87 research outputs found

    Generalized Discernibility Function Based Attribute Reduction in Incomplete Decision Systems

    Get PDF
    A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditional attributes. Our methods use generalized discernibility matrix and function in tolerance-based rough sets

    Logical Analysis of Inconsistent Data (LAID) for a paremiologic study

    Get PDF
    15th Portuguese Conference on Artificial Inteligence - EPIA 2011. Lisboa, Faculdade de Ciências da Universidade de LisboaA paremiologic (study of proverbs) case is presented as a part of a wider project, based on data collected by thousands of interviews made to people from Azores, and involving a set of twenty-two thousand Portuguese proverbs, where we searched for the minimum information needed to identify the birthplace island of an interviewee. The concept of birthplace was extended for all respondents that have lived in any locations more than 5 years,unintentionally introducing inconsistencies in the data classification task. The rough sets differ from classical sets by their ability to deal with inconsistent data. A parallel approach to data reduction is given by the logical analysis of data (LAD). LAD handicaps, like the inability to cope with the contradiction and the limited number of classification classes, will be overcome in this version of Logical Analysis of Inconsistent Data (LAID)

    Multiple Relevant Feature Ensemble Selection Based on Multilayer Co-Evolutionary Consensus MapReduce

    Full text link
    IEEE Although feature selection for large data has been intensively investigated in data mining, machine learning, and pattern recognition, the challenges are not just to invent new algorithms to handle noisy and uncertain large data in applications, but rather to link the multiple relevant feature sources, structured, or unstructured, to develop an effective feature reduction method. In this paper, we propose a multiple relevant feature ensemble selection (MRFES) algorithm based on multilayer co-evolutionary consensus MapReduce (MCCM). We construct an effective MCCM model to handle feature ensemble selection of large-scale datasets with multiple relevant feature sources, and explore the unified consistency aggregation between the local solutions and global dominance solutions achieved by the co-evolutionary memeplexes, which participate in the cooperative feature ensemble selection process. This model attempts to reach a mutual decision agreement among co-evolutionary memeplexes, which calls for the need for mechanisms to detect some noncooperative co-evolutionary behaviors and achieve better Nash equilibrium resolutions. Extensive experimental comparative studies substantiate the effectiveness of MRFES to solve large-scale dataset problems with the complex noise and multiple relevant feature sources on some well-known benchmark datasets. The algorithm can greatly facilitate the selection of relevant feature subsets coming from the original feature space with better accuracy, efficiency, and interpretability. Moreover, we apply MRFES to human cerebral cortex-based classification prediction. Such successful applications are expected to significantly scale up classification prediction for large-scale and complex brain data in terms of efficiency and feasibility

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    Recent advances in the theory and practice of logical analysis of data

    Get PDF
    Logical Analysis of Data (LAD) is a data analysis methodology introduced by Peter L. Hammer in 1986. LAD distinguishes itself from other classification and machine learning methods by the fact that it analyzes a significant subset of combinations of variables to describe the positive or negative nature of an observation and uses combinatorial techniques to extract models defined in terms of patterns. In recent years, the methodology has tremendously advanced through numerous theoretical developments and practical applications. In the present paper, we review the methodology and its recent advances, describe novel applications in engineering, finance, health care, and algorithmic techniques for some stochastic optimization problems, and provide a comparative description of LAD with well-known classification methods

    A bi-objective feature selection algorithm for large omics datasets

    Get PDF
    Special Issue: Fourth special issue on knowledge discovery and business intelligence.Feature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the bi-objective version of the algorithm Logical Analysis of Inconsistent Data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross-validation technique. The bi-objective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome-like characteristics of patients with rare diseases.The authors would like to thank the FCT support UID/Multi/04046/2013. This work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal).info:eu-repo/semantics/publishedVersio

    Attribute Equilibrium Dominance Reduction Accelerator (DCCAEDR) Based on Distributed Coevolutionary Cloud and Its Application in Medical Records

    Full text link
    © 2013 IEEE. Aimed at the tremendous challenge of attribute reduction for big data mining and knowledge discovery, we propose a new attribute equilibrium dominance reduction accelerator (DCCAEDR) based on the distributed coevolutionary cloud model. First, the framework of N-populations distributed coevolutionary MapReduce model is designed to divide the entire population into N subpopulations, sharing the reward of different subpopulations' solutions under a MapReduce cloud mechanism. Because the adaptive balancing between exploration and exploitation can be achieved in a better way, the reduction performance is guaranteed to be the same as those using the whole independent data set. Second, a novel Nash equilibrium dominance strategy of elitists under the N bounded rationality regions is adopted to assist the subpopulations necessary to attain the stable status of Nash equilibrium dominance. This further enhances the accelerator's robustness against complex noise on big data. Third, the approximation parallelism mechanism based on MapReduce is constructed to implement rule reduction by accelerating the computation of attribute equivalence classes. Consequently, the entire attribute reduction set with the equilibrium dominance solution can be achieved. Extensive simulation results have been used to illustrate the effectiveness and robustness of the proposed DCCAEDR accelerator for attribute reduction on big data. Furthermore, the DCCAEDR is applied to solve attribute reduction for traditional Chinese medical records and to segment cortical surfaces of the neonatal brain 3-D-MRI records, and the DCCAEDR shows the superior competitive results, when compared with the representative algorithms

    Rough sets, their extensions and applications

    Get PDF
    Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data-mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological
    corecore