′ ≤ piN/k] ≤ P[X ′ < E[X ′]− pξ] ≤ exp
(
−2ξ2p2

N

)
.

By the union bound, Pi is bad with probability at most 2 exp
(
−2ξ2p2/N

)
. ◀
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▶ Lemma 7. The probability that the sample is too small to choose k − 1 pivots is bounded
by exp

(
−2(pN/k − 1)2/N

)
.

Proof. For the sample to be too small, we must have selected at most (k− 1)pN/k elements
into the sample. Since |S̄| D= Bin(N, p), we have by Lemma 5

P[S̄ too small] = P[|S̄| ≤ E[|S̄|]− pN/k] ≤ exp
(
−2(pN/k − 1)2

N

)
. ◀

▶ Corollary 8. With high probability, the pivot choice is well-defined and all k − 1 pivots of
one sampling round are good.

Proof. By Lemmas 6 and 7 and the union bound, the probability that the sample is too
small to choose our pivots or that any Pi is bad is at most

2(k − 1) exp
(
−2ξ2p2/N

)
+ exp

(
−2(pN/k − 1)2/N

)
≤ 2k exp

(
−Ω
(
N2δ/ lg2 N

))
.

The inequality follows from p = 1/ lg(N), ξ = Ω
(
N1/2+δ

)
, N/k = Ω

(
N2/3), and δ < 1/6.

This probability tends to 0 with speed superpolynomial in N . ◀

4.4 Truncated Partitioning
The algorithms from Section 3 achieve optimal cost from simply not recursing on subproblems
not containing any query rank; after partitioning, it is obvious which subproblems are “query
free”. In a cache-oblivious algorithm, we have to truncate partitioning inside the k-partitioner.

After k-partitioning the input, elements are split into k buckets; let us denote these
buckets by S1, . . . , Sk. By Fact 4(b), when pivots are good, a query rank r will fall in
one of two buckets: one in S(r) = {S⌈(r−ξ)/N ·k⌉, S⌈(r+ξ)/N ·k⌉}. Buckets in the set QF =
{S1, . . . , Sk} \

⋃
r∈R S(r) do not contain any query ranks whenever pivots are good; we call

these buckets “expected query-free”. Note that this is a property solely of R and k and hence
QF can be determined by scanning R before partitioning commences.

When constructing the k-partitioner F , we check in a depth-first traversal whether all
leaves below a binary partitioning node v are in QF ; if so, we remove v and rewire its parent
to send elements directly to an output buffer instead of v’s input buffer. The sizes of buffers
between partitioning nodes and the Partition methods remain unchanged. By generating
the output buffers for the leaves of F consecutive in memory, before all internal buffers and
reserving 2N/k space for each, this truncation operation simply changes one pointer.

4.5 Funnelselect
The overall algorithm FunnelSelect is shown in Algorithm 4. It applies one round of
truncated k-partitioning as described above. For each of the resulting buckets, we then simply
invoke an existing I/O-optimal cache-oblivious sorting algorithm and report the sought ranks.
This can be done as a stack-based computation, so that no extra I/Os are paid for reporting
elements, but instead they are reported while they are in main memory anyways from sorting.

5 Analysis

▶ Theorem 9. Algorithm FunnelSelect is cache oblivious and uses O
(
BI/O + N

B

)
I/Os

to report q query ranks r1 < · · · < rq from an unsorted array of N elements. With high
probability it does not fail.
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Algorithm 4 Our overall cache-oblivious multiple-selection algorithm.

1: procedure FunnelSelect(S[1..N ], R[1..q], δ)
2: p← 1/ lg N

3: k ← 2⌈lg(N)/d⌉

4: ξ ← ⌈N1/2+δ⌉
5: Scan S, copy each element into the sample S̄ i. i.d. with prob. p

6: if |S̄| ≤ (k − 1)pN/k ∨ |S̄| < 1
2 Np ∨ |S̄| > 2Np then

7: return Fail
8: Sort S̄

9: for i = 1, . . . , k − 1 do
10: Pi ← S̄[⌊1 + ipN/k⌋] (select pivots from S̄)
11: Construct k-partitioner F using pivots P1, . . . , Pk−1; let S1, . . . , Sk be its leaf buckets
12: for r ∈ R do
13: b1 ← ⌈(r − ξ)/N · k⌉ and b2 ← ⌈(r + ξ)/N · k⌉
14: Mark leaf buckets Sb1 and Sb2 as expected query free
15: for node v in bottom-up traversal of F do
16: if both of v’s children are marked expected query free then
17: Mark v as expected query free
18: Delete v’s children
19: for node v in preorder traversal of F do
20: if v marked expected query free then
21: Declare v’s parent an expected query free output buffer
22: Delete v

23: Partition(F.root, S)
24: Flush(F.root)
25: L1, . . . , Lk̂ ← leaf buckets in F

26: ℓ← 0
27: for i = 1, . . . , k̂ do
28: R′ ← R ∩ (ℓ, ℓ + |Li|]
29: if R′ ̸= ∅ then
30: if Li marked expected query free ∨ |Li| > 2N/k then
31: return Fail
32: else
33: Sort Li using an I/O-optimal cache-oblivious sorting algorithm.
34: for r ∈ R′ do
35: Report Li[r − ℓ]
36: ℓ← ℓ + |Li|

Proof. Let us first deal with failures. We let the algorithm fail if |S̄| is smaller than 1
2 Np or

larger than 2Np. From Lemma 5, with high probability, this does not happen. The only
other cause for failure are bad pivots; by Corollary 8 with high probability, this also does not
happen.

For the I/O cost, we consider the different steps in turn. The I/O cost for computing
the pivots consists of O(N/B) I/Os to scan the input to construct the sample S̄ of size at
most N̄ = 2N/ lg N . To sort the sample, we can use standard top-down mergesort, yielding
O(N̄/B · lg(N̄/M)) = O(N/B) I/Os for sorting S̄ and O(N/B) I/Os to extract the pivots
from S̄. In total selecting the pivots requires O(N/B) I/Os.
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The buffers of F can be built sequentially, using O(k(d+1)/2/B) = O(N (d+1)/2d/B) =
O(N/B) I/Os (Lemma 3). Preparing the leaf buffers additionally touches k = O(N1/d)
positions; if N1/d > N/B, then B > N (d−1)/d and by the tall-cache assumption, M ≥
B(d+1)/(d−1) > N (d+1)/d, so the entire input fits in internal memory and the k accesses are
cached. The same applies for truncating the k-partitioner; anything touching O(k) random
positions incurs O(N/B) I/Os. Marking leaves and nodes as expected query-free can be
done by scanning R (which is sorted), hence we use O(q/B) = O(N/B) I/Os.

The key step is the k-partitioner. As in the proof of Lemma 3, we define k̂ as the level in
the recursive construction of the partitioner where the k̂-partitioner first fits into internal
memory. We overestimate the actual cost by always assuming the smallest k̂ = (M/3c)1/(d+1).
As shown there, the k-partitioner has up to constant factors the same I/O cost as a repeated
k̂-way external-memory partitioning: O(1/B) I/Os per element and k̂-way split. This remains
true when truncating the same subtrees in both algorithms. We can hence bound the cost of
funnel partitioning as in Section 3 by charging the lengths of segments that are split further
(white rectangles in Figure 1) to individual gaps ∆. For MultiSelectI/O, charging a gap ∆
on each level either ∆ or the 2 segments containing its endpoints, whichever is less, was
sufficient to cover all partitioning costs. For FunnelSelect, due to marking (up to) two leaf
buckets as not query-free for the endpoints, we can have up to 4 segments on any level that
still require partitioning. The rest of the analysis is the same, though, and with C = O(1/B),
k = k̂, and α = 2/k̂, we obtain an upper bound of

C ·

(
q+1∑
i=1

∆i log1/α

4N

∆i
+ N

1− α

)
= O(BI/O + N/B)

I/Os for partitioning.
The last part of the algorithm, solving subinstances of multiple selection within leaf buckets,

could be solved recursively, but as we now show, fully sorting such buckets also fits our desired
I/O bound. This improves the failure probability as sorting can be deterministic. A subprob-
lem Li to recurse on is never declared query-free and hence moves all the lg k levels down
the k-partitioner. For N ′ = |Li|, Li hence contributes Θ

(
N ′

B logM k
)

= Θ
(

N ′

B logM/B N
)

I/Os to the partitioning cost, since k = Θ
(
N1/d

)
and under our tall-cache assumption

lg M
B = Θ(lg M). This is an upper bound on the I/O cost of sorting N ′ elements. Any

I/O-efficient cache-oblivious sorting method (such as funnelsort) hence suffices for overall
O(BI/O + N

B ) I/Os. ◀

▶ Corollary 10. There exists a randomized cache-oblivious algorithm solving the multiple-
selection problem using expected and with high probability O

(
BI/O + N

B

)
I/Os.

Proof. FunnelSelect is formulated as a Monte-Carlo algorithm with worst-case time
matching our expected-case time, but which can Fail occasionally. Repeating any failed
execution turns it into a Las-Vegas algorithm with O

(
BI/O + N

B

)
expected I/Os; since

the failure probability is superpolynomially small, we obtain the same bound with high
probability. ◀

6 Partial Sorting

In internal memory, multiple selection would usually rearrange the input in place so that after
the call to the multiple-selection algorithm, the sought elements are at indices r1, . . . , rq. One
would then not even return these elements explicitly. In external memory, this variant is less
desirable, as one would have to pay q I/Os for accessing the elements by index later. Hence
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we defined the multiple-selection problem to return the elements of given ranks. However, it
can be useful to also obtain the input partitioned around these returned values. Since all our
multiple-selection algorithms conceptually follow an inorder traversal of a recursion tree and
report sought elements (in sorted order) when they are identified, it is easy to augment the
algorithms to produce a partitioned copy of the input array along the way. For funnelselect,
we just have to make sure that output buckets are allocated sequentially in memory from
left to right. That way we can output all elements falling between two returned pivots.

7 Allowing Identical Elements

In the previous sections we assumed elements to be distinct. A generic way to allow identical
elements in the algorithms is by letting the algorithms process pairs (x, i), where x is the ith
element in the array S, and break comparison ties between identical elements by comparing
by their input position. This ensures all elements are considered distinct.

The drawback is that the computations need to process and store all these input positions.
To avoid this overhead, one needs to address the problem directly by the individual algorithms.
In the algorithms one needs to handle that multiple elements can be equal to the pivots. In
the partitioning steps one needs to keep track of the number of elements equal to the pivots
and only partition the elements not equal to pivots. Finally, one need to use this information
gathered to handle that a pivot can span a range of ranks and be the answer to multiple
query ranks.

8 Conclusion and Open Problems

We presented the first cache-oblivious multiple-selection algorithm that achieves the optimal
I/O cost even when taking the (entropy of the) ranks to select into account.

A natural open problem is to find a deterministic cache-oblivious multiple-selection
algorithm that achieves the same I/O bound as our randomized algorithm. Another interesting
direction to explore is the “online” version of multiple selection studied in [3], where the
ranks are given one after the other in arbitrary order and the algorithm has to produce
the element of a given rank before the next rank is revealed. Investigating the practical
performance of funnelselect is another route to pursue.
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