178 research outputs found

    Conservation in signal processing systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 205-209).Conservation principles have played a key role in the development and analysis of many existing engineering systems and algorithms. In electrical network theory for example, many of the useful theorems regarding the stability, robustness, and variational properties of circuits can be derived in terms of Tellegen's theorem, which states that a wide range of quantities, including power, are conserved. Conservation principles also lay the groundwork for a number of results related to control theory, algorithms for optimization, and efficient filter implementations, suggesting potential opportunity in developing a cohesive signal processing framework within which to view these principles. This thesis makes progress toward that goal, providing a unified treatment of a class of conservation principles that occur in signal processing systems. The main contributions in the thesis can be broadly categorized as pertaining to a mathematical formulation of a class of conservation principles, the synthesis and identification of these principles in signal processing systems, a variational interpretation of these principles, and the use of these principles in designing and gaining insight into various algorithms. In illustrating the use of the framework, examples related to linear and nonlinear signal-flow graph analysis, robust filter architectures, and algorithms for distributed control are provided.by Thomas A. Baran.Ph.D

    Modeling and Control of Complex Physical Systems:The port-hamiltonian approach

    Get PDF
    Well structured reference book presenting the new paradigm of Port Hamiltionian Systems which has a large potential to be successful in tackling some of the big challenges in modern control theory and engineeringThe potential reference for many new developments taking place in modeling and controlExtend the readers knowledge and understanding of advanced modeling, analysis and control methods using the Port-Hamiltonian Systems paradigmProvides systematic methods for analysis and control, closely linked to the physics of the system. The power of these methods is demonstrated in various physical domain

    Devices and networks for optical switching

    Get PDF
    This thesis is concerned with some aspects of the application of optics to switching and computing. Two areas are dealt with: the design of switching networks which use optical interconnects, and the development and application of the t-SEED optical logic device. The work on optical interconnects looks at the multistage interconnection network which has been proposed as a hybrid switch using both electronics and optics. It is shown that the architecture can be mapped from one dimensional to two dimensional format, so that the machine makes full use of the space available to the optics. Other mapping rules are described which allow the network to make optimum use of the optical interconnects, and the endpoint is a hybrid optical-electronic machine which should be able to outperform an all-electronic equivalent. The development of the t-SEED optical logic device is described, which is the integration of a phototransistor with a multiple quantum well optical modulator. It is found to be important to have the modulator underneath rather than on top of the transistor to avoid unwanted thyristor action. In order for the transistor to have a high gain the collector must have a low doping level, the exit window in the substrate must be etched all the way to the emitter layer, and the etch must not damage the emitter-base junction. A real optical gain of 1.6 has been obtained, which is higher than has ever been reached before but is not as high as should be possible. Improvements to the device are suggested. A new model of the Fabry-Perot cavity is introduced which helps considerably in the interpretation of experimental measurements made on the quantum well modulators. Also a method of improving the contrast of the multiple quantum well modulator by grading the well widths is proposed which may find application in long wavelength transmission modulators. Some systems which make use of the t-SEED are considered. It is shown that the t-SEED device has the right characteristics for use as a neuron element in the optical implementation of a neural network. A new image processing network for clutter removal in binary images is introduced which uses the t-SEED, and a brief performance analysis suggests that the network may be superior to an all-electronic machine

    Theory for Design

    Get PDF
    Electrical engineerin

    Topological Aspects of Linear Dynamic Networks: Identifiability and Identification

    Get PDF

    Dataflow computers: a tutorial and survey

    Get PDF
    Journal ArticleThe demand for very high performance computer has encouraged some researchers in the computer science field to consider alternatives to the conventional notions of program and computer organization. The dataflow computer is one attempt to form a new collection of consistent systems ideas to improve both computer performance and to alleviate the software design problems induced by the construction of highly concurrent programs

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Passivity enforcement via chordal methods

    Get PDF
    Orientador: Prof. Dr. Gustavo Henrique da Costa OliveiraTese (doutorado) - Universidade Federal do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia Elétrica. Defesa : Curitiba, 27/08/2019Inclui referências: p. 164-175Resumo: Neste documento são propostos três algoritmos inéditos associados aos problemas subsequentes de aferição e imposição da passividade, a qual é uma propriedade qualitativa, geral e fundamental na modelagem matemática de transitórios eletromagnéticos de sistemas elétricos passivos, como transformadores. Esses algoritmos baseiam-se numa combinação de teoria dos grafos e otimização convexa. O primeiro deles consiste na aferição de subsistemas passivos contidos num sistema não passivo, intuitivamente busca-se partes passivas contidas num todo não passivo. Já na etapa de imposição de passividade, o segundo algoritmo é consequência natural do primeiro: retendo apenas os parâmetros associados às partes passivas e descartando os demais, parte-se de um sistema passivo parcialmente especificado para se determinar novos parâmetros em substituição àqueles descartados de modo que o sistema como um todo seja passivo. A possibilidade de determinação dos novos parâmetros depende de uma propriedade topológica de um grafo associado às matrizes de parâmetros do modelo, tal propriedade é denominada cordalidade. O terceiro algoritmo aborda novamente a questão de imposição da passividade e também faz uso da cordalidade, não mais como condição de existência de solução, mas sim como uma forma de explorar a esparsidade das matrizes de parâmetros. O problema de imposição da passividade encerra dois desafios no seu processo de solução, a saber: (i) compensação de parâmetros resultando na degradação do modelo bem como (ii) longos tempos de solução. Os algoritmos ora propostos são uma resposta a essas questões e os resultados obtidos demonstraram-se comparáveis àqueles já existentes na literatura especializada, em alguns casos apresentando melhorias, seja em termos de aproximação ou tempo computacionais. Os algoritmos foram testados a partir de dados de medição de um Transformador de Potencial Indutivo bem como de um Transformador de Potência. Palavras-chave: Macro-modelagem Passiva. Teoria de Sistemas. Álgebra Linear Aplicada. Análise de Transitórios. Transformadores.Abstract: Three novel algorithms are herein proposed to solve passivity assessment and enforcement problems. Passivity is a general, qualitative and fundamental property pertaining to the modeling associated with electromagnetic transients in passive power systems, such as transformers. These algorithms make combined use of Graph Theory and Convex Optimization. The first algorithm is concerned with passivity assesment. In particular, it searches for passive subsystems embedded into a larger nonpassive system and eventually specifies a partially specified passive system. Focusing on the subsequent step, algorithm two is a natural consequence of the preceeding one: retaining only the parameter set associated with passive subsystems as determined before, this partially specified passive system is used to further determine the remaining parameters so that the entire system be fully specified and passive. The existence condition for finding a fully specified system hinges on the fulfillment of a topological property of the graph associated the parameter matrices, namely chordality. The third algorithm also solves the passivity enforcement problem by making use of chordality, not as an existence condition, but rather by exploiting chordal sparsity patterns obtained with the parameter matrices. Solving passivity enforcement problems entails two persisting challenges, namely: (i) passivity compensations to parameters prompting increased model degradation as well as (ii) large computation times. The algorithms herein proposed tackle these issues and yield results comparable to those already in use, sometimes resulting in improved performance in terms of either approximation accuracy or runtime. These results herein reported entail data from actual measurements of an Inductive Voltage Transformer and a Power Transformer. Keywords: Passive Macromodeling. System Theory. Applied Linear Algebra. Transient Analysis. Transformers
    corecore