658 research outputs found

    A method for viewing and interacting with medical volumes in virtual reality

    Get PDF
    The medical field has long benefited from advancements in diagnostic imaging technology. Medical images created through methods such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are used by medical professionals to non-intrusively peer into the body to make decisions about surgeries. Over time, the viewing medium of medical images has evolved from X-ray film negatives to stereoscopic 3D displays, with each new development enhancing the viewer’s ability to discern detail or decreasing the time needed to produce and render a body scan. Though doctors and surgeons are trained to view medical images in 2D, some are choosing to view body scans in 3D through volume rendering. While traditional 2D displays can be used to display 3D data, a viewing method that incorporates depth would convey more information to the viewer. One device that has shown promise in medical image viewing applications is the Virtual Reality Head Mounted Display (VR HMD). VR HMDs have recently increased in popularity, with several commodity devices being released within the last few years. The Oculus Rift, HTC Vive, and Windows Mixed Reality HMDs like the Samsung Odyssey offer higher resolution screens, more accurate motion tracking, and lower prices than earlier HMDs. They also include motion-tracked handheld controllers meant for navigation and interaction in video games. Because of their popularity and low cost, medical volume viewing software that is compatible with these headsets would be accessible to a wide audience. However, the introduction of VR to medical volume rendering presents difficulties in implementing consistent user interactions and ensuring performance. Though all three headsets require unique driver software, they are compatible with OpenVR, a middleware that standardizes communication between the HMD, the HMD’s controllers, and VR software. However, the controllers included with the HMDs each has a slightly different control layout. Furthermore, buttons, triggers, touchpads, and joysticks that share the same hand position between devices do not report values to OpenVR in the same way. Implementing volume rendering functions like clipping and tissue density windowing on VR controllers could improve the user’s experience over mouse-and-keyboard schemes through the use of tracked hand and finger movements. To create a control scheme that is compatible with multiple HMD’s A way of mapping controls differently depending on the device was developed. Additionally, volume rendering is a computationally intensive process, and even more so when rendering for an HMD. By using techniques like GPU raytracing with modern GPUs, real-time framerates are achievable on desktop computers with traditional displays. However, the importance of achieving high framerates is even greater when viewing with a VR HMD due to its higher level of immersion. Because the 3D scene occupies most of the user’s field of view, low or choppy framerates contribute to feelings of motion sickness. This was mitigated through a decrease in volume rendering quality in situations where the framerate drops below acceptable levels. The volume rendering and VR interaction methods described in this thesis were demonstrated in an application developed for immersive viewing of medical volumes. This application places the user and a medical volume in a 3D VR environment, allowing the user to manually place clipping planes, adjust the tissue density window, and move the volume to achieve different viewing angles with handheld motion tracked controllers. The result shows that GPU raytraced medical volumes can be viewed and interacted with in VR using commodity hardware, and that a control scheme can be mapped to allow the same functions on different HMD controllers despite differences in layout

    Calibration Methods for Head-Tracked 3D Displays

    Get PDF
    Head-tracked 3D displays can provide a compelling 3D effect, but even small inaccuracies in the calibration of the participant’s viewpoint to the display can disrupt the 3D illusion. We propose a novel interactive procedure for a participant to easily and accurately calibrate a head-tracked display by visually aligning patterns across a multi-screen display. Head-tracker measurements are then calibrated to these known viewpoints. We conducted a user study to evaluate the effectiveness of different visual patterns and different display shapes. We found that the easiest to align shape was the spherical display and the best calibration pattern was the combination of circles and lines. We performed a quantitative camera-based calibration of a cubic display and found visual calibration outperformed manual tuning and generated viewpoint calibrations accurate to within a degree. Our work removes the usual, burdensome step of manual calibration when using head-tracked displays and paves the way for wider adoption of this inexpensive and effective 3D display technology

    Satellite based synthetic aperture radar and optical spatial-temporal information as aid for operational and environmental mine monitoring

    Get PDF
    A sustainable society is a society that satisfies its resource requirements without endangering the sustainability of these resources. The mineral endowment on the African continent is estimated to be the first or second largest of world reserves. Therefore, it is recognised that the African continent still heavily depends on mineral exports as a key contributor to the gross domestic product (GDP) of various countries. These mining activities, however, do introduce primary and secondary environmental degradation factors. They attract communities to these mining areas, light and heavy industrial establishments occur, giving rise to artisanal activities. This study focussed on satellite RS products as an aid to a mine’s operations and the monitoring of its environment. Effective operational mine management and control ensures a more sustainable and profitable lifecycle for mines. Satellite based RS holds the potential to observe the mine and its surrounding areas at high temporal intervals, different spectral wavelengths and spatial resolutions. The combination of SAR and optical information creates a spatial platform to observe and measure the mine’s operations and the behaviour of specific land cover and land use classes over time and contributes to a better understanding of the mining activities and their influence on the environment within a specific geographical area. This study will introduce an integrated methodology to collect, process and analyse spatial information over a specific targeted mine. This methodology utilises a medium resolution land cover base map, derived from Landsat 8, to understand the predominant land cover types of the surrounding area. Using very high resolution mono- and stereoscopic satellite imagery provides a finer scale analysis and identifies changes in features at a smaller scale. Combining these technologies with the synthetic aperture radar (SAR) applications for precise measurement of surface subsidence or upliftment becomes a spatial toolbox for mine management. This study examines a combination of satellite remote sensing products guided by a systematic workflow methodology to integrate spatial results as an aid for mining operations and environmental monitoring. Some of the results that can be highlighted is the successful land cover classification using the Landsat 8 satellite. The land cover that dominated the Kolomela mine area was the “SHRUBLAND/GRASS” class with a 94% coverage and “MINE” class of 2.6%. Sishen mine had a similar dominated land cover characteristic with a “SHRUBLAND/GRASS” class of 90% and “MINE” class of 4.8%. The Pléiades time-series classification analysis was done using three scenes each acquired at a different time interval. The Sishen and Kolomela mine showed especially changes from the bare soil class to the asphalt or mine class. The Pléiades stereoscopic analysis provided volumetric change detection over small, medium, large and recessed areas. Both the Sishen and Kolomela mines demonstrated height profile changes in each selected category. The last category of results focused on the SAR technology to measure within millimetre accuracy the subsidence and upliftment behaviour of surface areas over time. The Royal Bafokeng Platinum tailings pond area was measured using 74 TerraSAR-X scenes. The tailings wall area was confirmed as stable with natural subsidence that occurred in its surrounding area due to seasonal changes of the soil during rainy and dry periods. The Chuquicamata mine as a large open pit copper mine area was analysed using 52 TerraSAR-X scenes. The analysis demonstrated significant vertical surface movement over some of the dumping sites. It is the wish of the researcher that this dissertation and future research scholars will continue to contribute in this scientific field. These contributions can only assist the mining sector to continuously improve its mining operations as well as its monitoring of the primary as well as the secondary environmental impacts to ensure improved sustainability for the next generation.Environmental SciencesM. Sc. (Environmental Science

    Data extraction in holographic particle image velocimetry

    Get PDF
    Holographic Particle Image Velocimetry (HPIV) is potentially the best technique to obtain instantaneous, three-dimensional, flow field information. Several researchers have presented their experimental results to demonstrate the power of HPIV technique. However, the challenge to find an economical and automatic means to extract and process the immense amount of data from the holograms still remains. This thesis reports on the development of complex amplitude correlation as a means of data extraction. At the same time, three-dimensional quantitative measurements for a micro scale flow is of increasing importance in the design of microfluidic devices. This thesis also reports the investigation of HPIV in micro-scale fluid flow. The author has re-examined complex amplitude correlation using a formulation of scalar diffraction in three-dimensional vector space. [Continues.

    Development of an augmented reality guided computer assisted orthopaedic surgery system

    Get PDF
    Previously held under moratorium from 1st December 2016 until 1st December 2021.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively.This body of work documents the developed of a proof of concept augmented reality guided computer assisted orthopaedic surgery system – ARgCAOS. After initial investigation a visible-spectrum single camera tool-mounted tracking system based upon fiducial planar markers was implemented. The use of visible-spectrum cameras, as opposed to the infra-red cameras typically used by surgical tracking systems, allowed the captured image to be streamed to a display in an intelligible fashion. The tracking information defined the location of physical objects relative to the camera. Therefore, this information allowed virtual models to be overlaid onto the camera image. This produced a convincing augmented experience, whereby the virtual objects appeared to be within the physical world, moving with both the camera and markers as expected of physical objects. Analysis of the first generation system identified both accuracy and graphical inadequacies, prompting the development of a second generation system. This too was based upon a tool-mounted fiducial marker system, and improved performance to near-millimetre probing accuracy. A resection system was incorporated into the system, and utilising the tracking information controlled resection was performed, producing sub-millimetre accuracies. Several complications resulted from the tool-mounted approach. Therefore, a third generation system was developed. This final generation deployed a stereoscopic visible-spectrum camera system affixed to a head-mounted display worn by the user. The system allowed the augmentation of the natural view of the user, providing convincing and immersive three dimensional augmented guidance, with probing and resection accuracies of 0.55±0.04 and 0.34±0.04 mm, respectively

    A family of stereoscopic image compression algorithms using wavelet transforms

    Get PDF
    With the standardization of JPEG-2000, wavelet-based image and video compression technologies are gradually replacing the popular DCT-based methods. In parallel to this, recent developments in autostereoscopic display technology is now threatening to revolutionize the way in which consumers are used to enjoying the traditional 2D display based electronic media such as television, computer and movies. However, due to the two-fold bandwidth/storage space requirement of stereoscopic imaging, an essential requirement of a stereo imaging system is efficient data compression. In this thesis, seven wavelet-based stereo image compression algorithms are proposed, to take advantage of the higher data compaction capability and better flexibility of wavelets. In the proposed CODEC I, block-based disparity estimation/compensation (DE/DC) is performed in pixel domain. However, this results in an inefficiency when DWT is applied on the whole predictive error image that results from the DE process. This is because of the existence of artificial block boundaries between error blocks in the predictive error image. To overcome this problem, in the remaining proposed CODECs, DE/DC is performed in the wavelet domain. Due to the multiresolution nature of the wavelet domain, two methods of disparity estimation and compensation have been proposed. The first method is performing DEJDC in each subband of the lowest/coarsest resolution level and then propagating the disparity vectors obtained to the corresponding subbands of higher/finer resolution. Note that DE is not performed in every subband due to the high overhead bits that could be required for the coding of disparity vectors of all subbands. This method is being used in CODEC II. In the second method, DEJDC is performed m the wavelet-block domain. This enables disparity estimation to be performed m all subbands simultaneously without increasing the overhead bits required for the coding disparity vectors. This method is used by CODEC III. However, performing disparity estimation/compensation in all subbands would result in a significant improvement of CODEC III. To further improve the performance of CODEC ill, pioneering wavelet-block search technique is implemented in CODEC IV. The pioneering wavelet-block search technique enables the right/predicted image to be reconstructed at the decoder end without the need of transmitting the disparity vectors. In proposed CODEC V, pioneering block search is performed in all subbands of DWT decomposition which results in an improvement of its performance. Further, the CODEC IV and V are able to perform at very low bit rates(< 0.15 bpp). In CODEC VI and CODEC VII, Overlapped Block Disparity Compensation (OBDC) is used with & without the need of coding disparity vector. Our experiment results showed that no significant coding gains could be obtained for these CODECs over CODEC IV & V. All proposed CODECs m this thesis are wavelet-based stereo image coding algorithms that maximise the flexibility and benefits offered by wavelet transform technology when applied to stereo imaging. In addition the use of a baseline-JPEG coding architecture would enable the easy adaptation of the proposed algorithms within systems originally built for DCT-based coding. This is an important feature that would be useful during an era where DCT-based technology is only slowly being phased out to give way for DWT based compression technology. In addition, this thesis proposed a stereo image coding algorithm that uses JPEG-2000 technology as the basic compression engine. The proposed CODEC, named RASTER is a rate scalable stereo image CODEC that has a unique ability to preserve the image quality at binocular depth boundaries, which is an important requirement in the design of stereo image CODEC. The experimental results have shown that the proposed CODEC is able to achieve PSNR gains of up to 3.7 dB as compared to directly transmitting the right frame using JPEG-2000
    • …
    corecore