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Rough Sets, their Extensions and Applications
Qiang Shen∗ Richard Jensen

Department of Computer Science, The University of Wales, Aberystwyth, UK.

Abstract: Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use
of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data-mining,
intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision,
tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through
biological and medicine, to physical, art, and meteorological.
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1 Introduction

Dealing with incomplete or imperfect knowledge is the core
of much research in computational intelligence and cognitive sci-
ences. Being able to understand and manipulate such knowledge is
of fundamental significance to many theoretical developments and
practical applications of automation and computing, especially in
the areas of decision analysis, machine learning and data-mining,
intelligent control and pattern recognition. Rough set theory [1, 2]

offers one of the most distinct and recent approaches for this.
Indeed, since its invention, this theory has been successfully

utilised to devise mathematically sound and often, computation-
ally efficient techniques for addressing problems such as hidden
pattern discovery from data, data reduction, data significance eval-
uation, decision rule generation, and data-driven inference inter-
pretation [3]. Owing to the recognition of the existing and poten-
tial important impact of this theory, it has attracted world-wide
attention of further research and development, resulting in various
extensions to the original theory and increasingly widening fields
of application. This paper attempts to offer a concise overview of
the basic ideas of rough set theory, and its major extensions with
sample applications. Further details can be found in the literature
(e.g. LNCS Transactions on Rough Sets) and on the internet (e.g.
www.roughsets.org).

This paper is organised as follows. The next section outlines
the preliminary concepts of rough set theory. Section 3 introduces
three major extensions made to the original theory, covering vari-
able precision rough sets, tolerance rough sets and fuzzy rough
sets. Section 4 describes a range of practical applications of the
theory and a specific theoretical development on feature selection
that is based on the use of the original or extended rough set the-
ories and that is itself an important topic in automation and com-
puting. The final section concludes the paper and points out some
interesting further work.

2 Rough Set Theory

Rough set theory [1, 4, 5, 6, 7] is an extension of conventional set
theory that supports approximations in decision making. It pos-
sesses many features in common (to a certain extent) with the
Dempster-Shafer theory of evidence [8] and fuzzy set theory [9, 10].
A rough set is itself the approximation of a vague concept (set) by
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a pair of precise concepts, called lower and upper approximations,
which are a classification of the domain of interest into disjoint
categories. The lower approximation is a description of the do-
main objects which are known with certainty to belong to the sub-
set of interest, whereas the upper approximation is a description
of the objects which possibly belong to the subset.

It works by exploring and exploiting the granularity structure
of the data only. This is a major difference when compared with
Dempster-Shafer theory [11, 12] and fuzzy set theory [13] which
require probability assignments and membership values respec-
tively. However, this does not mean that no model assumptions
are made. In fact by using only the given information, the theory
assumes that the data is a true and accurate reflection of the real
world (which may not be the case). The numerical and other con-
textual aspects of the data are ignored which may seem to be a
significant omission, but keeps model assumptions to a minimum.

2.1 Information and Decision Systems

An information system can be viewed as a table of data, con-
sisting of objects (rows in the table) and attributes (columns). In
medical datasets, for example, patients might be represented as
objects and measurements such as blood pressure, form attributes.
The attribute values for a particular patient is their specific reading
for that measurement. Throughout this paper, the terms attribute,
feature and variable are used interchangeably.

An information system may be extended by the inclusion of de-
cision attributes. Such a system is termed a decision system. For
example, the medical information system mentioned previously
could be extended to include patient classification information,
such as whether a patient is ill or healthy. A more abstract ex-
ample of a decision system can be found in table 1. Here, the table
consists of four conditional features (a, b, c, d), a decision feature
(e) and eight objects. A decision system is consistent if for every
set of objects whose attribute values are the same, the correspond-
ing decision attributes are identical.

More formally, I = (U,A) is an information system, where U
is a non-empty set of finite objects (the universe of discourse) and
A is a non-empty finite set of attributes such that a : U → Va
for every a ∈ A. Va is the set of values that attribute a may take.
For decision systems, A = {C ∪ D} where C is the set of input
features and D is the set of class indices. Here, a class index d ∈ D
is itself a variable d : U → {0, 1} such that for a ∈ U, d(a) = 1
if a has class d and d(a) = 0 otherwise.
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Table 1 An example dataset

x ∈ U a b c d ⇒ e
0 S R T T R

1 R S S S T

2 T R R S S

3 S S R T T

4 S R T R S

5 T T R S S

6 T S S S T

7 R S S R S

2.2 Indiscernibility
With any P ⊆ A there is an associated equivalence relation

IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)

Note that this corresponds to the equivalence relation for which
two objects are equivalent if and only if they have the same vec-
tors of attribute values for the attributes in P . The partition of U,
determined by IND(P) is denoted U/IND(P ) or U/P , which is
simply the set of equivalence classes generated by IND(P ):

U/IND(P ) = ⊗{U/IND({a}) | a ∈ P}, (2)

where

A⊗B = {X ∩ Y | ∀X ∈ A,∀Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by at-
tributes from P . The equivalence classes of the indiscernibility
relation with respect to P are denoted [x]P , x ∈ U. For the il-
lustrative example, if P = {b,c}, then objects 1, 6 and 7 are in-
discernible; as are objects 0 and 4. IND(P) creates the following
partition of U :

U/IND(P ) = U/IND(b)⊗ U/IND(c)

= {{0, 2, 4}, {1, 3, 6, 7}, {5}}
⊗{{2, 3, 5}, {1, 6, 7}, {0, 4}}

= {{2}, {0, 4}, {3}, {1, 6, 7}, {5}}

2.3 Lower and Upper Approximations
Let X ⊆ U. X can be approximated using only the information
contained within P by constructing the P-lower and P-upper ap-
proximations of the classical crisp set X:

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩X 6= ∅} (5)

It is such a tuple 〈PX,PX〉 that is called a rough set. Con-
sider the approximation of concept X in figure 1. Each square in
the diagram represents an equivalence class, generated by indis-
cernibility between object values. Using the features in set B, via
these equivalence classes, the lower and upper approximations of
X can be constructed. Equivalence classes contained within X

belong to the lower approximation. Objects lying within this re-
gion can be said to belong definitely to concept X . Equivalence
classes within X and along its border form the upper approxima-
tion. Those objects in this region can only be said to possibly
belong to the concept.

Figure 1 A Rough Set

2.4 Positive, Negative and Boundary Regions
Let P and Q be equivalence relations over U, then the positive,

negative and boundary regions are defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

NEGP (Q) = U−
⋃

X∈U/Q

PX (7)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (8)

The positive region comprises all objects of U that can be clas-
sified to classes of U/Q using the information contained within
attributes P. The boundary region, BNDP (Q), is the set of objects
that can possibly, but not certainly, be classified in this way. The
negative region, NEGP (Q), is the set of objects that cannot be clas-
sified to classes of U/Q. For example, let P = {b,c} and Q = {e},
then

POSP (Q) =
⋃
{∅, {2, 5}, {3}} = {2, 3, 5}

NEGP (Q) = U−
⋃
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}

= ∅
BNDP (Q) =

⋃
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}
−{2, 3, 5}

= {0, 1, 4, 6, 7}

This means that objects 2, 3 and 5 can certainly be classified as
belonging to a class in attribute e, when considering attributes b
and c. The rest of the objects cannot be classified as the informa-
tion that would make them discernible is absent.

2.5 Feature Dependency and Significance
An important issue in data analysis is discovering dependencies

between attributes. Intuitively, a set of attributes Q depends totally
on a set of attributes P, denoted P⇒ Q, if all attribute values from
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Q are uniquely determined by values of attributes from P. If there
exists a functional dependency between values of Q and P, then Q
depends totally on P. In rough set theory, dependency is defined
in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k (0 ≤
k ≤ 1), denoted P⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U| (9)

where |S| stands for the cardinality of set S.
If k = 1, Q depends totally on P, if 0 < k < 1, Q depends partially
(in a degree k) on P, and if k = 0 then Q does not depend on P . In
the example, the degree of dependency of attribute {e} from the
attributes {b,c} is:

γ{b,c}({e}) =
|POS{b,c}({e})|

|U|
= |{2,3,5}|

|{0,1,2,3,4,5,6,7}| = 3
8

By calculating the change in dependency when a feature is re-
moved from the set of considered possible features, an estimate
of the significance of that feature can be obtained. The higher the
change in dependency, the more significant the feature is. If the
significance is 0, then the feature is dispensible. More formally,
given P,Q and a feature x ∈ P, the significance of feature x upon
Q is defined by

σP (Q, a) = γP (Q)− γP−{a}(Q) (10)

For example, if P = {a,b,c} and Q = e then

γ{a,b,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{a,b}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{b,c}({e}) = |{2, 3, 5}|/8 = 3/8

γ{a,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8

And calculating the significance of the three attributes gives:

σP (Q, a) = γ{a,b,c}({e})− γ{b,c}({e}) = 1/8

σP (Q, b) = γ{a,b,c}({e})− γ{a,c}({e}) = 0

σP (Q, c) = γ{a,b,c}({e})− γ{a,b}({e}) = 0

From this it follows that attribute a is indispensable, but attributes
b and c can be dispensed with when considering the dependency
between the decision attribute and the given individual conditional
attributes.

2.6 Reducts

For many application problems, it is often necessary to main-
tain a concise form of the information system. One way to imple-
ment this is to search for a minimal representation of the original
dataset. For this, the concept of a reduct is introduced and defined
as a minimal subset R of the initial attribute set C such that for a
given set of attributes D, γR(D) = γC(D). From the literature, R
is a minimal subset if γR−{a}(D) 6= γR(D) for all a ∈ R. This
means that no attributes can be removed from the subset without
affecting the dependency degree. Hence, a minimal subset by this
definition may not be the global minimum (a reduct of smallest
cardinality). A given dataset may have many reduct sets, and the
collection of all reducts is denoted by

Rall = {X |X ⊆ C, γX(D) = γC(D);

γX−{a}(D) 6= γX(D), ∀a ∈ X} (11)

The intersection of all the sets in Rall is called the core, the
elements of which are those attributes that cannot be eliminated
without introducing more contradictions to the representation of
the dataset. For many tasks (for example, feature selection [14]), a
reduct of minimal cardinality is ideally searched for. That is, an
attempt is to be made to locate a single element of the reduct set
Rmin ⊆ Rall:

Rmin = {X |X ∈ Rall, ∀Y ∈ Rall, |X| ≤ |Y |} (12)

The problem of finding a reduct of an information system has
been the subject of much research [15, 16]. The QUICKREDUCT al-
gorithm given in figure 2 (adapted from [17]), attempts to calculate
reducts for a decision problem (though the underlying approach
can be applied to other tasks), without exhaustively generating all
possible subsets. It starts off with an empty set and adds in turn,
one at a time, those attributes that result in the greatest increase
in the rough set dependency metric, until this produces its maxi-
mum possible value for the dataset. Other such techniques may be
found in [18, 19].

QUICKREDUCT(C,D).
C, the set of all conditional attributes;
D, the set of decision attributes.

(1) R← {}
(2) do
(3) T ← R
(4) ∀x ∈ (C−R)
(5) if γR∪{x}(D) > γT (D)
(6) T ← R ∪ {x}
(7) R← T
(8) until γR(D) == γC(D)
(9) return R

Figure 2 The QUICKREDUCT Algorithm

2.7 Discernibility Matrix

Many applications of rough sets make use of discernibility ma-
trices for finding rules or reducts. A discernibility matrix [20, 21] of
a decision table (U,C ∪ D) is a symmetric |U| × |U| matrix with
entries defined by:

cij = {a ∈ C|a(xi) 6= a(xj)} i, j = 1, ..., |U| (13)

Each cij contains those attributes that differ between objects i and
j.

For finding reducts, the so-called decision-relative discernibil-
ity matrix is of more interest. This only considers those object dis-
cernibilities that occur when the corresponding decision attributes
differ. Returning to the example dataset, the decision-relative dis-
cernibility matrix is produced, found in table 2. For example, it
can be seen from the table that objects 0 and 1 differ in each at-
tribute. Although some attributes in objects 1 and 3 differ, their
corresponding decisions are the same so no entry appears in the
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Table 2 The decision-relative discernibility matrix

x ∈ U 0 1 2 3 4 5 6 7
0
1 a, b, c, d

2 a, c, d a, b, c

3 b, c a, b, d

4 d a, b, c, d b, c, d

5 a, b, c, d a, b, c a, b, d

6 a, b, c, d b, c a, b, c, d b, c

7 a, b, c, d d a, c, d a, d

decision-relative matrix. Grouping all entries containing single at-
tributes forms the core of the dataset (those attributes appearing in
every reduct). Here, the core of the dataset is {d}

From this, the concept of discernibility functions can be in-
troduced. This is a concise notation of how each object within
the dataset may be distinguished from the others. A discerni-
bility function fD is a boolean function of m boolean vari-
ables a∗1, ..., a∗m (corresponding to the membership of attributes
a1, ..., am to a given entry of the discernibility matrix) defined as
below:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (14)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime im-
plicants of the discernibility function, all the minimal reducts of
a system may be determined. From table 2, the decision-relative
discernibility function is (with duplicates removed):

fD(a∗, b∗, c∗, d∗) = (a∗ ∨ b∗ ∨ c∗ ∨ d∗) ∧ (a∗ ∨ c∗ ∨ d∗)
∧(b∗ ∨ c∗) ∧ (d∗) ∧ (a∗ ∨ b∗ ∨ c∗)
∧(a∗ ∨ b∗ ∨ d∗) ∧ (b∗ ∨ c∗ ∨ d∗)
∧(a∗ ∨ d∗)

Further simplification can be performed by removing those
clauses that are subsumed by others:

fD(a∗, b∗, c∗, d∗) = (b∗ ∨ c∗) ∧ (d∗)

The reducts of the dataset may be obtained by converting the
above expression from conjunctive normal form to disjunctive nor-
mal form (without negations). Hence, the minimal reducts are
{b, d} and {c, d}. Although this is guaranteed to discover all min-
imal subsets, it is a costly operation rendering the method imprac-
tical for even medium-sized datasets. As all that is required is
the discovery of a single reduct for many applications, efficient
heuristic methods may be applied.

3 Rough Set Extensions

The reliance on discrete data for the successful operation of
RST can be seen as a significant drawback of the approach. In-
deed, this requirement of RST implies an objectivity in the data
that is simply not present [22]. For example, in a medical dataset,
values such as Yes or No cannot be considered objective for a
Headache attribute as it may not be straightforward to decide

whether a person has a headache or not to a high degree of ac-
curacy. Again, consider an attribute Blood Pressure. In the real
world, this is a real-valued measurement but for the purposes of
RST must be discretised into a small set of labels such as Nor-
mal, High, etc. Subjective judgments are required for establishing
boundaries for objective measurements.

In the rough set literature, several extensions have been devel-
oped that attempt to handle better the uncertainty present in real
world data. In particular, variable precision rough sets [23] is a
generalized model of rough sets, allowing a controlled degree of
misclassification by relaxing the subset operator. Fuzzy-rough sets
[24] and tolerance rough sets [25] handle real-valued data by replac-
ing the traditional equivalence classes of crisp rough set theory
with alternatives that are better suited to dealing with this type of
data. In the fuzzy-rough case, fuzzy equivalence classes are em-
ployed within a fuzzy extension of rough set theory, resulting in
a hybrid approach. In the tolerance case, indiscernibility relations
are replaced with similarity relations that permit a limited degree
of variability in attribute values. Approximations are constructed
based on these tolerance classes in a manner similar to that of tra-
ditional rough set theory. An overview of these extensions is given
below.

3.1 Variable Precision Rough Sets
Variable precision rough sets (VPRS) [23] attempts to improve

upon rough set theory by relaxing the subset operator. It was pro-
posed to analyse and identify data patterns which represent statis-
tical trends rather than functional. The main idea of VPRS is to
allow objects to be classified with an error smaller than a certain
predefined level.

This approach is arguably easiest to be understood within the
framework of classification. Let X,Y ⊆ U, the relative classifi-
cation error is defined by:

c(X,Y ) = 1− |X ∩ Y ||X|

Observe that c(X,Y ) = 0 if and only if X ⊆ Y . A degree of
inclusion can be achieved by allowing a certain level of error, β,
in classification:

X ⊆β Y iff c(X,Y ) ≤ β, 0 ≤ β < 0.5

Using ⊆β instead of ⊆, the β-upper and β-lower approxima-
tions of a set X can be defined as:

RβX =
⋃
{[x]R ∈ U/R | [x]R ⊆β X}

RβX =
⋃
{[x]R ∈ U/R | c([x]R, X) < 1− β}
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Note thatRβX =RX for β = 0. The positive, negative and bound-
ary regions in the original rough set theory can now be extended
to:

POSR,β(X) = RβX (15)

NEGR,β(X) = U−RβX (16)

BNDR,β(X) = RβX −RβX (17)

Returning to the example dataset in Table 1, equation 15 can
be used to calculate the β-positive region for R = {b, c}, X = {e}
and β = 0.4. Setting β to this value means that a set is considered
to be a subset of another if they share about half the number of
elements. The partitions of the universe of objects for R and X
are:

U/R = {{2}, {0, 4}, {3}, {1, 6, 7}, {5}}
U/X = {{0}, {1, 3, 6}, {2, 4, 5, 7}}

For each set A ∈ U/R and B ∈ U/X , the value of c(A,B)
must be less than β if the equivalence class A is to be included in
the β-positive region. Considering A = {2} gives

c({2},{0}) = 1 > β
c({2},{1, 3, 6}) = 1 > β
c({2},{2, 4, 5, 7}) = 0 < β

So object 2 is added to the β-positive region as it is a β-subset of
{2, 4, 5, 7} (and is in fact a traditional subset of the equivalence
class). Taking A = {1, 6, 7}, a more interesting case is encoun-
tered:

c({1, 6, 7},{0}) = 1 > β
c({1, 6, 7},{1, 3, 6}) = 0.3333 < β
c({1, 6, 7},{2, 4, 5, 7}) = 0.6667 > β

Here the objects 1, 6 and 7 are included in the β-positive region as
the set {1, 6, 7} is a β-subset of {1, 3, 6}. Calculating the subsets
in this way leads to the following β-positive region:

POSR,β(X) = {1, 2, 3, 5, 6, 7}

Compare this with the positive region generated previously:
{2, 3, 5}. Objects 1, 6 and 7 are now included due to the relax-
ation of the subset operator. Consider a decision table (U,C∪D),
where C is the set of conditional attributes and D the set of deci-
sion attributes. The β-positive region of an equivalence relationQ
on U may be determined by

POSR,β(Q) =
⋃
X∈U/QRβX

where R is also an equivalence relation on U. This can then be
used to calculate dependencies and thus determine β-reducts. The
dependency function becomes:

γR,β(Q) =
|POSR,β(Q)|

|U|
It can be seen that the QUICKREDUCT algorithm outlined pre-

viously can be adapted to incorporate the reduction method built
upon VPRS theory. By supplying a suitable β value to the al-
gorithm, the β-lower approximation, β-positive region, and β-
dependency can replace the traditional calculations. This will re-
sult in a more approximate final reduct, which may be a better

generalization when encountering unseen data. Additionally, set-
ting β to 0 forces such a method to behave exactly like standard
rough set theory.

Extended classification of reducts in the VPRS approach may
be found in [26, 27, 28]. However, the variable precision approach
requires the additional parameter β which has to be specified from
the start. By repeated experimentation, this parameter can be suit-
ably approximated. Nevertheless, problems arise when searching
for true reducts as VPRS incorporates an element of imprecision
in determining the number of classifiable objects.

3.2 Tolerance Rough Sets

Another way of attempting to handle imprecision is to introduce
a measure of similarity of attribute values and define the lower and
upper approximations based on these similarity measures.
3.2.1 Similarity Measures

In this approach, suitable similarity relations must be defined
for each attribute, although the same definition can be used for all
attributes if applicable. A standard measure for this purpose, given
in [29], is:

SIMa(x, y) = 1− |a(x)− a(y)|
|amax − amin|

(18)

where a is the attribute under consideration, and amax and amin

denote the maximum and minimum values respectively for this
attribute.

When considering more than one attribute, the defined similar-
ities must be combined to provide a measure of the overall simi-
larity of objects. For a subset of attributes, P , this can be achieved
in many ways; two commonly adopted approaches are:

(x, y) ∈ SIMP,τ iff
∏
a∈P

SIMa(x, y) ≥ τ (19)

(x, y) ∈ SIMP,τ iff

∑
a∈P

SIMa(x, y)

|P | ≥ τ (20)

where τ is a global similarity threshold. This framework allows
for the specific case of traditional rough sets by defining a suitable
similarity measure (e.g. equality of attribute values and equation
(19)) and threshold (τ = 1). Further similarity relations are inves-
tigated in [30], but are omitted here.

From this, the so-called tolerance classes that are generated by
a given similarity relation for an object x are defined as:

SIMP,τ (x) = {y ∈ U|(x, y) ∈ SIMP,τ} (21)

3.2.2 Approximations and Dependency
Lower and upper approximations are then defined in a similar way
to traditional rough set theory:

PτX = {x|SIMP,τ (x) ⊆ X} (22)

PτX = {x|SIMP,τ (x) ∩X 6= ∅} (23)

The tuple 〈PτX,PτX〉 is called a tolerance rough set [25]. Positive
region and dependency functions then become:

POSP,τ (Q) =
⋃

X∈U/Q

PτX (24)

γP,τ (Q) =
|POSP,τ (Q)|

|U| (25)
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From these definitions, methods for reduct search can be con-
structed that use the tolerance-based degree of dependency,
γP,τ (Q), to gauge the significance of attribute subsets (in a similar
way as QUICKREDUCT).

3.3 Fuzzy-Rough Sets
There have been two main lines of thought in the hybridiza-

tion of fuzzy and rough sets, the constructive approach and the
axiomatic approach. A general framework for the study of fuzzy-
rough sets from both of these viewpoints is presented in [31]. For
the constructive approach, generalized lower and upper approxi-
mations are defined based on fuzzy relations. Initially, these were
fuzzy similarity/equivalence relations [24] but have since been ex-
tended to arbitrary fuzzy relations [31]. The axiomatic approach
is primarily for the study of the mathematical properties of fuzzy-
rough sets [32]. Here, various classes of fuzzy-rough approxima-
tion operators are characterized by different sets of axioms that
guarantee the existence of types of fuzzy relations producing the
same operators.
3.3.1 Main Approaches

In the same way that crisp equivalence classes are central to
rough sets, fuzzy equivalence classes are central to the fuzzy-rough
set approach [24]. In classification applications for example, this
means that the decision values and the conditional values may all
be fuzzy. The concept of crisp equivalence classes can be extended
by the inclusion of a fuzzy similarity relation S on the universe,
which determines the extent to which two elements are similar in S
[33]. The usual properties of reflexivity (µS(x, x) = 1), symmetry
(µS(x, y) = µS(y, x)) and transitivity (µS(x, z) ≥ µS(x, y) ∧
µS(y, z), where ∧ is a t-norm) hold.

Using such a fuzzy similarity relation S, the fuzzy equivalence
class [x]S for objects close to x can be defined:

µ[x]S (y) = µS(x, y) (26)

The following axioms should hold for a fuzzy equivalence class
F = [x]S

[33]:

• ∃x, µF (x) = 1

• µF (x) ∧ µS(x, y) ≤ µF (y)

• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an equiva-
lence class is non-empty. The second axiom states that elements in
y’s neighbourhood are in the equivalence class of y. The final ax-
iom states that any two elements in F are related via S. Obviously,
this definition degenerates to the normal definition of equivalence
classes when S is non-fuzzy.

An initial definition of fuzzy P -lower and P -upper approxima-
tions was given in [24] as follows:

µPX(Fi) = inf
x

max{1− µFi(x), µX(x)} ∀i (27)

µPX(Fi) = sup
x

min{µFi(x), µX(x)} ∀i (28)

where Fi is a fuzzy equivalence class andX is the (fuzzy) concept
to be approximated. The tuple 〈PX,PX〉 is called a fuzzy-rough
set.

Also defined in the literature are rough-fuzzy sets [34], which
can be seen to be a particular case of fuzzy-rough sets. A rough-
fuzzy set is a generalization of a rough set, derived from the ap-
proximation of a fuzzy set in a crisp approximation space. In [35]

it is argued that, to be consistent, the approximation of a crisp set
in a fuzzy approximation space should be called a fuzzy-rough
set, and the approximation of a fuzzy set in a crisp approximation
space should be called a rough-fuzzy set, making the two mod-
els complementary. In this framework, the approximation of a
fuzzy set in a fuzzy approximation space is considered to be a
more general model, unifying the two theories. However, most re-
searchers consider the traditional definition of fuzzy-rough sets in
[24] as standard.

The specific use of min and max operators in the definitions
above is expanded in [36], where a broad family of fuzzy-rough
sets is constructed, with each member represented by a particular
implicator and t-norm. The properties of three well-known impli-
cators (S-, R- and QL-implicators) are investigated. For example,
a fuzzy-rough lower approximation defined using the Łukasiewicz
implicator (which is both an S- and R-implicator) is as follows:

µPX(Fi) = inf
x

min{1− µFi(x) + µX(x), 1} ∀i

Further investigations in this area can be found in [37, 38, 39, 31].
In [40, 41], an axiomatic approach is taken, but restricted to fuzzy

T-similarity relations (and hence fuzzy T-rough sets), where T is
a lower semi-continuous triangular norm. The work of [42] inves-
tigates the properties of generalized fuzzy-rough sets, defining a
pair of dual generalized fuzzy approximation operators based on
arbitrary fuzzy relations. The approach presented in [43] introduces
definitions for generalized fuzzy lower and upper approximation
operators determined by a residual implication. Assumptions are
found that allow a given fuzzy set-theoretic operator to represent
a lower or upper approximation from a fuzzy relation. Different
types of fuzzy relations (for example, fuzzy equivalence, fuzzy
similarity etc) produce different classes of fuzzy-rough set alge-
bras.

The work in [44] generalizes the fuzzy-rough set concept
through the use of residuated lattices. An arbitrary residuated lat-
tice L is used as a basic algebraic structure, and several classes
of L-fuzzy-rough sets, defined using the product operator and its
residuum provided by the residuated lattice, and their properties
are investigated. In [45], a complete completely distributive (CCD)
lattice is selected as the foundation for defining lower and up-
per approximations in an attempt to provide a unified framework
for rough set generalizations. It is demonstrated that the existing
fuzzy-rough sets are special cases of the approximations on a CCD
lattice for T-similarity relations.

The relationships between fuzzy-rough set models and fuzzy
([0,1]-) topologies on a finite universe have been investigated. The
first such research was reported in [40], where it was proved that
the lower and upper approximation operators were fuzzy interior
and closure operators respectively for fuzzy T-similarity relations.
The work carried out in [31] investigated this for arbitrary fuzzy re-
lations. In [46, 47] it was shown that a pair of dual fuzzy rough ap-
proximation operators can induce a topological space if and only
if the fuzzy relation is reflexive and transitive.
3.3.2 Other Generalizations

In addition to the previous approaches to fuzzy-rough or rough-
fuzzy hybridization, other generalizations are possible. One of
the first attempts at hybridizing the two theories is reported in [10],
where rough sets are expressed by a fuzzy membership function to
represent the negative, boundary and positive regions. All objects
in the positive region have a membership of one and those belong-
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ing to the boundary region have a membership of 0.5. Those that
are contained in the negative region (and therefore do not belong
to the rough set) have zero membership. In so doing, a rough
set can be expressed as a fuzzy set, with suitable modifications to
the rough union and intersection operators. In [48], a definition of
fuzzy-rough sets is given based on an algebraic approach to rough
sets [49], where a rough set is defined as a pair of subsets from a
sub-Boolean algebra without reference to the universe. The lower
and upper bounds of such a rough set are then fuzzified. As stated
in [35], the precise meaning of the upper and lower bounds may not
be clear.

Another approach that blurs the distinction between rough and
fuzzy sets has been proposed in [50]. The research was fuelled by
the concern that a purely numeric fuzzy set representation may be
too precise; a concept is described exactly once its membership
function has been defined. It seems as though excessive precision
is required in order to describe imprecise concepts. The solution
proposed is termed a shadowed set, which itself does not use ex-
act membership values but instead employs basic truth values and
a zone of uncertainty (the unit interval). A shadowed set could be
thought of as an approximation of a fuzzy set or family of fuzzy
sets where elements may belong to the set with certainty (member-
ship of 1), possibility (unit interval) or not at all (membership of
0). This can be seen to be analogous to the definitions of the rough
set regions: the positive region (certainty), the boundary region
(possibility) and the negative region (no membership).

4 Applications

This section provides a brief overview of some of the many
applications of rough set theory. There are several properties of
rough sets that make the theory an obvious choice for use in deal-
ing with real problems; for example, it handles uncertainty present
in real data through approximations and also does not require
threshold information in order to operate (as is the case with many
current techniques).

4.1 Prediction of Business Failure
Attempts to develop business failure prediction models began

seriously sometime in the late 1960s and continue through today.
Although there has been much research in this area, there is still
no unified well-specified theory of how and why corporations fail.
Financial organisations need these predictions for evaluating firms
of interest.

Many methods have been used for the purpose of bankruptcy
prediction, such as logit analysis, discriminant analysis and probit
analysis [51]. A comprehensive review of the various approaches to
modelling and predicting this is presented in [52]. Although some
of these methods led to satisfactory models, they suffered from
limitations, often due to unrealistic statistical assumptions. Be-
cause of this, the rough set model, with its aim of keeping model
assumptions to a minimum, appeared to be a highly useful ap-
proach for the analysis of financial information tables.

Rough set-based failure prediction was investigated in [53] and
[54]. In these investigations, the rough set approach was evalu-
ated against several other methods, including C4.5 [55], discrimi-
nant analysis and logit analysis. For the rough approach, decision
rules were generated from the reducts produced by analysis of the
financial information. All methods were then evaluated on data
from the previous three years. The rough set model was found
to be more accurate than discriminant analysis by an average of

6.1% per case, using a minimal set of reduced rules. It also out-
performed C4.5, but performed similarly to logit analysis.

A comparative study of the rough sets model versus multi-
variable discriminant analysis (MDA) can be found in [56]. It was
demonstrated that through the use of rough set theory, the predic-
tion of corporate bankruptcy was 97.0% accurate - an improve-
ment over MDA which achieved an accuracy of 96.0%.

4.2 Financial Investment

Trading systems have been built using rough set approaches. In
[57, 58, 59], the rough set model was applied to discover strong trad-
ing rules that reflect highly repetitive patterns in data. Historical
data from the Toronto stock exchange in 1980 was used for the ex-
traction of trading rules for five companies. Experts confirmed that
the extracted rules described the stock behaviour and market sen-
sitivity of these companies. Depending on a roughness parameter,
the rules generated were either ’general’ or ’exact’. The general
rules were all recognised relationships in the investment industry,
whereas the exact rules made less sense.

In the work reported in [60], the problem of how to deduce rules
that map the financial indicators at the end of a month to the stock
price changes a month later was addressed. This was based on
15 market indicators. From this study, only a satisfactory perfor-
mance was achieved with many issues still to be tackled, such as
data filtration and how to handle missing data. In [61], research was
carried out into rough set reduct analysis and rule construction for
forecasting the total index of the Oslo stock exchange. This also
achieved satisfactory results, with a highest accuracy of 45%.

Research has been carried out on building trading systems for
the S&P index [62]. Here, a hybrid system was developed that
incorporated both neural networks and rough sets. Rules generated
by rough sets were used to supervise neural networks to correct for
possible errors in predictions. This system reduced drawdown by
25-50% and increased the average winner/loser ratio by 50-100%.

Rough sets have also been applied to financial decision analy-
sis and explanation for an industrial development bank, ETEVA
[63, 64]. The bank was interested in investing its capital in firms,
whilst reducing the risk involved in such an investment. To achieve
this, a rough set-based firm assessment system was constructed
that decided, based on a number of financial ratios, whether a com-
pany was acceptable, unacceptable or uncertain. An information
table was constructed with the help of the financial manager of
ETEVA. From this, the rough set-generated rules revealed the fi-
nancial policy applied in the selection of firms. The rules can also
be used to evaluate new firms that seek financing from the bank.

4.3 Bioinformatics and Medicine

A common and diagnostically challenging problem facing
emergency department personnel in hospitals is that of acute ab-
dominal pain in children. There are many potential causes for this
pain - most are usually non-serious. However, the pain may be an
indicator that a patient has a serious illness, requiring immediate
treatment and possibly surgery. Experienced doctors will use a va-
riety of relevant historical information and physical observations
to assess children. Such attributes occur frequently in recognisable
patterns, allowing a quick and efficient diagnosis. Inexperienced
physicians, on the other hand, may lack the knowledge and infor-
mation to be able to recognise these patterns. The techniques de-
veloped in [65] provide a rough set-based clinical decision model to
assist such inexperienced physicians. In this research, rough sets
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are used to support diagnosis by distinguishing between three dis-
position categories: discharge, observation/further investigation,
and consult. Preliminary results show that the system gives an
accuracy comparable to physicians, though it is dependent on a
suitably high data quality.

Rough set data analysis is also applied to the problem of ex-
tracting protein-protein interaction sentences in biomedical litera-
ture [66]. Due to the abundance of published information relevant
to this area, manual information extraction is a formidable task.
This approach develops decision rules of protein names, interac-
tion words, and their mutual positions in sentences. To increase
the set of potential interaction words, a morphological model is
developed, generating spelling and inflection variants. The perfor-
mance of the method is evaluated using a hand-tagged dataset con-
taining 1894 sentences, producing a precision-recall break-even
performance of 79.8% with leave-one-out cross-validation.

Automated classification of calculated electroencephalogram
(EEG) parameters has been shown to be a promising method for
detection of intraoperative awareness. In [67], rough set-based
methods were employed to generate classification rules.resulting
in satisfactory accuracy rates of approximately 90%.

Gene expression experiments, where the genetic content of
samples is obtained with high throughput technologies, result in
high dimensional data. For useful information to be discovered
from this data (usually comprising of thousands of genes), auto-
mated methods must be able to either cope with this dimensional-
ity or reduce it intelligently. Typically, the latter option is chosen
as this has the additional benefit of making the extracted knowl-
edge more readable. Many rough set-based methods have been
applied to this task - both for feature reduction and classification
rule discovery [68, 69].

4.4 Fault Diagnosis

A rough set approach for the diagnosis of valve faults in a multi-
cylinder diesel engine is investigated in [70]. The use of rough sets
enabled the diagnosis of several fault categories in a generic man-
ner. A decision table was constructed from attributes extracted
from the vibration signals, with four operational states studied
among the signal characteristics: normal, intake valve clearance
too small, intake valve clearance too large, exhaust valve clearance
too large. Three sampling points were selected for the collection
of vibration signals. The results demonstrated that the system is
quite effective for such fault diagnosis, and the extracted rules cor-
respond well with prior knowledge of the system.

In [71], a rough set-based method for continuous failure diagno-
sis in assembly systems is presented. Sensor measurements were
used to construct a diagnosis table from which rough set rules were
extracted.

4.5 Spacial and Meteorological Pattern Classifica-
tion

Sunspot observation, analysis and classification form an impor-
tant part in furthering knowledge about the Sun, the solar weather,
and its effect on earth. Certain categories of sunspot groups are as-
sociated with solar flares. Observatories around the world track all
visible sunspots in an effort to early detect flares. Sunspot recog-
nition and classification are currently manual and labour inten-
sive processes which could be automated if successfully learned
by a machine. The approach presented in [72] employs a hier-
archical rough set-based learning method for sunspot classifica-

tion. It attempts to learn the modified Zurich classification scheme
through rough set-based decision tree induction. The resulting
system is evaluated on sunspots extracted from satellite images,
with promising results.

In [73], a new application of rough set theory for classifying me-
teorological radar data is introduced. Volumetric radar data is used
to detect storm events responsible for severe weather. Classifying
storm cells is a difficult problem as they exhibit a complex evolu-
tion throughout their lifespan. Also, the high dimensionality and
imprecision of the data can be prohibitive. Here, a rough set ap-
proach is employed to classify a number of meteorological storm
events.

4.6 Music and Acoustics

A dominance-based rough set approach, an extension of rough
sets to preference-ordered information systems, was used in [74]

to generate preference models for violin quality grading. A set of
violins were submitted to a violin-maker’s competition and evalu-
ated by a jury according to several assessment criteria. The sound
of the instruments was recorded digitally and then processed to
obtain sound attributes. These features, along with jury assess-
ments were analysed by the rough set method, generating pref-
erence models. It was shown that the jury’s rankings were well
approximated by the automated approach.

In [75], an approach to classifying swallowing sound signals is
given, utilising rough set theory. This approach has been devel-
oped to facilitate the detection of patients at risk of aspiration,
or choking. The waveform dimension is used to describe sound
signal complexity and major changes in signal variance. From
swallow sound data tables, decision rules were derived, via rough
sets. The algorithms yielded a high classification accuracy, whilst
producing a comparatively small ruleset.

A decision system employing rough sets and neural networks is
presented in [76]. The aim of the study was to automatically clas-
sify musical instrument sounds on the basis of a limited number
of parameters, and to test the quality of musical sound parameters
that are included in the MPEG-7 standard. The use of wavelet-
based parameters led to better audio retrieval efficiency.

The classification of musical works is considered in [77], based
on the inspection of standard music notations. A decision table is
constructed, with features representing various aspects of musical
compositions (objects), such as rhythm disorder, beat characteris-
tics and harmony. From this, classification rules are induced (via
rough set rule induction) and used to classify unseen compositions.

4.7 Feature Selection

The discussion above has focussed on actual practical appli-
cations of rough set theory. This section is concerned with the
theoretical advancement of feature selection within the rough set
community.

As indicated previously, the work on rough set theory offers a
formal methodology that can be employed to reduce the dimen-
sionality of datasets, often as a preprocessing step to assist other
tasks like learning from data [78]. The QUICKREDUCT algorithm
provided earlier is a typical example of rough set-assisted feature
selection tools. Such a method helps select the most information
rich features in a dataset, without transforming the data, all while
attempting to minimise information loss during the selection pro-
cess. Computationally, the approach is highly efficient as it in-
volves simple set operations only. Thus, it represents one of the
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most successful applications of rough sets. However, it is reliant
upon a discrete dataset; important information may be lost as a
result of quantisation of the underlying numerical features (that
real-world problems typically have). It is natural, then, to apply
its extensions to this area.

Such research has been carried out in [79, 80, 81], where a reduc-
tion method was proposed based on fuzzy extensions to the posi-
tive region and dependency function based on fuzzy lower approx-
imations. A greedy hill-climber is used to perform subset search,
using the fuzzy dependency function both for subset evaluation
and as a stopping criterion. The method was used successfully
within a range of problem domains, including web content classi-
fication and complex system monitoring [80].

Optimizations are given in [82, 80] to improve the performance
of the method. In [83], a compact computational domain is pro-
posed to reduce the computational effort required to calculate
fuzzy lower approximations for large datasets, based on some of
the properties of fuzzy connectives. Fuzzy entropy is used in [84]

to guide the search toward smaller reducts. In [82], an alternative
search algorithm is presented that alleviates some of the problems
encountered with a greedy hill-climber approach. This problem is
also tackled in [85] via the use of a novel ant colony optimization-
based framework for feature selection. A genetic algorithm is used
in [86] for search based on the fuzzy dependency function within a
face recognition system with promising results.

The work in [87, 88] improves upon these developments by for-
mally defining relative reductions for fuzzy decision systems. A
discernibility matrix is constructed for the computation of all such
reductions. As the resulting discernibility matrix is crisp, some in-
formation may have been lost in this process. Additionally, there
are complexity issues when computing discernibility matrices for
large datasets. However, in the crisp rough set literature there have
been methods proposed that avoid this (such as [30, 89]), and similar
constructions may be applicable here.

Feature selection algorithms, based on the generalization of
fuzzy approximation spaces to fuzzy probability approximation
spaces, are introduced in [90]. This is achieved through the in-
troduction of a probability distribution on the universe. Informa-
tion measures for fuzzy indiscernibility relations are presented in
[91] for the computation of feature importance. Reducts are com-
puted through the use of a greedy selection algorithm similar to
QUICKREDUCT.

5 Conclusion

This paper has presented an overview of the rough set theory
and its extensions, supported with a brief discussion of a number
of representative applications of these theories. In particular, the
paper has introduced the basic rough set concepts of indiscerni-
bility; lower and upper approximations; positive, negative and
boundary regions; attribute dependency and significance; reducts
and discernibility matrix. These notions are useful to develop au-
tomated computational information and decision systems.

Because of the clear advantage of rough sets in performing data
and information analysis without the need of preliminary informa-
tion about data (e.g. probabilities in statistics, probabilistic assign-
ments in Dempster-Shafer theory, and membership functions in
fuzzy set theory), despite its recency, the seminal rough set theory
has been extended in various ways to further its potential. This pa-
per has given an outline of three such approaches, including vari-
able precision rough sets, tolerance rough sets and fuzzy rough

sets. These extensions allow the ability of the original rough set
theory in handling discrete and nominal data, which is assumed
to be true and accurate reflection of the world, to be maximised
to cope with numerical and other contextual aspects of real world
data.

To demonstrate the success of rough sets and their extensions
in making use of imperfect knowledge to solve practical problems,
the paper has also provided a short account of some representative
applications. As an exciting developing discipline, there are nev-
ertheless many areas in which much research may be carried out
to improve further the mathematical rigorousness and the compu-
tational power associated with the many techniques derived from
the original theory and its extensions. For example, fuzzification
of more rough set concepts should provide further flexible tech-
niques, such as fuzzy discernibility matrices and functions. In-
deed, by extending those concepts fundamental to crisp rough set
rule construction, approaches to fuzzy-rough rule induction may
be developed, offering more flexibility and comprehensibility. Ad-
ditionally, there is great potential for developing cross-hybrid ap-
proaches - where two separate hybrid extensions to rough set the-
ory are themselves hybridized. Preliminary work in this area has
focussed on the hybridization of variable precision rough sets and
fuzzy-rough sets [92]. Such research will no doubt help advance
the applications of rough sets in even wide-reaching areas.
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