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Frame localisation optical 
projection tomography
Craig T. Russell1,2*, Pedro P. Vallejo Ramirez1 & Eric Rees1

We present a tomographic reconstruction algorithm (flOPT), which is applied to Optical Projection 
Tomography (OPT) images, that is robust to mechanical jitter and systematic angular and spatial drift. 
OPT relies on precise mechanical rotation and is less mechanically stable than large-scale computer 
tomography (CT) scanning systems, leading to reconstruction artefacts. The algorithm uses multiple 
(5+) tracked fiducial beads to recover the sample pose and the image rays are then back-projected 
at each orientation. The quality of the image reconstruction using the proposed algorithm shows an 
improvement when compared to the Radon transform. Moreover, when adding a systematic spatial 
and angular mechanical drift, the reconstruction shows a significant improvement over the Radon 
transform.

Sharpe et al. proposed  OPT1 using visible light to image transparent or translucent mesoscopic samples, with 
micrometer resolution. OPT addresses the scale gap between photographic techniques (for samples typically 
larger than 10 mm), and light microscopy techniques (samples smaller than 1 mm) to image biological samples 
in the 1 mm to 10 mm range.

OPT is based on computerised tomography  techniques2 in which a set of projections of a specimen are 
acquired as the specimen travels through a full rotation, shown in Fig. 1b. Typically, a Radon transform is 
then used to transform this set of images into a 3D image stack in Cartesian coordinates (X, Y, Z). The Radon 
transform relies heavily on the assumption of circular motion with constant angular steps about a vertical axis. 
Prior to the Radon transform, an attempt is made to find the centre of rotation (CORs) and correct the image 
 shift3–5; this step is both computationally expensive, error prone and incomplete with regards to all available 
degrees of freedom. This work presents an improved general reconstruction algorithm that is robust to spatial 
and angular mechanical drifts during acquisitions, as well as to inconsistent angular steps. The proposed algo-
rithm triangulates points between image pairs to extract camera pose using the theoretical framework used in 
stereoscopic imaging.

Stereoscopic imaging
When the features or fiducial markers in one view are uniquely identifiable, the stereoscopic imaging of scenes 
allows for the triangulation of individual features in three dimensional space (known as world points), see 
Figs. 1 and 2 for the coordinate system which describes this geometry. Triangulation requires that each feature 
is detected in both images of a stereo imaging system and for these detections to be correctly associated with 
one another. This is known as the correspondence problem. Various methods exist to ensure that features are 
detected from image data and accurately associated between two cameras or  views6 and the properties of scale-
independent features and their surrounding pixel environment in one image can thus be matched to a similar 
feature in a second image.

Coordinates in two adjacent views with a common epi-pole (the vector connecting the O and O′ , see Fig. 2) 
are related by the essential matrix (E) for uncalibrated cameras and the fundamental matrix (F) for calibrated 
cameras. Their properties are described by:

where K is a matrix that converts image plane coordinates to camera pixel coordinates and where p refers to a 
point in the image plane.

(1)p′TEp = 0

(2)E = K′TFK

OPEN

1Department of Chemical Engineering and Biotechnology, Cambridge University, Cambridge, UK. 2European 
Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SD, UK. *email: ctr26@ebi.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-83454-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4551  | https://doi.org/10.1038/s41598-021-83454-z

www.nature.com/scientificreports/

The proposed algorithm (flOPT)
The motion of a rotating sample, as in an OPT acquisition, with a transformation matrix ( [R |T] ) in view of a 
fixed camera is analogous to the motion of a camera around the scene with the inverse transformation matrix. 
During an ideal OPT acquisition, a marker will appear to follow an elliptical path in the xy image plane. For 
the volume reconstruction procedure, there is a fitting step to recover the path of the fiducial marker, which is 
used to correct the sinogram before applying the inverse Radon transform. This type of reconstruction not only 
ignores any mechanical jitter of the sample, but also any affine, systematic, mechanical drift (in X,Y ,Z, θ ,φ,ψ ). 
This can be rectified by recovering the complete non-scaling transformation for every projection. Now, using 
two adjacent images of a scene (separated by some rotation and translation) world points in 3D space may be 
triangulated within the scene given the rotational and translational matrices of the respective camera views.

Once a sufficient amount of fiducial markers are reliably tracked from the first to the second image, either 
one of the fundamental or essential matrices can be computed. Using the factorisation of one of these matrices, 
between each adjacent view of a rotating scene, the translation and rotational matrices can be recovered.

Figure 1.  Xc = (Xc ,Yc ,Zc) is the camera-centered coordinate point in 3D space. X = (X,Y ,Z) is the world 
coordinate point in 3D space. p = (x, y, f ) is the ray vector to point of image plane. x = (x, y) is the image plane 
coordinates. w = (u, v) are the pixel coordinates (not shown) corresponding to the point x. The optical axis 
travels along the Zc axis through the image plane.
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To reconstruct the image, we compute F for the current image and the first image using 5 or more fiducial 
markers; having additional beads helps to remove ambiguity and increase confidence in F. Once F is calculated, 
it is decomposed into Rn and Tn between each view n and n+ 1 . The image at view n+ 1 is then back projected 
along the virtual optical axis within a virtual volume where the sample will be reconstructed. The size of this back 
projection and virtual volume is chosen to be suitably large, preventing the loss of important data. The recovered 
transformation matrices are then matrix inverted and applied to the back projection of the image to realign the 
rays in the volume to their respective source positions as shown in Fig. 3.

In both cases, a decomposed F matrix will produce four possible transformation pairs (R, T; R, − T; − R, 
T; − R, − T). Once the transformation matrix between the current view (n) and the first view is calculated, the 

Figure 2.  Epi-polar geometry described for two adjacent views (or cameras of a scene). Coordinates as 
expressed in Fig. 1a with prime notation ( ′  ) denoting the additional right camera view. Transforming from right 
to left camera-centered coordinates ( X′

c to Xc ) requires a rotation (R) and a translation (T).

Figure 3.  The simulation of OPT data incorporating rotational and translational offsets, and the proposed 
reconstruction algorithm. (a) The n projections of the object ( � ), at rotation ( R1 to Rn ) and translation ( T1 to 
Tn ), produces n frames of image data. During the OPT measurement, n projections of the object � are observed 
with rotations R1 to Rn and corresponding translations T1 to Tn where the translations account for imperfect 
alignment. (b) In the reconstruction algorithm, the rotational and translational matrices are recovered ( R′

1 to R′
n 

and T′
1 to T′

n ) from triangulation of the fiducial markers. These transformation matrices are then used to obtain 
a contribution to the volumetric reconstruction from each observed frame and the summated reconstruction 
is assembled from the n frames. The now realigned back projections are summed to produce an unfiltered back 
projection. The transformation matrices are shown in augmented form using homogenous coordinates.
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proceeding transformation matrices are then easily chosen by similarity to the previously collected matrix and 
general direction of motion. An example of this type of selection would be:

To find the correct matrix between the n = 0 and n = 1 orientations, each of the four matrices are compared 
to an ideal matrix which is composed using a priori knowledge of the likely angle of rotation of the system’s 
imaging properties.

Verification of the proposed algorithm
To verify the validity and quality of the proposed reconstruction algorithm, the image of Zelda, superposed 
with an orthogonal image of Cameraman, is used as a testcard volume. Virtual fiducial beads are dispersed in 
the volume to track the rotation and translation of the image. The reference image is then rotated through 128 

(3)min
I(n)

[

I(n) = ([Rn |Tn] − [Rn−1 |Tn−1])
2
]

Figure 4.  A 3D test-volume of two orthogonal and different testcard images, was used to verify the 
reconstructive capabilities of the proposed algorithm. The projected image data (b,f,j) and (d,h,l), are projected 
from (a,e,i) and (c,g,k) respectively and were used to iteratively generate reconstructions where the nth 
reconstruction incorporates all the information from observation 0 to n. The results are unfiltered for clarity of 
demonstrating the iterative reconstruction, which is applied in Fig. 6d.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4551  | https://doi.org/10.1038/s41598-021-83454-z

www.nature.com/scientificreports/

angles over 2π radians and projected along the Y axis, then an image slice in (X, Y) is taken to create a single 
line projection, shown three dimensionally in Fig. 4. This is repeated for each angle, with each line projection 
stacked to create a sinogram.

In the standard approach for OPT reconstruction, the sinogram undergoes the inverse Radon transform, as 
shown in Fig. 4j, followed by post-filtering. This step is substituted for the proposed algorithm; in Fig. 5a the two 
techniques are compared for ideal conditions of smooth, predictable rotation. The proposed algorithm produces 
a faithful reconstruction on the original image, as shown in Fig. 6d. Fig. 5b illustrates the strong overlap of the 
images produced by the new algorithm and the Radon transform when considering the histogram of the abso-
lute pixel-wise difference between the original source image and the respective reconstructions. The proposed 
algorithm generates lower deviance from the source image than the Radon transform. The mean square errors 
(MSE, see Eq. (4)) of the new algorithm and the Radon transform are 15.01% and 14.84%, respectively, see Fig. 5b 
for a histogram of a pixel-wise comparison.

where Y is the vector of observed values and Ŷi is mean of the ith value of the predicted values
The more challenging case of a sample drifting systematically along the X axis, with a constant velocity, was 

then considered. This drift produced a helical path of a single fiducial within the sample, see Fig. 6b. In Fig. 6c, 
the Radon transform fails to produce a recognisable reproduction of the test image with the addition of a slight 
helicity to the rotation. The proposed algorithm produces an equivalent result to that of a sample rotating without 
any systematic drift, see Fig. 6c. In Fig. 5c the respective reconstructions from each algorithm were compared, as 
before, while the helical shift was incremented. See Fig. 6b for a sinogram of a sample (shown in Fig. 6a) wherein 
a helical shift has been induced. When using correlation as a metric of reproduction quality, the new algorithm 
fares slightly worse at zero helicity, with 94% correlation compared to the Radon transform at 96%. As expected, 

(4)MSE =
1

n

n
∑

i=1

(Yi − Ŷi)
2
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Figure 5.  (a) Line profile comparison of the reconstruction of a reference image computationally rotated, 
projected and reconstructed using the standard Radon transform and the new proposed algorithm. (b) 
Histogram of pixel values compared between reconstructions using the new proposed flOPT algorithm 
and the Radon transform. The shift of the histogram towards overall lower deviance from the source image 
suggests the flOPT algorithm outperforms the Radon transform. (c) Comparison of standard and proposed 
OPT reconstruction algorithms for acquisitions with drift. 2D image correlation of the ground truth and the 
reconstruction shows that the proposed flOPT algorithm does not degrade with systematic drift, whereas a 
reconstruction using the standard Radon transform is severely degraded.
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the Radon transform rapidly deteriorates once a systematic drift is applied, whereas the new algorithm maintains 
the quality of the reconstruction, see Fig. 5c.

Recovery of R and T using matrix decomposition. To quantitatively verify that the matrix decom-
position technique was valid and robust, the accuracy of the reproduction of R and T was tested directly. The 
original R and T matrices were computed and compared to R and T generated from matrix decomposition. This 
absolute difference was computed element-wise in each matrix and then an average for each matrix was taken. 
Overall, the worst-case scenario produced a percentage error of 2% (see Fig. 7 for full statistics). The accuracy 
of the calculated R and T deteriorated when adding in additional degrees of combined movement, but with no 
correlation between the degree of helicity and the error produced. The translation matrix (T) was consistently 
more accurately reproduced, which is likely due to it having fewer available degrees of freedom.

Discussion
A new algorithm for reconstructing OPT data has been demonstrated. The new algorithm uses multiple fiducial 
markers to recover the matrix which describes the rotation and translation of the sample. The quality of the 
reconstructions shows a slight improvement when compared to the standard Radon transform, with a great effect 
when a systematic drift is introduced. The accuracy of the decomposition of F into R and T was compared to the 
ground truth matrices. The element-wise absolute difference 

(

x−y
2(x+y)

)

 of each matrix was averaged across the 
matrix for R and T. In the worst-case scenario, a maximum of 2% average absolute difference was found between 
ground truth and recovered matrices, suggesting that the technique is robust to various forms of drift in all 
dimensions and general instability. Such an algorithm could be used to minimise ghosting effects seen in real 
samples, particularly in samples where slipping is likely to occur, such as in gels or in cheaper OPT systems which 
tend to be more mechanically unstable and imprecise. In particular the imaging of large mobile gels is set to 
become more prevalent given the surge of new techniques in Expansion  Microscopy8, whereby fragile expanded 
samples embedded in thin lubricious gels.

Figure 6.  Comparison of the two reconstructions under sample imaging with a systematic drift, in 3D though 
represented here in 2D. (a) Shows the path of four fiducial markers under helical drift; (b) shows the sinogram 
of this motion; with (c) showing the result of the Radon; transform on tomographic dataset that contains this 
corruption whilst (b) shows the result of the reconstruction using the flOPT  algorithm7.
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Future work
The proposed algorithm relies on triangulation between two view points. However, it is possible to use three 
separate views to reconstruct a scene, one such approach being quaternion  tensors9. Working with tensors is more 
complex, but a future iteration of the algorithm presented here may benefit from using three views to provide 
a more accurate transformation matrix. Beyond three views, there is currently no mathematical framework for 
four or more views. If such tools were to be developed, it may be possible to have the algorithm described above 
be a non-iterative, single-shot reconstruction from pixels to voxels.

Fiducial markers could also be extracted from the image texture alone, circumventing the need for the 
additional beads embedded in the sample. To find such correspondences, points with similar local texture are 
found and matched in between each image using standard algorithms such as  SIFT10 and  RANSAC11. This was 
attempted in this work, however, the errors introduced into the transformation matrices make this approach 
currently unviable; and so by requiring bright punctuate fiducial markers the burden of collecting the fiducial 
coordinates is shifted to well established curve fitting algorithms that are robust to noise.

Code availability
All of the code presented here is FOSS using OpenCV and Python for our simulation, and can be found on 
 GitHub7.
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