2,332 research outputs found

    A new level-dependent coarsegrid correction scheme for indefinite Helmholtz problems

    Full text link
    In this paper we construct and analyse a level-dependent coarsegrid correction scheme for indefinite Helmholtz problems. This adapted multigrid method is capable of solving the Helmholtz equation on the finest grid using a series of multigrid cycles with a grid-dependent complex shift, leading to a stable correction scheme on all levels. It is rigourously shown that the adaptation of the complex shift throughout the multigrid cycle maintains the functionality of the two-grid correction scheme, as no smooth modes are amplified in or added to the error. In addition, a sufficiently smoothing relaxation scheme should be applied to ensure damping of the oscillatory error components. Numerical experiments on various benchmark problems show the method to be competitive with or even outperform the current state-of-the-art multigrid-preconditioned Krylov methods, like e.g. CSL-preconditioned GMRES or BiCGStab.Comment: 21 page

    Shifted Laplacian multigrid for the elastic Helmholtz equation

    Full text link
    The shifted Laplacian multigrid method is a well known approach for preconditioning the indefinite linear system arising from the discretization of the acoustic Helmholtz equation. This equation is used to model wave propagation in the frequency domain. However, in some cases the acoustic equation is not sufficient for modeling the physics of the wave propagation, and one has to consider the elastic Helmholtz equation. Such a case arises in geophysical seismic imaging applications, where the earth's subsurface is the elastic medium. The elastic Helmholtz equation is much harder to solve than its acoustic counterpart, partially because it is three times larger, and partially because it models more complicated physics. Despite this, there are very few solvers available for the elastic equation compared to the array of solvers that are available for the acoustic one. In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation, by combining the complex shift idea with approaches for linear elasticity. We demonstrate the efficiency and properties of our solver using numerical experiments for problems with heterogeneous media in two and three dimensions

    Improved convergence of scattering calculations in the oscillator representation

    Full text link
    The Schr\"odinger equation for two and tree-body problems is solved for scattering states in a hybrid representation where solutions are expanded in the eigenstates of the harmonic oscillator in the interaction region and on a finite difference grid in the near-- and far--field. The two representations are coupled through a high--order asymptotic formula that takes into account the function values and the third derivative in the classical turning points. For various examples the convergence is analyzed for various physics problems that use an expansion in a large number of oscillator states. The results show significant improvement over the JM-ECS method [Bidasyuk et al, Phys. Rev. C 82, 064603 (2010)]

    Near-optimal perfectly matched layers for indefinite Helmholtz problems

    Full text link
    A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounded domains is presented. This construction is based on a near-best uniform rational interpolant of the inverse square root function on the union of a negative and positive real interval, designed with the help of a classical result by Zolotarev. Using Krein's interpretation of a Stieltjes continued fraction, this interpolant can be converted into a three-term finite difference discretization of a perfectly matched layer (PML) which converges exponentially fast in the number of grid points. The convergence rate is asymptotically optimal for both propagative and evanescent wave modes. Several numerical experiments and illustrations are included.Comment: Accepted for publication in SIAM Review. To appear 201

    Trefftz Difference Schemes on Irregular Stencils

    Full text link
    The recently developed Flexible Local Approximation MEthod (FLAME) produces accurate difference schemes by replacing the usual Taylor expansion with Trefftz functions -- local solutions of the underlying differential equation. This paper advances and casts in a general form a significant modification of FLAME proposed recently by Pinheiro & Webb: a least-squares fit instead of the exact match of the approximate solution at the stencil nodes. As a consequence of that, FLAME schemes can now be generated on irregular stencils with the number of nodes substantially greater than the number of approximating functions. The accuracy of the method is preserved but its robustness is improved. For demonstration, the paper presents a number of numerical examples in 2D and 3D: electrostatic (magnetostatic) particle interactions, scattering of electromagnetic (acoustic) waves, and wave propagation in a photonic crystal. The examples explore the role of the grid and stencil size, of the number of approximating functions, and of the irregularity of the stencils.Comment: 28 pages, 12 figures; to be published in J Comp Phy

    A spectral approach to a constrained optimization problem for the Helmholtz equation in unbounded domains

    Get PDF
    We study some convergence issues for a recent approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. The approach is based on the minimization on an integral functional which arises from an integral formulation of the radiation condition at infinity. In this Letter, we implement a Fourier-Chebyschev collocation method and show that this approach reduce the computational cost significantly. As a consequence, we give numerical evidence of some convergence estimates available in literature and we study the robustness of the algorithm at low and mid-high frequencies
    corecore