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Topological aspects of linear dynamic networks: Identifiability
and identification

Summary

Due to advances in current technology, many engineering systems are becoming increasingly
complex and encompass numerous subsystems which are spatially interconnected and achieve
sophisticated tasks via interaction. Such complex systems are typically referred to as dynamic
networks, which appear in various applications such as multi-robot coordination, transporta-
tion networks, power grids, gene networks, and brain networks.

In the design, analysis, and control of dynamic networks, dynamic models are commonly
used to describe their behavior. The existing networkmodels typically consist of amathematical
expression and the corresponding graphical representation, which contains vertices and edges to
encode the network topology. Considering a network as a representation of causal dependencies
among manifest signals, the so-called module representation is a popular modeling framework
for dynamic networks in the system identification domain. In this representation, vertices rep-
resent the internal signals, and directed edges denote transfer functions, also referred to as mod-
ules, that represent the causal relations among the internal signals. This thesis will adhere to the
module framework and addresses a number of open problems in the data-driven modeling of
complex dynamic networks, utilizing graph-theoretical analysis as a key enabling technique.

Identifiability is a fundamental property in network identification and deals with the ques-
tion whether a networkmodel can be uniquely identified frommeasured data. This uniqueness
is desired, for example, when the physical interpretation of network models is important. In
addition, a particular version of network identifiability, i.e. the so-called generic identifiability,
is an important focus of this thesis, since it has been shown in the literature that the concept of
generic identifiability allows for attractive graphical analysis based on the topological informa-
tion of dynamic networks only. However, the existing graphical analysis also has several limita-
tions. It does not consider noise information nor the possible appearance of prior known local
components in the network, while these extra ingredients are of practical importance and can
lead to less conservative identifiability conditions.

In this thesis, the existing graphical analysis is first extended to address the above limitations,
in the special setting where all the internal signals in a network are measured. The obtained
path-based conditions show that the generic identifiability of modules depends on the network
topology and the location of the external signals, i.e. the measured excitation signals and the
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unmeasured noises. Furthermore, while the obtained conditions are sufficient for generic iden-
tifiability in parametric model sets, they are shown to become necessary conditions when non-
parametric model sets are considered. To address the necessity of the identifiability conditions
for non-parametric model sets, a different notion of genericity is introduced such that the con-
cept of generic identifiability is not limited to finite-dimensional spaces and thus can be applied
to non-parametric model sets as well.

In the setting where all the internal signals are measured, the above path-based conditions
show that the generic identifiability of network modules requires a sufficient number of exter-
nal excitation signals. While the conditions provide efficient means to verify identifiability, they
cannot be used to address the synthesis question, i.e. where to allocate additional excitation sig-
nals such that network modules become identifiable? This problem has only been considered
in the literature for very particular network topologies. To address the synthesis problem in a
general setting, novel graphical conditions are developed in this thesis based on the path-based
condition, by exploiting the graphical concept of disconnecting sets and a novel graphical con-
cept called pseudotrees. In these new conditions, the disconnecting sets and pseudotrees provide
explicit information regardingwhere excitation signals should be allocated, whichmotivates sev-
eral synthesis approaches that can allocate excitation signals to achieve generic identifiability au-
tomatically.

While the previous results are limited to the situation where all the internal signals in a net-
work are measured, they are also extended in this thesis to the setting where not all internal sig-
nals are measured or excited, i.e. the so-called partial measurement and partial excitation setting.
Novel graphical conditions for generic identifiability are developed, which show that generic
identifiability depends on the network topology and the location of the external signals and the
measured internal signals. The above informationmotivates several synthesis approaches for the
allocation of additional actuators and sensors to achieve generic identifiability. In addition, the
above identifiability results also lead to novel indirect identification methods that can estimate
the local dynamics of the network consistently.

All the previous graphical results related to identifiability are based on a pre-specified net-
work topology. This topological information may come from the prior knowledge or simply
the modeling assumptions of the user. In many practical situations, it is desired to estimate this
topological information from the data of dynamic networks. This topology identification prob-
lem itself is also important in various applications, such as in biological systems.

To address the topology identification problem, a novel Bayesian approach is developed in
this thesis. In this approach, the subsystems of a network are modeled as Gaussian processes
with hyperparameters, which are estimated by the expectation-maximization algorithm. Then
a Bayesian model selection criterion and a forward-backward search algorithm are employed,
such that a (local) optimal topology is selected. Numerical analysis shows the effectiveness of
the method. The important advantage of this method is that it does not require any tuning
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effort from the user.
While the above Bayesian approach estimates the network topology from a single data set, it is

further extended to infernetwork typologies frommultiple data sets. This extension ismotivated
by the practical situations where multiple data sets are collected from groups of subjects. More
importantly, the developedmethod is applied to the inference of brain connectivity based on the
fMRIdata collected from 16 subjects, in order to reveal the topological changes inbrainnetworks
after extensively listening to Mozart’s music. The above exploratory study shows the potential
effects of Mozart’s music on the cognitive processing of the subjects. It also demonstrates the
effectiveness of the developed Bayesian approach.

With the above results on the topological analysis, synthesis for identifiability, and topology
identification, there are stillmany challenges and openquestions. In the settingwith partialmea-
surement and excitation, the synthesis problem for the generic identifiability of a full network
still lacks a satisfactory solution. For the topology identification problem, how to quantify and
control the errors of the topology estimate are also important open questions.
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1
Introduction

1.1 Motivation

The scientific field of system identification concerns data-drivenmodeling problems of dynamic
systems [90]. Since inmany situations constructingmodels from first principles only is costly or
even infeasible, the measured data collected during the operation of the system can be exploited
to aid the modeling procedure. Data-driven methods can be helpful for estimating unknown
parameters of the obtained physical models, i.e. grey-box identification, or models can be com-
pletely obtained fromdata possiblywithout physical interpretation, i.e. black-box identification.
Then the obtained models can be used for analysis, design, and control of the considered engi-
neering systems. The tools developed in the system identification community have been used
for various applications, such as aerospace [73], vehicles [6], motion systems [111], biological
networks [1], process control [184], and power grids [183].

The classical methods in system identification concern relatively simple configurations such
as open-loop and closed-loop multivariate systems [90]. However, current engineering systems
have increasing complexities and typically consist of a large number of subsystems that interact
with each other to achieve sophisticated tasks. These so-called networked systems, or dynamic
networks, appear inmanydomains and require developments of newdata-drivenmodeling tools
to cope with the system complexities.
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Intelligent Transportation Systems (ITSs) for road transportation form representative exam-
ples of networked systems [5, 51]. Based on the advances in communication networks and com-
puting, ITSs gather data and provide services tomany entities involved in transportation, which
promotes vehicle-to-vehicle and vehicle-to-infrastructure communications. In this case, a trans-
portation network is established where vehicles and infrastructure are connected together and
make decisions cooperatively. Enormous data can be collected from transportation networks,
which leads to many new problems that rely on data-driven techniques, such as traffic flow pre-
diction [146], identification of subsystems and the network [84], and the estimation of missing
data from the network [9].

The power grids also form a complex network. Clean energy sources such as wind and so-
lar energy, new loads including electric vehicles, and distributed energy storage such as batteries
and ice storage are added into the power grid. These new sources and loads provide a more
sustainable energy supply, but they also increase the complexity of the power grid and cause
voltage fluctuations that influence system operations. Therefore, it is important to develop new
technologies for control, optimization, andmonitoring of the power grid to achieve sustainable
energy supply, i.e. creating the so-called autonomous energy grid (AEG) [79]. AEGs rely on the
decomposition of the complex power network into scalable small blocks which can form inde-
pendent microgrids when isolated from the whole grid. When these blocks are interconnected,
they should achieve optimal operations via information sharing and cooperation. To achieve
AEGs, it is important to take advantage of the data obtained from the operation ofAEGs. These
data-driven techniques concern, for example, the identification of unknownparameters andnet-
work topology [8], and fault detection [22].

There are also many other networked systems that face challenging data-driven modeling
problems, e.g. the topology identification of gene networks and brain networks [54, 92], and
the data-driven modeling of social networks [144].

The above networked systems and the associated data-driven modeling problems require de-
velopments of new techniques in the field of system identification to go beyond the classical
simple configurations. Therefore, this thesis is devoted to the data-driven modeling problems
of dynamic networks. These problems concern the estimation (of characteristics ) of networked
models frommeasured data. The obtained models can then be used for the analysis[54], design
[86], and control [176] of networks. Since models play central roles in these problems, different
types of models for dynamic networks will first be introduced and discussed. Then a particular
model typewill bemotivated, and the related data-drivenmodeling problemswill be introduced.
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1.2 Network models

1.2.1 introduction

Analysis, monitoring, and control of dynamic networks require the knowledge of how the sys-
tems behave, and this knowledge is typically formulated into mathematical models which are
inherently present in almost all fields of engineering and physics. While in the control commu-
nity there are interests in the data-driven control without first obtaining a model [20, 71], the
model-based control framework is still predominant.

Models for dynamic networks typically contain two components, including a graphical rep-
resentation and a corresponding set of mathematical expressions. The graphical representation
contains vertices that are connected by either directed or undirected edges, and the graph is used
to encode the network topology, i.e. how the local entities are interconnected. Examples of
network graphs can be found in Figure 1.1.

(a) (b)

Figure 1.1: Examples of graphical representations for two dynamic networks with directed edges in (a) and undirected edges in
(b).

Depending on the considered physical system and the modeling framework, the vertices and
the edges in the network graphs can represent different objects, and the underlyingmathematical
models that describe the behavior of the network are also different. For example, a vertex in a
graph can represent a time series, a random variable, or a local subsystem in different modeling
frameworks. In this section, several different modeling frameworks of dynamic networks from
various domains will be briefly discussed.

1.2.2 Probabilistic graphical models

Probabilistic graphical models (PGMs) consist of a joint distribution and a graph, where the
graph encodes the structure, typically the conditional independence and dependence, of the
joint distribution [82]. One representative example of PGMs is the Bayesian network [78]. Par-
ticularly, the dynamic Bayesian network (DBN) is of interest due to its ability tomodel dynamic
networks [104]. One example of a graph for a DBN can be found in Figure 1.2(a), where each
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vertex denotes a random variable, e.g., x(1) is the first time instance of the time series x(t), and
the edges denote the conditional dependence among the random variables.

y(2)

x(1)

y(1)

x(2)

(a)

x(1) y(1)

(b)

Figure 1.2: In (a), an example of a DBN is shown for two time instances of the time series x(t) and y(t). In (b), there is a cycle
around x(1) and y(1).

Overall, the graph in Figure 1.2(a) represents the structure of a joint distribution of the four
random variables, i.e. {x(1), x(2), y(1), y(2)}, and more importantly, the graph shows that the
joint distribution has a structure of conditional independence such that

P(x(1), x(2), y(1), y(2)) = P(y(2)|x(2))P(x(2)|x(1))P(y(1)|x(1))P(x(1)),

whereP(x(2)|x(1)) appears since only x(1) has a directed edge to x(2). The advantage of PGMs
is that, by exploiting the graphical representation such as depicted in Figure 1.2, a complex joint
distribution can be decomposed into a set of simpler conditional distributions.

In addition, graphs of Bayesian networks are typically defined to be acyclic [78], otherwise,
the product of the conditional distributions represented by the graph does not lead to a joint dis-
tribution. Consider the example in Figure 1.2(b) which encodes two conditional distributions
P(y(1)|x(1)) and P(x(1)|y(1)). It can be found that their product

P(y(1)|x(1))P(x(1)|y(1))

does not lead to the joint distribution of x(1) and y(1).
Since a PGM is essentially a joint distribution together with a graph that encodes the distri-

bution’s structure, it can be applied to a large number of real-world problems, as long as a joint
distribution can serve the modeling purpose. Examples include visual tracking in the computer
vision community, the navigation of robotics, speech recognition, and fault diagnosis of com-
plex systems [78].

1.2.3 Structural equation models

Structural equationmodels (SEMs) can also be used tomodel dynamic networks [113, 114]. An
example of an SEM can be found in Figure 1.3, where the first two time instances of time series
x(t) and y(t) are represented graphically, and e(t) and v(t) denote unmeasured noise processes.
Therefore, each vertex still denotes a single time instance from a time series.

4



y(2)

x(1)

y(1)

x(2)

e(1) e(2)

v(1) v(2)

Figure 1.3: An example of SEM for time series x(t) and y(t) with noise processes e(t) and v(t).

Themodel corresponding to Figure 1.3 consists of four functions which describe the behav-
ior of x(1), x(2), y(1) and y(2):

x(1) = f1(e(1)), y(1) = f2(x(1), v(1)),

x(2) = f3(x(1).e(2)), y(2) = f4(x(2), v(2)).
(1.1)

It can be found that the directed edges in Figure 1.3 encode the functional dependencies among
the variables, e.g., y(2) is a function of v(2) and x(2) since there are directed edges from v(2)
and x(2) to y(2).

Compared toDBNs in a probabilistic setting, SEMsmake use of functional dependencies. It
can be shown that under some conditions, the SEM in Figure 1.3 can represent a joint distribu-
tion over x(1), x(2), y(1) and y(2), and the distribution satisfies the conditional independence
among the four variables encoded by the graph [113, Theorem 1.4.1]. Therefore, the SEM in-
duces a Bayesian network in this case.

1.2.4 Vector autoregressive model and its variants

The vector autoregressive (VAR) model is one of the most common models for describing the
evolution of the signals collected from dynamic networks [149]. Consider a vector of three time
series x(t) = [x1(t) x2(t) x3(t)]⊤, an example of a VARmodel is

x(t) =
n∑

i=1

Aix(t− i) + e(t), (1.2)

where Ai is a matrix of real coefficients, n is a positive integer and denotes the number of time
lags in themodel, and e(t) is a vector of uncorrelated noise processes. The abovemodel is used to
study how the present value of x(t) depends on its past values, and a causal interpretation can be
assigned to this model based on the so-called Granger causality, i.e. x3(t) is not caused by x1(t) if
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x3(t) does not depend on the past values of x1(t) [50, 63]. In addition, a graphical representation
of a VAR model can also be formulated, such as the one in Figure 1.4 [50], where each vertex
denotes a time series in the vector x(t), and the edges denote the dependencies among these time
series. For example, there is no directed edge between x1 and x2, which means that the (1, 2)-th
and (2, 1)-th entries of Ai are zero in (1.2), for all i.

x1 x2

x3

Figure 1.4: A graphical representation of a VAR model with three time series.

Compared to the graphical representations in Figures 1.2 and 1.3, a vertex in Figure 1.4 de-
notes a complete time series instead of one time instance of the time series. However, the above
difference is simply caused by how the graphical representation is defined, and a graph like the
one in Figure 1.3 can also be used to represent a VARmodel. In addition, the close relationship
between VARmodels and SEMs can be observed by comparing (1.1) and (1.2).

The VAR model has several variants, e.g. the autoregressive moving-average model [149],
and they have various applications such as in financial and economic time series analysis and
biological networks [127].

1.2.5 Module networks

As an extension of the classical closed-loop setting in the system and control community, i.e. an
interconnection of a plant and a controller in the feedback loop, networks of transfer functions,
also referred to asmodule networks, have been introduced tomodel systemswith increasing com-
plexity [152]. This modeling framework is discussed here through a real-world example.

x2 x1 x0

Figure 1.5: A platoon of three vehicles with xi being the i‐th vehicle’s relative position. Vehicle 0 is leading the platoon and is
controlled by a human driver, while the other vehicles autonomously follow its preceding vehicle with a safe distance.

In Figure 1.5, a platoon of three vehicles is shown, where vehicle 1 and vehicle 2 follow their
preceding vehicles autonomously with a safe distance, while the leading vehicle is controlled by
a human driver. To achieve the automatic following, each follower is equipped with sensors to
measure the relative distancewith respect to its preceding vehicle and then adjusts its acceleration
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by using the onboard controller. The control architecture of the two followers, i.e. vehicles 1 and
2 in Figure 1.5, is shown in Figure 1.6 [107].

u1 G1 H1

C1

x1

x0

‐

F1 a0

u2 G2 H2

C2

x2

‐

F2

a1
D2

Vehicle 2 Vehicle 1

e1e2

Figure 1.6: Control architecture of the two followers vehicles 1 and 2, where each block, e.g. G1 , denotes a transfer function. The
i‐th vehicle receives the relative position xi−1 and (delayed) acceleration ai−1 of the preceding (i − 1)‐th vehicle from sensors
or wireless connections. With the above information, the control input ui is calculated by the feedforward controller Fi and the
feedback controller Ci , and then ui is applied to the vehicle dynamics Gi . Hi denotes the desired distance dynamics between
two vehicles, and ei represents the error between the current relative distance and the desired relative distance.

From the physical network in Figure 1.5 to its control architecture in Figure 1.6, a set of trans-
fer functions is obtained and interconnected tomodel the evolution of the signals in the physical
system. In order tomodel physical networks such as the vehicle platoon using transfer functions
in a more compact way, a graph-based representation for networks of transfer functions is mo-
tivated [152].

w1 w2

w3

r1 e2

Figure 1.7: An example of a module network, where each edge denotes a transfer function and each vertex denotes a time series.

Anexample of a graph representation of amodule network is shown inFigure 1.7, where each
vertex denotes a time series, and each directed edge denotes a transfer function, also referred as to
modules. r1(t) and e1(t) are the external reference andnoise signals, respectively, whilewi(t) is the
so-called internal signal of a system. The mathematical expression corresponding to Figure 1.7
consists of three equations which model the evolution of the three internal signals:

w1(t) = R1(q)r1(t), w2(t) = H2(q)e2(t), w3(t) = G31(q)w1(t) + G32(q)w2(t),

whereG(q),R(q) andH(q) denote the transfer operators represented by the directed edges, and
q is the delay operator, i.e. q−1r(t) = r(t − 1). The graph in Figure 1.7 encodes the structure
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of the model, e.g., w1(t) does not depend on w2(t) in the above equations because there is no
directed edge fromw2 tow1. From the diagram in Figure 1.6 to the graph representation in Fig-

x1 e1

Vehicle 1

u1 a0

x0x2 e2

Vehicle 2

u2 a1

Figure 1.8: A module network representation of the control architecture in Figure 1.6.

ure 1.7, the main goal is to use a simpler and more compact graphical language to describe the
structure of module networks. Figure 1.6 can be easily reformulated into a graphical represen-
tation, as shown in Figure 1.8.

1.2.6 State-space network models

A state-space network model is typically used to describe the behavior of large-scale physical sys-
tems using a set of first-order differential equations, see e.g., [29, 35, 100] for an overview. An
example of a state-spacemodel for an electric circuit is shown in Figure 1.9(a) from [100], where
the capacitors and the resistors have 1 F and 1 Ω, respectively. Then according to Kirchhoff’s

CC

C

RR

R
v2

v3

v1

(a)

v1 v2

v3

(b)

Figure 1.9: An electrical circuit in (a) with vi denoting the voltage and its graphical representation in (b).

current law, the voltage dynamics is given as v̇1(t)
v̇2(t)
v̇3(t)

 = −L

v1(t)
v2(t)
v3(t)

 , with L =

 2 −1 −1
−1 2 −1
−1 −1 2

 , (1.3)

where the continuous-timedynamics is considered. This is a typical deterministic single-integrator
network where the matrix L is the so-called Laplacian matrix representing diffusive couplings
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among the state variables [100]. The nonzero pattern ofL is reflected in a graph in Figure 1.9(b),
where each vertex denotes a voltage value, and an undirected edge exists when there is a resistor
connecting the twopoints. It is shown that the system(1.3) reaches consensus i.e. limt→∞(vi(t)−
vj(t)) = 0, for any initial conditions [85, 126].

In a more general setting, each vertex in a network represents a second-order or higher-order
state-space subsystem, see e.g., [33, 34, 128, 159, 182]. This type of state-space network model
has been extensively studied in the system and control community [25, 100]. Particularly, this
modeling framework based on state-space models is also widely considered in the control and
identification literature, see e.g., [45, 105, 153, 158, 159, 178].

1.2.7 Networks of differential equations

Instead of resorting to first-order differential equations, there are modeling frameworks of net-
worked systems, or interconnected systems, using possibly high-order differential equations. We
discuss one example called the behavioral model here [18, 174].

Σ1 Σ2

w2 w3 w4w1

(a)

w2 w4w1 Σ1 Σ2

(b)

Figure 1.10: Two dynamic systems Σ1 and Σ2 in (a), where each of them has two ports representing two signals of the systems.
They are interconnected by the constraint that w2 = w3 in (b) and then represented by a graph.

Consider two linear time invariant systemsΣ1 andΣ2in Figure 1.10(a), wherew1(t) andw2(t)
denote two trajectories that model the dynamical behavior of Σ1, and Σ2 has trajectories w3(t)
and w4(t). Σ1 is modeled by a differential equation

A0

[
w1(t)
w2(t)

]
+ A1

d
dt

[
w1(t)
w2(t)

]
+ · · ·+ An

dn

dtn

[
w1(t)
w2(t)

]
= 0,

which can be reformulated into a compact form as

[
R1(

d
dt ) R2(

d
dt )
] [w1(t)

w2(t)

]
= 0, (1.4)

where Ri(
d
dt ) is a matrix of differential operators. Similarly, Σ2 is modeled as

[
Q1(

d
dt ) Q2(

d
dt )
] [w3(t)

w4(t)

]
= 0. (1.5)

The goal is then to model the networked system consisting of Σ1 and Σ2, where the two
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subsystems are interconnected physically such that their trajectories must satisfy the following
constraint:

w2(t) = w3(t).

Combining the above constraint and the two models (1.4), (1.5), the obtained network model
can be written as [

R1(
d
dt ) R2(

d
dt ) 0

0 Q1(
d
dt ) Q2(

d
dt )

]w1(t)
w2(t)
w4(t)

 = 0,

wherew3(t) is eliminated due to the equality constraint. The corresponding graphical represen-
tation is shown in Figure 1.10(b).

In the abovemodeling framework, each subsystem can bemodeled separately and then inter-
connected to form a network. The interconnection among subsystems can be simply done by
concatenating themodels of subsystems. This procedure of first obtaining localmodels and then
interconnecting them is much more appealing than directly modeling the complete network.

1.2.8 Summary of network models

Several model frameworks for modeling dynamic networks have been introduced in this sec-
tion. The PGMs, SEMs, andVARmodels are typically used for data-drivenmodeling problems,
where mappings among the measured signals are of interest and need to be estimated. These
models may not have physical interpretation and are commonly used to predict the future tra-
jectories of the considered system. PGMs and SEMs are common model classes in statistics,
machine learning, and computer science communities. While they have variants like DBNs to
model the dynamic behavior of physical systems, they are typically used tomodel static phenom-
ena that are not dependent on time. VAR models are popular models for multivariate analysis
in statistics and time series analysis, and they can be used for forecasting or analyzing the causal
relation among time series [127].

Networkmodels based on state-spacemodels or differential equations are typicallymotivated
by modeling based on physical principles. In addition, it is well known that high-order differen-
tial equations can be reformulated into first-order state-spacemodels by introducing extra latent
state variables. Therefore, the network topology of state-space networks can express different
information from the topology of data-driven models, e.g., the VAR models：While the VAR
models represent the interconnection of themeasured signals, the state-space networks represent
the interconnection between both the measured signals and the extra latent state variables.

Module networks are in a middle ground between the above data-driven models and the
models motivated by physics [76]. Transfer functions are used intensively in signal processing,
andmany techniques for estimating transfer functions originated from time series analysis [57].
From a data-driven perspective, it is also a natural modeling choice to use transfer functions to
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encode the causal relationships among the measured signals.
On the other hand, it is well known in the system and control community that there is a

close relationship between transfer functions and state-space models. A high-order differen-
tial equation can also be reformulated into a transfer function through Laplace transformation.
More importantly, many classical control techniques are also based on transfer functions. While
these techniques typically consider relatively simple configurations such as theopen-loop and the
closed-loop settings, transfer function networks go beyond the above settings and incorporate
more complex interconnection structures.

In this thesis, we are interested in identifying models that have a physical interpretation. In
addition, since the state variables are typically only partially measured, the state-space networks
cannot be uniquely identified in this case. Therefore, we will focus on module networks that
represent the interconnection among the measured signals. In addition, we will also consider
the general situations where there are unmeasured signals in module networks, such that the
module networks can cover the state-space networks as special cases. In addition, linear dynamic
networks are considered in this thesis, since the understanding of linear networks serves as the
basis for the study of more complex nonlinear dynamic networks. From now on, the notion of
dynamic networks in this thesis will particularly refer to module networks.

1.3 Identification of dynamic networks

Data-driven modeling problems of module networks concern the identification of characteris-
tics of module networks, given the measured node signals, e.g., the measured r(t), w1(t), w2(t)
and w3(t) in Figure 1.7. Various data-driven modeling problems of dynamic networks can be
formulated. We discuss these problems and the related literature in this section. The literature
related to the identification of state-space networks will also be briefly discussed, due to the im-
portant role of state-space models in the system and control community.

1.3.1 Topology identification

The topology identification problem aims to estimate the graph topology of dynamic networks,
e.g. the interconnection structure of Figure 1.7. This is an important problem in various applica-
tions, e.g. systems biology [68, 92] and social science [181], where the topology is an important
feature to understand the collective behavior of a dynamic network.

The topology identification problem can be formulated as a parameter estimation problem.
To reveal the topology, the sparsity of the parameter estimates needs to be enforced such that
some of the obtained parameters are zero, which reflects the absence of the corresponding edges
in the dynamic network. The literature which approaches the problem from the above perspec-
tive includes, e.g., [27, 41, 81, 160, 179].
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A different way to identify the topology is to conduct a sequence of correlation, or cross-
spectrum, tests [95, 96, 137]. The correlation structure among the signals can also reveal the
underlying network topology. However, this approach typically cannot recover a unique topol-
ogy, since there can be a set of equivalent graphs that are not distinguishable by the tests [95, 96].

The topology identification problem also leads to many theoretical challenges for the statis-
tical methods. For example, in topology identification of biological networks, there is typically a
limited amount of data compared to the number of unknown parameters, as the data collection
is very expensive in these applications, and the network can also be large-scale. The situations
like the above one trigger the study of high-dimensional statistics [99, 162], where the finite-
sample analysis receives considerable interests to provide error bounds on any data length. This
is in contrast to the classical asymptotic analysis considered in the parametric system identifi-
cation, where the parameter dimension is fixed when the data length approaches infinity [90].
Motivated by the results in the high-dimensional statistics, there are recentworks that extend the
classical asymptotic results in the system identification community to the finite-sample setting
[150].

1.3.2 Single module identification

Identification of a single module is the problem of estimating a single transfer function in a
dynamic network. This ismotivated by the situations where a local part of the dynamic network
is of interest and needs to be estimated.

Oneway to approach this identificationproblem is to identify amultiple-input-single-output
(MISO) or a single-input-multiple-output model (SIMO) that contains the target module [59,
121, 152]. More interestingly, the freedom of signal selection can be exploited to identify a sin-
gle module. While the approach based on the MISO model makes use of all the inputs of the
MISOmodel, it is possible to choose other sets of signals. This extra freedom is important, e.g.,
when some signals in the network cannot be measured. The approaches that exploit the above
freedom include, for example, the ones in [47, 88, 97, 98, 123, 168]. In addition, to reduce the
experimental cost for single module identification, the design of the optimal power spectrum of
the excitation signals has been considered in [103]. There are also works that consider identify-
ing a single subsystem in a network of state-space models [177, 178].

1.3.3 Identification of full network dynamics

Identification of the whole dynamic network is a challenging problem as the network can be
large-scale. There are some approaches that address this problem by assuming a pre-specified
topology [53, 170]. In addition, identification approaches without pre-specified topology have
alsobeendeveloped, e.g. in [27, 41, 67]. In some approaches, networkdynamics and its topology
are identified jointly, where parameters are estimated to reflect the dynamics, and the parameters
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that are equal to zero encode the topology [41]. The identification of a full state-space network
has also been addressed in [66, 159].

1.3.4 Identifiability of dynamic networks

By contrast to the previous identification methods, the identifiability question is a theoretical
problem that concernswhether the stochastic properties, typically themean and the power spec-
tral density, of the measured signals can be uniquely represented by a network model. If it is
not unique, any identification method that relies on these stochastic properties cannot lead to a
unique estimate for the dynamic network. This uniqueness is important, e.g., when the network
has a physical interpretation. Network identifiability is typically dependent on several structural
properties of themodule network, such as the network topology, themodeled correlation struc-
ture of process noises, the presence and location of external excitation signals, and the availability
of measured vertex signals.

Based on the deterministic network reconstruction problems in [3, 62], a novel concept of
network identifiability is introduced in an identification setting in [167, 169]. The conditions
derived there are rank-based and need to be evaluated for all the models in a model set, which
can be hard to be implemented in practice. Then graphical conditions are investigated in [69],
and additionally, by exploiting a new concept called generic identifiability, novel path-based
conditions are developed in [13, 14, 69] for the identifiability analysis. These conditions are
graph-based and can be tested efficiently by inspecting the network topology only. However,
the limitation is that the graphical analysis requires a pre-specified network topology, while this
topological information may not be available.

Another important issue is where to allocate actuators and sensors such that network mod-
ules become identifiable. This experimental design problem has been considered in [13, 59].
The results in [59] concern both identifiability and identification of a single transfer function in
a network, and the results in [13] consider the experimental design issue for full networks with
special structures, e.g. trees or loops.

1.4 Research problem

1.4.1 Open questions

We have seenmany examples of networked systems and different modeling frameworks that can
be used to model networked systems. Motivated by the data-driven modeling problems in the
system and control community, module networks have been chosen to be themain focus of this
thesis. The data-driven modeling problems and the literature related to module networks have
also been discussed. However, besides the problems that have been addressed by the literature,
there are still many open questions in the data-driven modeling of module networks.
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identification of physical networks

In most literature related to the identification of dynamic networks, the starting point is the
transfer functionnetwork, basedonwhich adata-drivenmodelingproblem is formulated. How-
ever, if the goal is to identify a physical network, the starting point should be a model structure
that is obtained from physical laws and typically consists of differential equations. Then a possi-
bleway to identify this physicalmodel is to reformulate it into amodule network, and then apply
the identification methods to the obtained module networks[76]. However, this reformulation
typically leads to module networks with special structures and constraints.

As shown in [76], in the module networks obtained from one particular class of physical
models, every pair of node signals has a bidirectional connection that represents two transfer
functions. More importantly, these two transfer functions are constrained to have the same
numerator. The study of modeling such networks, including devising an efficient algorithm to
estimatemodules subject to the above physical constraint, is still in a relatively rudimentary stage.
Moreover, it is also not completely clear how the module network framework is connected with
other types of physical networks, e.g. the one in Figure 1.10, and how the undirected connection
nature of physical networks can be incorporated into the module network framework with a
directed topology in e.g. Figure 1.7.

Another important issue is to identify physical networks with nonlinear dynamics. Almost
all of the available results in the literature are based on the assumption that the modules in a
network are linear operators. While a preliminary effort has been made in [133] to identify the
location of the nonlinear subsystem in a module network, the identification of a single module
or a full physical network with nonlinearity is still an open question.

identificationwith unmeasured signals

The singlemodule identificationproblemwithunmeasurednode signals, e.g., unmeasuredw1(t)
in Figure 1.7, has been addressed in various literature [47, 88, 97, 98, 123, 168]. The solutions
typically rely on exploiting the freedom of signal selection such that only measured signals are
used for the identification procedure, or to provide an indication on which signal to measure.

However, the full network identification and the topology identification problems with un-
measured signals have not received much attention. An algorithm has been developed in [185]
to obtain a sparse approximation of a network with unmeasured signals. However, many fun-
damental questions remain open. For example, when there are unmeasured signals, under what
conditions can the dynamics or the topology of a full network be identified?

Identificationwith multiple experiments

In some practical situations, there can be data sets collected from different experiments on the
same physical network [65]. It can be beneficial to take advantage of all the available data for
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identifying the network topology or dynamics. This identification problem with multiple data
sets is considered in [180], however, in a simple setting where the network topology stays in-
variant over different experiments. Many important issues require further investigation. For
instance, a physical network under different experiments may need to be represented bymodule
networks with different network topologies. How to combine the differentmodule networks to
obtain an estimate of the underlying physical network is still waiting for a satisfactory solution.

Advanced topology identification

Despite the existing approaches for topology identification, there are many advanced aspects of
the topology identification problem that have not been addressed in the literature. Themethods
in the topology identification literature typically require certain tuning parameters to decide the
sparsity pattern of the topology estimate, .e.g., the threshold value or the regularization parame-
ter [95, 96, 137, 137, 160]. These tuning parameters are critical for the approaches to achieve a
good performance. However, in many cases it is not clear how to choose these parameters in an
optimal way, and thus they are commonly chosen in an ad hoc manner. In addition, the above-
mentioned methods do not take into account available prior knowledge of dynamic networks,
e.g., the stability of the modules as exploited in the kernel-based system identification methods
[117]. While there is one Bayesian approach that can incorporate this prior knowledge [41],
the resulting approach is rather complex and consists of multiple stages as it aims for joint esti-
mation of both the dynamics and the network topology. Therefore, it is attractive to develop
topology identification approaches that do not require any tuning effort from the user as well as
incorporate the available prior knowledge.

Topological analysis and synthesis for identifiability

The existing identifiability literature has addressed the analysis question for identifiability, i.e.
underwhat conditions is a transfer function network identifiable [13, 14, 69, 83, 157, 169, 171]?
With a concept of generic identifiability, attractive path-based conditions are developed in [14,
69] such that identifiability can be verified by only inspecting the network topology. These con-
ditions show that generic identifiability can be achieved if there are sufficient measured node
signals and measured external excitation signals. However, the original notion of generic iden-
tifiability in [14, 69] does not consider noise information nor the possible appearance of prior
known local components in the network, while the above information may make the identifia-
bility conditions significantly less conservative. In addition, the classical identifiability concept
[90] is typically formulated as a property of a model set such that the models in the model set,
which is later used for an identification procedure, can be distinguished. However, the above
consideration of model sets is not incorporated into the notion of generic identifiability intro-
duced in [14, 69], since this notion is formulated on the basis of a single network model and its
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network topology. Preliminary efforts to address the above limitations are made in [171] to for-
mulate a generic identifiability concept on the basis ofmodel sets; however, the other issues have
not been addressed. Therefore, there is a need for further investigation in the graphical analysis
for identifiability.

Moreover, while the results in the above literature focus on the verification of identifiability,
there is no comprehensive approach for the synthesis problem, i.e. what actions can the user take
to achieve identifiability when a networkmodel is not identifiable? Some preliminary aspects of
the above synthesis problem have been addressed in [13, 59], which show that identifiability can
be achieved by allocating additional actuators and sensors. However, the experimental setup
in [59] for identifying a single module is relatively simple, where all the inputs of the module’s
output need to be measured and excited. On the other hand, the synthesis problem for identi-
fiability of a full network is addressed in [13], and it is shown that the required graphical tools
for this problem are very different from the tools in [59] for identifiability synthesis of a single
module. However, the results in [13] are limited to networks with special network topology,
e.g. trees. Therefore, the synthesis problems for both local modules and a full network in more
general situations need to be investigated. In addition, besides allocating sensors and actuators,
other actions may also be taken to achieve identifiability, e.g. modifying the network topology
by removing and adding edges, or combining data frommultiple experiments.

1.4.2 Problem formulation

Asdiscussed in the previous subsection, there are various openproblems in the data-drivenmod-
eling of transfer function networks. It is intractable to address all these problems in this thesis,
and thus essential problems are selected to formulate the main question of this thesis.

Identifiability is one fundamental problem and serves as a pre-requirement for the identifica-
tion methods. Before applying an identificationmethod, it is important to first analyze identifi-
ability to ensure that different networkmodels are distinguishable by the identificationmethod.
Due to its fundamental importance, the topological analysis and synthesis for identifiability are
chosen to be two of the core research topics in this thesis.

Furthermore, topology identification is an important problem in various applications. It
also has a close relation with the identifiability study, as the graphical results of identifiability are
based on pre-specified network topology. This topological informationmay not be available for
the user, and thus one way to obtain it is to identify the topology from data. Therefore, this
thesis will also address some advanced aspects of the topology identification problem.

The above choices of problems lead to the main research question of this thesis.

How to exploit the topological information of dynamic networks for achieving identi-
fiability and how to identify this topological information from data?
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The above topology identification problem and identifiability problem are interdependent.
In topology identification, a model set associated with a complete graph, where every pair of sig-
nals is interconnected, should be used for the estimation, as there is no prior information about
the topology. This complete graph leads to a large number of to-be-estimated parameters, which
may make the network topology not identifiable. On the other hand, the graphical analysis of
identifiability requires the specification of the topology. Therefore, when there are no other
means to specify the topology for the identifiability study, an iterative procedure of topology
identification and topological identifiability analysis may be required in practice.

1.5 Formulation of sub-problems

Themain research question can be further analyzed and decomposed into a set of sub-questions,
as shown in the following subsections.

1.5.1 Sub-question 1

There are two important aspects of the identifiability study, i.e. the topological analysis and the
synthesis for identifiability. The topological analysis aspect concerns the development of graph-
ical conditions on the network topology to verify identifiability for a given module network. If
the module network is not identifiable, the synthesis aspect concerns the development of tools
that can achieve network identifiability, e.g., by allocating additional actuators and sensors. In
addition, graphical tools for the identifiability analysis are instrumental for the development of
synthesis tools.

Therefore, the first sub-question concerns the topological analysis for network identifiability.

Under what conditions on the network topology are modules in a linear dynamic net-
work identifiable?

In this sub-question, the network topology depends on the interconnection of the internal
(node) signals and also on the location and the appearance of actuators and sensors. Following
the preliminary efforts in [171], the particular focus of this sub-question is to extend the existing
concept of generic identifiability and the related graphical conditions for identifiability in [14,
69] to incorporate the concepts of model sets, the prior known local components, and the noise
information.

In large-scale networks, there canbeprior knowledge about the local components of themod-
ule network, and thus it is important to take advantage of this knowledge in the identifiability
analysis. Furthermore, noise information is also important in many applications, e.g., biologi-
cal networks [54, 92], where there may be only observational data collected without the user-
provided excitation signals. Since external excitation signals are required to achieve identifiabil-
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ity, it is necessary in this case to exploit the noises as the excitation sources for the identifiability
analysis.

1.5.2 Sub-question 2

With the fundamental graphical results fromthe solution to sub-question1, synthesis approaches
for identifiability will be further developed. Various actions may be taken to achieve identifia-
bility. For example, the existing analysis results indicate that identifiability requires sufficient
excitation signals and measured signals [169]. Therefore, additional actuators and sensors can
be allocated to achieve identifiability. Another possibility is to modify the network topology, as
the existing results show that identifiability can be guaranteed if the network topology satisfies
certain conditions [13, 14, 69, 157]. However, it is not clear what the physical interpretation is
when the topology of a module network is modified.

Therefore, this thesis will focus on synthesis procedures that achieve identifiability by allo-
cating additional sensors and actuators. This leads to the second sub-question of this thesis.

Where to allocate actuators and sensors such thatmodules in a network are identifiable?

1.5.3 Sub-question 3

The previous sub-questions exploit the topological information to develop synthesis approaches
for identifiability. In this sub-question, the topology identification problemwill be addressed to
identify the topological information from data.

In the existing topology identification methods, the methods based on correlation or cross-
spectrum tests typically rely on an enormous amount of data to achieve accurate results [95, 96,
137]. However, when the network is large-scale, the data for topology identification is typically
limited relative to the size of the network. On the other hand, other methods, which do not
rely on those tests, do not address the advanced aspects in the topology identification problem,
including how to choose the tuning parameters and the incorporation of available prior knowl-
edge. Therefore, novel topology identificationmethods will be investigated to address the above
issues.

How to identify the network topologywithout the need for tuning efforts while includ-
ing the available prior knowledge?

In particular, we will focus on the topology identification problem from a Bayesian point of
view in this thesis, due to the capability of the Bayesian framework to incorporate prior knowl-
edge. The developedmethodwill also be exploited to address a practical problem,where the goal
is to infer the topological changes in brain networks caused byMozart’s music. This problem is
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important for understanding the effect of music on human brains, a topic that is of interest in
the neuroscience community, and the result also demonstrates the effectiveness of the developed
topology identification method.

1.6 Structure of thesis

This thesis is organized as follows.
Chapter 2 - Preliminaries. In this chapter the dynamic networkmodel and other important

concepts, such as identifiability, are introduced formally.
Chapter 3 - Identifiability with full measurement: Analysis. The sub-question 1 is ad-

dressed in a special setting where all node signals in the network are measured. Based on the no-
tions of generic identifiability [14, 69]and global identifiability [169], a new version of generic
identifiability concept is formulated by incorporating the concept of model sets and a different
notation of genericity based on the open and dense sets in a topological space. Then the exist-
ing path-based conditions in [14, 69] for generic identifiability are extended for the new generic
identifiability concept. More importantly, the obtained path-based conditions incorporate ad-
ditionally the prior known local modules and the noise information, compared to the original
results in [14, 69].

The material of this chapter is based on the following papers:

• S.Shi, X. Cheng and P. M. J. Van den Hof. “Generic identifiability of subnetworks in a
linear dynamic network: the full measurement case.” Submitted to Automatica, 2020.

• S.Shi, X. Cheng and P. M. J. Van den Hof. “On the genericity concept in identifiability
of linear dynamic networks.” report, 2021.

Chapter 4 - Identifiability with full measurement: Synthesis. Sub-question 2 is consid-
ered in the setting where all node signals in networks are measured. Novel synthesis procedures
to allocate excitation signals are developed to achieve generic identifiability of local modules, by
exploiting the graphical conditions inChapter 3 and the concept of disconnecting sets. Further-
more, the synthesis problem for a full network is also addressed by exploiting a novel graphical
concept called pseudotrees, which leads to a novel synthesis approach to achieve the generic iden-
tifiability of a full network.

The material of this chapter is based on the following papers:

• S.Shi,X.Cheng andP.M. J.VandenHof. “Excitation allocation for generic identifiability
of a single module in dynamic networks: A graphic approach.” The 21st IFAC World
Congress, 2020.
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• X. Cheng, S.Shi and P. M. J. Van den Hof. “Allocation of Excitation Signals for Generic
Identifiability of Dynamic Networks.” In Proc. 58th IEEE Conf. Decis Control (CDC),
2019.

• X. Cheng, S.Shi and P. M. J. Van den Hof. “Allocation of Excitation Signals for Generic
Identifiability of Linear Dynamic Networks.” IEEE Trans. Autom. Control, 67(2), 2022.

The author’s contribution: In the above list, the last two works were led by their first author.
The author of this thesis assisted the first author and contributed to the development of both
the theoretical and the algorithmic parts of the works. In addition, the author of this thesis led
the development of an important algorithmic step, i.e. Lemma 5 of the last publication.

Chapter 5 - Identifiability with partial measurement and excitation. This chapter ad-
dresses Sub-questions 1 and 2 in a more general setting, where not all node signals are measured
nor excited. Both the path-based conditions in Chapter 3 and the synthesis procedures for local
modules inChapter 4 are extended to the partialmeasurement and excitation setting. It is shown
that disconnecting sets provide important information regarding which signals to be measured
or excited such that modules in a network are identifiable. This information also leads to novel
indirect identification methods for the consistent identification of local modules.

The material of this chapter is based on

• S.Shi, X. Cheng and P. M. J. Van den Hof. “Single module identifiability in linear dy-
namicnetworkswithpartial excitation andmeasurement.”Provisionally acceptedby IEEE
Trans. Autom. Control, 2020.

• S.Shi, X. Cheng and P. M. J. Van den Hof. “Exploiting unmeasured disturbance signals
in identifiability of linear dynamic networks with partial measurement and partial excita-
tion.” Accepted abstract in 19th IFAC Symposium on System Identification, 2021.

Chapter 6- Bayesian topology identification. The topology identification problem, i.e.
sub-question 3, is considered in this chapter. As a preliminary step to achieve topology identifi-
cation with uncertainty quantification, a novel Bayesian model selection approach is developed
to obtain a point estimate of the network topology, by modeling the modules in a network as
Gaussian processes. The effectiveness of the developed approach is demonstrated in the numer-
ical analysis.

The material of this chapter is based on the following paper:

• S.Shi, G. Bottegal and P. M. J. Van den Hof. “Bayesian topology identification of linear
dynamic networks” In Proc. 18th European Control Conference (ECC), p. 2814-2819,
2019.

Chapter 7- Topology identification of brain networks for the Mozart effect. While the
algorithm in Chapter 6 provides a topology estimate of a single data set, it is further extended
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in this chapter to infer topological changes from a group of data sets. More importantly, the
developed approach is applied to a brainnetwork study, in order to reveal the topological changes
in brain networks caused by listening to the Mozart’s music. Potential changes related to the
cognitive processing in the brain networks are observed in the study.

This chapter is based on

• R. J.C. van Esch, S, Shi*, A. Bernas, S. Zinger, A. P. Aldenkamp and P.M. J. Van denHof.
“ABayesianmethod for inference of effective connectivity in brain networks for detecting
the Mozart effect.” Comput. Biol. Med, p. 104055, 2020. *Corresponding author.

The author’s contribution: Thematerial of this chapter is joint workwith other coauthors and
is extended from the MSc project of the first author. The author of this thesis contributed to
the development of the Bayesian approach, the supervision of the student, the validation of the
results, and reviewing and revising the paper.

Chapter 8- Conclusions and future work. In this chapter conclusions are drawn, and sev-
eral open problems are discussed.
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醉漾轻舟，信流引到花深处。尘缘相误，无计花间住。

秦观（宋）

Drunk, at random I float. Along the stream my little boat. By misfor-
tune, among. The flowers I cannot stay long.

Guan Qin (Song dynasty); Translated by Yuanchong Xu

2
Preliminaries

The linear dynamic network model is introduced in this chapter. Then network identifiabil-
ity is defined, which is one of the core concepts in this thesis. This is followed by the graphical
representation of dynamic networks, which serves as the basis for the graphical analysis in the fol-
lowing chapters. Finally, the connections between the linear dynamic network and the network
models introduced in Chapter 1 are also investigated.

2.1 Dynamic network model

The dynamic network describes the causal relationship among an L-dimensional internal signal
vector w(t), a K-dimensional deterministic excitation signal vector r(t), and an L-dimensional
signal vector v(t) of zero-mean stationary stochastic processes [152]. The model is formulated
as

w(t) = G(q)w(t) + R(q)r(t) + v(t), (2.1a)

wC(t) = Cw(t), (2.1b)

where q−1 is the delay operator, i.e. q−1wi(t) = wi(t− 1), and

• G(q) is an L × L matrix of rational transfer operators, whose entries are referred to as
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modules;

• R(q) is an L× K matrix of rational transfer operators;

• C ∈ Rm×L is a binary selection matrix which extracts a subvectorwC(t) fromw(t), i.e. C
consists of a subset of rows from an L× L identity matrix;

• Internal signal wC(t) and excitation signal r(t) are measured;

• Disturbance signal v(t) is not measured.

As a special case, whenC = I, i.e. all the internal signals inw(t) are measured, the measurement
equation (2.1b) can be omitted. In addition, let G(z) denote the transfer function correspond-
ing to G(q), and

G(ejω), ω ∈ [−π, π],

is the frequency function of G(z). G(q)∗ and G(z)∗ denote G⊤(q−1) and G⊤(z−1), respec-
tively.

A noisemodel for v(t) can be further introduced as follows. LetΦv(z)with dimension L×L
be the (power) spectrum of v(t), defined as

Φv(z) ≜
∞∑

τ=−∞
Ξv(τ)z−τ,

where Ξv(τ) is the auto-covariance function of v(t), i.e.

Ξv(τ) ≜ E[v(t)v(t− τ)⊤].

In addition, consider that Φv(z) has rank p ⩽ L, and v(t) is called a singular disturbance process
if p < L holds. Based on the spectral factorization theory, Φv(z) admits a decomposition as

Φv(z) = H(z)ΛH(z)⋆, (2.2)

where

• Λ is a real and positive semi-definite matrix with either dimension L × L or p × p, de-
pending on the chosen spectral factorization method [60, 169];

• H(z) is proper, stable, and has a stable left inverse [169] with a suitable dimension accord-
ing to Λ.

Motivated by (2.2), v(t) can be modeled as

v(t) = H(q)e(t), (2.3)
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where e(t) is a white noise process with covariance matrix Λ, becauseH(q)e(t) admits the same
spectral density matrix as v(t). The specific spectral factorization in (2.2) and thus the corre-
sponding dimensions of Λ and H(q)will be specified in Chapters 3 and 5.

Combining (2.1) with the noise model in (2.3) leads to a complete network model specified
by a quintuple

M ≜ (G(q),R(q),H(q),C,Λ), (2.4)

on which the following assumptions are made:

Assumption 2.1. (a) G(q) is stable *, proper, and hollow;

(b) The network is well-posed in the sense that all principal minors of limz→∞[I − G(z)] are
non-zero [46];

(c) [I− G(q)]−1 is stable;

(d) H(z) is proper, stable, and has a stable left inverse;

(e) R(q) is stable and proper;

(f) Λ is real and positive semi-definite.

In Assumption 2.1, G(q) is hollow such that there is no self-loop in the network, i.e. an in-
ternal signal does not directly influence itself in (2.1). Furthermore, Assumption 2.1(b) ensures
that every principal submatrix of [I− G(q)] has a proper inverse, i.e. every closed-loop transfer
function in the dynamic network is proper [46, 131].

The following sets are also defined based on the network model (2.4):

• W ≜ {w1, · · · ,wL} is the set of all the internal signals, where the dependency of signal
wi(t) on the time index t is omitted for simplicity;

• Set C contains all the measured internal signals, i.e. the entries in wC(t);

• Z =W \ C contains all the unmeasured internal signals;

• R ≜ {r1, · · · , rK} is the set of all the excitation signals;

• The signals in vectors r(t) and e(t) are called external signals and are collected into setX .

2.2 Model set

Instead of a single network model (2.4), a set of models is typically considered in identification
methods that search for an optimal model within the set.

*Stability is assumed to ensure that T(z)H(z) in (2.9) is inversely stable and thus an appropriate spectral factor of
Φ(z)[169].
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Definition 2.1. A network model setM is a set of network models in the form of (2.4) which
satisfy Assumption 2.1 and have the same C matrix, i.e. the same measurement scheme.

In many practical situations, a special type of network model set is obtained by a rational
parameterizationof the entries in (G(q),R(q),H(q)). Consider the following twopolynomials:

A(q) = 1 + a1q−1 + · · ·+ anaq−na ,

B(q) = q−nk(b0 + b1q−1 + · · ·+ bnbq−nb).

Then each transfer operator, e.g. Gji(q), can be parameterized as

Gji(q, θ) =
B(q, θ)
A(q, θ)

, (2.5)

where the parameter vector θ contains all the coefficients in the polynomials [90]. We say that
two transfer operators are parameterized independently if they contain distinct parameters. In
addition, entries in the covariance matrix Λ can also be parameterized.

Definition 2.2. A parametric model setMΘ is defined as

MΘ = {M(θ)|M(θ) = (G(q, θ),R(q, θ),H(q, θ),C,Λ(θ)), θ ∈ Θ},

where the transfer operators are parameterized in the form of (2.5), M(θ) satisfies Assumption 2.1
for all θ ∈ Θ, and Θ is an open and connected subset ofRn.

In the above definition, the openness and the connectedness of the parameter space are re-
quired such that the parametric model set is well-behaved, i.e. the derivative of the model struc-
ture over the parameters is well defined. See [90, Definition 4.3] for more details. Furthermore,
we assume that each parameterized transfer function has distinct parameters.

Assumption 2.2. The transfer functions in a parametric network model set are parameterized
independently.

Remark 2.1. A parametric model setMΘ is a particular type of model set, and thus the notation
Mmay refer to a parametric model set or amodel set that does not depend on a finite-dimensional
parameter. A model setM that does not depend on a finite-dimensional parameter is referred to
as a non-parametric model set.

2.3 Network identifiability

Motivated by identification procedures where different models in a model set are compared and
then an optimal one is selected, the classical identifiability concept concerns the ability to distin-
guish different models in the model set [90] such that the identification procedures can obtain a
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unique model. Following the above classical identifiability concept, global network identifiabil-
ity for dynamic networks is introduced in an identification setting in [167, 169], as a property
that reflects the ability to distinguish between network models in a network model set. There is
also another version of network identifiability called generic identifiability which is based on a
single network and its network topology [14, 69]. This concept will be discussed in Section 3.2.

Firstly, to compare different models, we define the equality of transfer matrices by following
[90]: two transfer matrices G1(q) and G2(q) are said to be equal if

G1(ejω) = G2(ejω), for almost all ω.

Then identifiability is defined based on the external-to-internal mapping (MIMO system) of a
network model (2.1):

wC(t) = CT(q)R(q)r(t) + CT(q)H(q)e(t), (2.6)

where
T(q) ≜ [I− G(q)]−1. (2.7)

Based on the above model, wC(t) is a quasi-stationary signal with its mean as

E[wC(t)] = CT(q)R(q)r(t), (2.8)

and its covariance function as

Ξv̄(τ) = E[v̄(t)v̄(t− τ)⊤], where v̄(t) ≜ CT(q)H(q)e(t),

and the expectation operator E is with respect to the white noise e(t). Then the z-transform of
the covariance function Ξv̄(τ) leads to the spectrum CΦ(z)C⊤ of v̄(t), where

Φ(z) ≜ T(z)H(z)ΛH(z)⋆T(z)⋆. (2.9)

The mean (2.8) and the spectrum CΦ(z)C⊤ contain the statistical second-order properties
of the measured internal signals. These properties are uniquely specified by the measuredwC(t)
and r(t). Furthermore, under certain conditions on r(t), themean (2.8) alsodetermines aunique
mapping CT(q)R(q).

Proposition 2.1. If the power spectrum Φr(ejω) of r(t) satisfies

Φr(ejω) > 0, for almost all ω ∈ [−π, π], (2.10)

then the mean (2.8) determines a unique mapping CT(q)R(q).
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Proof. Let F(q) = CT(q)R(q), and consider the same mean under two mappings F1(q) and
F2(q), i.e.

F1(q)r(t) = F2(q)r(t).

This means the spectrum of F̄(q)r(t) is zero for almost all ω, where F̄(q) = F1(q) − F2(q).
Thus, it holds that ∫ π

−π
F̄(ejω)Φr(ejω)F̄(ejω)⋆dω = 0.

Combining the above equation and (2.10) shows that F̄(ejω) is zero for almost all ω, and thus
F1(q) = F2(q).

r(t) is said to be persistently exciting if (2.10) is satisfied. Under this condition, measured
signalswC(t) and r(t) lead to unique objectsCT(q)R(q) andCΦ(z)C⊤. Therefore, the identifi-
ability concept introduced in [169] concerns whether the above objects further lead to a unique
network model.

Definition 2.3. Given a parametric network model setMΘ, consider M(θ0) ∈ MΘ and the
following implication:

CT(q, θ0)R(q, θ0) = CT(q, θ1)R(q, θ1)

CΦ(z, θ0)C⊤ = CΦ(z, θ1)C⊤

}
⇒ Gji(q, θ0) = Gji(q, θ1), (2.11)

for allM(θ1) ∈MΘ. Then moduleGji is globally identifiable inM from (wC , r) if the implica-
tion (2.11) holds for all M(θ0) ∈MΘ.

The above definition concerns the statistical second-order properties of themeasured signals,
while higher-order properties or the full distribution are not considered, since the mean and
the spectrum are the typical objects of interest in system identification methods. The above
definition also extends trivially to multiple modules by replacing Gji in (2.11) with the objects
of interest. If all the modules inG(q) are globally identifiable, it is said that the model setM or
the full network is globally identifiable.

When a model set is globally identifiable and if r(t) is persistently exciting, a unique model
can be found by an identification method that relies on the second-order properties of the mea-
sured signals. This uniqueness is important, for example, when the network model has a physi-
cal interpretation. However, somemodels, e.g. models with latent variables such as a state-space
model [132], are inherently not identifiable. In this case, one may choose to accept that a model
set is not identifiable and thus accept the non-uniqueness.

Remark 2.2. The concept in Definition 2.3 considers the identifiability of a module (transfer
function) instead of the identifiability of its parameters. Given the unique rational transfer func-
tion, the identifiability of its parameters is a classical topic and can be achieved by appropriate
parameterization of this transfer function as shown in [90, Section 4.6].
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2.4 Graphical representation

2.4.1 Basic graphical concepts

A graphical representation can be used to encode the topological information of a network
model set or a network model. Relevant graphical concepts are first introduced in this subsec-
tion.

A directed graph G is defined as G ≜ (V, E), where V ≜ W ∪ X is a set of vertices rep-
resenting both the internal signals and the external signals, and E ⊆ V × V denotes a set of
directed edges between the vertices. Note thatwi(t) denotes both a signal and a vertex in G, and
it is often written as wi for the simplicity of notation. In addition, this thesis mainly considers
simple graphs, i.e. E does not contain any edge of the form (wi,wi), and there exists maximally
one directed edge from one vertex to another vertex.

In G a directed edge from wi to wj, denoted by (wi,wj), is called an in-coming edge of wj

and an out-going edge of wi. In this case, wi is also called an in-neighbor of wj, and wj is an out-
neighbor of wi. The out-degree of wi is the total number of out-neighbors of wi. A source is a
vertex without any in-neighbors, and likewise, a sink is a vertex without any out-neighbors. A
(directed) path fromwi towj is a sequence of vertices and out-going edges starting fromwi towj

without repeating any vertex. If a path from wi to wj exists, wj is also said to be reachable by wi.
The length of a path is the number of edges in the path. Note that a single vertex is also regarded
as a directed path with length zero. In a path, internal vertices are the vertices excluding the
starting and the ending vertices. A (directed) cycle or loop aroundwi is a sequence of vertices and
out-going edges fromwi towi, in which only the starting and the ending vertices are repeated. A
directed simple graphG is connected if the underlying undirected graph, obtained by replacing all
the directed edges of G with undirected edges, is connected, i.e., in the undirected graph, there
is an undirected path between any pair of vertices.

Two directed paths are called vertex disjoint if they do not share any vertex, including the
starting and ending vertices, otherwise, they intersect. They are internally vertex disjoint if they
do not share any internal vertex. Similarly, two sets of paths P1 and P2 are said to be vertex
disjoint if every path in P1 is vertex disjoint with the paths in P2. Given two subsets of vertices
V1 and V2, bV1→V2 denotes the maximum number of vertex disjoint paths from V1 to V2. A
vertex setD is called a V1 − V2 disconnecting set, or equivalently a disconnecting set from V1 to
V2, if it intersects with all the paths from V1 to V2. Note that D may also include vertices in
V1 ∪V2. It is a minimum disconnecting set if it has the minimum cardinality among allV1−V2

disconnecting sets [135].
The duality between vertex disjoint paths and disconnecting sets is explained in the following

result.

Theorem 2.1 (Menger’s theorem [135]). Let V1, V2 be two subsets of vertices in a directed graph.
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Themaximumnumber of vertex disjoint paths fromV1 toV2 equals the cardinality of aminimum
disconnecting set from V1 to V2.

The concepts of disconnecting sets and vertex disjoint paths are further illustrated in the fol-
lowing example.

Example 2.1. Consider the directed graph in Figure 2.1, where two vertex setsV1 = {w1,w2,w3}
andV2 = {w7,w8,w9}are indicated by blue circles. The goal is to finda set ofmaximumnumber
of vertex disjoint pathsP and a minimum disconnecting setD from V1 to V2.

w4

w3 w6 w9

w1

w2

w7

w8w5

Figure 2.1: In this directed graph, the two red paths form a set of maximum number of vertex disjoint paths fromV1 to V2 . Set
{w6,w7}, i.e. the two red vertices, is a minimum V1 − V2 disconnecting set.

Consider the paths fromw1 ∈ V1 to the vertices inV2. It can be found thatw1 only has two paths
tow7 which pass through eitherw4 orw5. These two paths are not vertex disjoint because they share
the starting vertex w1 and the ending vertex w7. This shows that the paths from w1 and w7 only
contribute one vertex disjoint path to P , i.e. the upper red path in Figure 2.1. Similarly, even if
there aremultiple paths from{w2,w3} to{w8,w9}, all of them share the common vertexw6. Thus,
these paths also contribute only one vertex disjoint path to P , i.e. the lower red path in Figure 2.1.
Based on the above observations, there are maximally two vertex disjoint paths from V1 to V2, i.e.
bV1→V2 = 2. One choice of P is to collect path w1 → w5 → w7 and path w2 → w6 → w8, i.e.
the two red paths in Figure 2.1; however, this choice is not unique.

For the minimum disconnecting setD, one choice isD = {w6,w7}, i.e. the two red vertices in
Figure 2.1. It can be found that if {w6,w7} is removed, there is no directed path from V1 to V2.
Therefore, {w6,w7} is a disconnecting set fromV1 toV2. In addition, the set isminimumaccording
to theMenger’s theorem, since its cardinality equals bV1→V2 . Note that the choice for a minimum
disconnecting set may not be unique, and a different choice in this example can be {w1,w6}.

The following important property of disconnecting sets will also be used [69].

Lemma 2.1. For a directed graph and given aV1−V2 disconnecting setD, consider the division of
all the verticesV into three disjoint setsS∪D∪P as follows: setS contains all the vertices reachable
by V1 without intersecting with D, and P = V \ (D ∪ S). Then It holds that no directed edge
exists from S toP .

30



The above result has an important algebraic consequence. Consider a square matrix A that
encodes the topology of a directed graph, i.e.,Aji is zero if and only if the directed edge (i, j) does
not exist. Then given a disconnecting setD from a vertex set V1 to another vertex set V2 in the
above directed graph, A can be permuted asAPP APD 0

ADP ADD ADS

ASP ASD ASS

 , (2.12)

where setsP , S are formulated as in Lemma 2.1, and the submatrixADP collects all the entries
in A that represent the directed edges from P toD. More importantly, there is a block zero in
(2.12) which denotes the submatrix APS , since there is no directed edge from S toP according
to Lemma 2.1. The sparsity pattern of the permuted A in (2.12) induced by a disconnecting set
can facilitate the graphical analysis for identifiability and will be exploited in Section 4.2.2.

2.4.2 Graphs of model sets and dynamic networks

Recall that in graph G, its vertices represent both the internal signals and the external signals in
a dynamic network. The directed graph G can thus be used to encode the following structural
informationof amodel setM. Certain entries inG(q),R(q), andH(q)mayhave fixed values for
all models inM, based on the prior knowledge or simply on the user’s modeling assumptions.
For example, the absence of an interconnection between internal signals is represented by a fixed
0 in G(q) for all models inM; some entries in G(q) may be particularly designed controllers
that are fixed and known.

• The fixed entries in the transfer matrices are also called known entries;

• The entries that are not fixed are called unknown entries.

Note that the known entries include the fixed zeros and the known non-zero entries in the ma-
trices of the models. In addition, all the network models in a network model set have the same
fixed entries.

Based on the fixed entries, a directed graph G = (V, E) associated with the model setM
satisfies that an edge exists in G if and only if the corresponding entry in G(q), R(q) and H(q)
is not fixed to be zero. For example, the directed edge fromwi towj exists if and only ifGji(q) is
not fixed to be zero inM, and similarly, a directed edge from ei to wj exists if and only if Hji(q)
is not fixed to be zero inM. In addition, the set of edges E can be decomposed into two disjoint
subsets as E = E1 ∪ E2, where E1 contains the edges representing the unknown entries of the
transfer matrices inM, and E2 consists of the edges representing the known non-zero entries.

Example 2.2. Consider a graph of a network model setM in Figure 2.2, where there are three
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internal signals, one excitation signal r1(t), and one noise signal e2(t). Therefore,M contains
network models with 3× 3 matrix G(q), 3× 1 matrix R(q) and 3× 1 matrix H(q).

w1

w3

r1 e2

w2

Figure 2.2: A graph of a network model setM, where the signals represented by green vertices, i.e. w1(t), w3(t) and r1(t), are
measured. The double‐lined edge (w2,w3) represents the known non‐zero entry G0

32 inM, while the other edges denote the
unknown entries.

Since the edge from w2 to w1 does not exist in the graph, module G12(q) in G(q) is fixed to be
zero for all themodels inM. In addition, themoduleG32(q), represented by the double-lined edge,
has a fixed non-zero value for all the models inM. Since the internal signalsw1(t) and w3(t) are
measured, the C matrix in (2.1b) can also be determined as

C =

[
1 0 0
0 0 1

]
.

Similarly, the information regarding the other entries of the matrices inM can be read from
the graph. It can be found that the graph denotes amodel set that containsmodels with the following
structure:w1(t)

w2(t)
w3(t)

 =

 0 0 0
G21(q) 0 0
G31(q) G0

32(q) 0


w1(t)

w2(t)
w3(t)

+

R1(q)
0
0

 r1(t) +

 0
H2(q)

0

 e2(t),

[
w1(t)
w3(t)

]
=

[
1 0 0
0 0 1

]w1(t)
w2(t)
w3(t)

 ,

where G0
32(q)’s superscript denotes that this entry takes a fixed value over different models inM.

Note that in the graphG of amodel setM, the absence of one edge leads to a stronger restric-
tion onM than the existence of one edge. For example, in Figure 2.2, while the absence of edge
(w2,w1) enforces G12(q) to be zero for all the models inM, the existing edge (w1,w2) allows
models inM to have different values for module G21(q), possibly including G21(q) = 0.

A parametric model setMΘ is a model set obtained from parameterization, and thus the
graphical representation also applies toMΘ. InMΘ, its unknown entries are parameterized
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as functions of the parameters, while the known (fixed) entries, either zero or non-zero, do not
depend on the parameters because they have fixed values.

2.5 Notations and definitions

Some basic notations and definitions are first collected here, and these notations will be used
intensively in the identifiability study in Chapters 3, 4 and 5.

Recall the defined sets in Section 2.1. In addition, we define the following sets for a model
setM and its associated graph based on the known and unknown entries:

• SetW−
j contains all the internal signals that have unknown directed edges (modules) to

wj;

• W+
i contains all the internal signals to which wi has unknown directed edges;

• LetXj include all the external signals that do not have any unknown edge to wj;

• For a set of vertices V̄ in G, let the set N̄+
V̄ contain all the out-neighbors of the vertices in

V̄ .

For two sets V1 and V2, V1 \ V2 denotes the set substraction, i.e.

V1 \ V2 ≜ {x ∈ V1|x /∈ V2}.

In our notation, the dependency of signals on t is often omitted. In the proofs, the depen-
dency of transfer operators on q and θ is often omitted for the simplicity of notation.

Recall from Section 2.1 that X is the set of all the external signals. A vertex wi is said to be
directly excited by a vertex xi ∈ X if there is a directed edge from xi to wi, and wi is (indirectly)
excited by xi if there exists a path from xi to wi. Similarly, wi is said to be indirectly measured if
it has a path to a measured internal signal.

In addition, recall (2.6) and define

TWR(q) ≜ T(q)R(q), X(q) ≜
[
R(q) H(q)

]
, and TWX (q) ≜ T(q)X(q). (2.13)

Therefore, TWX (q) denotes the mapping in (2.6) from all the external signals in X to all the
internal signals inW . Given two subsets W̄ ⊆ W and X̄ ⊆ X , we use TW̄X̄ (q) to represent
the mapping from the external signals in X̄ to the internal signals in W̄ , i.e. the submatrix of
TWX (q)whose rows and columns correspond to the elements in W̄ and X̄ , respectively. When
the set contains a single element, e.g. W̄ = {wj}, TW̄X̄ (q) is simply written as TjX̄ (q).

The above notion for submatrices applies to other matrices and vectors similarly. For exam-
ple, given subsets W̄1 and W̄2 ofW ,GW̄1W̄2

(q) and TW̄1W̄2
(q) denote the submatrices ofG(q)
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and T(q) whose rows and columns correspond to the subsets. Similarly, wC(t) denotes a sub-
vector of w(t) whose components correspond to the elements in C, i.e. the measured internal
signals.

Furthermore, given any transfer matrix or spectrum A(z), the notation A∞ is defined as

A∞ ≜ lim
z→∞

A(z).

A square transfer matrix A(z) is said to be monic if A∞ is an identity matrix. It is said to be
minimum-phase if both this transfer matrix and its inverse are proper and stable.

The concept of the absence of algebraic loops is often used.

Definition 2.4. Given a network model setM, it is said to have no algebraic loop if there exists a
permutation matrix P such that for all models inM, PG∞P⊤ is lower triangular.

The above definition requires a single P matrix to work for all the elements inM. Similarly,
we can also consider the absence of algebraic loops for a single network model.

2.6 Connections to other network models

2.6.1 Introduction

Several different networkmodels have been discussed in Section 1.2; however, their connections
have not been formulated. After having the relevant background for dynamic networks in the
previous sections, we establish the connections between the dynamic network model and other
networkmodels in Section 1.2. In particular, the VARmodel, the SEMmodel and the Bayesian
networkwill be considered. Building these connections can be helpful for understanding the rel-
evant literature and extending techniques from other domains to the identification of dynamic
networks.

For simplicity, a special network model (G(q),R(q),H(q), I,Λ) is considered in this sub-
section, where C = I, Λ ∈ RL×L is non-singular, H(q) is diagonal and monic, and there is no
external excitation, i.e. R(q) = 0. In addition, instead of the direct connection between the
network model and the models in Section 1.2, the connection between the predictor model of
the network model and the models in Section 1.2 is established. Thus, the predictor model of
the dynamic network is first introduced [90].

Consider the j-th row of the network model

wj(t) =
∑

i∈I\{j}

Gji(q)wi(t) + Hj(q)ej(t), (2.14)

where I = {1, · · · ,L} and Hj(q) is the j-th entry on the main diagonal of H(q). Then it can
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be reformulated as
wj(t) = ŵj(t) + ej(t) (2.15)

where
ŵj(t) = [1− Hj(q)−1]wj(t) +

∑
i∈I\{j}

Hj(q)−1Gji(q)wi(t).

Since H(q) is monic, 1− Hj(q)−1 is strictly proper and thus the power series expansion of ŵ(t)
is

ŵj(t) =
∞∑
k=1

h(k)j wj(t− k) +
∑

i∈I\{j}

∞∑
k=0

g(k)ji wi(t− k), (2.16)

where g(k)ji is the k-th impulse response coefficient ofHj(q)−1Gji(q), and h(k)j is the k-th impulse
response coefficient of [1− Hj(q)−1]. ŵj(t) is the so-called one-step-ahead predictor [90], since
it can predictwj(t) given the past and the present values ofwi(t), and the past values ofwj(t), as
shown in (2.16). Model (2.15) is referred to as a predictor network associated with the network
model (2.14).

The predictor model is used extensively in the so-called prediction-error methods (PEMs)
for identifying dynamic systems [90]. By exploiting the predictor model obtained from (2.14),
the goal of PEMs is to find the optimal parameters such that the error between wj(t) and its
prediction ŵj(t) is minimized. Therefore, what matters in the end is the predictor ŵj(t) and
thus (2.15) of the network, while the original network model (2.14) only serves as a vehicle to
arrive at the expression for (2.15) [89]. In this section, the connections between the predictor
(2.15) and the different network models in Section 1.2 will be studied.

2.6.2 VARmodel

When themodules inG(q) are strictly proper, it holds that g(0)ji = 0 in (2.16). Then combining
(2.15) with (2.16), for all j, into a matrix form leads to

w(t) =
∞∑
k=1

A(k)w(t− k) + e(t), (2.17)

where A(k) contains all the k-th impulse response coefficients in (2.16) for j ∈ I . Based on the
above model and (1.2), it can be found that (2.15) is an infinite-order VARmodel.

Therefore, if the impulse responses in (2.17) are truncated to a finite order n, all techniques
for estimating a VAR model can be applied to the estimation of (2.15). Conversely, the tech-
niques developed for estimating (2.15) with the power series expansion can also be used for a
VARmodel.
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2.6.3 SEM

Recall the structural equation models (SEMs) in Section 1.2.3. In general, an SEMmodel con-
sists of a set of equations

xj = fj(Pj, vj), j ∈ {1, · · · ,L}, (2.18)

where Pj is a subset of {x1, · · · , xL} whose elements determine the value of xj, and vj is a dis-
turbance term [113]. In addition, a directed graph GS associated with an SEM model can be
obtained by using vertices to denote the variables in {x1, · · · , xL} and drawing one edge from xi

to xj if xi ∈ Pj.
Model (2.15) can be reformulated into the following SEMmodel:

wj(t) = fj,t(Pj,t, ej(t)), j ∈ I and t ∈ {1, · · · ,N}, (2.19)

where set Pj,t contains the present and the past values of wi(t) and the past values of wj(t); N
denotes the time index of the final measurement of w(t), and it is assumed that w(t) = 0 for
all t ⩽ 0. Furthermore, the graph GS associated with the above model can be obtained, where,
for example, wi(t− 1) and wi(t) are represented by two vertices, and the edge from wi(t− 1) to
wj(t) exists if wi(t− 1) is inPj,t. The important difference between the graph GS and the graph
G in Section 2.4 is that a vertex in G represents a complete signal, while a vertex in GS denotes a
time instance of the signal.

2.6.4 Bayesian networks

An equivalence between (2.15) and the Bayesian network can also be obtained. In the graph GS,
let Paj or Pa(xj) denote the set of parents of xj, i.e. the vertices that have directed edges to xj.
Then the Bayesian network is defined as follows.

Definition 2.5. LetGS be a directed acyclic graph where each vertex denotes a random variable xj,
j ∈ {1, · · · ,L}. LetP denote a joint distribution over all the above random variables. A Bayesian
network is a pair (P,GS) such that the joint distribution P can be expressed as

P(x1, · · · , xL) =

L∏
j=1

P(xj|Paj).

Then the equivalence between the SEM model and the Bayesian network can be first ex-
ploited as follows.

Lemma 2.2. If model (2.18) satisfies the following assumptions:

• the corresponding graph GS is acyclic,

• vj are jointly independent with probability distribution P(vj),
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then (2.18) induces a joint distribution P(x1, · · · , xL) that satisfies

P(x1, · · · , xL) =

L∏
j=1

P(xj|Paj).

Proof. This result follows from [113, Definition 1.2.2] and [113, Theorems 1.2.7, 1.4.1].

The above theorem states that an SEM and its associated graph leads to a Bayesian network
if the graph is acyclic and the disturbances are independent. Since (2.15) also leads to an SEM
model (2.19), an equivalence between (2.15) and the Bayesian network can be obtained.

Theorem 2.2. Consider (2.15) for t ∈ {1, · · · ,N}withw(t) = 0 for t < 1. If (2.15) also satisfies
the following conditions:

• the network model does not have any algebraic loop;

• The random variables in {ej(t)| j ∈ I and t ∈ {1, · · · ,N}} are mutually independent
with probability distribution P(ej(t)),

then (2.15) induces a joint distribution P({wi(t), · · · ,wL(t)}N
t=1) which satisfies

P({wi(t), · · · ,wL(t)}N
t=1) =

N∏
t=1

L∏
j=1

P(wj(t)|Pa(wj(t))),

where Pa(wj(t)) contains the parents of wj(t) in the graph GS associated with (2.19).

Proof. We only need to prove that (2.19) satisfies the conditions in Lemma 2.2.
To prove that GS is acyclic, we consider each subgraph Gt of GS independently, where Gt con-

tains only the vertices of GS with time instance t and their corresponding edges. Since directed
edges can only point from the past to the present, no cycle inG can contain both vertices inGt−1

and vertices in Gt, and thus cycles can only exist within the subgraph Gt, for some t. In addition,
the graphical structure of Gt is determined by the sparsity pattern ofG∞, based on (2.16). Since
G∞ can be permuted to be lower triangular, Gt must be acyclic for all t, which means GS is also
acyclic. Finally, as ej(t) is independent over j and t, all the conditions in Lemma 2.2 are satisfied,
which concludes the proof.

The above theorem shows that the predictor network (2.15) induces a Bayesian network un-
der certain conditions. In addition, the absence of algebraic loops in a networkmodel alsomeans
that the associated graph GS is acyclic, where each vertex denotes one time instance of a signal
instead of a complete signal as in the graph G introduced in Section 2.4. When the graph GS is
“folded” such that each vertex represents a complete signal instead, the obtained graph can still
contain cycles.
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If (2.15) is parameterized with a parameter vector θ, Theorem 2.2 has an important applica-
tion when the maximum likelihood estimator of (2.15) is considered. In this case, Theorem 2.2
shows that the log-likelihood function

log P({wi(t), · · · ,wL(t)}N
t=1|θ)

can be further decomposed into independent terms, which simplifies the maximum likelihood
estimation problem significantly.

2.7 Conclusions

The basic background for linear dynamic networks has been introduced in this chapter. Com-
pared to the classical MIMO model which considers the mapping from the input to the out-
put, the network model further captures the causal relationship between the output signals.
When a set of network models is considered for identification, network identifiability is an im-
portant property ensuring that different network models in the set can be distinguished given
the stochastic properties of the measured signals. Based on the identifiability concept and the
topological information of a model set, graphical conditions will be investigated in the coming
chapters to verify the identifiability of a model set.

Finally, connections between the predictormodel of a dynamic network and networkmodels
from other domains have been studied. It is shown that under some conditions, the predictor
model induces a VARmodel, an SEMmodel, or a Bayesian network. This relation allows for the
possible extensions of the estimation techniques for other network models to the identification
problems in dynamic networks.
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旁观拍手笑疏狂，疏又何妨，狂又何妨!

刘克庄（宋）

People clap hands so glad, laughing to say we’re mad. What if we’re free.
Or in high glee?

Kezhuang Liu (Song dynasty); Translated by Yuanchong Xu

3
Identifiability with full measurement:

Analysis

3.1 Introduction

In this chapter, graph-based conditions for the analysis of network identifiability are investi-
gated in the situation where all the internal signals are measured. In the literature, there are
three notions of network identifiability, namely, global identifiability in Definition 2.3 that re-
quires all the models to be distinguishable from the other models in a model set [157, 167, 169]
*; generic identifiability [14, 69], whichmeans that almost allmodels can be distinguished from
the other models; and generic local identifiability that requires models to be distinguishable
from other models in a neighborhood [83]. It has been shown in [14, 69] that by consider-
ing generic identifiability, the algebraic conditions for identifiability can be reformulated into
path-based conditions on the graph of the network models, which largely simplifies the analy-
sis. Note that generic local identifiability is a weaker notion than generic identifiability, and its
graph-theoretical characterization remains an open question. In this thesis, we focus on global
identifiability and generic identifiability of dynamic networks.

The material of this chapter is partly based on the results in [140, 141].
*There are actually two versions of global identifiability, reflecting whether either one particular model in the set can

be distinguished or all models in the set [169].

39



Network identifiability is typically dependent on several structural properties of the model
set, such as the network topology, the modeled correlation structure of process noises, the pres-
ence and location of external excitation signals, and the availability of measured internal signals.
Conditions for network identifiability have been analyzed for different problem settings. In
[14, 69, 157], all internal signals are excited by external excitation signals, while only a subset of
internal signals is measured. In contrast, the analysis in [169, 171] assumes that all internal sig-
nals are measured, while a subset of them is excited. Recent contributions [13, 83] also address
the combined situation.

In this chapter our objective is to derive path-based conditions for generic identifiability of
a subset of modules (a subnetwork) in the network, while we assume all the internal signals in
the network to be available for measurement, i.e. C = I in (2.1) and thus (2.1b) is omitted.
The results are presented in [140] and will serve as a foundation for the graphical identifiability
analysis and synthesis in Chapters 4 and 5.

To analyze this problem, we start with the concept of generic identifiability as presented in
[14, 69], since this allows for attractive graphical conditions. However, this concept in [14, 69] is
defined as a property of a networkmodel, while in the conventional system identification theory,
identifiability is defined as a property of a model set, and then identificationmethods are imple-
mented to compare models in the set and then select the optimal one. In line with the global
identifiability concept in Definition 2.3 from [169], a different generic identifiability concept
was presented in [171] based on a parametric model set, in which models can be distinguished
from other models with the parameter value in a prescribed parameter space excluding a sub-
set with measure zero. However, the notion of measure zero is defined on a finite-dimensional
space [112], and thus the generic identifiability concept in [14, 69] is essentially limited to finite-
dimensional parameters. This limitationbecomes an issue as infinite-dimensional parameters are
required for formulating the necessary conditions for themodel-set-based generic identifiability.

This issue is addressed in this chapter by reconsidering the notion of generic identifiability
defined in a topological space, where the genericity is defined on the basis of an open and dense
subset in the topological space. This new approach allows us to consider models with infinite-
dimensional parameters so that sufficient and necessary graphical conditions for the model-set-
based generic identifiability can be derived. Furthermore, compared to the original concept
of generic identifiability from [14], the following attractive features are incorporated into the
model-set-based generic identifiability: (a) the effect of unmeasured disturbance signals in the
network is considered; (b) modules in the network that are a priori known to the user and thus
do not need to be identified are incorporated.

The chapter proceeds as follows. After introducing basic notations and definitions in Sec-
tion 2.5, the existing concepts of generic identifiability and their limitations are discussed in
Section 3.2, which motivates a different notion of generic identifiability in Section 3.3. Then
algebraic conditions and path-based conditions are developed in Section 3.4 and Section 3.5,
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respectively. This chapter is concluded in Section 3.6, and some of the proofs are collected in Sec-
tion 3.7.

3.2 Existing concepts of generic identifiability and
their limitations

The concept of generic identifiability has been exploited in [7] for multivariate autoregressive
models and was first introduced in [14, 69] for dynamic networks in the setting where all the
internal signals are excited. Here, for consistency of the presentation, we reinterpret the concept
from [14, 69] in a dual settingwhere all the internal signals aremeasured. Given a directed graph
withW as the vertex set, a network matrix G(q) is said to be consistent with this graph if the
absence of the directed edge fromwi towj impliesGji(q) = 0. Conversely, a graph is associated
withG(q) ifGji(q) ̸= 0 implies that an edge fromwi andwj exists. LetG0(q)denote a particular
networkmatrix. Then the followingdefinitionof generic identifiability is directly obtained from
[69, Definition 1].

Definition 3.1. A network matrix G0(q) is generically identifiable from the set of excitation
signalsR if for any rational transfermatrix parameterizationG(q, θ) consistent with the directed
graph associated with G0(q), it holds that

[I− G(q, θ))]−1R(q) = [I− Ḡ(q)]−1R(q)⇒ G(q, θ) = Ḡ(q), (3.1)

for almost all θ inRn, where Ḡ(q) is any network matrix consistent with the graph.

The above concept is to distinguish Ḡ(q) from almost all G(q, θ) consistent with the un-
derlying graph, and it extends trivially to the single module case, where Gji(q, θ) and Ḡji(q) are
considered instead in the right-hand side (RHS) of (3.1). The notion of almost all θ in Defini-
tion 3.1 refers to all θ except a set of measure zero in Rn. Recall the mapping TWX (q) defined
in (2.13) and its submatrices. Then for the concept in Definition 3.1, a sufficient and necessary
condition for generic identifiability can be obtained, based on the proof of [69, Theorem V.1].

Corollary 3.1. Consider any subset W̄j ⊆ W−
j , G0

jW̄j
(q) is generically identifiable if and only

if the following two conditions hold:

rank[TW̄jR(q, θ)] = |W̄j|, and

rank[TW−
j R(q, θ)] = rank[TW̄jR(q, θ)] + rank[T(W−

j \W̄j)R(q, θ)],

for almost all θ inRn.

The concept of generic identifiability in Definition 3.1 is essentially based on the graph in-
duced by the matrix G0(q). This concept is not defined on a particular parametric model set
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like Definition 2.3, and instead, it concerns all possible parametric model sets with the same
topology. In addition, if we consider a particular parameterization G(q, θ) instead of any pa-
rameterization as stated in Definition 3.1, then (3.1) will have an asymmetry when comparing
G(q, θ) and Ḡ(q), because Ḡ(q) does not depend on θ and thus may not belong to the con-
sidered parametric model set as G(q, θ). This asymmetry in the definition is in contrast to the
typical application of the identifiability concept in the identification procedure, where models
from the same parametric model set are compared.

Furthermore, Definition 3.1 concerns only themapping [I−G(q)]−1R(q) from r(t) tow(t),
while the information regarding the noise signals, i.e. the power spectrumof the noises as consid-
ered inDefinition 2.3, is not incorporated. Thenoise information is important inmanypractical
situations, e.g., in [95, 156] where the data is collected without the user’s intervention and thus
does not contain any r signal.

Due to the above limitations, we consider an alternative concept of generic identifiability
from [171] which is obtained by combining Definition 2.3 and the genericity concept from
[14, 69]. In addition, the concept in [171] is slightly reformulated here to incorporate more
explicitly the genericity notion from [14, 69].

Definition 3.2. Given a parametric network model setMΘ, consider M(θ0) ∈ MΘ and the
following implication:

T(q, θ0)R(q) = T(q, θ1)R(q)
Φ(z, θ0) = Φ(z, θ1)

}
⇒ Gji(q, θ0) = Gji(q, θ1), (3.3)

for all θ1 ∈ Θ. ThenGji(q, θ) is generically identifiable from (w, r) if the implication (3.3) holds
for almost all θ0 ∈ Θ.

Compared to Definition 3.1, Definition 3.2 defines model-set-based generic identifiability
as a property of a parametric model setMΘ. Moreover, the noise spectrum Φ(z) in (2.9) that
encodes the second moment of the measured signal w(t) is included in Definition 3.2 as a basis
for the identifiability analysis. Note that the original formulation of Definition 3.2 in [171]
concerns genericity in the model space, i.e. for almost allM(θ0) ∈MΘ instead of for almost all
θ0 in the parameter space as stated in Definition 3.2. The genericity notion in the model space
requires a different definition from the measure zero in the parameter space, since the concept
of measure zero is not defined for the infinite-dimensional model space [112]. However, this
genericity notion inmodel space is not specified in [171]. In addition, the genericity notion, that
is actually used in the results of [171], is in the parameter space, as shown in [171, Corollary 2].
Therefore, we have reformulated the original definition in [171] into Definition 3.2 where the
genericity notion in the parameter space is considered.

To exploit spectrum Φ(z) for the identifiability analysis, we need to specify the noise model
(H(z),Λ) and thus the particular spectral factorization method for Φv(z) in (2.2). Recall that
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Φv(z) has rank p ⩽ L, and the following noise model is considered in [169]:

Assumption 3.1. The noise model of all elements inM satisfies that

• H(q) ∈ R(q)L×p is proper, stable, full rank, and is structured such that its upper p × p
block matrix is minimum-phase and monic;

• Λ ∈ Rp×p is real and positive definite.

The above choice of noise model is rather general, since anyΦv(z) admits a spectral factoriza-
tion (2.2) with H(q) and Λ satisfying the properties in Assumption 3.1 [169, Lemma 1]. Then
with the following mild assumption, Φ(z) in Definition 3.2 can be exploited such that (3.3) is
simplified.

Assumption 3.2. Model setM satisfies at least one of the following two conditions:

(a) G(q)matrices of the models inM are strictly proper;

(b) M has no algebraic loop, and Φ∞
v is diagonal for all models inM.

Then with Assumption 3.2, the following result can be obtained.

Proposition 3.1 ([169]). Given a network model setMΘ that satisfies Assumptions 3.1 and 3.2,
implication (3.3) is equivalently formulated as

TWX (q, θ0) = TWX (q, θ1)⇒ Gji(q, θ0) = Gji(q, θ1),

for all θ1 ∈ Θ.

The attractive feature of the above result is that TWX (q, θ) can now be taken as a starting
point for analyzing identifiability. Recall the setXj defined in Section 2.5, and then an identifi-
ability result similar to Corollary 3.1 can be obtained, whose proof is analogous to the proof of
[69, Theorem V.1] and thus omitted.

Lemma 3.1. Consider the notion of generic identifiability inDefinition 3.2 and any subset W̄j ⊆
W−

j . LetMΘ be a parametric model set satisfying Assumptions 3.1 and 3.2. Then GjW̄j(q) is
generically identifiable inMΘ from (w, r) if

rank[TW̄jXj(q, θ)] = |W̄j|, and (3.4a)

rank[TW−
j Xj

(q, θ)] = rank[TW̄jXj(q, θ)] + rank[T(W−
j \W̄j)Xj

(q, θ)] (3.4b)

hold for almost all θ0 ∈ Θ.
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Note that the mappings from both r and e, i.e. the vertices in Xj, to W̄j are considered in
Lemma 3.1, which provides a more relaxed condition for generic identifiability than Corol-
lary 3.1. This is achieved by exploiting the spectrum Φ(z) in Definition 3.2 under Assump-
tions 3.1 and 3.2. The incorporation of the noise information is also of practical importance,
since in many cases nomeasured r signal is available, e.g., when the data is observational and col-
lectedwithout the user’s intervention as considered in [96, 138, 156]. However, Lemma3.1 only
provides a sufficient condition, in contrast to the necessary and sufficient condition in Corol-
lary 3.1. The generic identifiability concept inDefinition 3.2 leads to an issuewhen the necessity
is considered in Lemma 3.1, as discussed as follows.

To verify the necessity of (3.4) in Lemma 3.1, we need to show that there exists a different
networkmodelM2 which belongs toMΘ and is not distinguishable fromM(θ1), when (3.4) are
not satisfied forθ1. Anadditional assumption is then required such thatM2 is an elementofMΘ.
This extra assumption considered in [169, Theorem 2] is to make setMΘ sufficiently large, i.e.,
every parameterized transfer function inMΘ covers all possible transfer functions. However,
to satisfy this assumption, the dimension of θ should approach infinity, which contradicts the
concept of genericity from [69] in bothDefinitions 3.1 and 3.2, where the definition ofmeasure
zero is restricted to finite-dimensional parameters [112]. Therefore, the necessity in Lemma 3.1
cannot be achieved by the notion of genericity in [69] and parametric model setsMΘ.

Since the necessity of the identifiability conditions requires an infinite dimensional param-
eter, we need to analyze identifiability in parametric model sets and in non-parametric model
sets separately. For the non-parametric model sets, in contrast to Definitions 3.1 and 3.2, we
introduce a different notion of genericity in this chapter such that the notion is not limited to
finite-dimensional parameters. More importantly, with the above notion, we will show that
a sufficient and necessary condition for the model-set-based identifiability can be obtained for
non-parametric model sets. On the other hand, since parametric model sets depend on finite-
dimensional parameters, we will show that only sufficient conditions for the model-set-based
identifiability can be obtained for parametric model sets. We will also summarize the above re-
sults to obtain conditions that are valid for generic identifiability in both parametric model sets
and non-parametric model sets.

3.3 Generic identifiability: revisit

The limitation of the generic identifiability concept in Definition 3.2 is mainly due to the finite-
dimensional parameter space, such that the necessity in Lemma 3.1 cannot be achieved. There-
fore, we consider a different genericity notion in a topological space for non-parametric model
sets [148].

This genericity notion is defined based on the concept of open and dense sets [7, 130]. Con-
sider a metric space (A, d), whereA is a set and d is a metric function. An open ball of center
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x0 ∈ A and radius r > 0, where r is a real number, is defined as

B(x0, r) ≜ {x ∈ A | d(x, x0) < r}.

Then a subset A1 ⊆ A is said to be open, if for any x0 ∈ A1, there exists a r > 0 such that
B(x0, r) ⊆ A1. Therefore, the openness reflects the robustness of the subset, such that a small
perturbation of its element still leads to an element in the set. Furthermore,A1 is said to be dense
in the metric spaceA if every open ball ofA contains an element inA1. The denseness shows
thatA1 is universal, i.e., an element inA either belongs toA1, or an arbitrarily small perturbation
of the element can lead to an element inA1.

Then the following notion of genericity and “almost all” is considered for non-parametric
model sets.

Definition 3.3. Given a metric space (A, d), a property is said to hold generically inA, or hold
for almost all points inA, if there exists an open and dense subset Ā in the metric space such that
all points in Ā have the property.

To define generic identifiability based on the above genericity notion, we consider a metric
space (M, d) with a network model setM and its metric function d(M1,M2), where for any
two models M1 and M2 inM, the metric d(M1,M2) is defined to be equal

∥(∥G1(z)− G2(z)∥∞, ∥R1(z)− R2(z)∥∞, ∥H1(z)− H2(z)∥∞, ∥Λ1 − Λ2∥∞)∥1,

where ∥ · ∥1 and ∥ · ∥∞ denote l1-norm of a vector and the H∞ norm of a transfer matrix,
respectively. Note that the C matrix does not appear in the definition of the metric as all the
models inM have the same C matrix, as defined in Definition 2.1. For simplicity, we useM
without the metric d to represent the metric space throughout this thesis. Then we introduce
the following definition of generic identifiability by considering themetric spaceM, rather than
the parameter space ofMΘ.

Definition 3.4. Given a non-parametric network model setM, consider M0 ∈ M and the fol-
lowing implication: For all M1 ∈M,

CT0(q)R(q) = CT1(q)R1(q)
CΦ0(z)C⊤ = CΦ1(z)C⊤

}
⇒ Gji,0(q) = Gji,1(q), (3.5)

where Gji,0(q) and Gji,1(q) denote the module Gji(q) in M0 and M1, respectively. Then Gji(q)
is generically identifiable from (wC , r) if the implication (3.5) holds for almost all M0 ∈ M, or
equivalently, for all M0 in an open and dense subset ofM.

The above definition considers the non-parametric model sets that are not limited to finite-
dimensional parameters. Even ifwe consider the casewhereC = I in this chapter, Definition 3.4
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is formulated in a general formby incorporating theCmatrix. With the new concepts, sufficient
and necessary conditions for generic identifiability will be developed.

Remark 3.1. The concept of generic identifiability in Definition 3.4 also extends trivially to a
parametric model setMΘ. In this case,Gji(q, θ) is generically identifiable if the implication (3.3)
holds for almost all θ0 ∈ Θ. For the notion of almost all in the parameter space, we can consider
either all θ0 ∈ Θ except a set of Lebesgue measure zero or all θ0 in an open and dense subset of Θ.

Remark 3.2. Definition 3.4 also extends trivially to global identifiability: Gji(q) is globally iden-
tifiable from (wC , r) if the implication (3.5) holds for all M0 ∈M.

When C = I, the noise spectrum Φ(z) in Definition 3.4 can be exploited analogously as
in Proposition 3.1 under Assumptions 3.1 and 3.2. Therefore, instead of T(q)R(q) and Φ(z)
in Definition 3.4, the mapping TWX (q) can be taken as a starting point for analyzing generic
identifiability in the sense of Definition 3.4.

Corollary 3.2. Consider a network model setM that satisfies Assumptions 3.1, 3.2, and C = I.
Then implication (3.5) is equivalently formulated as for all M1 ∈M,

TWX ,0(q) = TWX ,1(q)⇒ Gji,0(q) = Gji,1(q).

3.4 Algebraic conditions

Sufficient conditions for the generic identifiability of modules in a parametric model set, in the
sense of Remark 3.1, have been presented in Lemma 3.1. When the genericity notion based
on open and dense subsets is concerned, we only need to interpret the notion of almost all in
Lemma 3.1 based on open and dense sets. However, as discussed in Section 3.2, the necessity
of (3.4) in Lemma 3.1 requires an additional assumption, i.e. every entry in the model set cov-
ers all possible transfer functions. This assumption requires an infinite-dimensional parameter,
and thus we need to analyze the necessity for non-parametric model sets. In addition, the above
assumption makes the model set unnecessarily large, and thus we will also develop a less conser-
vative condition as follows.

To introduce this condition, we first define a newmodel set associated withM.

Definition 3.5. Given a non-parametric model setM,M0 associated withM is a set that con-
tains all the network models such that:

• M0 has the same fixed entries as inM;

• M0 satisfies Assumption 3.1 ifM satisfies Assumption 3.1;
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• M0 has the same feedthrough structure asM ifM satisfies Assumption 3.2, i.e., (i)G(q) of
all themodels inM0 is strictly proper ifM satisfies Assumption 3.2(a), and (ii) ifM satis-
fies Assumption 3.2(b),M0 andM satisfy Assumption 3.2(b) under the same permutation
matrix as described in Definition 2.4.

The above construction ofM0 means thatM0 is the largest model set that shares the same
properties, i.e. the same fixed entries and feedthrough structure, withM. With the setM0, we
introduce the following topological condition onM.

Assumption 3.3. Consider a non-parametric model setM and its associatedM0,M is a non-
empty open subset ofM0.

Note that the rank condition in Lemma 3.1 can only be shown as a sufficient condition for
parametricmodel sets and generic identifiability in the sense of Remark 3.1. This sufficient con-
dition also extends trivially to non-parametric model sets and the generic identifiability concept
inDefinition 3.4. More importantly, we can show that the rank condition is necessary by consid-
ering non-parametric model sets under Assumption 3.3 and the generic identifiability concept
in Definition 3.4.

Theorem 3.1. LetM be a non-parametric model set satisfying Assumptions 3.1 and 3.2, and
consider any subset W̄j ⊆ W−

j . Then GjW̄j(q) is generically identifiable inM from (w, r) if

rank[TW̄jXj(q)] = |W̄j|, and (3.6a)

rank[TW−
j Xj

(q)] = rank[TW̄jXj(q)] + rank[T(W−
j \W̄j)Xj

(q)] (3.6b)

hold for almost allM ∈M. IfM additionally satisfies Assumption 3.3, the above rank conditions
are also necessary for the generic identifiability of GjW̄j(q).

The proof of the above theorem is presented in Section 3.7.
Wehaveobtained rank conditions for generic identifiability inparametricmodel sets as shown

in Lemma 3.1 and in non-parametric model sets as shown in Theorem 3.1. While the rank tests
in the above results require computing the inverse of I−G(q), these tests can be further simpli-
fied without the need to invert I− G(q).

Lemma 3.2. Consider a dynamic network and any subsets W̄ ⊆ W and X̄ ⊆ X . Define the
matrix F(W̄, X̄ ) as

F(W̄, X̄ ) ≜
[
(G(q)− I)W(W\W̄) XWX̄ (q)

]
. (3.7)

Then it holds that
rank[TW̄X̄ (q)] = rank[F(W̄, X̄ )] + |W̄| − L, (3.8)

where L is the total number of internal signals.
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Proof. Recall that TW̄X̄ = C(I − G)−1X̄, where X̄ = XWX̄ and C is a selection matrix that
extracts the rows of (I− G)−1 corresponding to W̄ . Define

F̄ =

[
G− I X̄

C 0

]
, (3.9)

then according to [154], we have

F̄ =

[
I 0

C(G−I)−1 I

][
G− I 0

0 C(I−G)−1X̄

][
I (G−I)−1X̄
0 I

]
.

According to the above equation, rank(F̄) = rank(TW̄X̄ ) + L. Based on (3.7) and (3.9), F
is obtained from F̄ by removing the columns in F̄ that correspond to the nonzero entries of C,
and these columns are linearly independent in F due to the structure of C. Then it follows that
rank(F) = rank(F̄)− |W̄|, which proves the result.

Based on (3.8), the rank conditions in Theorem 3.1 can be reformulated straightforwardly as
follows.

Proposition 3.2. Consider a non-parametric network model set and the matrix F defined in
(3.7). The conditions (3.6) in Theorem 3.1 are equivalently reformulated asF(W̄j,Xj) is full row
rank and

rank[F(W−
j ,Xj)] = rank[F(W̄j,Xj)] + rank[F(W−

j \ W̄j,Xj)]− L,

for almost all M ∈M.

A similar result to the above one can be obtained for parametric model sets, by combining
(3.4) and (3.8). Thus, efficient rank tests for identifiability can be conducted without the need
to invert I− G(q).

3.5 Path-based conditions

3.5.1 Path-based conditions for non-parametric model sets

It is attractive to derive graph-based conditions for identifiabilitywhen considering complex net-
works, since these conditions can be tested efficiently by inspecting the network topology rather
than analyzing the dynamics of the network. Here, we first derive path-based conditions for
non-parametric model sets and the concept of generic identifiability in Definition 3.4. In this
setting, we are able to derive necessary and sufficient path-based conditions.

48



As shown in [14, 69], when a parametric model set is considered as in Definition 3.2, path-
based conditions can be obtained fromLemma3.1 byusing the following path-rank relationship
[14, 69]: for all θ except a set of measure zero, it holds that

bX̄→W̄ = rank[TW̄X̄ (q, θ)], (3.10)

where bX̄→W̄ denotes themaximumnumber of vertex disjoint paths from X̄ to W̄ in the graph
associated with the parametric model set. Equation (3.10) is an attractive result since it shows
opportunities to conduct the rank tests in the identifiability conditions, e.g. the ones in Theo-
rem 3.1, in a graphical way.

However, (3.10) only holds when finite-dimensional models are considered since this result
is based on the property of analytic functions defined on finite-dimensional spaces, as shown in
the proof of [69, Lemma V.2] and [102]. In addition, (3.10) has been derived for the particular
situation where X(q) = I, and there is no non-zero fixed/knownmodules in the model set.

The issues caused by known transfer functions and non-parametric models are explained in
the following example.

Example 3.1. Firstly, we recall the path-rank relation (3.10) from [14, 69] for parametric model
sets. Consider two parametric network model sets whose graphs are indicated in Fig. 3.1, where the
model set in (b) contains known non-zero modules, indicated by the double-lined arrows. In addi-
tion, assume R11(q) = R22(q) = 1 to match the setting in [14, 69] such that (3.10) is applicable.

w3 w4

w1 w2

r1 r2

w5

(a)

w3 w4

w1 w2

r1 r2

w5

(b)

Figure 3.1: Two network model sets where (b) contains known modules (double‐lined edges) while (a) has only unknown modules.

Then for the model set in Fig. 3.1(a), it holds b{r1,r2}→{w3,w4} = 2, i.e. there exist maximally
two paths, e.g., r1 → w1 → w3 and r2 → w2 → w4, that are vertex disjoint. According to (3.10),
this implies that

rank[T{w3,w4}{r1,r2}(q, θ)] = 2,

for all θ except a set of measure zero. This can also be seen from

det[T{w3,w4}{r1,r2}(q, θ)] = G31(q, θ)G42(q, θ)− G41(q, θ)G32(q, θ). (3.11)
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As each module is an analytic function of independent parameters, the determinant is a non-
constant analytic function of θ and thus only vanishes on a set of measure zero. This matches with
(3.10) that b{r1,r2}→{w3,w4} = rank[T{w3,w4}{r1,r2}(q, θ)] = 2 for almost all θ.

However, T{w3,w4}{r1,r2}(q, θ)may not be full rank in the situation of Fig. 3.1(b) if the known
modules G0

31(q),G0
42(q),G0

41(q),G0
32(q) take values such that

G0
31(q)G0

42(q)− G0
41(q)G0

32(q) = 0. (3.12)

Then det[T{w3,w4}{r1,r2}(q, θ)] = 0 for all parameter values, and thus the path-rank relation in
(3.10) fails.

In addition, if Fig. 3.1(a) denotes a non-parametric model set instead, (3.11) is not a function
of a finite-dimensional parameter, and thus the reasoning in (3.11) based on parametric model
sets with a finite-dimensional parameter does not apply.

As shown in Example 3.1, the presence of known transfer functions may cause equality in
(3.10) to fail. To circumvent this, an additional condition is introduced based on the concept of
structural rank.

Definition 3.6 ([145]). The structural rank of a matrix is the maximum rank of all matrices
with the same nonzero pattern. A matrix has full structural rank if it can be permuted so that the
diagonal has no zero entries.

The property of structural full rank depends solely on the sparsity pattern of the matrix and
does not depend on the numerical values of the entries. In order to characterize and exclude
the situations caused by fixed modules as presented in Example 3.1, we introduce the following
regularity condition on the known entries.

Assumption 3.4. In model setM, the rank of any submatrix of [G(q) − I X(q)], that contains
only known entries, is equal to its structural rank.

The above assumption prevents the fixed/known modules in the model set from inducing a
loss of generic rank. For example, recall (3.12) where the mapping

T{w3,w4}{r1,r2}(q) =

[
G0

31(q) G0
32(q)

G0
41(q) G0

42(q)

]

is singular even if it has a full structural rank, and this singular mapping causes the path-rank
relationship in (3.10) to fail as discussed in Example 3.1. However, since T{w3,w4}{r1,r2}(q) is
a submatrix of [G(q) − I X(q)], Assumption 3.4 prevents the situation in (3.12) and thus the
mapping T{w3,w4}{r1,r2}(q)will always be full rank under this assumption.

WithAssumption3.4 and then as afirst step toobtain thepath-rank relation fornon-parametric
model sets with fixed entries, the following result can be formulated.
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Lemma 3.3. Consider a non-parametricmodel setM that satisfies Assumption 3.3 and 3.4. Then
for any subsets W̄ ⊆ W and X̄ ⊆ X , TW̄X̄ (q) is full rank for almost all M ∈ M if and only if
F(W̄, X̄ ), as defined in (3.7), has full structural rank.

The proof of Lemma 3.3 is presented in Section 3.7, where the instrumental Lemma 3.7
plays an important role. This result suggests that testing the generic rank of TW̄X̄ (q) does not
require to check the numerical values of the networkmatrices, while only the sparsity pattern of
F(W̄, X̄ )needs to be investigated. Thendue to the connection between the graph of amodel set
and F’s sparsity pattern, this result allows us to formulate the equivalence between generic rank
and vertex disjoint paths that also applies to non-parametric model sets with knownmodules.

Theorem 3.2. Consider a non-parametric model setM that satisfies Assumptions 3.3 and 3.4.
Then for any subsets W̄ ⊆ W and X̄ ⊆ X , the transfer matrix TW̄X̄ (q) satisfies

bX̄→W̄ = rank[TW̄X̄ (q)] for almost all M ∈M.

Proof. With Lemma 3.3, the proof of this theorem is then analogous to the proof of Proposi-
tion V.1 in [69]: For rank(TW̄X̄ ) ⩾ bX̄→W̄ generically, consider a subgraph of the network
containing all the vertices but only the edges of the paths from a set of maximum number ver-
tex disjoint paths from X̄ to W̄ . Let X̄1 ⊆ X̄ and W̄1 ⊆ W̄ denote the starting and ending
vertices of the vertex disjoint paths, respectively. The obtained subgraph’s stucture can then be
encoded by matrices A and B with only zeros and ones, where Aji = 1 and Bkn = 1 if and only
if Gji and Xkn denote the edges in the subgraph, respectively. Then following the same analysis
of Proposition V.1 in [69], we can show that C(I − A)−1BWX̄1

is a permutation matrix and
thus has full rank that equals bX̄→W̄ , whereC is a binary matrix that extracts rows of (I−A)−1

corresponding to X̄1. Then following Lemma 3.2 similarly, it holds that[
(A− I)W(W\W̄1) BWX̄1

]
is full rank, and thusF(W̄1, X̄1)defined in (3.7) is structural full rank. ThenbasedonLemma3.3,
TW̄1X̄1

is generically full rank that equals bX̄→W̄ , and thus rank(TW̄X̄ ) ⩾ bX̄→W̄ generically.
For rank(TW̄X̄ ) ⩽ bX̄→W̄ generically, a minimum X̄ − W̄ disconnecting set can be con-

sidered as in [69], which leads to permuted network matrices with block zeros (as also explored
later in (4.10)). Then the proof can be achieved similarly as in [69]. Note that [69] requires its
Lemma V.2 to ensure the invertibility of certain submatrix I − GW̄1W̄1

, which is guaranteed by
Assumption 2.1(b) in this work and thus the lemma is not needed.

By combining Theorem 3.1 and Theorem 3.2, we can now formulate the path-based condi-
tion for generic identifiability, that follows immediately from the previous results.
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Theorem 3.3. Consider a non-parametric model setM that satisfies Assumptions 3.1, 3.2, 3.3
and3.4, and letW̄j be any subset ofW−

j . Then themodules inGjW̄j(q)are generically identifiable
inM from (w, r) if and only if the following conditions hold for the graph associated withM:

bXj→W̄j = |W̄j|, and (3.13a)

bXj→W−
j
= bXj→W̄j + bXj→W−

j \W̄j
. (3.13b)

In the above theorem, condition (3.13a) requires that all the inputs of the target modules
are excited by external signals through vertex disjoint paths. In addition, (3.13b) ensures that
the excitation signals for the inputs of interest W̄j and the other inputsW−

j \ W̄j of wj are
independent.

Similar to [69], generic identifiability can be analyzed by inspecting path-based properties
of G only. Given G, standard graphical algorithms are available for computing the maximum
number of vertex disjoint paths [135]. Note that the conditions (3.13) are similar to the ones in
[69], but now applied to a different situation. Besides the handling of fixed (known)modules in
themodel set, the result is obtained for the notion of generic identifiability inDefinition 3.4 and
more importantly, the non-parametricmodel sets that are not limited to a finite-dimensional pa-
rameter space. In addition, the setXj contains bothmeasured excitation signals and unmeasured
noise signals, which is in contrast to [69] where only measured excitation signals are considered.
Thus, to satisfy the graphical conditions in Theorem 3.3, the noises can compensate for a pos-
sible lack of excitation signals, which significantly relaxes the requirement on the number of
measured excitation signals for generic identifiability.

3.5.2 Path-based conditions for parametric model sets

As shown in [69], the path-rank relation (3.10) can also lead to a path-based condition similar
to Theorem 3.3 for a parametric model set with the corresponding identifiability concept in
Remark 3.1. This result in [69] concerns the genericity notion based on the concept of measure
zero and does not take into account the prior known modules in the network, as illustrated in
Example 3.1. Therefore, we extend (3.10) from [69] to incorporate the genericity concept based
on open dense sets and the prior known modules in the parametric model set by making use of
Assumption 3.4.

Proposition 3.3. Consider a parametric model setMΘ that satisfies Assumptions 2.2 and 3.4,
any subsets W̄ ⊆ W and X̄ ⊆ X . The transfer matrix TW̄X̄ (q, θ) satisfies

bX̄→W̄ = rank[TW̄X̄ (q, θ)] for all θ ∈ Θ̃ ⊆ Θ, (3.14)

where set Θ̃ satisfies the following properties:

1. Θ̃ is an open and dense subset of Θ and
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2. Θ \ Θ̃ has Lebesgue measure zero.

Proof. The rank-path relationship with property (2) follows analogously from [69] and the
proof of Theorem 3.2 to deal with the prior known entries by exploiting Assumption 3.4. The
main tool in [69] is based on the openness and connectedness ofΘ, and the property of the zero
set of complex analytic functions [64, Corollary 10].

To prove the result with property 1, let C1 ⊂ C denote the complex region outside of the
unit circle, and let Θ̄ denote the set of parameters such that det[F(z, θ)] = 0 for all z ∈ C1.
Then we only need to modify Lemma 3.7 by proving that if det[F(z, θ)] is not constant zero, it
becomes zero (as a function of z) only for a closed and nowhere dense subset of Θ, and then the
result follows similarly as the proofs of Lemma 3.3 and Theorem 3.2. The above proof can be
achieved by contradiction as follows. Assuming that Θ̄ is not a closed nowhere dense set, then
Θ̄ must contain a limit point of Θ̄. As det[F(z, θ)] is a complex analytic function in C1 × Θ̄,
it holds that det[F(z, θ)] = 0 for all (z, θ) ∈ C1 × Θ by the identity theorem [2] and the
openness and connectedness of Θ, which contradict that it is not constant zero. This concludes
that det[F(z, θ)] is zero (as a function of z) only for a closed and nowhere dense subset of Θ if it
is not constant zero, and thus Θ̃ = Θ \ Θ̄ is open and dense in Θ.

It canbe found that the path-rank relation in (3.14) holds for both the genericity notionbased
on Lebesgue measure and the notion based on open and dense sets. In addition, by combining
Lemma 3.1 and Proposition 3.3, the path-based condition in Theorem 3.4 can be obtained as a
sufficient condition for the concept of generic identifiability in Remark 3.1 forMΘ, with either
the genericity notion based on the measure zero or the one based on open dense sets.

Corollary 3.3. Consider a parametric model setMΘ that satisfies Assumptions 2.2, 3.1, 3.2 and
3.4, moduleGji(q) is generically identifiable inMΘ from (w, r) if (3.13) hold for the graph asso-
ciated withMΘ.

However, the necessity in the above result cannot be achieved since Assumption 3.3 is still
required, leading to an infinite-dimensional parameter and thus a non-parametric model set.

3.5.3 Path-based conditions: summary

Since the path-based conditions (3.13) are sufficient for the generic identifiability of modules in
both non-parametricmodel sets, as shown inTheorem 3.3, and parametricmodel sets, as shown
in Corollary 3.3, we will merge the above graphical results to obtain a more compact result that
is valid for both parametric and non-parametric model sets.

Firstly, we summarize the different assumptions in Theorem 3.3 and Corollary 3.3 on para-
metric and non-parametric model sets into a single assumption. Recall from Remark 2.1 that a
model setMmay refer to either a non-parametric model set or a parametric model set.

Assumption 3.5. Given a network model setM,
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(a) ifM is a non-parametric model set, it satisfies Assumption 3.3;

(b) IfM is a parametric model set, it satisfies Assumptions 2.2.

The above different assumptions are required because the identifiability analysis of the para-
metric model sets lies in the parameter space, while the analysis of the non-parametric model
sets depends on the model space. Then Theorem 3.3 for non-parametric model sets and Corol-
lary 3.3 for parametric model sets can be summarized into a more compact result.

Theorem 3.4. Consider a model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5, and let
W̄j be any subset ofW−

j . Then the modules in GjW̄j(q) are generically identifiable inM from
(w, r) if the following conditions hold for the graph associated withM:

bXj→W̄j = |W̄j|, and (3.15a)

bXj→W−
j
= bXj→W̄j + bXj→W−

j \W̄j
. (3.15b)

IfM is additionally a non-parametric model set, the above conditions are also necessary for the
generic identifiability of GjW̄j(q).

The above result applies to both parametric and non-parametricmodel sets, where the neces-
sity of the path-based conditions can be achievedwhen a non-parametricmodel set, that satisfies
Assumption 3.3, is concerned. It is important to keep in mind that the generic identifiability of
non-parametricmodel sets is based on the genericity notion in themodel space, while the generic
identifiability of parametric model sets is based on the genericity notion in the parameter space.

Example 3.2. Consider a networkmodel set with its graph depicted in Figure 3.2(a). Themodules
G0

54(q) andG0
21(q) are known, and there are two external signals e1 and r4. The goal is to analyze

the generic identifiability of all the modules in Figure 3.2(a) using Theorem 3.4. To this end, we
need to check conditions (3.15)withW−

j = W̄j for all j, and thus in this special case, (3.15) can be
reformulated equivalently as

bXj→W−
j
= |W−

j |. (3.16)

The internal signals that have unknown in-comingmodules arew5 andw3, while the in-coming
moduleG0

21(q) ofw2 is known, andw4 does not have any internal signal as an in-neighbor. There-
fore, we only need to verify condition (3.16) for j = 5 and j = 3.

When j = 5, we haveW−
5 = {w2,w3} which contains the internal signals having unknown

directed edges tow5. In addition,X5 = {e1, r4} since the two external signals donot have unknown
edges to w5. There are maximally two vertex disjoint paths from X5 toW5, i.e. the path from e1

via w1 to w2 and the one from r4 via w4 to w3, denoted by the red paths in Figure 3.2(a). Since
bX5→W5 = |W5| = 2, the identifiability condition (3.16) holds for j = 5.

Similarly, when j = 3, we have X3 = {e1, r4} andW−
3 = {w1,w4}. It then holds that

bX3→W−
3
= |W3| = 2, where the two vertex disjoint paths fromX3 toW3, i.e. the paths (e1,w1)
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w2

w5

w1

w3 w4

e1 r4

(a)

w2

w5

w1

w3 w4

e1 r4

(b)

Figure 3.2: The graph of a network model set with G0
54 and G0

21 (double‐lined edges) known. All the signals represented by green
vertices are measured.

and (r4,w4), are shown in red in Figure 3.2(b). This concludes the generic identifiability of all the
unknown modules and thus the full network in Figure 3.2.

It can be found from Example 3.2 that by utilizing Theorem 3.4, generic identifiability can
be verified graphically given the modeling assumptions on the topology of the network model
set. This verification can be done efficiently since it is fully graphical and does not rely on the
dynamics of the network models.

An important special case of Theorem 3.4 concerns identifiability of a single target module
Gji(q), i.e. W̄j = {wi}. The identificationof a singlemodule has received considerable attention
[48, 52, 59, 152], and the following identifiability condition for a single module is a prerequisite
for the single module identification methods.

Corollary 3.4. Consider a model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5. Then
moduleGji(q) is generically identifiable inM from (w, r) if the following conditions hold for the
graph associated withM:

bXj→{wi} = 1, and

bXj→W−
j
= bXj→{wi} + bXj→W−

j \{wi}.

IfM is additionally a non-parametricmodel set, the above conditions are also necessary for generic
identifiability of Gji(q).

In the above result, the condition bXj→{wi} = 1 is equivalent to the condition that there is a
directed path fromXj to wi.

3.6 Conclusions

The identifiability analysis for non-parametric model sets and parametric model sets has been
investigated separately in this chapter. For the non-parametric model sets, a different notion of
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genericity based on open and dense sets in a topological space has been introduced, and this no-
tion is not limited to finite-dimensional parameters. With this genericity notion, sufficient and
necessary algebraic and path-based conditions for generic identifiability are derived. Compared
to the existing graphical results, these conditions also address the appearance of prior known
modules and take advantage of noises as excitation sources. When a parametric model set with
finite-dimensional parameters is considered, the formulated conditions for generic identifiability
become only sufficient. Finally, the above identifiability results are combined into path-based
conditions that are valid for the generic identifiability in both non-parametric and parametric
model sets.

3.7 Appendix

3.7.1 Proof of Theorem 3.1

We first prove the following lemma which is instrumental for establishing the necessity in this
theorem.

Lemma 3.4. Consider a model setM that satisfies Assumptions 3.1 and 3.2 and its associated
setM0. If M0 ∈ M does not satisfy (3.6), then for any positive real number r, there exists an-
other model M1 such that (i) M1 differs from M0 only in GjW̄−

j
(q); (ii) M1 ∈ M0; (iii) 0 <

d(M0,M1) < r; (iv) M1 and M0 lead to the same mapping TWX (q).

Proof. Recall the setXj, (2.7), (2.13) and for the simplicity of notation, we omit the dependency
of transfer operators onq. Consider jth rowof (I−G)TWX = X and its columns corresponding
to signals inXj, and after permutation, it leads to[

−GjW̄j −Gj(W−
j \W̄j

) −GjW̃j
1 0

]
T⋆Xj = Xj,

whereXj is a known vector by the definition ofXj,GjW̃j
contains all the known non-zero entries

in the jth row of (I− G). Thus, the above equation leads to

[
−GjW̄j −Gj(W−

j \W̄j)

] [ TW̄jXj

T(W−
j \W̄j)Xj

]
= P, (3.18)

where P = Xj − TjXj +GjW̃j
TW̃jXj

is given. Then based on Corollary 3.2, generic identifiability
concerns if a unique vectorGjW̄j can be obtained givenTWX andP, for almost all models inM.

Consider the network matrix G0 in M0 and (3.6a). If TW̄jXj formulated from M0 is not full
rank, then according to (3.6a), there exists a nonzero transfer vector Q such that QTW̄jXj = 0
and thus [

−(GjW̄j + FQ) −Gj(W−
j \W̄j)

] [ TW̄jXj

T(W−
j \W̄j)Xj

]
= P, (3.19)
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where F is any non-zero scalar transfer operator. Consider now a new network model M1 with
network matrix G1, which is obtained from M0 by replacing only GjW̄j in G0 by GjW̄j + FQ.
Our goal is then to show that there exists an F, such that the obtained new network model M1

satisfies conditions (i), (ii), (iii) and (iv). Note that by construction,M1 already satisfies (i) and
(iv) for any non-zero F.

To show that there exists an F such that condition (ii) holds, we need to find an F such
that: G1 satisfies Assumptions 2.1 (a), (b), (c) andAssumption 3.2;G1 has the same feedthrough
structure as G0; and G1 has the same fixed entries as G0. It can be found that F can be chosen
as F = aF1, where a is an arbitrarily small positive real number and F1 satisfies the following
conditions: F1 is stable and has zeros equal all unstable poles of Q; it has a delay of sufficiently
high order such that F1Q is strictly proper. Then with F = aF1, it is straightforward that G1

satisfiesAssumption2.1(a), (b), Assumption3.2 and the conditions on its feedthrough structure
and its fixed entries. Furthermore, G1 can be shown to satisfy the Assumption 2.1(c) with F =

aF1 as follows. As (I−G0)
−1 is stable, 1/ det(I−G0) is also stable. Based on theLaplace formula,

it holds that
1

det(I− G0)
=

1
1 + [

∑L
i=1(−1)i+jgjiMji − 1]

where Mji is the (j, i) minor of I − G0 and gji is the (j, i) entry of I − G0. Define that L ≜∑L
i=1(−1)i+jgjiMji − 1, and based on the Nyquist stability theorem, the Nyquist plot of L(jω)

for ω ∈ R in the complex domain does not encircle point (−1, 0), because I− G0 is stable and
thus L is stable.

Now consider G1, which differs from G0 only in the jth row. It holds that

det(I− G1) =

L∑
i=1

(−1)i+j(gji + a[F1G1]i)Mji,

where [F1G1]i denotes the ith entry of vector F1G1 and [F1G1]i = 0 for some i. Similarly,

1
det(I− G1)

=
1

1 + L̄(z)
,

where L̄ ≜ L+a
∑L

i=1(−1)i+j[F1G1]iMji.As theNyquist plot ofL(jω)does not encircle (−1, 0)
and a is arbitrarily small, the real part and the imaginary part of L̄(jω)−L(jω) is arbitrarily small
for allω, and thus theNyquist plot of L̄(jω) also does not encircle (−1, 0). Thismeans that there
exists F = aF1 such that 1/ det(I − G1) and consequently (I − G1)

−1 are stable because G1 is
stable. This concludes that with F = aF1, G1 satisfies Assumptions 2.1(c), and thus M1 satisfies
condition (ii). Finally, for condition (iii), with F = aF1, d(M1,M0) = ||G1 − G0||∞ =

a||Δ||∞, where Δ is a matrix contains the vector F1Q and has all the other entries as zeros. As a
is arbitrarily small, ||G1 − G0||∞ can also be made arbitrarily small, which concludes the proof
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for the case that TW̄jXj is not full row rank.
Secondly, consider (3.6b) and assume that the following holds:

rank(TW−
j Xj

) < rank(TW̄jXj) + rank(T(W−
j \W̄j)Xj

).

Then there exist a vector in the row space of TW̄jXj which is linearly dependent on the row space
of T(W−

j \W̄j)Xj
. Equivalently, this means that there exist two non-zero vectors Q1 and Q2 such

that Q1TW̄jXj + Q2TW̄jXj = 0, and thus it holds that

[
−(GjW̄j + FQ1) −(Gj(W−

j \W̄j)
+ FQ2)

] [ TW̄jXj

T(W−
j \W̄j)Xj

]
= P,

where F is any non-zero scalar transfer operator. Now, let M1 be a new model obtained from
M0 by replacingGjW̄j andGj(W−

j \W̄j)
inG0 withGjW̄j + FQ1 andGj(W−

j \W̄j)
+ FQ2, respec-

tively. Then similarly, there always exists aF such thatM1 ∈M0, and d(M1,M0) is positive and
arbitrary small.

With the above lemma, we prove the necessity in this theorem under Assumption 3.3. As
M is an open set ofM0, for any M ∈ M, there exists an open ball B(M, r0) inM0 that is
a subset ofM. Let M̄ be any open and dense subset ofM. If the rank conditions are not
satisfied for M ∈ M̄, there exists another model M1 ∈ M0 that satisfies 0 < d(M1,M) < r0

and is not distinguishable from M, i.e. M1 and M lead to the same mapping TWX (q). Thus,
M1 ∈ B(M, r0) ⊆M, which contradicts generic identifiability.

3.7.2 Proof of Lemma 3.3

Before proceeding to the proof of Lemma 3.3, some preliminary results on structural rank are
presented. Consider a block matrix whose entries are either zeros or distinct indeterminates

K =

[
A− I B

C D

]
, (3.20)

where A is hollow, A and D are of dimensions L × L and m × m, respectively. Here L or m is
allowed to be zero.

Lemma 3.5. If K in (3.20) is not structural full rank, then K can be permuted as[
Ā 0
C̄ D̄

]
, (3.21)

where Ā has dimension k1 × (k1 − 1) for some k1 ⩾ 1.
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Proof. Thenon-zero structure ofK canbe characterizedby a graph Ḡ := (V̄, Ē)with V̄ := W̄∪
X̄ ∪ Ȳ , whereW = {w1, · · · ,wL}, X̄ = {x1, · · · , xm}, andY = {y1, · · · , ym} correspond to
the rows/columns ofA, the columns ofB and the rows ofC, respectively. Besides, a directed edge
(j, i) ∈ Ē := V̄ × V̄ if and only if Kij is non-zero. When K is not structural full rank, it follows
from [154] that bX̄→W̄ < |X̄ | = m in Ḡ. Then, from Theorem 2.1, there exists a X̄ − W̄
disconnecting set D with |D| = m − 1 in Ḡ. Note that with D and based on Lemma 2.1, we
can divide V̄ into three disjoint setsD, S andP with |S|+ |P| = L + m + 1. Moreover, there
is no edge from S toP , where S ⊆ W̄ ∪ X̄ ,P ⊆ W̄ ∪ Ȳ . Thus, from the definition of Ē , we
can find a permutation of K in the form of (3.21) with a zero block, whose rows and columns
correspond to P and S , respectively. Furthermore, the column dimension of Ā is computed as
L + m− |S| = |P| − 1, which completes the proof.

Lemma 3.6. Let the non-zero entries ofK in (3.20) be divided into two disjoint setsP1 andP2. If
det(K) does not depend on the entries inP1, then

det(K) = (−1)j
l∏

i=1

det(Ai), for some l ⩾ 1, j ∈ {0, 1},

where Ai is a square submatrix of K that contains only non-zero entries inP2.

Proof. When P1 = ∅, the proof is trivial. Now suppose P1 ̸= ∅, and consider the cofactor
expansion formula of det(K), which contains a term b det(B̄) with det(B̄) the cofactor of the
nonzero entry b ∈ P1. Since det(K) does not depend on b, we obtain det(B̄) = 0, i.e., B̄ is not
structural full rank. Then it follows from Lemma 3.5 that K can be be permuted as⋆

[
B̄11 0
B̄21 B̄22

]
b ⋆

 :=

[
Ã 0
C̃ D̃

]
,

with square matrices Ã and D̃, and C̃ containing b. Then, we have

det(K) = ± det(Ã) det(D̃),

which does not depend on b. Here, the sign± depends on the permutation. If Ã or D̃ contains
other entries inP1, the above analysis can be applied recursively, which proves the lemma.

With the above results based on the structural rank, we need one additional lemma which is
instrumental for the proof of Lemma 3.3.

Lemma 3.7. Given a model setM that satisfies Assumption 3.3, and consider any W̄ ⊆ W and
any X̄ ⊆ X with |W̄| = |X̄ |. If det[F(W̄, X̄ )] is not constant zero (as a function of the unknown
entries), F(W̄, X̄ ) is full rank for almost all M inM.
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Proof. Consider the setM0 corresponding toM in Assumption 3.3. Since C = I, and Λ i.e.
the fifth coordinate ofM in (2.4), does not influence the rank ofF, we only need to consider the
first three coordinates, i.e. M̄ ≜ (G,R,H). Let M̄0 denote the projection ofM0 on its first
three coordinates. Let F denote the set of elements in M̄0 with full rank F. We aims to prove
if det[F(W̄, X̄ )] is not constant zero, F is an open dense subset of M̄0. Then this gives F full
rank for almost all elements inM0 and thus inM, since the intersection of the open setM and
any open dense subset ofM0 is also open and dense inM.

If det(F) is a non-zero constant as a function of M̄ ∈ M̄0, F is full rank for all M̄ inM̄0 and
thus the lemma holds. Then we focus on the case where det(F) is not a constant and show that
F is open and dense in M̄0.

For denseness, consider any network M̄ ∈ M̄0 whose F is not full rank, i.e. det(F) = 0.
Then consider an open ball in M̄0 denoted as B(M̄, ε) with any radius ε > 0, and we aim to
prove the existence of a different model M̄1 in B(M, ε) such that det(F1), which is formulated
on M̄1, is non-zero. Firstly consider a model M̄2 ∈ M̄0 whose corresponding F matrix is full
rank, andwe defineΔ ≜ M̄2−M̄with d(Δ, 0) = δ, where δ is some positive real number, and 0
denotes amodel with all entries being zeros. Thenwe formulate a newmodel as M̄1(γ) = γΔ+

M̄, which depends on a real number γ. It is clear that M̄1(1) = M̄2, and thus the det(F) of M̄1(1)
is non-zero. Similarly, det(F) of M̄1(0) is zero. This shows that the analytic function h(z, γ),
obtained from det(F) formulated on M̄1(γ), is not constant onC×R. Then by the property of
non-constant analytic functions, there exists γ0 ∈ (0, ε/δ), such that h(z, γ0) and thus det(F)
of M̄1(γ0) is non-zero. In addition, it holds that d(M̄1(γ0), M̄) = d(γ0Δ, 0) = γ0δ < ε,
where the second equality holds as the definition of the metric function after Definition 3.3 is
based on norms. This shows that M̄1(γ0) ∈ B(M̄, ε), and recall that the F matrix formulated
on M̄1(γ0) is full rank. This concludes the proof for denseness.

For openness, given any W̄ and X̄ , denote the corresponding || det(F(M))||∞ as a function
f from M̄0 to R. As f is a composition of continuous functions, i.e. the determinant function
and the norm, f is also continuous. It also holds that the set F equals f−1((0,+∞)). More-
over, by the property of a continuous function, i.e. the preimage of an open interval is open,
f−1((0,+∞)) is an open subset of M̄0. This concludes both openness and denseness.

Finally, with all the above preliminary lemmas, Lemma 3.3 can be proved as follows.

Proof. Without loss of generality, consider that |W̄| ⩽ |X̄ |, and thus TW̄X̄ being full generic
rank implies that its square submatrix TW̄X̄1

is full rank generically for someX1. Denote |X̄1| =
m, and use F̄ to represent F(W̄, X̄1). It holds that F̄ is generically full rank if and only if TW̄X̄1

is generically full rank based on (3.8), and F̄ is structural full rank if and only if F is structural
full rank. Therefore, the proof aims to prove that F̄ is structural full rank if and only if it is
generically full rank. Let aij denote the (i, j) entry of F̄. The “if” part is clear as being structural
full rank is a necessary condition for being full rank generically. For the “only if” part, consider
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now all the summands in the Leibnitz formula for det(F̄). If F̄ is structural full rank, without
loss of generality, det(F̄) contains a term according to a permutations σ̄ of [1, · · · ,L + m] as

a
L+m∏

i=p+1

aσ̄(i)i ̸= 0, (3.22)

for some p ⩾ 0, where σ(i) denotes the i-th index in the permutation, and a is the product of
all unknown entries in the term and also contains the maximum number of unknown entries
among the other permutations of [1, · · · ,L+m]. In addition, the summation of all terms with
the common factor a in det(F̄) equals

a det(F̄{σ̄(p+1),··· ,σ̄(L+m)}{p+1,··· ,L+m}). (3.23)

Denote the above submatrix of F̄ as F1. Then the determinant of F̄ is proved to be non-zero
(as a function of unknown entries) by showing that the term (3.23) is non-zero as follows. As
(3.22) contains themaximumnumber of unknown entries compared to the other permutations,
det(F1) does not dependent on the unknown entries when considered as a polynomial of F1’s
all non-zero entries. Based on Lemma 3.6, (3.23) can be reformulated as

(−1)ja
l∏

i=1

det(Ai), (3.24)

for some l ⩾ 1 and j ∈ {0, 1}, where Ai contains only known transfer functions and is square
submatrix of F1 and thus of F̄. As (3.24) contains the non-zero term (3.22) after expansion, Ai

is structural full rank and thus full rank by Assumption 5, for all i. This means that det(F1) is
non-zero, and thus det(F̄) contains the non-zero term (3.23) and is not constant zero. Then
based on Lemma 3.7, F̄ is full rank for almost all M ∈M, which concludes the proof.
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人生如逆旅，我亦是行人。

苏轼（宋）

Life is like a journey. I too am on my way.

Shi Su (Song dynasty); Translated by Yuanchong Xu

4
Identifiability with full measurement:

Synthesis

4.1 Introduction

The results in Chapter 3 and the related graphical results in [14, 69, 157] for identifiability fo-
cus on the analysis question, i.e. under what conditions modules in a network are (generically)
identifiable? However, none of these conditions has referred to the synthesis problem, that is:
where to allocate excitation or measurement signals to achieve network identifiability? Prelim-
inary results to achieve identifiability of a full network in [13] are limited to special network
structures, e.g. trees. While the allocation of excitation signals has been considered in the iden-
tification literature for identifying local modules, e.g., in [48, 59, 122, 152, 168], these results
do not consider the identifiability aspect and typically depend on the particular identification
method under consideration.

To the best of our knowledge, the synthesis problem for a general dynamic network has not
been addressed in the literature so far. Actually, such a synthesis problem has more realistic sig-
nificance in the identification of dynamic networks, since it determines the cost of identification
experiments in networks. This becomes the motivation of this chapter.

The material of this chapter is based on the results in [36, 38, 139].
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In this chapter, we address the synthesis problem for the situation where all the internal sig-
nals are measured, and our goal is to develop synthesis approaches to allocate excitation signals
(actuators) such that a subset ofmodules or a full network becomes generically identifiable. The
synthesis procedures for identifiability of a subnetwork, i.e. a subset of modules, and identifia-
bility of a full network are discussed separately since they require different graphical tools.

For the synthesis problem for a subnetwork, a novel graphical condition for generic identifia-
bility of a subnetwork is developed, by exploiting the concepts of disconnecting sets. Compared
to the existing path-based condition, the new result makes explicit suggestions regarding which
internal signals should be excited for generic identifiability. Based on that information, a novel
synthesis approach is developed to allocate excitation signals, such that generic identifiability of
a subnetwork can be achieved.

When the synthesis problem for a full network is concerned, a more compact synthesis ap-
proach can be developed based on a novel graphical concept, called pseudotrees. A new analysis
result for generic identifiability of a full network is obtained, which shows that identifiability can
be achieved if the full network is covered by pseudotrees, and a root of each pseudotree is excited.
This leads to a novel synthesis procedure to achieve generic identifiability of a full network, by
first decomposing a network into a set of pseudotrees and then allocating signals to excite these
pseudotrees.

This chapter is organized as follows. The novel analysis result for a subnetwork is presented
in Section 4.2, and the synthesis procedure for a subnetwork is developed in Section 4.3. Then
the concept of pseudotrees is introduced in Section 4.4, which leads to a synthesis approach for
identifiability of a full network in Section 4.5. Some of the proofs are collected in Section 4.7.

4.2 Disconnecting-set-based conditions for subnet-
work identifiability

4.2.1 Generic identifiability based on disconnecting sets

The graphical condition in Theorem 3.4 can be applied to analyzing generic identifiability in a
given model set. However, it does not explicitly indicate where to allocate external signals such
that a particular set of modules becomes generically identifiable. To solve this synthesis ques-
tion, a new analytic result is developed in this section by exploring the duality between vertex
disjoint paths and disconnecting sets, as also indicated in [69]. In this section, we will exploit
this relationship in a novel way for subnetwork generic identifiability, while providing a solu-
tion to the synthesis question as well. This synthesis question will be addressed inmore detail in
Section 4.3.

Recall the Menger’s theorem in Theorem 2.1, from which the generic identifiability condi-
tion in Theorem 3.4 can be reformulated using the concept of disconnecting sets.
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Corollary 4.1. Consider a model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5, and let
W̄j be any subset ofW−

j . The conditions (3.15) hold if and only if

|D2| = |W̄j|, and

|D1| = |D2|+ |D3|, (4.1)

whereD1,D2 andD3 are minimumXj−W−
j ,Xj−W̄j andXj−W−

j \ W̄j disconnecting sets,
respectively.

The relevance of disconnecting sets and generic identifiability is further illustrated in the fol-
lowing example.

w1 w2 w3

r1

w4

(a)

w1 w2 w3

r1

w4

r2

(b)

Figure 4.1: Generic identifiability of G41 is considered (thick line). G41 is not generically identifiable in (a) but becomes generically
identifiable in (b) if an extra signal r2 is allocated at w2 .

Example 4.1. Given the network model in Figure 4.1(a), where G41 is the target module. In this
setting, X4 = {r1},W−

4 = {w1,w2,w3} and W̄4 = {w1}. Minimum disconnecting sets in
Corollary 4.1 are thenD1 = D2 = {w1},D3 = {w2}, whereD3 is a disconnecting set from {w1}
to the other in-neighbors of w4, i.e., {w2,w3}. The module G41 is not generically identifiable in
Figure 4.1(a) since (4.1) is not satisfied. To achieve generic identifiability ofG41, an extra excitation
signal r2 can be allocated atw2, which changesD1 to {w1,w2} and thus (4.1) are satisfied. This is
shown in Figure 4.1(b). It can also be verified that bX4→W4 = bX4→W4\{w1} + 1, which implies
that G41 is generically identifiable according to Theorem 3.4.

It is observed from this example that generic identifiability ofGji is achievedwhen the vertices
in a disconnecting set from {wi} to the other in-neighbors ofwj are excited. This observation is
generalized to obtain a new graphical condition based on disconnecting sets.

Theorem 4.1. Consider a model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5, and let
W̄j be any subset ofW−

j . The conditions (3.15) hold if and only if the following two equivalent
conditions hold:

1. There exists aXj −W−
j \ W̄j disconnecting setD such that

bXj→W̄j∪D = |D|+ |W̄j|.
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2. There exist a set of external signals X̄j ⊆ Xj and a X̄j−W−
j \ W̄j disconnecting setD such

that
bX̄j→W̄j∪D = |D|+ |W̄j|. (4.2)

The proof of the above theorem is presented in Section 4.7. In the above result, condition 1
ismore similar toTheorem 3.4 than condition 2 as all signals inXj are considered in condition 1;
on the other hand, condition 2 shows that there is extra freedom in considering a subset of signals
in Xj. In addition, compared to Theorem 3.4, Theorem 4.1 explicitly states that the signals in
W̄j ∪ D should be indirectly excited, i.e. there are vertex disjoint paths from external signals X̄j

to W̄j ∪ D. The above information will be helpful for the design of synthesis approaches to
allocate excitation signals.

Condition 2 of Theorem 4.1 is visualized in Figure 4.2, and this condition implies thatD is
also a disconnecting set from the inputs of the target modules W̄j to the other inputsW−

j \ W̄j

of wj. In addition, to guarantee generic identifiability of the target modules, condition 2 shows
that W̄j andW−

j \ W̄j should receive independent excitation provided by the external signals,
which have paths via D toW−

j \ W̄j. Moreover, each input of the target modules should be
excited by a distinct excitation signal.

wj

Figure 4.2: Visualization of condition 2 in Theorem 4.1, where W̃j collects all inputs of wj through known modules.

4.2.2 Algebraic interpretation of disconnecting sets

From Lemma 2.1, a disconnecting set in a graph separates its vertex set into several disjoint sub-
sets. This graph separation also leads to a factorization of the external-to-internal mappings for
the associated dynamic network.

Theorem 4.2. Consider a network model M with the induced graph G and a disconnecting set
D ⊆ V from X̄ ⊆ X to W̄ ⊆ W . Then there exists a proper transfer matrix K(q) such that

TW̄X̄ (q) = K(q)TDX̄ (q). (4.3)
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The transfer matrix K(q) can be explicitly expressed as follows:
The X̄ − W̄ disconnecting setD divides all vertices in three disjoint sets, i.e. V = S ∪D ∪P ,

according to Lemma 2.1, on the basis of which the following sets are defined: W̄D = W̄ ∩ D,
W̄P = W̄ ∩ P , X̄D = X̄ ∩ D,Dw = W ∩ D,Dx = X ∩ D, Pw = W ∩ P . Consider TDX̄

to be ordered in three block rows, according to the decomposition ofD = Dw ∪ X̄D ∪ (Dx \ X̄D).
Then

K =

[
[(I−GPwPw)

−1]W̄P⋆ 0
0 C

][
GPwDw XPwX̄D 0

I 0 0

]
(4.4)

where C is a selection matrix that extracts the rows of TDwX̄ corresponding to W̄D.

The proof of the above theorem is presented in Section 4.7. The decomposition in (4.3)
means that if all paths from X̄ to W̄ intersect with D, then the signals in D act as auxiliary
signals that contain all information, that is relevant for W̄ , from X̄ . It is easier to interpretK(q)
matrix in a special case where W̄D = Dx \ X̄D = ∅, which leads to

K(q) = [(I−GPwPw)
−1]W̄P⋆

[
GPwDw XPwX̄D

]
.

In this special case, it holds thatD = Dw ∪ X̄D and W̄P = W̄ . Then similar to the mapping
TWX (q) = [I − G(q)]−1X(q) in a network model with graph G, the above K(q) matrix can
thus be interpreted as an external-to-internal mapping fromD to W̄ in a subgraph of G, where
Pw contains all the internal signals andD contains the external signals of the subgraph.

Using the factorization result of Theorem 4.2, if condition 1 of Theorem 4.1 holds, then the
Xj −W−

j \ W̄j disconnecting setD ensures a factorization as

T(W−
j \W̄j)Xj

(q) = K(q)TDXj(q).

Then it can be relatively simple to show how the conditions in Theorem 4.1 directly relate to the
original rank conditions in Theorem 3.1, based on the path-rank relation in Theorem 3.2.

In addition, we also show that the factorization result (4.3) is a very attractive result that
leads to a generalized indirect identification method for identifying GjW̄j . Let us first consider
the following corollary of Theorem 4.2.

Corollary 4.2. Consider a networkmodel with all fixedmodules being zero and any subset W̄j ⊆
W−

j . LetD be a W̄j −W−
j \ W̄j disconnecting set such thatD ∩ W̄j = ∅. LetX1 denote the set

of all external signals that do not have directed edge to wj. If there exists a set X̄ ⊆ X1 such that[
TW̄jX̄ (q)
TDX̄ (q)

]
has full row rank andD is also a X̄ −W−

j \ W̄j disconnecting set, then

GjW̄j(q) = TjX̄ (q)

[
TW̄jX̄ (q)
TDX̄ (q)

]† [
I|W̄j|

0

]
, (4.5)
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where (·)† denotes thematrix’s right inverse, and I|W̄j| is an identitymatrix with dimension |W̄j|.

Proof. FromTheorem 4.2, there existsK such thatKTDX̄ = T(W−
j \W̄j)X̄ . In addition,wj /∈ D

andD ∩ W̄j = ∅ hold, as the later is necessary for the matrix being full row rank. Then recall
the jth row of (I− G)TWX = X, and after permutation we have

[
−GjW̄j −Gj(W−

j \W̄j)
K 1 0

]


TW̄jX̄

TDX̄

TjX̄

⋆

 = XjX̄ ,

where XjX̄ = 0 as X̄ has no directed edge to wj. Thus the above equation leads to (4.5).

The expression (4.5) shows an immediate opportunity to estimate GjW̄j(q) on the basis of a
selected set of measured internal signals. In the situation that all the signals in X̄ are measured
excitation signals r, the transfer functions on the right hand side of (4.5) can all be estimated
through so-calledopen-loop identificationmethods, on thebasis ofmeasured signals in X̄ ∪W̄j∪
D∪{wj}. Thismethod is a generalization of the “classical” indirectmethod of identification, see
e.g. [59], where all inputs of wj are measured and directly excited to estimate a single module,
i.e. W̄j = {wi}. That situation can be characterized by the choice D ∪ W̄j = W−

j , i.e. all
in-neighbors of wj except wi are selected into the disconnecting set. The generalization of this
indirect method now allows for a more flexible choice of signals as well as more flexibility in
providing excitation signals r for estimating GjW̄j .

The rank condition that is formulated in Corollary 4.2 can be verified in a generic sense by
requiring that

bX̄→W̄j∪D = |W̄j|+ |D|. (4.6)

In other words: there should be sufficient vertex disjoint paths from the measured external exci-
tation signals in X̄ to the internal signals in W̄j andD.

4.2.3 Relationwith the parallel path and loop condition

In dynamic network analysis and identification, there is a recurring condition that plays an im-
portant role in the selection of a set of measured internal signals that is sufficient for identifying
a single target module Gji(q) in the network. The condition was first formulated in [48], as the
parallel path and loop conditionwhich selects a set of internal signals as follows:

Determine a set of internal signalsD according to:

• Every parallel path fromwi towj, i.e. a path that is not the edgeGji(q), passes through an
internal vertex inD, and

• Every loop around wj passes through a vertex inD.
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If in a network where all signals wi, wj and D are retained, and all other internal signals are
eliminated (immersed), e.g., because they can not be measured, then in the obtained immersed
network that leaves the signalswi,wj andD invariant, the targetmoduleGji(q) remains invariant
too. As a result, the parallel path and loop condition has become an important tool for selecting
internal signals to be measured for identification of a single module, see e.g. also [122, 168],
where the network abstraction is introduced in the latter reference as a generalization of network
immersion.

It can be shown that the parallel path and loop condition has a very strong link to the dis-
connecting set-based results on generic identifiability in Theorem 4.1 and its later implication
in Corollary 4.3, when a single module is concerned, i.e. W̄j = {wi}.

Proposition 4.1. Consider a model set with graph G in which all non-zero modules in G(θ) are
unknown. Consider the module Gji(q) and a set of internal signalsD with {wi} /∈ D. ThenD
is an {wi} − W−

j \ {wi} disconnecting set if and only ifD contains an internal vertex in every
parallel path from wi to wj and a vertex in every loop around wj.

The proof of the above result is presented in Section 4.7. The above connection between
disconnecting sets and the parallel path and loop condition is preliminarily investigated in [48,
Proposition 9], where disconnecting sets are also referred to as separating sets; however, the con-
nection established in [48] requires a modification of the graph G by splitting the vertices. In
addition, the parallel path and loop condition is equivalently formulated into the search of two
disconnecting sets in [48], which is less compact than Proposition 4.1 where only a single dis-
connecting set is needed.

While the parallel path and loop condition has served as a means for selecting internal signals
to bemeasured for identifyingGji(q), it can also be used to select internal signals to be externally
excited for single module identifiability, according to the results of Theorem 4.1. Moreover, in
the situation of considering the identification of a set ofmodules, i.e. |W̄−

j | > 1, the verification
whether multiple parallel paths are covered by a selection of internal signals can now be very
effectively executed by an algorithm that constructs a (minimum) disconnecting set between the
appropriate vertices.

4.3 Signalallocationforsubnetworkidentifiability

IfGjW̄j(q) is not generically identifiable in a given networkmodel set, extra excitation signals can
be allocated by users to achieve generic identifiability ofGjW̄j(q). This section aims to tackle this
synthesis problem by means of exploiting condition 2 in Theorem 4.1.

Consider a network model set with a set of initial external signals X 0
j that do not have un-

known directed edges to wj. The synthesis problem aims to allocate a minimum number of
additional excitation signals X a

j such that the generic identifiability of GjW̄j(q) is guaranteed.
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In this synthesis problem, it is assumed that if rk is allocated directly at the output of interestwj,
its corresponding transfer function Rjk is known.

This main idea for designing synthesis approaches follows from condition 2 of Theorem 4.1,
however, in a reversed order. While the condition considers the existence of a X̄j −W−

j \ W̄j

disconnecting setD given X̄j, the synthesis approaches find a setD first and then construct X̄j by
allocating signals, such thatD becomes a X̄j−W−

j \ W̄j disconnecting set and (4.2) is satisfied.
An initial choice for a setD can be motivated on the basis of the following corollary.

Corollary 4.3. Assume that one of the conditions in Theorem 4.1 is satisfied, it holds thatD is a
X̄j−W−

j \W̄j disconnecting set if and only if it is a W̄j∪X̄j−W−
j \W̄j disconnecting set subject

toD ∩ W̄j = ∅.

Proof. The ”if” part is trivial. The ”only if” part is proved by contradiction. IfD is not a W̄j −
W−

j \ W̄j disconnecting set, i.e. there exists a path from W̄j to W−
j \ W̄j which does not

intersect withD, then there is also a path fromXj (or X̄j) via W̄j toW−
j \ W̄j and the path does

not intersect withD, which contradicts thatD is a disconnecting set. D∩V̄2 = ∅ is trivial.

As shown in Figure 4.2, the above result indicates that a W̄j −W−
j \ W̄j disconnecting set

D subject toD ∩ W̄j = ∅ can be computed first, which is independent of the external signals.
Then according to (4.2), extra excitation signals can be allocated such that the signals inD∪W̄j

are excited, andD becomes a disconnecting set from the allocated signals toW−
j \ W̄j.

As the number of required excitation signals depends on the cardinality of the disconnecting
set, a minimum disconnecting set is desired. Additionally, based on Corollary 4.3, a minimum
disconnecting setD subject to W̄j∩D = ∅ needs to be found. As standard graphical algorithms
for computing minimum disconnecting sets do not take into account any constraint, we rede-
fine the disconnecting set so as to make standard algorithms applicable. Recall the notation in
Section 2.5 that N̄+

V̄ denotes the set of all the out-neighbors of the vertices in a set V̄ .

Proposition 4.2. Consider a model setMwith its associated graph G. For any subset X̄j ⊆ Xj, a
minimum disconnecting setD from W̄j ∪ X̄j toW−

j \ W̄j subject to W̄j ∩D = ∅ is a minimum
disconnecting set from N̄+

W̄j
∪ X̄j toW−

j \ W̄j.

Proof. Wewill first show that for any vertex setD subject to W̄j ∩D = ∅,D is a disconnecting
set from N̄+

W̄j
∪ X̄j toW−

j \ W̄j if and only if it is also a disconnecting set from W̄j ∪ X̄j to
W−

j \ W̄j. The “only if” part holds because ifD intersects with all the paths from N̄+
W̄j
∪ X̄j to

W−
j \ W̄j, then it also intersects with the paths from W̄j ∪ X̄j toW−

j \ W̄j. For the “if” part,
since W̄j ∩ D = ∅ andD intersects with all the paths from W̄j ∪ X̄j toW−

j \ W̄j, those paths
from W̄j toW−

j \ W̄j must intersect withD at their internal vertices or ending vertices. Since
the first internal vertices of the paths belong to set N̄+

W̄j
, thenD is also a disconnecting set from

N̄+
W̄j
∪ X̄j toW−

j \ W̄j.
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Having the above result, the proposition is proved by showing that a minimum disconnect-
ing set D from N̄+

W̄j
∪ X̄j toW−

j \ {wi} does not contain W̄j, because if it does, it remains a
disconnecting set after W̄j is excluded, which contradicts the minimality ofD.

Based on the above proposition, a minimum disconnecting set D from N̄+
W̄j

toW−
j \ W̄j

can be computed for the synthesis problem, which now is an unconstrained problem and thus
can be solved by standard graphic algorithms, e.g. the Ford-Fulkerson algorithm [135]. Then
the following synthesis result can be derived from Theorem 4.1(2) and Corollary 4.3.

Corollary 4.4. Consider a network model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5.
Given any minimum disconnecting set D from N̄+

W̄j
toW−

j \ W̄j, assigning distinct excitation
signals to every vertex inD∪W̄j leads to the generic identifiability ofGjW̄j(q) inM from (w, r).

Proof. Let X a
j denote the set of allocated signals, and it holds that X a

j ⊆ Xj in the obtained
model set after allocation, i.e. X a

j hasnounknowndirect edge towj. As these signals are allocated
directly atD∪W̄j,D is a N̄+

W̄j
∪X a

j −W−
j \{wi} and thus aW̄j∪X a

j −W−
j \{wi}disconnecting

set, based on Proposition 4.2. In addition, equation (4.2) clearly holds under X̄j = X a
j . Thus,

Theorem 4.1(2) is satisfied under X̄j = X a
j and the givenD.

The above result leads to an approach with a simple implementation. However, it does not
consider the initially existing signalsX 0

j , which can potentially reduce the number of additional
excitation signals. Moreover, the signals are directly allocated at the vertices inD∪W̄j. Tomake
use of X 0

j and to explore the freedom to allocate the signals, a more comprehensive method is
introduced in Algorithm 1. Also, note that X 0

j may contain both measured excitation signals
and unmeasured noise signals.

Given a network model set with the target modules in GjW̄j(q) and the pre-existing external
signalsX 0

j , Algorithm1 computes aminimumdisconnecting setD from N̄+
W̄j
∪X 0

j toW−
j \W̄j

first and then removes the vertices inD ∪ W̄j that are already excited by X 0
j via vertex disjoint

paths. Then the algorithm allocates additional excitation signals to excite the remaining vertices
inD ∪ W̄j through vertex disjoint paths. The validity of Algorithm 1 is shown in the following
result.

Theorem 4.3. Given a network model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5. In
the returned model set of Algorithm 1 with the allocated excitation signals, GjW̄j(q) is generically
identifiable from (w, r).

Proof. From step 1 to 2 in Algorithm 1, by construction, if |P| = |D ∪ W̄j|, equation (4.2)
holds with X̄j = X 0

j , and thus the modules are generically identifiable in the original model set
M.
When |P| < |D∪W̄j|, based onTheorem 4.1, we need to allocate extra |D∪W̄j|− |P| signals,
such that: (i) there are |D ∪W̄j|− |P| vertex disjoint paths from these signals to (D∪W̄j) \ D̄,
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Algorithm 1 Signal allocation for a single module

INPUT:Amodel setMwith graph G, the target modules GjW̄j , and a set of initial external
signalsX 0

j ;
OUTPUT:A newmodel setMout with its graph Gout and the allocated signals.

1: Compute a minimum disconnecting setD from N̄+
W̄j
∪ X 0

j toW−
j \ W̄j;

2: Based on Lemma 4.3, compute a set of paths P that contains the maximum number of
vertex disjoint paths fromX 0

j toD∪ W̄j, while the paths are internally vertex disjoint with
D ∪ W̄j;

3: Let D̄ ⊆ D ∪ W̄j denote all the ending vertices of the paths inP ;
4: if |P| < |D ∪ W̄j| then
5: Find the largest set W̄ ⊆ W such thatD is a disconnecting set from W̄ toW−

j \ W̄j;
6: Build a subgraph Ḡ ⊆ G by removing all the vertices and edges of the paths inP ;
7: Find a setWexp ⊆ W̄ such that in Ḡ, there are |D∪W̄j|− |P| vertex disjoint paths from

Wexp to (D ∪ W̄j) \ D̄ ;
8: InG, assign distinct excitation signals to every vertex inWexp, which leads to a newmodel

setMout with a new graph Gout;
9: ReturnMout with the graph Gout;
10: else
11: Mout ←M and Gout ← G;
12: ReturnMout with the graph Gout.
13: end if

and these paths are also vertex disjoint withP ; (ii)D remains a disconnecting set from the added
signals toW−

j \ W̄j. Then we can find in the algorithm, step 5 guarantees (ii), and steps 3, 6, 7
and 8 guarantee (i). This concludes the proof.

Remark 4.1. In Algorithm 1, the excitation signals do not need to be allocated directly at the ver-
tices inD∪W̄j. It sufficeswhen they reach these vertices through vertex disjoint paths from excitation
locations elsewhere in the network. In addition, the obtained experimental setup in Algorithm 1
may not be unique.

Algorithm 1 and the synthesis approach in Corollary 4.4 guarantee the minimum number
of allocated signals when X 0

j = ∅, as a minimum disconnecting set is used. When X 0
j ̸= ∅,

the following bound on the number of additionally required signals can be derived based on
Algorithm 1.

Corollary 4.5. Given a network model setM that satisfies Assumptions 3.1, 3.2, 3.4 and 3.5.
Let X 0

j denote the set of initial external signals that have no unknown directed edge to wj. LetD
be a minimum disconnecting set from N̄+

W̄j
∪ X 0

j toW−
j \ W̄j, and let c denote the number of

additional excitation signals available for allocation. The number of additional excitation signals
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c is sufficient to make GjW̄j(q) generically identifiable if

c ⩾ |D ∪ W̄j| − bX 0
j →D∪W̄j

.

The procedure of Algorithm 1 is illustrated in the following example for the case where W̄j

only contains a single vertex.

Example 4.2. For the network model set in Figure 4.3(a), the problem is to allocate excitation
signals such thatG73(q) becomes generically identifiable. All the internal signals are measured in
this model set, and module G75(q) is known. In addition, it holds thatW−

7 = {w3,w4,w6,w8}
which contains all the inputs of w7 through unknown modules.

w3 w4 w5

w1

w6

w2

e

w8

w7

(a)

w3 w4 w5

w1

w6

w2

e

w8

r1

r5

w7

(b)

Figure 4.3: An example of allocating signals for generic identifiability of G73 (thick line) using Algorithm 1 with a known module
G75 (double‐lined edge). Starting from the network model set, a disconnecting set {w4,w7} (red vertices) from {w3, e} to
{w4,w6,w8} is computed in (a). Since there already exists an external signal e which has a path to w4 , a vertex in the discon‐
necting set, we only need to add r1 and r8 as in (b), which achieves generic identifiability of G73 .

X 0
7 = {e} is the only external signal that is initially present. Firstly, a disconnecting set from

X 0
7 ∪ {w3} = {w3, e} toW−

7 \ {w3} = {w4,w6,w8} is constructed as D = {w4,w7}, in-
dicated by the red vertices in Figure 4.3(a). Based on Theorem 4.1, the generic identifiability of
G73(q) requires three vertex disjoint paths from external signals to D ∪ {w3} = {w3,w4,w7},
whileD remains a disconnecting set from the external signals toW7 \ {w3}. Following step 2 in
Algorithm 1, we find a path e→ w4 fromX 0

7 toD ∪ {w3} (colored blue in Figure 4.3(a)). Thus
we only need to allocate extra excitation signals from which there are two vertex disjoint paths to
{w3,w7}, and the two paths should be vertex disjoint with e → w4. As in step 5, the potential
locations to allocate excitation signals is W̄ = {w1,w2,w3,w4,w5,w7}, which satisfies that D
remains a disconnecting set from W̄ toW−

7 \ {w3}. After removing path e→ w4 as in step 6, we
chooseWexp = {w1,w5} ⊆ W̄ to be excited by r1 and r5, as shown in Figure 4.3(b).

According to Theorem 4.1,G73(q) is indeed generically identifiable in Figure 4.3(b): There ex-
ists a disconnecting setD = {w4,w7} fromX7 = {r1, r5, e} toW−

7 \{w3} = {w4,w6,w8} such
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that bX7→D∪{w3} = 3, i.e. there are maximally three vertex disjoint paths fromX7 toD∪{w3},
as indicted by the blue paths in Figure 4.3(b). Note that in this example, the choice of excitation
locations, i.e. the setWexp, is not unique, e.g., choosingWexp = {w3,w7} to be excited can also
achieve the generic identifiability of G73(q).

When the generic identifiability of a subset of modules with different outputs is of interest,
i.e. the modules in GjW̄j(q) for some j ∈ {1, · · · ,L}, Algorithm 1 can be applied recursively
to achieve the generic identifiability of GjW̄j for each j. If the generic identifiability of the full
network is concerned, amore compact graphical approach for signal allocation can be developed
in the following sections.

4.4 Disjoint Pseudotree Covering

The synthesis approaches in theprevious sections cannaturally be extended to address the generic
identifiability of a full network, by applying the synthesis algorithm to each local MISO subsys-
tem such that GjWj(q) is generically identifiable for every j. However, such a local procedure
may allocate redundant excitation signals and increase the experimental cost for the synthesis
of a full network, since each MISO subsystem is considered independently and the connection
between different MISO subsystems is overlooked.

To develop a synthesis tool that does not require the above vertex-wise procedure, wewill first
introduce a novel graph concept in this section, called pseudotrees, and relevant results on disjoint
pseudotree covering. Then in Section 4.5, a new characterization of generic identifiability will
be presented based on disjoint pseudotrees, which further leads to an excitation signal allocation
approach for the generic identifiability of a full network.

We make the result of this section self-contained and independent of the signal allocation
problem of dynamic networks. Some basic graphical notations used in the pseudotree-related
results are first introduced. Given a directed graphG, we denoteV(G) and E(G) as the vertex set
and edge set of G, respectively. The union of two graphs G1 and G2 is denoted by G ≜ G1 ∪ G2,
where V(G) = V(G1) ∪ V(G2) and E(G) = E(G1) ∪ E(G2). The sources and sinks of G are
collected by sets Sou(G) and Sin(G), respectively.

In this section, a novel graph concept called directed pseudotree is introduced.

Definition 4.1. A connected simple directed graph T , with |V(T )| ≥ 2, is called a (directed)
pseudotree if any vertex in T has at most one in-neighbor.

The above concept of pseudotrees is an extension of its definition in the undirected case, in
which they are also referred to as unicyclic graphs, see e.g., [44, 108]. Particularly, we exclude a
singleton vertex being a pseudotree. Analogous to directed tree graphs, the following terminolo-
gies are used.
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root leafinternal vertex

Figure 4.4: Typical examples of pseudotrees, in which roots, internal vertices and leaves are labeled with different colors. Note
that a pseudotree may have multiple roots.

Definition 4.2. In a directed pseudotree T , a vertex is called a root if there is exactly one directed
path from this vertex to every other vertex in T . Furthermore, a vertex is called a leaf of T if it has
no out-neighbors in T , and a vertex is an internal vertex of T if it is neither a root nor a leaf. We
denote Υ(T ) as the set that collects all the roots of a pseudotree T .

The notion of internal vertices is used with abuse of notation when pseudotrees are con-
cerned. In Figure 4.4, typical examples of pseudotrees are presented, in which the definitions
of roots, internal vertices, and leaves are illustrated. Note that the class of directed pseudotrees
also includes all directed rooted trees. However, different from the standard definition of trees,
a pseudotree can allow for multiple roots, which form a directed circle with all the edges being
oriented in the same direction, and outgoing branches from any vertex on this circle are also
possible, see the right subplot in Figure 4.4.

Similar to the concept of vertex-disjoint paths, disjoint pseudotrees are defined as follows.

Definition 4.3 (Disjoint pseudotrees). Consider two pseudotrees T1 and T2 as subgraphs of a
directed graph G. T1 and T2 are called disjoint in G if the following two conditions hold.

1. E(T1) ∩ E(T2) = ∅;

2. either Ej ⊆ E(T1) or Ej ⊆ E(T2), ∀ j ∈ V(T1) ∪ V(T2), where Ej ≜ {(j, i) ∈ E(T1) ∪
E(T2) | i is an out-neighbor of j}.

The first condition means that T1 and T2 do not share any edges, while the second condition
means that for each vertex, all its outgoing edges in the two pseudotrees are contained in one and
the same pseudotree. As a special case, if both T1 and T2 are directed rooted trees, then T1 and T2

do not share the same root or any common internal vertex. We illustrate the concept of disjoint
pseudotrees in Definition 4.3 with the following example.

Example 4.3. In Figure 4.5, we illustrate the conditions for disjoint pseudotrees. In (a) and (b), we
decompose the directed graph into two pseudotrees, which do not share any common edges. However,
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(a) (b)

(c) (d)

Figure 4.5: Illustration of disjoint pseudotrees, in which the different pseudotrees are induced by the edges with distinct colors. In
(a) and (b), the pseudotrees are not disjoint, since the out‐going edges of the gray vertices are assigned to different pseudotrees.
In contrast, the pseudotrees in (c) and (d) are characterized as disjoint pairs.

they are not disjoint. In (a) and (b), the two outgoing edges of the internal vertex in the center
have been assigned to different pseudotrees, which violates the second condition in Definition 4.3.
In contrast, we take a different decomposition of the two networks in (c) and (d), and then the two
pseudotrees obtained in (c) and (d) become disjoint.

It is worth noting that the notion of disjoint pseudotrees is closely related to that of vertex-
disjoint paths. Consider T1 and T2 as two disjoint pseudotrees inG. For any i ∈ V(T1)∩V(T2),
if i has two or more in-neighbors, then there exist two in-neighbors of i located in T1 and T2

separately. Then, due to the fact that distinct pseudotrees cannot share any common root or
internal vertex, we can find two vertex-disjoint paths in the unionT1∪T2 starting from two roots
in T1 and T2, respectively, to the two distinct in-neighbors of i, and each pseudotree contains
exactly one path.

Next, the concept of disjoint-edge covering for a directed graph is introduced.

Definition 4.4. Consider a directed graph G, and let Π := {T1, T2, ..., Tn} be a collection of
connected subgraphs of G. The edges in a set E ⊆ E(G) are covered byΠ, if E ⊆ E(T1)∪ E(T2)∪
... ∪ E(Tn), and Π is called a covering of E . Moreover, if all the elements in Π are pseudotrees,
which are disjoint to each other, then Π is a disjoint pseudotree covering of E .

The concept of connectedness of the subgraphs is defined in Section 2.4. Relating to the
definition of disjoint pseudotree coverings, the following two lemmas are given.
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Lemma 4.1. For a directed simple graph G with |V(G)| ≥ 2, there always exists a set of disjoint
pseudotrees that cover all the edges in E(G) or any subset of E(G).

Proof. To prove this statement, we consider each vertex j ∈ V(G) \ Sin(G), with Sin(G) the
set of all the sinks of G. Starting from j, we can construct a directed star tree (a special type of
pseudotrees)with j as the single root and all its out-neighbors as the leaves. Then, |V(G)\Sin(G)|
pseudotrees are formed as a covering of E(G), which are disjoint, since any two trees do not share
a common root or any common internal vertex. For any subset of E(G), its disjoint pseudotree
covering can be found using the similar approach.

Let us define aminimal pseudotree, which only contains one root and all the out-neighbors
of this root. By theproof ofLemma4.1, themaximal number of disjoint pseudotrees that coexist
in G is |V(G) \ Sin(G)|. Then, the following lemma holds.

Lemma 4.2. Let G be a simple directed graph. If there exist k1 disjoint pseudotrees covering E(G),
with k1 < |V(G) \ Sin(G)|, then there also exist k2 disjoint pseudotrees, for any k1 < k2 ≤
|V(G) \ Sin(G)|, that cover E(G).

Proof. The maximal number of disjoint pseudotrees that coexist in G does not exceed |V(G) \
Sin(G)|, where Sin(G) is the set of the sinks in G. It then requires k1 < |V(G) \ Sin(G)|, imply-
ing that in the k1 disjoint pseudotrees, there exists at least one pseudotree Tk which contains at
least one internal vertex or contains multiple roots. In both cases, we will show that Tk can be
decomposed into two disjoint pseudotrees.

Suppose Tk contains internal vertices. We can always find an internal vertex iwith all its out-
neighbors being the leaves of Tk. Define a directed tree Ta with i as the root and all its out-
neighbors as the leaves. Thereby, Tk is decomposed into two a directed tree Ta and a pseudotree
Tb, where R(Tb) := Υ(Tk), V(Tb) ⊆ (Tk), and E(Tb) := E(Tk) \ E(Ta). Note that Ta and Tb

are disjoint by Definition 4.3. Moreover, since Ta and Tb are subgraphs of Tk, which is disjoint
to the other trees, Ta and Tb are also disjoint to the other pseudotrees. Next, suppose Tk does
not contain any internal vertex but multiple roots, i.e., |Υ(Tk)| ≥ 2. In this case, we define
the directed tree Ta, which is rooted at one of Υ(Tk) and includes all the out-neighbors of this
root as the leaves of Ta. Then, similar to the previous case, we can partition Tk into two disjoint
pseudotrees, which are disjoint to the other pseudotrees in G. Therefore, in the above cases, E
can be covered by k1 + 1 disjoint pseudotrees. The statement of this lemma follows by iteratively
applying the above reasoning for all k2 ≥ k1 + 1.

The above result will be used to design an iterative synthesis approach for signal allocation,
as shown in Section 4.5.2 and [38].
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4.5 Signal allocation for full network identifiabil-
ity

On the basis of disjoint pseudotree covering, we present a novel approach for the allocation of
excitation signals such that the generic identifiability of a full network model setM is achieved,
i.e. all modules are generically identifiable. The key step relies on a partitioning of G associated
withM into a minimal number of disjoint pseudotrees.

4.5.1 Generic Identifiability: A Pseudotree Characterization

FromSection 4.4, we notice that there is a clear connection between vertex disjoint paths and dis-
joint pseudotrees. Thus, a novel characterization for the generic identifiability of a full network
is developed using the concept of disjoint pseudotrees, which is used as the theoretical founda-
tion for the follow-up synthesis method. To this end, we first define a new graph associated with
a model setM.

Definition 4.5. Given a network model setM and its associated graph G. Let Ḡ be a graph
obtained from G by removing all the known out-going edges of the vertices in X and after that,
removing the vertices inX which have no out-going edge.

The removal of the known edges fromG in the above definition is because these known edges
do not need to be covered by the pseudotree covering. The definition of Ḡ is equivalent to the
so-called extended network in [38], where only the entries in G(q) and the unknown entries in
R(q) and H(q) are represented as directed edges.

Recall that an internal signal is said to be directly excited by an external signal if there exists
one directed edge from the external signal to the internal signal in G associated withM. An
external signal is also considered to be directly excited by itself.

Theorem 4.4. Consider a network model setM that satisfies Assumptions 3.1, 3.2, 3.4, 3.5 and
its associated graph Ḡ in Definition 4.5. Then the network model setM is generically identifiable
from (w, r) if there exists a disjoint pseudotree covering of E(Ḡ), denoted byΠ = {T1, T2, ..., Tn},
such that any pseudotree Tk in this covering satisfies at least one of the following two conditions:

• Tk contains a root that is directly excited inM by an external signal, and this external signal
is distinct from the ones that excite the roots of other pseudotrees;

• For any internal signal in V(Tk), denoted by wj, it holds inM that

bXj→W−
j
= |W−

j |. (4.7)

The above conditions become also necessary whenM is additionally a non-parametric model set.
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Proof. We first prove the ‘if’ statement. Let Π = {T1, T2, ..., Tn} be a set of pseudotrees that
cover all the edges in Ḡ. Note that the disjointness of the pseudotrees in Definition 4.3 implies
that the paths in different disjoint pseudotrees are vertex-disjoint, if they have no common start-
ing or ending nodes, and, for any internal signal wj in Ḡ, the edges fromW−

j andX \ Xj to wj

should belong to distinct pseudotrees. Furthermore, any two disjoint pseudotrees cannot share
a common root node.

Now define V̄ := V(Tm+1)∪ · · · ∪V(Tn) that collects the pseudotrees satisfying the second
condition, and thus all the in-coming edges of each internal signal wj ∈ V(Ḡ) \ V̄ belong to
distinct pseudotrees in {T1, · · · , Tm}. Combining the first condition and the disjointness of the
pseudotrees, (4.7) holds for anywj ∈ V(Ḡ)\V̄ . Finally, for any vertexwj ∈ V̄ , (4.7) is guaranteed
by the second condition, and thus (4.7) holds for any internal signal of Ḡ and thus of G. Then
according to Theorem 3.4, the full network (and thus all modules) is generically identifiable.

Next, the ‘only if’ statement is proven. Let the network model setM be generically iden-
tifiable, and we will show that a disjoint pseudotree covering exists and satisfies the condition
in this theorem. It is obtained from Lemma 4.1 that we can always find a disjoint pseudotree
covering of E(Ḡ), denoted by Π = {T1, T2, ..., Tn}, with n = |V(Ḡ) \ Sin(Ḡ)|, where each
pseudotree is only composed of a node as its root and all its out-neighbors as leaves. In these
pseudotrees, there must exists a set of pseudotrees Πr ⊆ Π, with |Πr| = m and 0 ⩽ m ⩽ n, in
which every pseudotree has its root that is directly excited by an distinct vertex in X . Then, we
only need to prove that the path condition bXj→W−

j
= |W−

j | holds, for every internal signal
wj ∈ Π \ Πr. This is guaranteed by Theorem 3.4 when the the generic identifiability of all the
modules is concerned. That completes the proof.

Note that in the first condition of Theorem 4.4, the pseudotree covering is constructed ac-
cording to the graph Ḡ; however, the verification of the excitation sources for the roots of the
pseudotrees should be conducted in the model setM, i.e., the removed external signals in Ḡ
from G should still be considered.

Theorem 4.4 states that the generic identifiability of a full network can be guaranteed, if a
pseudotree covering of the graph Ḡ exists where a subset of these pseudotrees has their roots
excited, while for the pseudotress without excited roots, their vertices should satisfy the path-
based identifiability condition in (4.7). A special case of this theorem is when all the pseudotrees
satisfy the second condition, and then generic identifiability is ensured by (4.7). This path-based
condition (4.7) is a special case of the condition in Theorem 3.4 with W̄j =W−

j . However, the
more interesting case iswhen all the pseudotrees satisfy thefirst condition inTheorem4.4,which
leads to the following sufficient condition for generic identifiability.

Corollary 4.6. Consider the setting of Theorem 4.4. Then the network model setM is generi-
cally identifiable from (r,w) if there exists a set of disjoint pseudotrees covering of E(Ḡ), and each
pseudotree contains a root that is directly excited by a distinct external signal.
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w5 w1 w2 w4

e1

w3

e2 e3
r5 r4

Figure 4.6: Consider Ḡ defined in Definition 4.5 of a model set with all the internal signals measured. r5 and r4 are not rep‐
resented as vertices according to the definition of Ḡ because all their out‐going edges are known (double‐lined edges). Ḡ is
decomposed into 5 disjoint pseudotrees, which are highlighted with different colors. Since each pseudotree contains a root that is
excited by a distinct external signal, this model set is generically identifiable.

The above condition is sufficient for the generic identifiability of a full network and obtained
from the first condition in Theorem 4.4. The second condition in Theorem 4.4 is needed when
we have more disjoint pseudotrees in a covering than necessary, such that only a subset of pseu-
dotrees need their roots to be directly excited. Then the vertices in the remaining pseudotrees
only need to satisfy (4.7).

Corollary 4.6 is related to the graphical conditions for structural controllability of linear state-
spacemodels [42, 87], where to achieve controllability, the graph of a state-spacemodel needs to
be covered by paths from inputs to states and cycles. However, we should note that controlla-
bility and the identifiability concept of this work are essentially different properties of different
models, which consequently leads to different graphical conditions. These graphical conditions
have similarities as all of them are derived based on rank tests.

Corollary 4.6 is illustrated in Example 4.4.

Example 4.4. Consider a five-vertexmodel set whose associated graph Ḡ, that is defined inDefini-
tion 4.5, is depicted in Figure 4.6. The graph Ḡ can be covered by five disjoint pseudotrees. Observe
that each pseudotree has a root that is directly excited by a distinct external signal. For example, e1,
as a root of one pseudotree, is excited by itself. Similarly, the rootw5 in the red pseudotree is excited
by r5. Thus, the condition in Corollary 4.6 is satisfied, and we conclude that the dynamic network
model setM in Figure 4.6 is generically identifiable.

While Theorem 3.4 can also be used to test the generic identifiability of a full network by
verifying the path-based condition (4.7) for each vertex, Corollary 4.6 provide amore integrated
condition for characterizing the generic identifiability of a full network. The major advantage
of this pseudotree covering condition in Corollary 4.6 over the path-based condition in Theo-
rem 3.4 is that, rather than providing a vertex-wise analysis, it has the potential for the synthesis
problem that we are interested in.

Corollary 4.6 clearly suggests an approach to address the synthesis problem by finding the
minimal number of disjoint pseudotrees in the network that cover all the edges in Ḡ. At this
point, we relate the synthesis problem to a combinatorial optimization problem. Then if the
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roots of a subset of those pseudotrees are not excited, additional excitation signals can be allo-
cated to excite these roots.

w5 w1 w2 w4

e1

w3

e2 e3

r2

Figure 4.7: Consider Ḡ in Figure 4.6 without excitation signals r4 and r5 . The goal is to allocate extra r signals to achieve the
generic identifiability of the full network. Four disjoint pseudotrees are needed to cover all the edges of this graph. Thus, in
addition to the white noise excitatons e1 , e2 and e3 , only one external excitation signal is required to achieve the generic iden‐
tifiability of the network, and assigning this excitation signal to either vertex w1 or w2 will lead to this result, e.g., a signal r2 is
allocated at w2 .

For a simple network consisting of only a few vertices, we may immediately obtain the min-
imal number of disjoint pseudotrees and then allocate excitation signals such that the generic
identifiability of the full network is achieved, see Figure 4.7. However, when a more compli-
cated graph is considered, a systematic approach is required to decompose a graph into a set of
disjoint pseudotrees, or ideally, a minimum number of pseudotrees. Thus, in the next subsec-
tion, we discuss such an algorithmic procedure.

4.5.2 Excitation Allocation: A PseudotreeMerging Approach

In this section, we briefly discuss one algorithmic procedure to decompose a network into dis-
joint pseudotrees and then to allocate additional excitation signals such that the generic identi-
fiability of all modules can be achieved. One more advanced algorithm and the relevant details
can be found in [38].

To find a set of disjoint pseudotrees that covers all the edges in Ḡ, we devise a simple graph
merging algorithm. Lemma 4.1 indicates that for any directed graph Ḡ, we can always find a
disjoint minimal pseudotree covering,

Π0 = {T (0)
1 , T (0)

2 , ..., T (0)
|Π0|}, (4.8)

where each minimal pseudotree is rooted at a vertex in V(Ḡ) \ Sin(Ḡ), with Sin the set of sinks
in Ḡ. Here, |Π0| = |V(Ḡ)| − |Sin(Ḡ)|. In other words, each vertex, besides the sinks, is the
root of its own pseudotree, consisting of all its out-going edges. The proposed approach starts
with Π0 as the initial disjoint pseudotree covering, and we then implement a specific strategy
to recursively merge the pseudotrees to reduce the number of pseudotrees, until there are no
mergeable pseudotrees in a covering. As a relevant and necessary concept, the mergeability of
pseudotrees is defined as follows.
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Definition 4.6 (Mergeability). Consider twodisjoint pseudotreesT1 andT2 andV(T1)∩V(T2) ̸=
∅. We say that T1 is mergeable to T2 if

1. the union of T1 and T2, i.e., (V(T1) ∪ V(T2), E(T1) ∪ E(T2)), is also a pseudotree,

2. and there is a directed path from every root of T2 to every vertex in T1.

If T1 is mergeable to T2 then the roots of T2 remain the roots of the merged pseudotree. The
mergeability of a pseudotree T1 to T2 requires that T1 and T2 do not share any common leaf and
internal vertex. As a result, merging T1 and T2 yields a new pseudotree T3, where the roots of T2

remain roots in T3. Note that T1 being mergeable to T2 does not necessarily mean that T2 is also
mergeable to T1. We say T1 and T2 are mergeable if T1 is mergeable to T2 or T2 is also mergeable
to T1.

Then an algorithm can be introduced to merge the pseudotrees in the initial covering Π0,
such that the number of pseudotrees and thus the required excitation signals for allocation are
reduced. Here we consider a simple greedy procedure, where we randomly start with a pseu-
dotree in Π0, e.g. T (0)

1 , and then merge it with other mergeable pseudotrees recursively, until
merging is not possible. Then another pseudotree can be chosen to repeat the above procedure
until there is no pseudotree in the covering that can be further merged. This will lead to a final
set of disjoint pseudotrees Π.

Finally, for each pseudotree inΠ, we can test if there exists a root that is excited by an initially
present external signal. If not, an additional excitation signal can be allocated at one root of the
pseudotree. It is clear that the above procedure can lead to a generically identifiable model set,
according to Corollary 4.6.

The aboveprocedure is an illustrative example of an algorithm for obtaining apseudotree cov-
ering and then allocating excitation signals. This approachmay not lead to a minimum number
of disjoint pseudotrees and thus a minimum number of allocated excitation signals. Amore ad-
vancedmerging algorithm is developed in [38], where an attractive algebraic implementation of
the algorithm is also obtained *.

It is noted that a subsequent procedure can be taken after signal allocation according to the
pseudotree covering, that is to perform the vertex-wise tests in Theorem 3.4 to check if the full
network remains generically identifiable when an allocated excitation signal is removed. This
procedure can remove the redundant excitation signals and further decrease the experimental
cost, see the details in [38].

*The algebraic implementation of the merging algorithm in [38] is not presented here for ease of discussion. Con-
sequently, [38, Lemma 5], which is contributed by the author of this thesis and is an important step for the algebraic
implementation, is not discussed here.

82



4.6 Conclusions

In this chapter, the sub-question 2 in Section 1.5, i.e. where to allocate excitation signals such
that subnetworks and a full network become generically identifiable, is investigated in the special
setting where all the internal signals are measured. For the synthesis problem for subnetworks,
a novel analysis result is obtained by exploiting the concept of disconnecting sets. Compared to
the path-based condition, the disconnecting-set-based condition explicitly states which signals
should be excited. With the above information, a synthesis approach is developed to allocate
excitation signals such that the generic identifiability of subnetworks canbe achieved. In contrast
to the experimental setup in [59] where excitation signals need to be directly allocated at the
inputs of the target modules, the developed synthesis approach allows for the extra freedom
to allocate the excitation signals elsewhere in the network and consequently, it can achieve an
experimental setup with fewer excitation signals than the setup in [59].

When the synthesis problem for a full network is concerned, the novel graphical concept of
pseudotree is developed and exploited. Firstly, an analysis result based on pseudotrees is ob-
tained, which shows that the generic identifiability of a full network is ensured if all the edges
are covered by disjoint pseudotrees whose roots are excited. Based on the above result, a pseu-
dotree merging algorithm is developed to decompose a dynamic network into a set of disjoint
pseudotrees and then allocate excitation signals to achieve generic identifiability. In contrast to
the results in [13], the developed approach can be applied to general network topologies in the
situation where all the internal signals are measured.

4.7 Appendix

4.7.1 Proof of Theorem 4.1

Theorem 4.1 is established by two graphical results.

Lemma 4.3. In a simple directed graph, given a setP of vertex disjoint paths from vertex set V1 to
a vertex set V2, there exists a setPnew of vertex disjoint paths from V1 to V2 such that |Pnew| = |P|
and the paths inPnew are internally vertex disjoint with V1 ∪ V2.

Proof. Weprove the lemma by showing that there always exists aPnew bymodifying the paths in
P . Letwi → wj be an arbitrary path inP which contains an internal vertex in V1 ∪V2, then we
can always replace wi → wj by its subpath which contains a starting vertex in V1 and an ending
vertex in V2, while the other vertices in the subpath are not in V1 ∪V2. This includes the special
case that the obtained subpath has no internal vertex. Applying the above modification to all
the paths in P which contain internal vertices in V1 ∪ V2, we obtain Pnew, with |Pnew| = |P|,
in which all the paths are still vertex disjoint.
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In a second lemma, a new graphical result is presented to reformulate the path-based condi-
tion in Theorem 3.4 in terms of disconnecting sets.

Lemma 4.4. Consider a simple directed graph G = (V, E) and its any two vertex setsV1, V2 with
a subset V̄2 ⊆ V2. The following statements are equivalent:

1. bV1→V̄2
= |V̄2| and bV1→V2 = bV1→V̄2

+ bV1→V2\V̄2
;

2. there exists a V1 − V2 \ V̄2 disconnecting setD such that

bV1→D∪V̄2
= |D|+ |V̄2|; (4.9)

3. there exist V̄1 ⊆ V1 and a V̄1 − V2 \ V̄2 disconnecting setD such that

bV̄1→V̄2∪D = |D|+ |V̄2|.

Proof. We first prove that (1) holds if and only if (2) holds. Based on Lemma 4.3, let BV1→V2

denote a set ofmaximumnumber of vertex disjoint paths fromV1 toV2 that are internally vertex
disjoint with V1 ∪ V2.

If (2) holds, there existBV1→V̄2
with cardinality |V̄2| andBV1→D with cardinality of |D|, and

the paths in the above two sets are vertex disjoint. A new set BD→V2\V̄2
can also be introduced

and is vertex disjointwithbothBV1→V̄2
andBV1→D , because if not vertex disjoint, a path fromV1

to V2 \ V̄2 will exist and do not intersect withD, contradictingD as a disconnecting set. Thus,
a set of maximum number of vertex disjoint paths BV1→V2\V̄2

can be formulated by linking a
subset of paths in BV1→D and all paths in BD→V2\V̄2

. Such concatenation is always feasible
as |BV1→D| = |D|, and the obtained BV1→V2\V̄2

is also vertex disjoint with BV1→V̄2
. Since

bV1→V2 ⩽ bV1→V̄2
+ bV1→V2\V̄2

always holds, BV1→V̄2
with cardinality |V̄2| and BV1→V2\V̄2

together form a set of maximum number of vertex disjoint paths from V1 to V2, which proves
(1).

If (1) holds, letD be a minimum V1 − V2 \ V̄2 disconnecting set, and we have BV1→V̄2
with

cardinality |V̄2| and BV1→D with cardinality |D| which are vertex disjoint. Thus the above two
sets together form a set of vertex disjoint paths from V1 to V̄2 ∪ D, which leads to

bV1→V̄2∪D ⩾ |D|+ |V̄2|.

As bV1→V̄2∪D is upper bounded by |D| + |V̄2|, it then holds that bV1→V̄2∪D = |D| + |V̄2|,
which leads to (1) ⇐⇒ (2).

Then we show that (2) is equivalent to (3). The implication (2) =⇒ (3) is straightforward
by letting V̄1 = V1. For (3) =⇒ (2), if (3) holds, then D1 = D ∪ (V1 \ V̄1) becomes a
V1−V2 \ V̄2 disconnecting set, and bV1→D1∪V̄2

= |D1|+ |V̄2| holds since a single vertex can be
regarded to have a path to itself, which concludes the proof.
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Eventually, based on Lemma 4.4 and Theorem 3.4, Theorem 4.1 is obtained.

4.7.2 Proof of Theorem 4.2

According to Lemma 2.1, the disconnecting set separates all the vertices in the graph into three
disjoint sets as V = S ∪ D ∪ P , while there is no directed edge from S toP . In addition, each
set may contain both internal signals and external signals, i.e. S = Sx ∪Sw,D = Dx ∪Dw and
P = Px ∪ Pw, and it holds that X̄ ⊆ Sx ∪ Dx and W̄ ⊆ Dw ∪ Pw. Algebraically, the above
statements mean that there exist permuted network matrices such that

G =

GSwSw GSwDw GSwPw

GDwSw GDwDw GDwPw

0 GPwDw GPwPw

 , X =

XSwSx XSwDx XSwPx

XDwSx XDwDx XDwPx

0 XPwDx XPwPx

 ,

TWX =

TSwSx TSwDx TSwPx

TDwSx TDwDx TDwPx

TPwSx TPwDx TPwPx

 , (4.10)

where, for example, TSwDx denotes the mapping fromDx to Sw. Based on the above structure
and the equation (I − G)TWX = X, our goal is to find a proper matrix K such that TW̄X̄ =

KTDX̄ .
Firstly, considering the division of the setsD and X̄ , the mapping TDX̄ can be re-written as

TDX̄ =

TDwX̄S TDwX̄D

0 I
0 0

 , (4.11)

where X̄S = X̄ ∩ Sx, X̄D = W̄ ∩ Dx, and the identity matrix is the mapping TX̄DX̄D . Note
that the rows of the bottom block matrices in (4.11) correspond to the vertices inDx \ X̄D. In
addition, TW̄X̄ can be written as

TW̄X̄ =

[
TW̄PX̄

TW̄DX̄

]
, (4.12)

where W̄P = W̄ ∩ Pw and W̄D = W̄ ∩ Dw. Thus, it is clear that

TW̄DX̄ = C
[
TDwX̄S TDwX̄D

]
, (4.13)

whereC is a selection matrix that extracts the rows of
[
TDwX̄S TDwX̄D

]
corresponding to W̄D.
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In addition, from the permuted matrices and the equation (I− G)TWX = X, it holds that

TPwSx = (I− GPwPw)
−1GPwDwTDwSx ,

where I−GPwPw is invertible and inversely proper because I−GPwPw is proper and the network
is well-posed, i.e. limz→∞ det(I− GPwPw(z)) ̸= 0. The above equation leads to

TW̄PX̄S = K̄TDwX̄S , (4.14)

where K̄ = [(I − GPwPw)
−1]W̄P⋆GPwDw . Then combining the above equation with (4.11),

(4.12) and (4.13) leads to

TW̄X̄ =

[
TW̄PX̄S TW̄PX̄D

TW̄DX̄S TW̄DX̄D

]
=

[
K̄ TW̄PX̄D − K̄TDwX̄D 0
C 0 0

]

×

TDwX̄S TDwX̄D

0 I
0 0

 = KTDX̄ .

The formulation of the aboveKmatrix can be further simplified. Based on the permutedmatri-
ces and the equation (I− G)TWX = X, it holds

(I− GPwPw)TPwDx − GPwDwTDwDx = XPwDx .

Thus, we can conclude that

K =

[
K̄ [(I− GPwPw)

−1]W̄P⋆XPwX̄D 0
C 0 0

]
, (4.15)

where K̄ is defined in (4.14); C is defined in (4.13) and its rows correspond to W̄D; the columns
of the last block column in (4.15) correspond toDx \ X̄D. Note that certain block matrices in
K may disappear depending on if the corresponding set of signals is empty.

4.7.3 Proof of Proposition 4.1

Before proving the proposition, we first prove that there exists a directed path fromwi toW−
j \

{wi} if and only if there exist a parallel path fromwi towj or a cycle around the outputwj. Note
that G is a simple graph, i.e. there is no self-loop such as (wi,wi), and no parallel directed edges
from one vertex to another vertex. For “if” part, if there exists a parallel path from wi to wj,
this parallel path must intersect withW−

j \ {wi}. Then we can find a directed path from wi to
one vertex inW−

j \ {wi} as a subpath of the parallel path. If a cycle around wj exists, it must
also intersect withW−

j \ {wi}, and thus the cycle contains a subpath from wj to one vertex in
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W−
j \ {wi}. Linking this subpath and the edge (wi,wj) leads to a path fromwi toW−

j \ {wi}.
For “only if” part, for any directed path from wi to wk ∈ W−

j \ {wi}, if the path does not
contain edge (wi,wj), then combining the path and the edge (wk,wj)will create a parallel path.
If the path contains (wi,wj), then combining the path and the edge (wk,wj) while excluding
(wi,wj) will lead to a cycle around wj. This concludes the relationship between the parallel
paths, the cycles around the output and the paths from wi toW−

j \ {wi}.
Then based on the above result, the “only if” of the proposition is straightforward. For the

“if” part, if we collect an internal vertex from each parallel path and a vertex from cycles around
the output intoD,D then must disconnect from wi toW−

j \ {wi}.
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莫思身外无穷事，且尽生前有限杯。

杜甫（唐）

Don’t brood on the endless troubles beyond the immediate, and finish the
limited number of cups in the time while you’re alive.

Fu Du (Tang dynasty)

5
Identifiability with partial measurement and

excitation

5.1 Introduction

In Chapters 3 and 4, the identifiability analysis and synthesis have been addressed in the setting
where all the internal signals are measured, and only a subset of them is excited. However, in
some practical situations, it is not feasible to measure all the internal signals, which motivates
the study in this chapter on the identifiability analysis and synthesis in a more general setting,
where not all internal signals are measured and not all of them are excited, also referred to as the
partial measurement and partial excitation setting.

The identifiability concept concerns the uniqueness of network modules given the available
external-to-internal mappings, where the availability is decided by the scheme of excitation and
measurement in the dynamic network. Therefore, themain challenge of the identifiability study
in the partial measurement and excitation setting is to decide which signals to measure or to ex-
cite, such that the available external-to-internal mappings can lead to unique network modules.
Compared to the full measurement case where the mappings from the external signals to all the
internal signals are available, only the mappings from the external signals to a subset of internal

The material of this chapter is based on the results in [142, 143].
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signals, i.e. the measured internal signals, are available in the current setting.
To the best of the author’s knowledge, [13, 83] are the only works considering identifiability

in this setting so far. Preliminary results for local identifiability are presented in [83]; however,
systematic graphical analysis has not been developed, and local identifiability is a weaker no-
tion than generic identifiability. Sufficient conditions for generic identifiability are developed
in [13], which require a sufficient number of excitation signals to achieve generic identifiability.
However, only measured excitation signals are considered in [13], while the contribution of the
unmeasured noise signals is not exploited as excitation sources for identifiability as done in [169]
and Theorem 3.4 for the full measurement case. In addition, the main result in [13] is not fully
graphical as it also requires the availability of certain mappings from excitation signals to node
signals, and thus the conditions cannot be tested solely based on the network topology. Spe-
cial network structures, i.e. trees and loops, are then considered in [13] such that the required
mappings are obtainable; however, how to handle networks with more general topology is not
considered yet.

In this chapter the concept of generic identifiability in Definition 3.4 and the concept of
global identifiability in Remark 3.2 are considered. We generalize the results in [169] and the
previous chapters significantly from the fullmeasurement setting to the settingwith partialmea-
surement and partial excitation. In particular, we focus on the identifiability of a single module,
and then the results can be extended trivially to a subset of modules. We also address the lim-
itations of [13] by exploiting unmeasured noises as excitation sources and by developing fully
graphical identifiability conditions. Additionally, the model sets considered are allowed to con-
tain a priori known/fixed modules.

In Section 5.3we showhowunmeasured noise signals can serve as excitation sources for iden-
tifiability analysis. This is done by introducing a concept of equivalence between networkmod-
els and by developing a novel network model structure. Due to the excitation contributed by
the noise signals, a smaller number of measured excitation signals is needed for network identi-
fiability, compared to the result in [13].

More importantly, with the developed model structure, this work develops a series of novel
graphical sufficient conditions to analyze both global and generic identifiability of a single mod-
ule with different excitation and measurement schemes in Sections 5.4, 5.5 and 5.6. With the
obtained conditions, single module identifiability can be checked by only inspecting the topol-
ogy of the dynamic network. It is worth emphasizing that the conditions presented in this chap-
ter cover all possible cases in identifying a single module in a network. In addition, the graphical
conditions further lead to comprehensive synthesis approaches in Section 5.7, for excitation and
sensor allocation to achieve identifiability, and indirect identification methods for single mod-
ule estimation in Section 5.8. All the above results also extend to multiple modules, i.e. sub-
networks, from the same MISO or SIMO subsystem of the network. The proofs of the technical
results are collected in Section 5.10.
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5.2 Problem formulation

Identifiability conditions of network modules typically require a sufficient number of r signals
as excitation sources. Moreover, it is shown in Proposition 3.1 that when all the internal signals
are measured, i.e. C = I in (2.1), the spectrum matrix Φ(z) in (2.9) admits a unique spectral
factor T(q)H(q) under Assumptions 3.1 and 3.2 [169]. In this case, implication (3.5) can be
equivalently simplified by considering (T(q)R,T(q)H(q)) in the left-hand side (LHS) instead
of (T(q)R,Φ(z)), as shown in Corollary 3.2. Since the mapping from the noises to the internal
signals is used for identifiability analysis, the noises play the same role as r(t) for the identifia-
bility analysis, and the appearance of e signals can compensate for a lack of r signals to achieve
identifiability.

However, in the setting with partial excitation and measurement, where only a subset of in-
ternal signals is excited by r signals and only a subset of internal signals is measured, i.e. C ̸= I
in (2.1), the above result does not apply anymore as only the submatrix CΦ(z)C⊤ of Φ(z) is
taken as a starting point for the identifiability analysis. Thus, the first question is to investigate
how noise signals can be used as excitation sources for the identifiability analysis in the current
setting.

More importantly, this work further aims to develop graphical conditions to verify global
and generic identifiability of modules by only inspecting the graph of the model set. In these
graphical conditions, both r and unmeasured noise signals can be used as excitation sources for
identifiability tests.

Note that throughout this chapter, we consider that each r signal influences a single internal
signal, and R in the network model (2.1) is a binary selection matrix that decides which internal
signals are influenced by r(t), i.e. R contains a subset of columns of an L × L identity matrix.
Thus, by post-multiplying a matrix A by R, i.e. AR, a subset of columns in A can be extracted.
Then it is clear that TWR(q) = T(q)R in (2.13) consists of a subset of columns in T(q). In
addition, we consider the situation where the measured internal signals are affected by a full-
rank process noise.

Assumption 5.1. The power spectrum CΦ(z)C⊤ has full rank.

Recall from Section 2.1 that setZ contains all the unmeasured internal signals, and without
loss of generality, in this chapter w in (2.1) is considered to be ordered as

w =

[
wC

wZ

]
,

where wC and wZ are vectors that contain the measured internal signals and the unmeasured
ones, respectively. Accordingly, C in (2.1) is partitioned as C =

[
I 0

]
.
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5.3 Equivalent network for noise excitation

Identifiability in Definition 3.4 concerns the uniqueness of a single module given the mapping
CT(q)R and the spectrum CΦ(z)C⊤. In this section, in order to exploit the noise signals as ex-
citation sources, we introduce a novel network model structure to model the data without loss
of generality. With this model structure, CΦ(z)C⊤ admits a unique spectral factor CT(q)H̃(q)
for a transformed noise model H̃(q). Therefore, implication (3.5) can be equivalently simpli-
fied by considering the uniqueness of a single module given (CT(q)R,CT(q)H̃(q)) instead of
(CT(q)R,CΦ(z)C⊤), whichmeans that the unmeasured noises can act as excitation sources for
the identifiability analysis.

5.3.1 Noise spectrum analysis and equivalent networks

We introduce thenovelmodel structure by exploiting a concept of network equivalence. The ob-
jectsCT(q)Rr(t) andCΦ(z)C⊤ reflect themean and the power spectral density of themeasured
process wC . These objects encode all the stochastic properties of interest, i.e. the first and the
second moments, for the measured processes (wC , r). Therefore, this motivates the concept of
network equivalence by extending [168, Definition 4] to the setting with partial measurement.

Definition 5.1. Two network models M1 and M2 are said to be (observationally) equivalent if it
holds that

C1T1(q)R1 = C2T2(q)R2, and C1Φ1(z)C⊤
1 = C2Φ2(z)C⊤

2 ,

and this equivalence is denoted by M1 ∼ M2.

The above concept of equivalence characterizes two network models that can be used to
model the samemeasured processes (wC , r), because givenmeasured r, the stochastic processwC

in two equivalent models has the same meanCT(q)Rr and power spectrumCΦ(z)C⊤. Thus, a
network model M can be replaced by an equivalent network model to represent the same mea-
sured processes. Note that G1(q) and G2(q) from two equivalent models may have different
dimensions, e.g. a model M and its immersed network where wZ is eliminated [48, 168], and
thus, the matrices C1 and R1 can also be different from C2 and R2.

Furthermore, it can be found that any networkmodel admits the following equivalentmodel
with the same G(q), R and C matrices, by exploiting the noise spectrum CΦ(z)C⊤.

Theorem 5.1. For any network model M = (G(q),R,H(q),C,Λ), there exists an equivalent
network model as

M̃ ≜ (G(q),R,
[
H̃⋆(q) 0

]⋆
,C, Λ̃), (5.1)

where H̃(q) ∈ R(q)m×m, withm denoting the number of measured internal signals, is minimum
phase and monic; Λ̃ ∈ Rm×m is positive semi-definite. In addition,
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• if M satisfies Assumption 5.1, (H̃(q), Λ̃) is unique with positive definite Λ̃ ;

Based on the above result, the measured process (wC , r) that is modeled byM can be equiva-
lently modeled by M̃ in (5.1), which has the same matrices G(q), R, C, and the structure of the
noise model in M̃ implies that the unmeasured internal signals are noise-free in M̃. In addition,
M̃ has a transformed white noise signal ẽwith the covariance matrix Λ̃. This noise model is sim-
pler than the one in M, and more importantly, M̃ keeps the G(q)matrix invariant as in M. This
invariance is important for the identifiability analysis and the identification of networkmodules.

The equivalence between M and M̃ is obtained due to the freedom in transforming the un-
measured internal signals andmodeling the noises, sinceCT(q)R andCΦ(z)C⊤ only reflect the
properties of the measured processes. Therefore, M̃ may describe different unmeasured pro-
cesses from wZ in M due to the possible change in its stochastic properties. However, for the
simplicity of notation, we still usewZ andX to denote the unmeasured internal signals and the
external signals in M̃, respectively.

Furthermore, in the equivalent model M̃ obtained from M, its noise model H̃(q) admits a
block diagonal structure if a particular noise model is chosen for M by employing the following
spectral factorization of the disturbance spectrum Φv(z) in (2.2) :

Φv(z) = H(z)H(z)⋆, (5.2)

where H(z) has dimension L × p with p denoting the rank of Φv(z) [60]. The above spectral
factorization suggests a noise model for M with H(q) having dimension L × p and an identity
covariance matrix with dimension p, i.e. Λ = I.

Given a networkmodelMwith the above noisemodel, the noisemodel H̃(q) of its equivalent
network M̃ also has a special block diagonal structure, if the signal vectorwC is ordered according
to the so-called confounding variables in the graph associated with M [122].

Definition 5.2. In a dynamic network, a noise signal ek is called a confounding variable of wi

and wj if ek has directed paths to wi and wj via only unmeasured internal vertices or with length
one. In this case, wi and wj are also said to be confounded by ek.

Without loss of generality, the measured internal signal vector wC in M can be ordered such
that the measured internal signals confounded by the same noise signals are grouped together:
All the measured internal signals are divided into disjoint subsets as C = ∪k

i=1Si such that two
measured internal signals from two different disjoint sets are not confounded by the same noise
signal. Then if wC is ordered as

wC =


wS1

...
wSk

 , (5.3)

the noise model H̃(q) has a block diagonal structure as follows.
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Corollary 5.1. Consider any network model M with its covariance matrix Λ = I ∈ Rp×p and
the noise modelH(q) of dimension L× p as in (5.2). If the measured internal signal vectorwC in
M is ordered according to (5.3), then M admits an equivalent network M̃ as in (5.1), whose H̃(q)
and noise covariance matrix Λ̃ have a block diagonal structure as

H̃(q) = diag(H̃S1(q), · · · , H̃Sk(q)), and Λ̃ = diag(Λ̃S1 , · · · , Λ̃Sk),

where H̃Si(q) ∈ R(q)|Si|×|Si| and Λ̃Si ∈ R|Si|×|Si|.

In addition to the result in Theorem 5.1, Corollary 5.1 provides a direct connection between
the sparsity pattern of the noise model in M̃ and the network topology of M under the special
noise model suggested by (5.2).

5.3.2 Equivalent network for handling noise excitation

Since a network M and its equivalent model M̃ in (5.1) contain the same G(q)matrix, both of
them can be used to model the same data set, i.e. the measured (wC , r), for the identification of
modules in the dynamic network (2.1). In the previous section, it is discussed that M̃ in (5.1) can
potentially be a better option due to its simpler noise model. In this section, we further show
that the particular noise model of M̃ is also beneficial for the identifiability analysis.

From now on, we useM to specifically refer to a set of models in the form of (5.1) in this
chapter. It can be found that the implication (3.5) forM can be further simplified under mild
conditions.

Proposition 5.1. For a network model setM that satisfies Assumptions 3.2 and 5.1, implication
(3.5) forM can be equivalently formulated as

CTWX ,0(q) = CTWX ,1(q)⇒ Gji,0(q) = Gji,1(q), (5.4)

for all M1 ∈M.

The above result indicates that both the mappings from r and ẽ to the measured internal
signals can be used for analyzing identifiability inM, and thus the unmeasured noise signal ẽ
plays the same role as the measured r(t) for the identifiability analysis. In this case, we say that ẽ
signals act as excitation sources for the identifiability analysis. Proposition 5.1 is an extension of
Proposition 3.1 to the partial measurement and partial excitation setting.

Proposition 5.1 shows another advantage of M̃ over a general network model M in network
identification with partial measurement and partial excitation. These twomodels are equivalent
to describe the same data and contain the same modules; however, the setM of models in the
form of M̃ allows us to exploit the noise spectral density through Proposition 5.1, such that the
noise signals can act as excitation signals for identifiability analysis. In contrast, identifiability in
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amodel set ofmodels in the formofM involvesCΦC⊤ and themapping from r towC , i.e. only r
signals can be used as excitation signals, as also considered in [13, 69]. Therefore, in this chapter,
we regard M̃ as the standard model for network identification in the partial measurement and
partial excitation setting.

5.4 Necessary graphical conditions

Fromnowon, we focus on the development of graphical conditions for identifiability inM that
containsmodels in the formof M̃. Particularly, we focus on the identifiability of a singlemodule.

Necessary and sufficient graphical conditions for the generic identifiability of a single mod-
ule are obtained in [69] for the full excitation case and in Chapter 3 for the full measurement
case. When the setting with partial measurement and partial excitation is considered, the exist-
ing necessary conditions from the aboveworks for the fullmeasurement or full excitation setting
naturally remain necessary conditions for the current setting. Recall the notations in Section 2.5
and that the necessity of the graphical conditions can be achieved by non-parametric model sets
as in Theorem 3.4. Then the necessary conditions are as follows.

Lemma 5.1. Consider a non-parametric model setM that satisfies Assumptions 3.2, 3.4, 3.5 and
5.1. Then module Gji(q) is generically identifiable from (wC , r) only if the following conditions
are satisfied:

1. bXj→W−
j
= 1 + bXj→W−

j \{wi};

2. bW+
i →C = 1 + bW+

i \{wj}→C ;

3. Each signal in {wi,wj} is measured or is directly excited by a vertex inX .

Proof. Condition 1 is obtained from the necessity in Theorem 3.4 when W̄j = {wi}, and the
second condition is the dual result as investigated in [69]. The final condition is analogous to
[13, Theorem III.2].

Lemma 5.1 implies a necessary number of measured signals and external signals, including r
and ẽ, for identifiability. This is because the scheme of measurement and excitation decides the
sparsity pattern of matrices C, R, H(q), and thus further influences the mapping CT(q)X(q)
in Proposition 5.1. The formulation of set Xj indicates that the noises, which have unknown
directed edges to wj, are not helpful for the identifiability of Gji(q). Note that compared to
Theorem 3.4, Assumption 3.1, which requires the noise model to be structured such that its
upper block is minimum-phase and monic, is dropped in Lemma 5.1, since the noise model of
M̃ under Assumption 5.1 already satisfies Assumption 3.1.

The graphical conditions can be easily tested using graphical algorithms to compute themax-
imum number of vertex disjoint paths. However, the conditions are not suitable for designing
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synthesis approaches for excitation and sensor allocation, since they do not specify explicitly
which signals are necessary to be excited and measured. Thus, following the results in Chap-
ter 4, the above path-based conditions can be equivalently formulated in terms of disconnecting
sets.

Lemma 5.2. Consider the setting of Lemma 5.1,

1. condition 1 holds if and only if there exists aXj−W−
j \{wi} disconnecting setD such that

bXj→{wi}∪D = |D|+ 1;

2. condition 2 holds if and only if there exists aW+
i \ {wj}−C disconnecting setDc such that

b{wj}∪Dc→C = |Dc|+ 1.

Proof. The first result follows fromLemma 4.4 and condition (1) of Lemma 5.1. The last result
is the dual situation.

In the above lemma, the first result shows that the signals in {wi} ∪ D are necessary to be
excited by r and ẽ directly or indirectly. In addition, the second result specifies that the signals
in {wj} ∪ Dc should be either measured or indirectly measured, i.e. they are not measured but
have vertex disjoint paths to measured internal signals.

However, the necessary conditions in Lemma 5.1 are not sufficient to verify identifiability.
This alsomeans that the requirements on excitation signals and onmeasured internal signals are
not separable for identifiability, i.e. first allocating excitation signals according to the results for
the full measurement case and then selecting measured signals according to the results for the
full excitation case are not sufficient for the identifiability in the current setting.

5.5 Sufficientconditions: Bothinputandoutputmea-
sured or excited

In this section, sufficient graphical conditions are developed to verify global and generic identi-
fiability of a single module inM for the situation, where the input and the output of the target
module are both measured or both directly excited. As shown in Proposition 5.1, identifiabil-
ity concerns the uniqueness of network modules given CTWX (q). In the special cases where
C = I or R = I, identifiability of modules relates to the rank of submatrices in TWX (q) as
shown in [14, 69] and Chapter 3. Consider the case whereC = I as an example, and recall from
Section 2.5 that

TWX (q) ≜ [I− G(q)]−1X(q).

Then the rank condition is analyzed on the basis of the relation

[I− G(q)]TWX (q) = X(q), (5.5)
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based on which, the identifiability of modules in G(q) can be formulated as the uniqueness of
solutions for entries in G(q) given matrix TWX (q), which is thus connected to TWX (q)’s rank
and can also be tested using the following graphical rank tests.

Lemma 5.3. Consider a network model setM that satisfies Assumptions 3.4 and 3.5, and let
TW̄X̄ (q) denote a submatrix of TWX (q) with its rows and columns corresponding to W̄ ⊆ W
and X̄ ⊆ X , respectively. It holds that

1. rank[TW̄X̄ (q)] = bX̄→W̄ generically ;

2. rank[TW̄X̄ (q)] = bX̄→W̄ globally if the set of maximum number of vertex disjoint paths
from X̄ to W̄ is unique, and the transfer functions contained in these paths are non-zero for
all models inM.

Proof. The first result is from Theorem 3.2 for non-parametric model sets and from Proposi-
tion 3.3 for parametric model sets. The global rank has been investigated in [157] in terms of
the unique (constrained) set of vertex disjoint paths. Note that the assumption for non-zero
transfer functions is implicit in [157].

In the above result, when a parametric model set is considered, the genericity should be un-
derstood as the genericity notion in the parameter space, that is either based on the Lebesgue
measure or the open and dense sets, as shown in Section 3.5.2. The above result shows that the
generic and the global rank of TWX (q) inM can be found by counting the maximum number
of vertex disjoint paths. In addition, we define a new notation b̄X̄→W̄ for the global rank test
in Lemma 5.3, i.e. the equality b̄X̄→W̄ = a implies that bX̄→W̄ = a, and the set of maximum
number of vertex disjoint paths is unique, while the transfer functions contained in those paths
are non-zero for all the models in the set.

In contrast to (5.5), whenC ̸= I andR ̸= I, we have TCX (q) = C[I−G(q)]−1X(q) instead,
where [I−G(q)]−1 cannot bemoved to the LHS to obtain a systemof linear equations as in (5.5)
in general. Thus in this work, we consider identifiability of a singlemodule in several special situ-
ations, depending onwhether its input or output is measured. For each situation, identifiability
conditions can still be connected to the rank of TWX (q) and further to the graphical rank tests
in Lemma 5.3.

Even if each of the considered cases is limited to a specific situation and these cases cannot be
combined into a single result, they together cover all the situations for single module identifica-
tion in the partial measurement and partial excitation setting.

5.5.1 Measured input and output

A sufficient condition is first derived for the verification of single module identifiability in the
situation where both the input and the output of Gji(q) are measured.
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Recall TWX (q) ≜ [I − G(q)]−1X(q) where X(q) ≜
[
R(q) H(q)

]
. Then consider the

equation [I− G(q)]TWX (q) = X(q), whose jth row can be permuted to obtain

[
−Gji −GjN−

j \{wi} 1 0
]


TiX

TN−
j \{wi}X

TjX

⋆

 = Xj⋆, (5.6)

where for simplicity we omit its dependency on q, Xj⋆ denotes the jth row vector of X, and
setN−

j contains the in-neighbors of wj inW for now and will be formally defined later. The
modules contained in the jth row ofG(q) are shown as blue blocks in Figure 5.1. Identifiability
of Gji(q) concerns the uniqueness of Gji(q) in (5.6) given the mappings in CTWX (q).

If all internal signals are measured, i.e. C = I, all the external-to-internal mappings in (5.6)
are given by TWX (q) = CTWX (q), and thus in (5.6), we can analyze the uniqueness forGji(q)
given TWX (q), as investigated in Chapter 3. However, when only a subset of internal sig-
nals is measured, CTWX (q) only consists of a subset of rows in TWX (q). Although TiX (q)
and TjX (q) in (5.6) are submatrices of CTWX (q) due to measured wi and wj, the mapping
TN−

j \{wi}X (q) may not be directly avaliable, i.e. it may not be a submatrix of CTWX (q), be-
cause the signals inN−

j \ {wi}may not be measured.
To address the unavailability of TN−

j \{wi}X (q), the following result is instrumental, which
is an extension of Theorem 4.2.

Lemma 5.4. For any networkmodel setM that satisfies Assumptions 3.4, 3.5with a disconnecting
setD ⊆ W ∪ X̄ from any X̄ ⊆ X to any W̄ ⊆ W , there exists a proper transfer matrix K(q)
such that

TW̄X̄ (q) = K(q)TDX̄ (q). (5.7)

In addition, it holds that

• K(q) is full column rank generically if bD→W̄ = |D|;

• K(q) is full column rank globally if b̄D→W̄1
= |D| for some W̄1 ⊆ W̄ .

The above result shows that if an appropriate disconnecting set D from X to N−
j \ {wi}

is chosen, as in Figure 5.1, TN−
j \{wi}X (q) can be factorized into K(q)TDX (q) for some K(q).

This factorization together with (5.6) leads to

[
Gji GjW−

j \{wi}K
] [ TiX

TDX

]
= TjX − Xj⋆, (5.8)

and thus the uniqueness of Gji(q) is ensured if

[
TiX (q)
TDX (q)

]
is full row rank and the signals in
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D∪{wi,wj} are measured, i.e. the mappings TiX , TDX and TjX are submatrices ofCTWX and
thus available. This shows that only the signals in D ∪ {wi,wj} need to be measured for the
identifiability of Gji, instead of measuring all the internal signals as in Chapters 3 and 4.

The above requirement for full row rank can be reformulated into a path-based condition
using Lemma 5.3, i.e. D is indirectly excited by a set X̄ of external signals as in Figure 5.1. In
addition, the requirement for measuringD can be further relaxed by the indirect measurement
ofD, i.e. D has paths to a set C̄ of measured internal signals as in Figure 5.1.

wj

wi Gji

Gj*

Figure 5.1: Visualization of a situation where Gji is generically identifiable. G∗
j represents the other in‐coming modules of wj ,

and the dashed edges represent directed paths. The setN contains all the measured internal signals that have known directed
edges (double‐lined edges) to the output wj .

The above reasoning for identifiability analysis can be generalized. Before introducing this
result, we first define an important set of signals:

• Let setN−
j contain the signals inW−

j and additionally the unmeasured internal signals
that have known directed edges to wj.

As shown in Figure 5.1, N−
j contains a subset of in-neighbors of wj. When all the non-zero

modules are unknown, we haveN−
j = W−

j which simply contains all the incoming internal
signals of wj.

Then the following graphical result can be obtained from the generalization of the reasoning
in (5.8).

Theorem 5.2. Consider a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1. Then
Gji(q) is generically identifiable inM from (wC , r) if for some X̄ ⊆ Xj and C̄ ⊆ C \{wi}, there
exists a X̄ − (N−

j \ {wi}) ∪ C̄ disconnecting setD ⊆ W such that

1. bX̄→{wi}∪D = |D|+ 1;

2. bD→C̄ = |D|.

3. wi and wj are in C.
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The above result is visualized in Figure 5.1 for the special case where wj /∈ C̄, for simplicity.
It shows that to identify Gji(q), instead of measuring and exciting all the inputs of the MISO
subsystem that containsGji(q), we only need to indirectly excite andmeasure the signals inD∪
{wi}. The difficulty in applying the above resultmay arise from the need to search for the subsets
X̄ and C̄, which, however, cannot be avoided due to the coupling between the excitation signals
and the measured signals that are relevant to the identifiability of Gji(q).

Compared to Theorem 4.1 where the signals in {wi} ∪ D are excited when all the internal
signals are measured, Theorem 5.2 provides a generalization which only requires the signals in
{wi,wj} ∪ D to be measured. Moreover,D can also be measured indirectly as in condition (2),
i.e. D itself is not measured but has vertex disjoint paths to the measured signals in C̄.

This indirect measurement ofD also appears in the network identificationmethod of [123].
For the consistent estimation of Gji(q), the method requires the indirect measurement of the
signals that block the so-called parallel paths fromwi towj and the loops aroundwj, while these
signals actually coincidewithD as shown in Proposition 4.1. Thus, the considered experimental
setup in [123] matches the one in Theorem 5.2.

Remark 5.1. Based on the connection between the unique set of vertex disjoint paths and the global
rank of transfer matrices as formulated in Lemma 5.3, Theorem 5.2 can be modified to address
global identifiability by considering b̄X̄→{wi}∪D and b̄D→C̄ instead.

Theorem 5.2 has a potential application for signal and sensor allocation, as it explicitly states
that the signals in {wi} ∪ D should be (indirectly) excited as in condition (1), and the signals
inD should be (indirectly) measured as in condition (2). However, it can be difficult to analyze
a given model set as it needs to search for a disconnecting set. Thus, an equivalent path-based
version of Theorem 5.2 is developed.

Proposition 5.2. Consider amodel setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1. Gji(q)
is generically identifiable inM from (wC , r) if for some X̄ ⊆ Xj and C̄ ⊆ C \{wi}, it holds that

1. bX̄→N−
j ∪C̄ = bX̄→(N−

j \{wi})∪C̄ + 1;

2. bX̄→(N−
j \{wi})∪C̄ = bX̄→C̄ ;

3. wi and wj are in C.

Compared to Theorem 5.2, the above result avoids the search for a disconnecting set and
thus is easier for analyzing identifiability. However, it is less informative than Theorem 5.2 since
it does not specify explicitly where to allocate excitation signals and sensors for single module
identifiability. The results in this subsection are illustrated in the following example.

Example 5.1. Consider amodel setM in Figure 5.2 with the target moduleG21(q) and the mea-
sured internal signals C = {w1,w2,w3,w6}. It can be found thatN−

2 = {w1,w4}, which does
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not include the in-neighborw3 ofw2 sincew3 ismeasured and has a known edge tow2. In addition,
we haveX2 = {ẽ1, r4, r5} because these external signals do not have an unknown edge to w2. The
goal is then to verify the generic and global identifiability ofG21(q) using the graphical conditions.

w2

w4

w6w5

r4

w3

r5

w1

Figure 5.2: Identifiable G21(q) (thick edge) with only green internal signals measured and one known module G23(q) (double‐
lined edge).

By taking X̄ = {ẽ1, r5} and C̄ = {w6}, it holds that {w5} = D is a X̄ − (N−
2 \ {w1})∪ C̄

disconnecting set, as indicated by a red vertex in Figure 5.2. Thus, condition (1) of Theorem 5.2 is
satisfied as there are two vertex disjoint paths ẽ1 → w1 and r5 → w5, indicated by the red arrows
in Figure 5.2. In addition, condition (2) also holds because of the green path w5 → w6. Then
based on Theorem 5.2, G21(q) is generically identifiable. The conditions in Proposition 5.2 can be
verified similarly with the chosen X̄ and C̄.

If the transfer functions are non-zero in all the models of the model set, G21(q) is also globally
identifiable as the set of maximum number of vertex disjoint paths from {ẽ, r5} to {w1,w5} and
the one from w5 to w6 are unique.

Next, we extend the result in Proposition 5.2 from a single module to a subnetwork, i.e. a
subset of in-coming modules of wj.

Corollary 5.2. Consider a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, and
any subset W̄j ⊆ W−

j . Then GjW̄j(q) is generically identifiable inM from (wC , r) if for some
X̄ ⊆ Xj and C̄ ⊆ C \ W̄j, it holds that

1. bX̄→N−
j ∪C̄ = bX̄→(N−

j \W̄j)∪C̄ + bX̄→W̄j and bX̄→W̄j = |W̄j|;

2. bX̄→(N−
j \W̄j)∪C̄ = bX̄→C̄ .

3. W̄j ∪ {wj} is a subset of C.

Proof. The proof is analogous to the proof of Proposition 5.2 and can be based on the proof of
Theorem 5.2. In this case, we only need to replace Gji with GjW̄j and TiX̄ with TW̄jX̄ in (5.19).
Then the rank condition implied by the first path-based condition leads to a unique solution for
GjW̄j .

The above result is a generalization of Theorem 3.4 to the partial measurement setting. In
addition, Corollary 5.2 is related to [13, Theorem IV.4]which also specifies sufficient conditions
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for the generic identifiability ofGjW̄j(q), in a settingwithout knownnon-zeromodules andwith
only r signals as excitation sources for identifiability analysis. In addition, the theorem in [13]not
only contains a graphical condition but also requires the prior knowledge for certain submatrices
of TWX (q). When all the non-zero modules are unknown and only r signals are considered as
excitation sources for the identifiability analysis, the graphical condition there is equivalent to
the first condition inCorollary 5.2, while the corollary further specifies the graphical conditions,
under which the required submatrices of [13, Theorem IV.4] can be obtained.

5.5.2 Excited input and output

In the previous section, it is assumed that both the input and the output of a module are mea-
sured, which may not be feasible in some practical situations. This motivates us to consider the
situation where the input or the output can be unmeasured, with the cost that they are directly
excited.

In this case, instead of starting with the equation [I − G(q)]TWX (q) = X(q) as in (5.6),
we analyze identifiability using the i-th column of C = TCW(q)[I − G(q)], where TCW(q) =
CT(q). Unlike (5.6) which treatsGji(q) in the correspondingMISO subsystem, we takes a dual
perspective now and analyze Gji(q) in the corresponding SIMO subsystem, as shown in Fig-
ure 5.3, where the two blue blocks denote the module Gji(q) and the other out-going modules
of wi. Thus, a dual result of Lemma 5.4 can be obtained.

Lemma 5.5. For any networkmodel setM that satisfies Assumptions 3.4, 3.5with a disconnecting
setD ⊆ W from any X̄ ⊆ X to any W̄ ⊆ W , there exists a proper transfer matrix K(q) such
that

TW̄X̄ (q) = TW̄D(q)K(q). (5.9)

Additionally, it holds that

• K(q) is full row rank generically if bX̄→D = |D|;

• K(q) is full row rank globally if b̄X̄1→D = |D| for some X̄1 ⊆ X̄ .

In view of analyzing the generic identifiability of Gji(q) when its input and output are di-
rectly excited, the above result allows us to find an appropriate disconnecting set D, as shown
in Figure 5.3. It can then be found that Gji(q) is generically identifiable, if the signals inD are
indirectly excited by a set X̄ of external signals and indirectly measured, i.e. D has vertex disjoint
paths to a set C̄ of measured signals. This is illustrated in Figure 5.3 and can be formalized as
follows.

To introduce the identifiability results, we first define an important set:

• LetN+
i contain the signals inW+

i , defined in Section 2.5, and additionally the internal
signals, to whichwi have known directed edges and that are not directly excited by vertices
inX whose out-degree is one and the only out-going edge is known.
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wi

wj Gji

Gi*

Figure 5.3: Visualization of a situation where Gji is generically identifiable, and its input and output are directly excited. G∗
i

represents the other out‐going modules of wi , and the dashed edges represent directed paths. The setN contains the internal
signals to which wi have known directed edges, and every vertex inN is excited by a vertex inX through a known edge.

N+
i contains a subset of out-going neighbors of wi, as shown in Figure 5.3. When all the mod-

ules are unknown, we haveN+
i =W+

i which simply contains all the out-neighbors ofwi. The
formulation ofN+

i excludes any output wk of wi, if there exists a xk ∈ X that has out-degree
one and has a known directed edge to wk. This is because the edge (wi,wk) does not influence
the identifiability problem when it is known and wk is directly excited.

Then the following result can be obtained.

Theorem 5.3. For amodel setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1,Gji(q) is gener-
ically identifiable inM from (wC , r) if two vertices xi and xj exist in X , which have out-degree 1
and known directed edges towi andwj respectively, and for some X̄ ⊆ X \{xj} and C̄ ⊆ C, there
exists aN+

i \ {wj} ∪ X̄ − C̄ disconnecting setD ⊆ W such that

1. b{wj}∪D→C̄ = |D|+ 1;

2. bX̄→D = |D|.

Proof. The proof is analogous to Theorem 5.2 by considering the i-th column ofC = TCW(I−
G). Note that the analysis requires the availability of TCi and TCj. The mapping TCi can be
obtained from CTX under the existence of xi, i.e. when wi is directly excited by xi. xi can be
either a measured signal ri or a noise signal ẽi: Firstly, ri always has out-degree one, and it is clear
that TCi is a submatrix of CTR. On the other hand, when ẽi has out-degree one and an known
directed edge to wi, its corresponding column H⋆i in H has only one non-zero entry that is also
known. Therefore, TCi can be obtained from CTH⋆i as well. Similarly, TCj can also be obtained
from CTX under the existence of xj.

Theorem 5.3 is visualized in Figure 5.3. It shows that to identify Gji(q), instead of measur-
ing and exciting all the outputs of the SIMO subsystem that contains Gji(q), it is sufficient to
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measure and excite the signals inD∪{wj} indirectly. The existence of xi and xj in Theorem 5.3
requires the input wi and the output wj of the target module to be directly excited, by either r
signals or e signals that only have one known out-going edge. The above direct excitation forwi

andwj ensures that themappings TCi and TCj, which are required for the identifiability analysis,
can be obtained from CT(q)X(q).

Theorem 5.3 is also a dual result of Theorem 5.2: while Theorem 5.3 considers the input and
the output to be directly excited, Theorem 5.2 assumes them to be measured; in addition, the
graphical conditions of the two results have a similar structure. The result can also be extended
to address global identifiability by requiring that the sets of maximumnumber of vertex disjoint
paths are unique. In addition, a path-based formulation of Theorem 5.3 can also be obtained,
which is analogous to Proposition 5.2.

Proposition 5.3. For a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, Gji(q) is
generically identifiable inM from (wC , r) if two vertices xi and xj exist in X , which have out-
degree 1 and known directed edges to wi and wj respectively, and for some X̄ ⊆ X \ {xj} and
C̄ ⊆ C, it holds that

1. bN+
i ∪X̄→C̄ = bN+

i \{wj}∪X̄→C̄ + 1;

2. bN+
i \{wj}∪X̄→C̄ = bX̄→C̄ .

While Proposition 5.3 is a dual result of Proposition 5.2, it allows us to analyze identifiability
in a completely different setting, as illustrated in the following example.

Example 5.2. Consider the identifiability ofG21(q) inM as shown in Figure 5.4, where only the
r signals,w4,w5, andw7 aremeasured, while {w1,w2} is directly excited by {r1, ẽ2}. It holds that
N+

1 = {w2,w3,w5}, and furthermore, we can choose X̄ = {ẽ5, r6} and C̄ = {w4,w5,w7}.

w1

r1

w5w3

r6

w6

w4

w7

w2

Figure 5.4: Identifiability of G21(q) is considered (thick line) inM with both input and output unmeasured, while w2 is directly
excited by ẽ2 via a known edge (double‐arrow edge)

.

It can be found that {w3,w5} = D is a (N+
1 \ {w2}) ∪ X̄ − C̄ disconnecting set, as indi-

cated by the red vertices in Figure 5.4. In addition, condition (1) of Theorem 5.3 is satisfied since
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there are three vertex disjoint paths, including w3 → w7, w2 → w4, and w5 itself, indicated by
the green edges in Figure 5.4. Condition (2) is then satisfied because there are two vertex disjoint
paths indicated by the red edges, including r6 → w3 and ẽ5 → w5, which concludes the generic
identifiability of G21(q). Note that r6 excites w3 indirectly through a path.

Since the above sets of maximum number of vertex disjoint paths are unique, G21(q) is also
globally identifiable.

Remark 5.2. When the identifiability of multiple modules GW̄ii(q) from one SIMO subsystem
is considered, where W̄i ⊆ W+

i , the results in this subsection can be extended in a straightfor-
ward way by considering W̄i instead of the single output wj, which is similar to the extension in
Corollary 5.2

The above remark leads to a graphical result that is related to [13, Theorem IV.2], which
also considers the identifiability of multiple modules from one SIMO model. However, [13,
Theorem IV.2] is not fully graphical as it requires the availability of certain mappings, and it
considers neither knownmodules nor the excitation contributed by unmeasured noises.

5.6 Sufficient conditions: Measured input or output
with indirect excitation

Even if Proposition 5.3 considers themost generalmeasurement scheme, it requireswi andwj to
be directly excited. When wi (or wj) is measured, it is not necessary to directly excite wi (or wj),
as shown in the last condition of Lemma 5.1. In this section, we develop graphical identifiability
conditions for the situation where either wi or wj is measured and not directly excited.

We first consider the case where the input wi is unmeasured and the output wj is measured,
and the measured wj may not be directly excited by r or ẽ. As in (5.6), the mapping TiX (q) is
not a submatrix of CT(q)X(q) as wi is unmeasured, and thus TiX (q) needs to be represented
by availablemappings via an appropriately chosen disconnecting set, which can bemotivated by
the following example:

Example 5.3. Consider the networkmodel set in Figure 5.5(a) where the identifiability ofG21(q)
is of interest whilew1 is unmeasured. Since the mapping from r1 tow1 is known to be 1,G21(q) can
be uniquely recovered from the available external-to-internal mapping from r1 to w2.

In Figure 5.5(b) there is a loop around w1, and the mapping from r1 to w2 is

Tw2r1(q) =
G21(q)

1− G13(q)G31(q)
,

and thus G21(q) cannot be recovered from Tw2r1(q) alone as in Figure 5.5(a). However, the loop
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w1

w2

r1

(a)

w1

w3

w2

r3

r1

(b)

Figure 5.5: Two network model sets with G21(q) as the target module and w1 unmeasured. G21(q) is generically and globally
identifiable in both cases under measured signals (green).

transfer can be found as

Tw3r3(q) =
1

1− G13(q)G31(q)
,

and thus G21(q) = Tw2r1(q)T−1
w3r2

(q), where both mappings are available because w3 and w2 are
measured.

As shown in the above example, it is important tomeasure and excite the vertices in the loops
around the unmeasured input, in order to achieve the identifiability of the module under con-
sideration. This observation can be generalized as follows.

Theorem 5.4. For a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, suppose that
wj is measured but wi cannot be measured. Let set N ∗

i contain all the in-neighbors of wi inW .
Module Gji(q) is generically identifiable inM from (wC , r) if a vertex xi ∈ Xj exists, which has
out-degree one and a known edge to wi, and for some X̄ ⊆ Xj \ {xi} and C̄ ⊆ C, there exists a
X̄ ∪ {xi} − N ∗

i ∪ (N−
j \ {wi}) ∪ C̄ disconnecting setD ⊆ W such that

1. bX̄∪{xi}→D∪{wi} = 1 + |D|;

2. bD→C̄ = |D|.

In the above result, the disconnecting set intersects with the paths from xi to N ∗
i , which

implies that all the loops around wi are blocked by the disconnecting set D, matching the ob-
servation from Example 5.3. Therefore, this result is an extension of Theorem 5.2 to the setting
with unmeasured input by additionally blocking all the loops around the unmeasured input.

In addition, both Theorem 5.3 and Theorem 5.4 can be used to analyze the identifiability
of Gji(q) with unmeasured input and measured output, while Theorem 5.4 provides the extra
freedom that wj does not need to be directly excited.

Then the corresponding path-based formulation of Theorem 5.4 can also be derived.

Corollary 5.3. For a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, suppose that
wj is measured but wi cannot be measured. Module Gji(q) is generically identifiable if a vertex
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xi ∈ Xj exists, which has out-degree one and a known edge towi, and for some X̄ ⊆ Xj \ {xi} and
C̄ ⊆ C, the following conditions hold:

1. bX̄∪{xi}→N∗
i ∪Nj∪C̄ = 1 + bX̄∪{xi}→N∗

i ∪(N−
j \{wi})∪C̄ ;

2. bX̄∪{xi}→N∗
i ∪(N−

j \{wi})∪C̄ = bX̄∪{xi}→C̄ .

The above result can also be extended trivially to a subset of in-comingmodules ofwj, which
is similar to the extension in Corollary 5.2.

For the situation where the input wi is measured while the output wj is unmeasured, the
requirement for the direct excitation for wi in Theorem 5.3 can also be relaxed. Here we start
with the analysis in a SIMOproblem as in Section 5.5.2. When the direct excitation forwi is not
present, the mapping TCi(q) is thus not given by CTWX (q). However, based on Lemma 5.5 ,
we can simply require a disconnecting setD from {wi} to C, and then TCi(q) is represented by
TCD(q)K(q) for some K(q), where TCD(q) can be obtained in certain way.

Theorem 5.5. For amodel setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, suppose that for
moduleGji(q), its inputwi is measured while outputwj is unmeasured. ThenGji(q) is generically
identifiable inM from (wC , r) if a vertex xj ∈ X exists, which has out-degree one and a known
edge to wj, and for some X̄ ⊆ X \ {xj} and C̄ ⊆ C with wi ∈ C̄, there exists a (N+

i \ {wj}) ∪
X̄ ∪ {wi} − C̄ disconnecting setD ⊆ W such that

1. b{wj}∪D→C̄ = |D|+ 1;

2. bX̄→D = |D|.

Note that sincewi ∈ C̄, the disconnecting set in the above resultmust containwi. This result
generalizes Theorem 5.3 to address the situation where the input is measured but has an indi-
rect excitation source, while the input needs to be directly excited in Theorem 5.3. The above
generalization is achieved by additionally blocking the paths from wi to C̄ using the disconnect-
ing set, compared to Theorem 5.3. Furthermore, the result in Theorem 5.5 can be extended to
analyzing global identifiability as in Remark 5.1 and the identifiability of a subnetwork, i.e. a
subset of out-going modules of wi in this case, as in Remark 5.2. A path-based formulation of
Theorem 5.5 can be also obtained analogously as in Corollary 5.3,

5.7 Actuatorandsensorallocationfor identifiabil-
ity

The results in the previous sections provide analysis results for verifying identifiability for a given
configuration ofmeasured and excited signals. In order to extend these results for addressing the
synthesis problem, i.e. allocating sensors and actuators to achieve identifiability, we extend the
reasoning in Section 4.3 as follows.

107



Depending on whether the input or the output of a module is measured, Theorems 5.2, 5.3,
5.4 and 5.5 explicitly require the signals in the disconnecting sets to be excited and measured to
guarantee single module identifiability. Therefore, the idea is to first compute a disconnecting
set and then allocate actuators and sensors accordingly. However, the disconnecting sets in the
theorems cannot be computed before the excitation signals X̄ and the measured signals C̄ are
specified. Thus, we first provide necessary conditions for the disconnecting sets that do not rely
on external and measured signals.

Corollary 5.4. For a model setM that Assumptions 3.2, 3.4, 3.5 and 5.1,

• if it satisfies the conditions inTheorem5.2with disconnecting setD1, thenD1 is also a{wi}−
N−

j \ {wi} disconnecting set;

• if it satisfies the conditions in Theorem 5.3 with disconnecting setD2, thenD2 is also aN+
i \

{wj} − {wj} disconnecting set;

• if it satisfies the conditions inTheorem5.4withdisconnecting setD3, thenD3 is also a{wi}−
N ∗

i ∪ (N−
j \ {wi}) disconnecting set;

• if it satisfies the conditions inTheorem5.5with disconnecting setD4, thenD4 is also a (N+
i \

{wj}) ∪ {wi} − {wi,wj} disconnecting set;

Proof. The proof is analogous to the proof of Corollary 4.3.

After the above disconnecting sets are computed, excitation signals and sensors can be allo-
cated to achieve the identifiability of Gji(q). Following the theorems, we illustrate the synthesis
approaches in Table 5.1 for different cases depending on whether the input or the output can
bemeasured. For each situation, we specify how the disconnecting set is constructed and which
signals are to be excited or measured.

TakingCase 2 inTable 5.1 as an example, aN+
i \{wj}−{wj}disconnecting setD that satisfies

wj /∈ D is first computed. Then for actuator and sensor allocation, each signal inD ∪ {wi,wj}
is directly excited by a distinct r signal, and all signals inD aremeasured. In addition, the output
wj is indirectly measured, which is also required in Case 4.

The indirect measurement of wj in Cases 2 and 4 means that wj has a path to a measured
vertexwk, andmore importantly, based onTheorems 5.3 and 5.5, we choosewk in the following
way: wk ∈ C \ {wj} is an internal signal such that the computedD is also aN+

i \ {wi}− {wk}
disconnecting set in Case 2 or a (N+

i \ {wj}) ∪ {wi} − {wk} disconnecting set in Case 4; in
addition, there exists a path from wj to wk that is vertex disjoint withD.

The synthesis approaches can be justified in the following result.

Theorem 5.6. For a model setM that satisfies Assumptions 3.2, 3.4, 3.5 and 5.1, consider each
case in Table 5.1. If the disconnecting set D is formulated and the excitation signals and sensors
are allocated according to Table 5.1, module Gji(q) is generically identifiable.
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Table 5.1: Different synthesis approaches for identifiability of Gji(q).

Case 1: Measured wi
and wj

Case 2: Excited wi and
wj

Case 3: unmeasured wi
and measured wj

Case 4: measured wi
and unmeasured wj

Disconnecting
setD

{wi} − N−
j \ {wi}

with wi /∈ D
N+

i \ {wj} − {wj}
with wj /∈ D

{wi}−N∗
i ∪(N−

j \
{wi})with wi /∈ D

(N+
i \ {wj}) ∪

{wi}− {wi, wj}with
wj /∈ D

Excitation allo-
cation

Directly excite D ∪
{wi}with r

Directly excite D ∪
{wi,wj}with r

Directly excite D ∪
{wi}with r

Directly excite D ∪
{wj}with r

Sensor alloca-
tion

MeasureD∪{wi, wj} Measure D and indi-
rectly measure wj

MeasureD ∪ {wj} Measure D and indi-
rectly measure wj

Proof. In Case 1, the allocated r signals form a set X̄ , andD forms a set C̄. It is straightforward
that the obtained X̄ , C̄ andD together satisfy the conditions in Theorem 5.2. In Case 2, the r
signals that directly exciteD form the set X̄ , andD∪{wk} forms the set C̄wherewk is the indirect
measurement of wj. Then due to the chosen wk and the direct excitation and measurement
of D, the conditions of Theorem 5.3 are satisfied. The proofs for the other two cases follow
analogously and thus are omitted.

When computing the disconnecting set in the above approaches, a minimum disconnecting
set can be found by standard graphical algorithms [135]. Also note that in the obtained model
set in Cases 1 and 3, module Gji(q) is globally identifiable as all the relevant signals are directly
exited and measured, and thus Theorems 5.3 and 5.4 are satisfied with the unique sets of the
maximum number of vertex disjoint paths. Global identifiability of Gji(q) in the other two
cases depends on the chosen indirect measurement wk for wj.

Example 5.4. Consider the targetmoduleG21(q) in the networkmodel set in Figure 5.6(a), where
there is one knownmoduleG0

41(q), andw4 is excited by a noise signal e4 through a known edge. As-
suming that the inputw1 and the outputw2 of the target module cannot bemeasured, i.e. Case 2 in
Table 5.1, the goal is to allocate additional r signals and sensors to achieve the generic identifiability
of G21(q).

Firstly, it can be found thatN+
1 = {w3,w2}according to the definition ofN+

1 in Section 5.5.2,
since w4 is directly excited by e4. Then based on Case 2 in Table 5.1, a N+

1 \ {w2} − {w2}
disconnecting set can be constructed as D = {w3}, indicated by the red vertex in Figure 5.6(b).
Then the target moduleG21(q) becomes generically identifiable, if the inputw1, the outputw2 and
D are excited, and an indirect measurement of w2 exists, i.e. w5 in this case since w2 only has a
path to w5. The obtained experimental setup is shown in Figure 5.6(b).

Furthermore, like the extension made in Corollary 5.2 , the synthesis approaches for Cases 1
and 3 can be extended trivially to deal with a subset of in-coming modules of wj; and the ones
for Cases 2 and 4 can also be extended to consider a subset of out-going modules ofwi, as noted
in Remark 5.2.

For simplicity, the developed synthesis approaches in this section donot take advantage of the
initially present external signals, while these signals may also contribute to the identifiability of
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Figure 5.6: The target module G21(q) in (a) becomes generically identifiable after the additional actuators and sensors are allo‐
cated as in (b).

Gji(q) and thus reduce the number of additional signals required for the allocation. In addition,
the r signals are directly allocated at the signals in the disconnecting sets in Table 5.1; however,
the freedom of allocating these r signals elsewhere such that they have vertex disjoint paths to
the disconnecting sets is not exploited. This limitation could be addressed by extending the
synthesis approaches in Table 5.1 to more advanced approaches similar to Algorithm 1 for the
fullmeasurement case. The difficulty of the above extension lies in the interdependence between
the excitation signals and the measured signals.

5.8 Indirect identification methods

Thedisconnecting-set-based results inTheorems 5.2, 5.3, 5.4 and5.5 also suggest several indirect
identificationmethods throughwhich themodule of interestGji(q) can actually be estimated in
the situation that the identifiability conditions are satisfied through external excitation signals r
only. r signals are required for the indirect identification because themappings from the r signals
to the measured internal signals can be estimated consistently.

The identification algorithms can be retrieved from the following result, where all the non-
zero modules are assumed to be unknown for simplicity.

Proposition 5.4. ForM with all the fixed modules being zeros,

• if it satisfies the conditions in Theorems 5.2 with wj /∈ D and X̄ having no directed edge to
wj, then forM, it holds generically that

Gji(q) = TjX̄ (q)

[
TiX̄ (q)
TC̄X̄ (q)

]† [
1
0

]
; (5.10)
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• if it satisfies the conditions in Theorem 5.3 with wi /∈ D ∪ C̄, it holds generically that

Gji(q) =
[
1 0

] [
TC̄j(q) TC̄X̄ (q)

]†
TC̄i(q); (5.11)

• if it satisfies the conditions in Theorem 5.4 with wj /∈ D, X̄ having no directed edge to wj,
and xi ∈ R, then it holds generically that

Gji(q) = TjX̄ (q)

[
exi

TC̄(X̄∪{xi})(q)

]† [
1
0

]
, (5.12)

where exi is a standard basis vector which denotes the mapping from (X̄ ∪ {xi}) to xi;

• if it satisfies the conditions in Theorem 5.5, it holds generically that

Gji(q) =
[
1 0

] [
TC̄j(q) TC̄X̄ (q)

]†
CC̄i, (5.13)

whereCC̄i is the submatrix ofCwhose rows and columns correspond to C̄ andwi, respectively.

Proof. (5.10) is obtained from (5.19) where P = TjX̄ under the assumptions that X̄ has no
directed edge towj and there is no knownmodule, and (5.11) is a dual result of (5.10). Similarly,
(5.12) is derived from (5.23), and combining (5.24) and (5.25) leads to (5.13).

The four expressions in the above proposition show opportunities to estimate Gji(q) when
the set Xj consists of only measured r signals. In this case, all the involved mappings, including
TC̄X̄ (q), TC̄i(q) and TC̄j(q), are mappings from measured r signals to measured internal sig-
nals, and thus, they can be estimated consistently using the standard open-loop identification
methods [90]. Consequently,Gji(q) can also be estimated consistently on the basis of the above
expressions. Taking (5.11) as an example, it shows that an estimate of Gji(q) can be obtained
from dividing the mapping from xi to C̄ by the mapping from {xj} ∪ X̄ to C̄, as visualized in
Figure 5.3. Note that thesemethods can also be generalized to identifymultiplemodules, which
is similar to the extensions in Corollary 5.2 and Remark 5.2.

The methods cover all the possible situations for single module identification depending on
whether the input or the output is measured. The particularly interesting case is (5.11) which
leads to amethod that can estimateGji(q) evenwhen both its input and output are unmeasured.
The methods also do not require measuring the inputs of the MISO subsystem that contains
Gji(q), which is a typical choice in the literature such that theMISO subsystem can be estimated
to obtain the module estimate [59].

The obtained indirect methods can address significantly more general settings than the exist-
ing network identificationmethods [48, 59, 88, 123, 140]which are typically limited to a specific
measurement scheme, e.g., both the input and output are measured [48, 59, 123, 140]; or the
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input is unmeasured but the output ismeasured [59, 88]. However, the indirectmethods in this
chapter require measured r signals as excitation sources, which can lead to a higher experimental
cost than some of the existing methods, e.g., the direct method in [48].

5.9 Conclusions

The identifiability conditions for verifying single module identifiability, i.e. sub-question 1 as
formulated in Chapter 2, and the synthesis approaches for allocating actuators and sensors to
achieve single module identifiability, i.e. sub-question 2 in Chapter 2, are investigated in this
chapter in the setting with partial measurement and partial excitation.

For the single module identifiability analysis, in order to exploit the noise excitation for the
identifiability tests, the concept of network equivalence is introduced and anovel networkmodel
structure is developed. This model structure has a simple noise model and allows us to explore
the noise excitation for the identifiability tests.

More importantly, graphical conditions for verifying both the global and generic identifi-
ability of a single module are developed in the case of partial measurement and partial excita-
tion. Given the developed model structure, the graphical conditions regard both measured ref-
erence signals and unmeasured noises as excitation sources for the identifiability analysis. It is
also shown that disconnecting sets provide the important information regarding which signals
should be excited or measured to achieve identifiability. The above information further leads
to synthesis approaches, for excitation allocation and sensor allocation to achieve identifiability,
and indirect methods for estimating network modules.

Open questions include the extension of the synthesis approaches to take advantage of the
initially present external signals and to gain extra freedom to allocate actuators and sensors, since
in the current approaches r signals are directly allocated at the signals in the disconnecting set.
In addition, the extension of the pseudotree-based synthesis approaches in Chapter 4 to the par-
tial measurement and partial excitation setting may provide more efficient synthesis approaches
for the full network identifiability. This extension has been preliminarily considered in [37] for
acyclic dynamic networks. It is also attractive to investigate how the identifiability results con-
nect to the existing identification methods, e.g., the ones in [48, 120, 152], which are typically
less dependent on the presence of r signals than the indirect methods developed in this chapter.

5.10 Appendix

5.10.1 Proof of Theorem 5.1

We first exploit the spectrum CΦC⊤ of M. Based on the measured signals wC , an immersed
network model, which only represents the behavior of the measured signals, can be obtained by
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eliminating the unmeasured signals (called immersion or Kron reduction) [48]. To introduce
the immersed network, we first define

Ḡ = GCC + GCZ(I− GZZ)
−1GZC

H̄ = HC + GCZ(I− GZZ)
−1HZ ,

and R̄ similarly, where, for example, GCZ represents the submatrix of G that has its rows and
columns corresponding to the signals in C and Z , respectively. Then the immersed network
model after the elimination of unmeasured internal signals has the following form:

wC = ḠwC + R̄r(t) + H̄e(t).

Note that the above model may have non-zero diagonal entries in Ḡ, and (I − Ḡ) has a proper
inverse because of Assumption 2.1(b) and consequently (I− Ḡ∞) being full rank. This model
further leads to an external-to-internal mapping:

wC = (I− Ḡ)−1R̄r(t) + (I− Ḡ)−1H̄e(t). (5.14)

Based on (2.6) and (5.14), it can be found that

CΦC⊤ = (I− Ḡ)−1H̄ΛH̄∗(I− Ḡ)−∗, (5.15)

where it holds that
C(I− G)−1C⊤ = (I− Ḡ)−1. (5.16)

In addition, H̄ΛH̄⋆ can be re-factorized into H̃Λ̃H̃⋆ [60], where (H̃, Λ̃) satisfies the properties
of this theorem. Note that (H̃, Λ̃) is unique and Λ̃ is full rank if Assumption 5.1 is satisfied.
This together with (5.15) and (5.16) leads to

CΦC⊤ = C(I− G)−1

[
H̃
0

]
Λ̃
[
H̃⋆ 0

]
(I− G)−∗C⊤.

The above equation implies that the external-to-output mapping of (5.1), i.e.

wC = C(I− G)−1Rr + C(I− G)−1

[
H̃
0

]
ẽ,

leads to the same object (CTR,CΦC⊤) as M, which concludes that M̃ ∼ M.
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5.10.2 Proof of Corollary 5.1

The existence of the equivalent network model M̃ follows from the proof of Theorem 5.1. In
addition, with the ordering of wC , H̄ in (5.15) has a block diagonal structure, and each block
corresponds to a set Si, based on the proof of Theorem 1 in [123]. As Λ is an identity matrix,
H̄ΛH̄∗ is block diagonal, and thus the spectral factorization of each blockmatrix in H̄ΛH̄∗ leads
to block diagonal H̃(q) and Λ̃.

5.10.3 Proof of Proposition 5.1

For any network model, it holds that

CΦv(θ)C⊤ = C(I− G)−1HpΛ̃H⋆
p(I− G)−∗C⊤,

whereHp ≜
[

H̃
0

]
, H̃ is monic andC = [I 0]. Then the proposition is proved by showing that

C(I−G)−1Hp and Λ̃ can be found uniquely givenCTR andCΦC⊤ underAssumption 3.2, and
then the two implications are trivially equivalent.

IfG is strictly proper under Assumption 3.2(a),C(I−G)−1Hp is also monic. SinceCΦvC⊤

admits a unique factorization as
CΦvC⊤ = LΛpL⋆,

where L is monic [58], it holds that C(I − G)−1Hp = L and Λ̃ = Λp. Thus, the unique-
ness of Λ and C(I − G)−1Hp is guaranteed given CΦvC⊤, which concludes the proof under
Assumption 3.2(a).

If Assumption 3.2(b) holds, there exists a permutation matrix P such that

CΦvC⊤ = (CP⊤)F(PHp)Λ̃(H⋆
pP⊤)F∗(PC⊤),

whereF ≜ [I−PG∞P⊤]−1 andF is lower unitriangular. AsCP⊤ contains the first |C| rows of
P⊤, there exists another permutation matrix P̄ such that P̄CP⊤ is in row echelon form. Note
that pre-multiplying a square matrix by P̄CP⊤ extracts a subset of rows in the matrix without
re-ordering them. Based on the above facts, consider

P̄CΦvC⊤P̄⊤ = (P̄CP⊤)F(PHpP̄⊤)P̄Λ̃P̄⊤(P̄H⋆
pP⊤)F∗(PC⊤P̄⊤),

where
(P̄CP⊤)F(PHpP̄⊤)

is lower unitriangular because the pre- and post-multiplication of F leads to a submatrix of F
with rows and columns corresponding to the same indexes. As P̄CΦvC⊤P̄⊤ admits a unique
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LDL⋆ decomposition as
P̄CΦvC⊤P̄⊤ = L̄ΛpL̄⋆,

where L̄ is lower unitriangular, (P̄CP⊤)F(PHpP̄⊤) and P̄Λ̃P̄⊤ can be uniquely determined as

(P̄CP⊤)F(PHpP̄⊤) = L̄, P̄Λ̃P̄⊤ = Λp.

Therefore, C(I−G)−1Hp and Λ̃ can also be uniquely found given the spectrummatrix, which
proves the proposition under Assumption 3.2(b).

5.10.4 Proof of Lemma 5.4

The existence ofK is proven inTheorem4.2. As nowD is a subset ofW∪X̄ ,Khas the following
form according to Theorem 4.2:

K =

[
[(I− GPP)

−1]W1⋆GPD1 [(I− GPP)
−1]W1⋆XPD2

C 0

]
,

for some P ⊆ W andW1 ⊆ P , and some disjoint sets D1 and D2 such that D1 ∪ D2 = D;
C is a selection matrix that extracts the rows corresponding toW2 from a matrix whose rows
correspond toD1, whereW2 = W̄ ∩ D1.

Note that theKmatrix equals the external-to-internalmapping fromD toP in a subgraph of
G, where the vertices inD are the external signals with all in-coming edges ofD removed, and the
signals in P are internal signals. This characterization of K is clearly seen from its formulation:
(I−GPP)

−1
[
GPD1 XPD2

]
has the same structure asTWX in (2.13); and the block row [C 0]

inK represents the mapping fromD toW2, as C is the mapping fromD1 toW2 ⊆ D1, and the
zero entries indicate that there is no path between any twodistinct vertices inDwhen the vertices
inD are externals signals. Thus, the full column rank ofK can be evaluated based on Lemma 5.3
for this subgraph.

5.10.5 Proof of Theorem 5.2

The proof is to show that a unique Gji can be found given TC̄X̄ , TiX̄ and TjX̄ . Note that by
condition (1), wi /∈ D holds. Let set N contain the remaining in-coming internal signals of
wj which are not inN−

j , i.e. N contains the ones that are measured and have known directed
edges to wj. When wj /∈ D, recall the row of (I− G)TWX = X corresponding to wj, and after
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permutation we have

[
−Gji −GjN−

j \{wi}K1 1 0
]


TiX̄

TDX̄

TjX̄

⋆

 = X̄ + GjNTNX̄ , (5.17)

where X̄ is a row vector with its columns corresponding to the signals in X̄ and thus is known;
GjNTNX̄ is also given as themodules inGjN are knownandN ismeasured;K1 satisfiesK1TDX̄ =

TN−
j \{wi}X̄ based on Lemma 5.4. Furthermore, there exists K2 such that K2TDX̄ = TC̄X̄ , and

K2 is full column rank generically by condition (2) and Lemma 5.4. This generically leads to

TDX̄ = K†
2TC̄X̄ , (5.18)

where ()† denotes thematrix’s left inverse. Then combining the above equation and (5.17) leads
to [

−Gji −GjN−
j \{wi}K1K†

2

] [TiX̄

TC̄X̄

]
= P, (5.19)

where P = X̄− TjX̄ +GjNTNX̄ , and the above equation holds generically. In addition, due to
conditions (1) and (2), it holds that

bX̄→{wi}∪C̄ = 1 + bX̄→C̄ ,

and thus
rank(T({wi}∪C̄)X̄ ) = 1 + rank(TC̄X̄ ), (5.20)

which implies that (5.19) has a unique solution for Gji generically based on Theorem 3.1 and
thus also implies the generic identifiability of Gji.

Whenwj ∈ D, the jth row of (I−G)TWX = X can be written as follows after permutation:

[
−Gji −Gj({wj}∪N−

j \{wi})K̄1 0
] TiX̄

TDX̄

⋆

 = X̄ + GjNTNX̄ ,

where K̄1TDX̄ = T({wj}∪N−
j \{wi})X̄ for some K̄1. Note that for the above equation in the

special case where N = ∅, GjNTNX̄ disappears and X̄ becomes non-zero, because X̄ must
have a directed edge towj ∈ D; otherwise, there exists a path from X̄ toN−

j \ {wi}which does
not intersect withD based on condition (1) and thus contradicts thatD is a disconnecting set.
Finally, combining the above equation and (5.18) leads to unique Gji generically given CTWX̄

and the first two conditions.
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5.10.6 Proof of Proposition 5.2

We prove this result by showing that the conditions are equivalent to the conditions of The-
orem 5.2. Firstly, based on Lemma 4.4, condition (1) is equivalent to condition (1) of Theo-
rem5.2, and both conditions are satisfied by choosingD to be aminimum X̄ −(N−

j \{wi})∪C̄
disconnecting set. With this choice, bX̄→(N−

j \{wi})∪C̄ = |D| by the Menger’s theorem, andD
is also a X̄ − C̄ disconnecting set. Then if condition (2) is satisfied, it holds that

|D| = bX̄→C̄ ,

which implies that D is a minimum X̄ − C̄ disconnecting set by the Menger’s theorem, and
thus bD→C̄ = |D|, i.e. condition (2) in Theorem 5.2. On the other hand, if condition (2) in
Theorem 5.2 holds, there are maximally |D| vertex disjoint paths from X̄ viaD to C̄, collected
into setP . AsD is a minimum X̄ − (N−

j \ {wi}) ∪ C̄ disconnecting set, all the paths from X̄
to (N−

j \ {wi}) should intersect with the paths inP , which implies condition (2) of this result
and thus concludes the proof.

5.10.7 Proof of Lemma 5.5

The proof is analogous to the proof of Lemma 5.4 with some non-trivial differences that are
presented here. Let S contain all the vertices that is reachable by X̄ without intersectingD, and
P = V \ (D ∪ S). AsD ⊆ W , X̄ ⊆ S and W̄ ⊆ D ∪ P hold. By the definition of the above
sets, no edge from S toP exists, and thus the submatrix GPwSw = 0, wherePw = P ∩W and
Sw = S ∩W . Combining the above fact and T(I− G) = I implies that

T(Pw∪D)(Sw∪D) = T(Pw∪D)D

[
GDSw(I− GSwSw)

−1 I
]
, (5.21)

where the inverse exists and is proper by Assumption 2.1(b).
As X̄ ⊆ S only has edges to the internal signals in Sw ∪ D, it holds that for any W̃ ⊆ W ,

TW̃X̄ = (I− G)−1
W̃⋆

X⋆X̄

= (I− G)−1
W̃(Sw∪D)

X(Sw∪D)X̄ = TW̃(Sw∪D)X(Sw∪D)X̄ .

Denote X̄ = X(Sw∪D)X̄ , and thus based on the above equation and (5.21), it holds that

T(Pw∪D)X̄ = T(Pw∪D)D

[
GDSw(I− GSwSw)

−1 I
]

X̄.

As W̄ ⊆ D ∪ P , the above equation implies (5.9) with

K =
[
GDSw(I− GSwSw)

−1 I
]

X̄.
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Regarding the rank result, the term K denotes an external-to-internal mapping in a subgraph
(sub-network) of G: Consider a subgraph Ḡ of G with only vertices X̄ ∪ Sw ∪D, and the edges
among these vertices are kept as in G, while all the out-going edges ofD are removed. The net-
work matrix Ḡ of Ḡ is given as

Ḡ =

[
GSwSw 0
GDSw 0

]
,

where the zero block matrices appear asD has no out-going edges in Ḡ. Then we have the map-
ping in Ḡ from X̄ to Sw ∪ D as

T̄ = (I− Ḡ)−1X̄ =

[
⋆ ⋆

GDSw(I− GSwSw)
−1 I

]
X̄,

which shows that K is a submatrix of T̄ and represents the mapping from X̄ to D in the sub-
network Ḡ. Therefore, we have rank(K) = bX̄→D generically in Ḡ. In addition, as D is a
X̄ − W̄ disconnecting set, it holds that bX̄→D in the subgraph equals bX̄→D in G, and thus
by Lemma 5.3, K is full row rank generically if bX̄→D = |D| in G or globally full row rank if
b̄X̄1→D = |D| in G for some X̄1 ⊆ X̄ .

5.10.8 Proof of Theorem 5.4

Whenwj /∈ D, as the conditions imply thefirst twoconditions inTheorem5.2with X̄ ∪{xi}, we
can use part of the proof for Theorem 5.2, while the differences start from (5.19) by replacing X̄
in (5.19) with X̃ , where X̃ = X̄ ∪{xi}. In addition, it can be found thatD∪{xi} is a X̃ −{wi}
disconnecting set, and thus for some proper Ki, it holds

TiX̃ = Ki

[
exi

TDX̃

]
, (5.22)

where exi is a row vector contains one entry as 1 and zeros elsewhere, and it denotes the mapping
from X̃ to wi since xi ∈ X̃ . Moreover, following the proof of Lemma 5.4, Ki is the external-to-
internal mapping of a sub-network, whereD ∪ {xi} are external signals, and all the in-coming
edges of D are removed. As D ∪ {xi} intersects with all the paths from wi to N ∗

i in G, the
sub-network does not contain any loop aroundwi. This indicates thatKi has a special structure
as

Ki =
[
H̄ K̄i

]
,
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where H̄ is the known module from xi to wi in the sub-network, and note that H̄ = 1 if xi is a
measured excitation signal. Combining the above equation, (5.22), (5.18) and (5.19) leads to

[
−GjiH̄ (−GjiK̄i − GjN−

j \{wi}K1)K†
2

] [ exi

TC̄X̃

]
= P, (5.23)

where

[
exi

TC̄X̃

]
denotes the mapping from X̃ to C̄ ∪ {xi}. Following a similar reasoning as in

the proof of Lemma 5.4, it can be obtained from the two path-based conditions that generically,
GjiH̄ and thusGji are obtained uniquely since H̄ is known. The proof for the case wherewj ∈ D
can be shown analogously.

5.10.9 Proof of Theorem 5.5

Firstly, it holds that wi ∈ D since C̄ contains wi, and letN denote the out-neighbors of wi that
are not inN+

i . Considering the column ofC = TCW(I−G) corresponding towi, and sinceD
is a (N+

i \ {wj}) ∪ {wi} − C̄ disconnecting set, we have

[
TC̄j TC̄DK̄1

] −Gji

−GN+
i \{wj}i

1

 = P, (5.24)

whereTC̄DK̄1 = TC̄(N+
i \{wj})∪{wi} for some K̄1 based on Lemma 5.5 ; andP = CC̄i+TC̄NGN i

where P is known and CC̄i is now non-zero because wi ∈ C̄. Note that TC̄j is given by CTWX

due to the existence of xj. In addition, it holds that for some K̄2

TC̄D = TC̄X̄ K̄†
2, (5.25)

based on Lemma 5.5. Combining the above equation and (5.24), and following the analysis of
Theorem 5.2 analogously conclude that unique Gji is guaranteed generically.
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故乡篱下菊，今日几花开。

江总（南北朝）

The chrysanthemum under the fence of hometown, how many flowers
bloom today?

Zong Jiang (Northern and Southern dynasties)

6
Bayesian topology identification

6.1 Introduction

The topological analysis and synthesis for network identifiability in the previous chapters rely on
the pre-specified network topology for a networkmodel set. While this topological information
can come from theuser’smodeling assumptions or prior knowledge, inmanypractical situations
it is attractive to estimate the network topology fromdata. This topology identification problem
itself is also an important subject of study, e.g., in systems biology [68] and social science [181].

This chapter concerns the topology identification problem, i.e. the estimation of the sparsity
pattern ofG(q)matrix, of a dynamic network in (2.1), when all the internal signals aremeasured,
i.e. C = I, and there is no measured excitation signals, i.e., only the observational data is consid-
ered. This is an important special case of the general dynamic network model as considered in
many applications [68, 181].

Several methods using measures in the frequency domain, e.g. the coherence, can be found
in [95, 96, 147]. The approach in [95] uses the coherence function and is built on the idea that
nodes that are adjacent in a network should have a higher correlation than nodes that are more
distant. However, this approach is restricted to undirected tree structures only. A follow-up can
be found in [96], where zero entries in a multivariate Wiener filter estimate of the dynamics are

The material of this chapter is based on [138].
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used to infer the topology. This method is further extended in [147] to address the appearance
of feedthrough terms and correlated noises.

Another way to approach the topology identification problem is to formulate it into a sparse
estimation problem, where the parameters of the dynamic networks are estimated with sparsity-
induced regularization. Then the non-zero parameters show which modules in G(q) are non-
zero and thus represent the network topology. Typical regularization strategies exploit the l0
norm penalty [137] or the grouped version of the l1 norm penalty [27, 179] on the parameter
vector. In addition, search algorithms have also been employed to estimate the topology. An
iterative algorithm known as block orthogonal matching pursuit in compressed sensing employs
a forward search procedure [81].

The common challenge in all the above methods is to choose certain tuning parameters, e.g.
the threshold value in the frequency-domain methods [96], the regularization parameter that
reflects the degree of penalty in the regularized regression [27, 179], and the number of non-zero
parameters in the ground truth [81]. These tuning parameters decide how sparse the obtained
topology estimate is and thus are critical for the algorithms to achieve good performance. Even
if there are recent works that address the choice of the tuning parameters for particularmethods,
e.g. the regularization parameter in Lasso for independent data [99], this problem remains open
formanymethods and dynamic systems. Inmany cases these parameters are chosen in an ad hoc
manner.

To avoid the above issue, there are also approaches that are free of tuning parameters. The
approach in [40] uses the Bayesian information criterion (BIC) coupled with a greedy search
algorithm to estimate the topology of Bayesian networks, where the BIC does not require any
tuning parameter. However, this method is designed for independent data and thus not suited
for dynamic systems. A Bayesian approach formulated for dynamic networks can be found in
[41], where the impulse responses of the modules in the network are modeled as Gaussian pro-
cesses whose kernel is parameterized by hyperparameters; these hyperparameters are modeled
as random variables whose probability density aims at enforcing the sparsity of the network.
However, this approach is designed for the joint estimation of topology and dynamics and thus
consists of multiple stages and is very complex.

Inspired by [40, 41] and the recent interests inGaussian processes in the system identification
community [117], a Bayesian model selection approach [75, 166] is exploited in this chapter to
solve the topology identification problem. While in [41] focus was on the joint estimation of
topology and dynamics, our aim is to develop a Bayesian approach for topology identification,
without estimating the dynamics. In addition, compared to the approach in [40] which uses
the BIC, the Bayesian model selection makes use of the marginal likelihood that allows for the
incorporation of the prior knowledge.

The approach in this chapter employs a Bayesian measure, i.e. the marginal likelihood of the
network topology, coupledwith a forward and backward search algorithm to select the topology
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which optimizes themeasure. To obtain themeasure, the infinite impulse responses of themod-
ules in dynamic networks aremodeled asGaussian processes with hyperparameters. In addition,
we take an empirical Bayesian approachwhere the hyperparameters aremodeled as deterministic
variables and estimated by maximizing the marginal likelihood using a computationally attrac-
tive instance of the expectation-maximization (EM) algorithm; this is a major difference from
the approach in [41] where the hyperparameters are modeled as random variables instead. In
addition, compared to [41], in this chapter the topology is modeled as a random variable, which
permits to incorporate structural prior information and to exploit the uncertainty of the topol-
ogy estimate when required by specific applications. The important benefit of the developed
approach is that no tuning effort is required from the user, and the prior knowledge regarding
the stability of the modules can be incorporated into the method.

This chapter is organized as follows. In Section 6.2, the problem of topology identification
is formulated. In Section 6.3, the Bayesian model selection is introduced and then extended
to a new algorithm for the problem of this chapter in Section 6.4. The group Lasso estimator
and its new variant are introduced in Section 6.5 to compare with the Bayesian approach. The
numerical results are shown in Section 6.6 and the conclusion completes the chapter.

6.2 Problem formulation

We consider a special form of the dynamic network as

wj(t) =
∑
i∈I\j

Gji(q)wi(t) + Hj(q)ej(t), j ∈ I, (6.1)

whereI = {1, · · · ,L} is the index set, and the notationwI will be used to denote the set {wj|j ∈
I}. With some abuse of notation, wj(t) denotes both a random variable and its realization.

Compared to the general network model in (2.1), the model (6.1) in this chapter has a di-
agonal and square H(q), and all the internal signals are measured. In addition, there are no r
signals, which corresponds to the observational data where no external excitation is provided by
the user. Combining (6.1) into a matrix form, the full model can be written as

w(t) = G(q)w(t) + H(q)e(t), (6.2)

where w(t) = [w1(t), ...,wL(t)]⊤, e(t) = [e1(t), ..., eL(t)]⊤ and H(q) is a diagonal matrix
containing Hj(q) for j ∈ I . The matrix G(q) contains Gji(q) and has zero entries on its main
diagonal.

BesidesAssumption2.1 on the general networkmodel, we consider a simplermodel structure
that additionally satisfies the following assumptions throughout this chapter:

• All entries in G(q) are strictly proper and stable;
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• Hj(q) is monic and minimum-phase for all j;

• The covariance matrix of e(t) is diagonal, and for all j ∈ I , ej(t) follows a Gaussian
distribution with an unknown standard deviation σj: ej(t) ∼ N (0,σ2

j ).

For the considered model structure, since the noise model H(q) is diagonal and there is no r
signal, the network topology is completely determined by the sparsity pattern of G(q). There-
fore, we consider a simpler definition of network topology throughout this chapter where only
the non-zero entries in G(q) are represented by directed edges, compared to the general defini-
tion in Section 2.4.2 where the entries in bothG(q) andH(q) are represented by directed edges.

Definition 6.1. The network topology G associated with (6.1) is defined as G = (V, E), where
V = {w1, · · · ,wL} and E = {(i, j)|Gji(q) ̸= 0, i, j ∈ I}.

Given the number of internal signals L, the set of vertices V in G is given. Then G is com-
pletely determined by the edge set E , and thus G and E are used interchangeably throughout
this chapter. When an edge (i, j) exists in E , we denote (i, j) ∈ E or (i, j) ∈ G.

The problem of topology identification is then to estimate G of the data generation system,
given the measurements of wj(t) for all t ∈ {0, · · · ,N} and all j ∈ I . We shall denote such a
set of measurements by D.

Note that in (6.1), each internal signal is influenced by a distinct white noise. Then when a
model set that contains models of the type (6.1) is considered,G(q) is generically identifiable in
the model set from the measured internal signals according to Theorem 3.4.

6.3 Bayesian model selection

To identify the topology, we need to define ameasure that distinguishes two candidate structures
on the basis of data. In this chapter, a Bayesian model selection approach [166] is employed by
modeling the topology as a random variable and using measure P(G1|D)/P(G2|D) to compare
two candidates, whereP(Gi|D) is the posterior probability ofGi given the data. Using the Bayes’
theorem, the measure can be further formulated as

P(G1|D)

P(G2|D)
=

P(D|G1)P(G1)

P(D|G2)P(G2)
=

P(D|G1)

P(D|G2)
, (6.3)

where P(D|G) is the marginal likelihood, and the second equality holds when there is no prior
knowledge on the topology and thus P(Gi) = P(Gj). In this chapter, we will assume that the
second equality in (6.3) holds, and for the reader who is interested in the structure prior, an
example of a structure prior can be found in [172]. Thus, we will use P(D|G1)/P(D|G2)which
is also called the Bayes factor [75]. Taking the logarithm of P(D|G), we can obtain an objective
function whose maximization yields the topology with the highest marginal likelihood. Note
that the BIC is an approximation of log P(D|G)with a bounded error when N→∞ [75].
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When the network modules are parameterized by a vector θ, the marginal likelihood in (6.3)
can be obtained as

P(D|G) =
∫

P(D|θ,G)P(θ|G)dθ, (6.4)

where P(D|θ,G) is the likelihood and P(θ|G) is the parameter prior distribution. Following
the Bayesian approach, the topology that maximizes log P(D|G) is the solution of the problem
under study, which leads to the following problem:

max
G∈Gset

log P(D|G), (6.5)

where Gset denotes the set of all possible graphs. To solve (6.5), we need to address i) the choice
of P(θ|G), ii) the calculation of the integration in (6.4), and iii) the solver to select the topology
when there are a large number of candidates. These issues are discussed in the next section.

Remark 6.1. The criterion log P(D|G) in (6.5) can be replaced by standard model selection cri-
teria, e.g., the BIC or the Akaike information criterion (AIC); however, log P(D|G) has the addi-
tional capability to incorporate the prior knowledge P(θ|G) as in (6.4).

6.4 Bayesian topology identification

6.4.1 Reformulation of the problem

Model (6.1) can be reformulated as

wj(t) = ŵj(t) + ej(t), (6.6)

where ŵj(t) is the one-step ahead predictor [90], namely

ŵj(t) = [1− H−1
j (q)]wj(t) +

∑
i∈I\{j}

Gji(q)
Hj(q)

wi(t), (6.7)

and under the assumptions thatGji(z) is stable andHj(z) is minimum-phase, it holds [90] that

Gji(q)
Hj(q)

=

∞∑
k=1

θji,kq−k, 1− H−1
j (q) =

∞∑
k=1

θjj,kq−k. (6.8)

In this chapter we consider the non-parametric model in (6.6) where we directly work with
the impulse responses in (6.8). However, since in practice the infinite-order impulse responses
in (6.8) need to be truncated to a finite-order n, we focus our discussion on the following finite-
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order approximation of (6.6) that contains measurements up to time N:

wN
j =

∑
i∈I

Ajiθji + eN
j , j ∈ I (6.9)

where wN
j = [wj(1), ...,wj(N)]⊤, θji = [θji,1, ..., θji,n]

⊤, eN
j = [ej(1), ..., ej(N)]⊤, and

Aji =


wi(0) wi(−1) · · · wi(−n + 1)
wi(1) wi(0) · · · wi(−n + 2)
...

. . . . . .
...

wi(N− 1) wi(N− 2) · · · wi(N− n)

 .

Equation (6.9) can also be written as

wN
j = Ajθj + eN

j ,

where Aj = [Aj1, ...,AjL] and θj = [θ⊤j1 , ..., θ⊤jL ]⊤. In the above model θj contains the impulse
response coefficients in (6.8), andwith some abuse of notation, it is also referred to as parameters
even if the impulse response functions in (6.8) are not parameterized.

Equivalently, the problem considered in this chapter can also be formulated based on (6.9)
as the identification of the set Ḡ = {(i, j)|θji ̸= 0, i, j ∈ I}. Note that Ḡ is defined on the
predictormodel (6.6) whileG is defined on (6.1). It can be found from (6.7) thatG is equivalent
to Ḡ after the self-loops in Ḡ, e,g., (j, j), are removed. Even if the algorithm is designed to recover
Ḡ, the notation G is still used in place of Ḡ and the self-loops are made implicit to improve the
readability.

Remark 6.2. For simplicity, no measured excitation signal, i.e. the r(t) signal in (2.1), is con-
sidered in (6.2) and (6.9). However, the developed approach extends trivially to the case where r
signals appear, i.e. the following model class

w(t) = G(q)w(t) + R(q)r(t) + H(q)e(t),

whereH(q) is diagonal, and e(t) is Gaussian and has a diagonal covariance matrix. In this case,
the predictor model (6.7) also has the extra r signals as inputs and still leads to a linear regression
model of type (6.9). The appearance of r signals does not change the methodology of the developed
Bayesian approach, but it may increase the signal-to-noise ratio and thus improve the accuracy of
the topology estimation.
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6.4.2 Decomposition of the objective function

In this section, we show that the objective function log P(D|G) can be decomposed into a set
of independent terms corresponding to MISO subsystems, where each MISO topology identi-
fication problem can be solved independently.

Based on (6.4), P(D|G) can be factorized by decomposing P(D|θ,G) and P(θ|G) as follows.
According to Theorem 2.2, it holds that the likelihood can be factorized as

P(D|θ,G) =
L∏

j=1

N∏
t=1

P(wj(t)|ŵj(t)).

In addtion, we assume that the prior P(θ|G) in (6.4) satisfies

P(θ|G) =
L∏

j=1

P(θj|Gj), (6.10)

whereGj and θj denote the topology and the parameter vector of oneMISOmodel, respectively.
Thus, given (6.1) and the parameter independence assumption, the marginal likelihood in (6.5)
can be decomposed into L independent terms as log P(D|G) =

∑L
j=1 log P(Dj|Gj), where Dj

denotes the data relevant to a single MISO problem of the type (6.9) and

log P(Dj|Gj) ≜ log
∫ N∏

t=1

P(wj(t)|ŵj(t))P(θj|Gj)dθj. (6.11)

Since each term is a function of theMISO topology, the search algorithm for theMISO topology
can then be parallelized to obtain the overall network topology.

6.4.3 Objective function: Parameter prior and integration

Due to the independence among the MISO problems, we describe the developed algorithm for
a single MISOmodel of the type (6.9) in this section.

Firstly, we need to specify the dependence of P(Dj|θj,Gj) and P(θj|Gj) on one particular
structure Gj. Given one topology Gj = {(i1, j), ..., (ip, j)}, P(θj|Gj) considers the distribution
of the parameter vector formulated based on Gj, i.e.

θj|Gj =
[
θ⊤ji1 · · · θ⊤jip

]⊤
,

where with some abuse of notation, θj|Gj denotes a vector formulated based on the edges in Gj.
In addition, the likelihood function P(Dj|θj,Gj) is calculated based on the model

wN
j = (Aj|Gj) · (θj|Gj) + eN

j ,
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where Aj|Gj =
[
Aji1 · · · Ajip

]
.

Parameter prior

Following the kernel-based approach for system identification [116], the impulse response coef-
ficients aremodeled asGaussian processes. Since the prior knowledge that the impulse responses
should decay with time is available, the parameter prior P(θj|Gj) is chosen from [117] as

θj|Gj ∼ N (0,Kj), (6.12)

where Kj is a block diagonal matrix structured as

Kj = diag(λji1K̄(βji1), · · · , λjipK̄(βjip)),

where K̄(βji) is an n × n matrix that depends on an unknown scalar hyperparameter βji, and
the (k,m) entry of K̄(βji) is defined by βmax(k,m)

ji . It is also required that λji > 0 and βji ∈
[0 1). For this choice of kernel, βji regulates the rate of decay of the impulse responses to zero.
Therefore, the module priors depend on the unknown hyperparameter vectors, i.e. λj|Gj =[
λji1 · · · λjip

]⊤
andβj|G =

[
βji1 · · · βjip

]⊤
. Since everyMISOproblemwill be assigned

an independent parameter prior as (6.12), equation (6.10) is satisfied.

Integration

Denote ηj =
[
σj λ⊤

j β⊤
j

]⊤
, where the dependencies of λj and βj on Gj are implicit. Based

on (6.9) and (6.12), given one particular Gj, (6.11) can be obtained in a closed form because of
the chosen Gaussian distributions. After scaling and removing a constant term, we can obtain
that

J(Gj; ηj) = 2 log P(Dj|Gj; ηj)− constant term

=− (wN
j )

⊤Γ−1
j wN

j − log det Γj, (6.13)

where Γj = σ2
j IN + AjKjA⊤

j , and the dependencies of Aj and Kj on a particular topology Gj

are implicit. Note that Γj is also a function of ηj. Since ηj is unknown, an estimate of ηj has
to be computed first and then we can use J(Gj; η̂j) as the objective function for the topology
estimation problem.

Estimation of hyperparameters

To obtain an estimate of η̂j, we first estimate the hyperparameter vector associatedwith the com-
plete MISO graph, where all the other internal signals have directed edges to wj. The obtained
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estimate is denoted by ηfull
j . Then, given a graph Gj, the corresponding hyperparameter vector η̂j

associated to that graph can be obtained by neglecting those hyperparameters in ηfull
j associated

to zero modules (i.e., missing edges in the graph). This procedure avoids the re-estimation of ηj

for all different graphs and reduces the computational cost. The hyperparameter vector ηfull
j is

estimated by solving the following marginal likelihood problem:

η̂full
j = argmax

ηfull
j

log P(Dj|G full
j ; ηfull

j ), (6.14)

where G full
j is a complete MISO graph, i.e. G full

j = {(1 j), ..., (L j)}. A local optimum of this
problem can be found by the EM algorithm [28].

Assuming that an estimate η̂(k)j of ηfull
j is available at the k-th iteration of the EM algorithm,

an updated estimate is obtained by the following steps:
(E-step) Compute

Q(ηj, η̂
(k)
j ) = EP(θj|wN

j ;̂η
(k)
j )

[log P(θj,wN
j ; ηj)]; (6.15)

(M-step) Compute
η̂(k+1)

j = argmax
ηj∈V

Q(ηj, η̂
(k)
j ). (6.16)

Note that for a MISO problem, the input and the graph are regarded as fixed and thus implicit
in (6.15).

Proposition 6.1. Denote η̂(k) as the estimate of the hyperparameter vector at the kth iteration of
the EMalgorithmused to solve (6.14). Then according to (6.15) and (6.16), η̂(k+1) is obtainedwith
the following update rules:

• The hyperparameter σ̂(k+1)
j is obtained as

σ̂(k+1)
j =

√
M(k)

N
, (6.17)

where

M(k) =(wN
j )

⊤wN
j − 2(wN

j )
⊤AjĈ(k)

j wN
j + tr[A⊤

j AjΔ̂
(k)
j ],

Ĉ(k)
j =[σ̂(k)

j ]−2[Σ̂
(k)
j ]−1A⊤

j ,

Σ̂
(k)
j =[σ̂(k)

j ]−2A⊤
j Aj + [Kj(λ̂

(k)
j , β̂

(k)
j )]−1,

Δ̂
(k)
j =[Σ̂

(k)
j ]−1 + Ĉ(k)

j wN
j (wN

j )
⊤[Ĉ(k)

j ]⊤.
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• The hyperparameter β̂
(k+1)
ji , i = 1, ..., L, is obtained as

β̂
(k+1)
ji = arg min

βji∈[0 1)
n log[tr(K̄−1(βji)Δ̂

(k)
j [i])] + log det K̄(βji), (6.18)

where Δ̂
(k)
j [i] is a square sub-matrix obtained from Δ̂

(k)
j by the [(i − 1)n + 1]-th row and

column until the (in)-th row and column of Δ̂
(k)
j .

• The hyperparameter λ̂
(k+1)
ji , i = 1, ..., L, is obtained as

λ̂
(k+1)
ji =

1
n

tr[K̄−1(β̂
k+1
ji )Δ̂

(k)
j [i]]. (6.19)

The proof of the above proposition is presented in Section 6.8. It can be found that (6.14)
is decomposed into a set of optimization problems with scalar optimization variables for esti-
mating β and closed-form solutions for estimating σ and λ. The computational speed and the
numerical robustness of the above algorithmcanbe further improvedby exploiting the factoriza-
tion of K̄ [31] [28] such that its inverse can bemore easily computed, which is also implemented
in the algorithm.

6.4.4 Algorithm for optimization

The objective function of problem (6.5) has been reformulated in (6.13), where J(Gj; η̂j) is used
to replace log P(Dj|Gj) and η̂j is obtained as η̂j = η̂full

j |Gj. The next step is to design a solver for
the optimization problem.

Since the number of all possible directed graphs in Gset is 2L2−L, it is infeasible to consider all
the candidates when L is large. Following [40], a forward-backward greedy search algorithm is
implemented to find a local optimum of (6.5). Recall that the graph of the predictor model is
considered here so that self-loops are always present. The algorithm initializes a graph with only
self-loops and then starts an iterative edge-addition procedure, where at each iteration, the edge,
whose existence leads to the largest increase in the objective value, is added to the graph from the
previous iteration. The iteration stops when the objective function cannot be further increased
by adding edges.

Given the resulting graph from the edge-addition phase, the algorithm then starts an iterative
edge-deletion phase, where at each iteration, one edge is removed from the graph of the previous
iteration if such deletion leads to the largest increase in the objective function comparing to the
removal of other edges. The final output of the algorithm is obtained when no improvement in
the objective value can be made by deleting any edge.

Asmentioned earlier, due to the decomposition in (6.11), the search algorithmcanbe applied
to every MISO problem separately, merging the outcomes to obtain the network topology.
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6.4.5 Final algorithm

Algorithm 2 Bayesian search (BS) algorithm

INPUT:Measurements wI(t) for all t ∈ {1, · · · ,N};
OUTPUT:Graph estimate Ĝ

1: Obtain η̂ = maxη log p(D|Gfull; η) by EM algorithm;
2: Initialize G(0) = {(j, j)} and Edge = {(1, j), · · · , (L, j)}
3: for b = 1 : L− 1 (Edge-addition phase) do
4: Edge = Edge \ Ĝ(b−1);
5: (̂i, j) = argmax(i,j)∈Edge J({Ĝ(b−1), (i, j)}; η̂)
6: if J({Ĝ(b−1), (̂i, j)}; η̂)− J(Ĝ(b−1); η̂) > τ then
7: Ĝ(b) = {Ĝ(b−1), (̂i, j)}
8: else
9: Break
10: end if
11: end for
12: Initialize for the second phase: Ĝ(0) = ĜFinalAddition, where ĜFinalAddition is the output of the

previous step
13: for d = 1 : |Ĝ(0)| (Edge-deletion phase) do
14: (̂i, j) = argmax(i,j)∈Ĝ(d−1) J(Ĝ(d−1) \ (i, j); η̂)
15: if J(Ĝ(d−1) \ (̂i, j); η̂)− J(Ĝ(d−1); η̂) > τ then
16: Ĝ(d) = Ĝ(d−1) \ (̂i, j)
17: else
18: Break
19: end if
20: end for

After the formulation of the objective function and the greedy search algorithm, the algo-
rithm is now complete and summarized in this section. Firstly, recall that η̂full

j obtained in the
previous step is for a full graph and thus, given a structure Gj, η̂j should be reformulated as

η̂full
j |Gj =

[
σ̂j (λ̂

full
j |Gj)

⊤ (β̂
full
j |Gj)

⊤
]⊤

. To simplify the notation, the index j is dropped
in the algorithm. The final algorithm is presented in Algorithm 2*.

The tolerance τ in Algorithm 2, determining whether an edge should be added or removed,
is chosen to be zero as the default value; its suggested range is [0, 10], see [75]. Note that varying
the value of τ is not necessary if the topology with the maximummarginal likelihood is desired.
In this case, Algorithm 2 has no tuning parameter, except the initialization values for the EM
algorithm.

Remark 6.3. To empirically validate the choice of using the estimate of η̂full under the full graph,
the BS algorithm is compared with its variant using an iterative EM approach, which re-estimates

*TheMatlab code of Algorithm 2 can be found in https://codeocean.com/capsule/3224411/tree/v1.
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η̂ by the EM algorithm under every iteration of the search algorithm. We call this procedure the
iterative-EM BS algorithm.

Comparing to the approach in [41], the main difference of the BS algorithm is that the hy-
perparameters are modeled as deterministic variables and then estimated by the EM algorithm.
By contrast, in [41], the hyperparameters are modeled as random variables, and a prior distri-
bution of the hyperparameters is also used. The choice of modeling also the hyperparameters
as random variables requires designing their prior distribution, which usually needs additional
hyper-hyperparameters that may be difficult to estimate.

6.5 Kernel-based group Lasso

The performance of the BS algorithm is compared with the group Lasso (GLasso) estimator
[179], which is formulated on the basis of (6.9) as

min
θj

1
2
∥∥wN

j − Ajθj
∥∥2

2 + δj

L∑
i=1

√
θ⊤ji Λjθji, (6.20)

where Λj is an identity matrix. Here, the topology estimation problem is also divided into inde-
pendentMISOproblems. It is also of interest to see if the performance of (6.20) canbe improved
by incorporating the covariance matrix in (6.12) into the regularization term. This kernel-based
GLasso can be formulated by setting Λj = K̄(βj)

−1. To reduce the computational complex-
ity, we choose to have the same hyperparameters βj for all modules of each MISO problem. To
select δj and βj, cross-validation can be employed. After having the estimated parameters, the
topology can be obtained by checking if the l2 norm of the parameter vector corresponding to
one module is zero.

6.6 Numerical results

The performance of the algorithms is evaluated in extensive simulation studies. To quantify the
performance of the algorithm, an existing edge in the network is labeled as one positive instance;
its absence is labeled as one negative instance. Let P denote the total number of positives and Z
denote the total number of negatives in the ground truth. In addition, for the outcome of the
algorithm, if the algorithm outputs one edge that does exist in the ground truth, it scores a true
positive (TP). If the algorithm outputs one edge that does not exist in the ground truth, it scores
a false positive (FP). The behavior of the algorithms is studied by using the receiver operating
characteristic (ROC) curve [92], i.e. TP rate (TPR) vs FP rate (FPR) over different choices of
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their tuning parameters, where

TPR =
TP
P

, FPR =
FP
Z

,

which are further averaged over the number of Monte Carlo experiments.
The tuning parameter for the (iterative-EM) BS algorithm is τ ∈ {0, 1, ..., 10}, while the

tuning parameters of GLasso and the kernel-based GLasso are δj ∈ {0, 10, 20, ..., 2000} and
βj = {0.1, ..., 0.9}. To build ROC curves for the twoGLasso estimators, δj and βj are kept the
same for allMISOproblems to reduce the number of tuning parameters. The (0, 1) point in the
ROCplot denotes the ideal performancewithout any error. Thus, the points onROCcurves of
different methods can be compared based on their closeness to the (0, 1) point, i.e. computing

dis =
√

FPR2 + (1− TPR)2.

A smaller dis value implies better performance.
We consider randomly generated dynamic networkswith 6 nodes, and three experiment con-

ditions with different data lengthN andmodel order n are considered: N = 2000 and n = 100;
N = 500 andn = 100;N = 50 andn = 50. Note that in the final study, the number of the pos-
tulated unknown parameters in the algorithm is larger than the number of the measurements.
For each experiment condition, 50 different data-generating systems and thus independent data
sets are randomly generated as follows. For each data-generating system, its topology is generated
by assigning a discrete uniform distribution to the existence of each edge and then we assign a
random transfer function to every existing edge by using drmodel function in Matlab. The or-
ders of generated Gji and Hj are randomly selected from 2 to 5 with a uniform distribution. To
guarantee a reasonable signal-to-noise ratio, Gji is further normalized by its own l2 norm. Fi-
nally, the data of the resulting system is obtained by injecting white Gaussian noises with zero
mean and σj(t) = 1, for all j and t.

For each data set, to initialize the hyperparameter vector for the EM algorithm, we set β̂
(0)
ji =

0.5, λ̂
(0)
ji = 0.5 for all modules and σ̂(0)

j (t) is the same for all j and t, which is drawn from a
normal distribution with mean 1 and standard deviation 0.2.

The obtained ROC curves are shown in Figure 6.1. For the kernel-based GLasso, only the
ROC curves corresponding to βj = 0.7 are shown since βj = 0.7 typically provides the best
performance. It can be found that in all tests, the two search algorithms perform better than
the two GLasso estimators because the ROC curves of the search algorithms are closer to the
(0, 1) point for every value of τ. To compare the performance of the iterative-EMBS and the BS
algorithm, the following measure is used:

V = [

11∑
i=1

disiter−EMBS,i − disBS,i

disBS,i
]÷ 11× 100%,
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where i denotes the ith value of τ in {0, 1, ..., 10}. Given one value of τ, one point on the ROC
curve is correspondingly selected and thus disBS,i can be calculated based on Figure 6.1. Note
that a positive value ofV implies a worse performance of the iterative-EM algorithm. It can then
be found that V = −4% when N = 2000, V = 1% when N = 500 and V = 18% when
N = 50. Thus, the iterative-EMBS algorithm performs better than the BS algorithmwhenN is
large while it has worse performance when the sample size is relatively small. Intuitively, this can
be explained by the fact that the iterative-EM algorithm reliesmore on the data because it adjusts
the parameter prior given every different graph during the search procedure, leading to a larger
error when the data length is limited. The computational speed of the iterative-EM algorithm is
also around 10 times slower than the BS algorithm in this 6-node example. Thus, it is suggested
to use the BS algorithm when N is small and faster computation is preferred.

The performance of the algorithms is also compared when cross-validation is employed for
the twoGLasso estimatorswhile τ equals the default value, i.e. τ = 0, for the twoBS algorithms.
For the cross-validation, the training data contains the data up to time 2(N+ 1)/3, and the data
left is kept for validation. The tuning parameter that provides the smallest root-mean-square
error in predicting the validation data is selected. Note that in this case, the tuning parameters of
the twoGLasso estimators are allowed to be different over theMISOproblems. The final results
contain one (FPR,TPR) point for every algorithm, and their distance to (0, 1) is summarized
in Table 6.1.

Table 6.1: Distance of the results of the algorithms to (0, 1) with the cross‐validated or the default tuning parameter

BS Iter-EM BS GLasso K-GLasso
N = 2000 0.04 0.04 0.59 0.64
N = 500 0.07 0.07 0.37 0.60
N = 50 0.20 0.22 0.52 0.47

Nosignificant difference is observedbetween theBS and the iterative-EMBSalgorithm,while
the two search algorithms outperform the two GLasso estimators due to their smaller distance
to (0, 1). This is because the cross-validation is designed for obtaining the tuning parameters
corresponding to the best prediction performance, which typically leads to a model with more
positives to improve the prediction. Instead, the Bayes factor typically favors simpler models,
which may lead to a model with poorer prediction performance. This difference in the design
purpose between BIC, which is an asymptotic approximation of the Bayes factor, and cross-
validation is also mentioned in [56].

6.7 Conclusions

The topology identification problem of dynamic networks is considered in this chapter, in the
special setting where noises are uncorrelated and there are no external measured excitation sig-
nals. A Bayesian model selection approach for topology identification of networks of transfer
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functions is explored. It uses the Bayes factor coupled with a forward-backward search algo-
rithm. The Bayes factor is obtained by modeling the infinite impulse responses of the modules
as Gaussian processes, where the hyperparameters of the Gaussian prior are estimated by the
EM algorithm. Numerical results demonstrate the effectiveness of the algorithm, which shows
better performance compared to the group Lasso estimator.

Some open questions can be investigated for future research. For example, little is known re-
garding the theoretical properties of the developed Bayesian method, e.g., whether the method
can estimate the true network topology with probability 1 when the data length approaches in-
finity. While there are results about Bayes factor consistency [39], these results are typically
limited to the independent data and static models. Non-trivial extensions of the existing the-
oretical results need to be made to address dynamic systems and time series. In addition, the
Bayesian approach in this chapter can be extended to address the setting with correlated noises
and reduced-rank noises [170], where there are fewer noise sources than the internal signals.

6.8 Appendix

6.8.1 Proof of Proposition 6.1

Recall the notations defined in (6.17). The proof contains two steps, including the E-step and
the M-step of the EM algorithm.

E-step: Firstly, note that

log P(θj,wN
j ; ηj) = log P(wN

j |θj; ηj) + log P(θj; ηj),

where log P(wN
j |θj; ηj) is the likelihood function given by the model and log P(θj; ηj) is the

parameter prior of the full graph given by (6.12). Thus, it can be found that

log P(θj,wN
j ; ηj) =constant− 1

2

L∑
i=1

log det(λjiK̄(βji))

− 1
2

log det(σ2
j IN)−

1
2σ2

j
(wN

j )
⊤wN

j

− 1
2

θ⊤j Σjθj +
1

σ2
j
(wN

j )
⊤Ajθj,

where Σj is formulated as in (6.17) given ηj.
Q(ηj, η̂

(k)
j ) can then be obtained by calculating the expectation of log P(θj,wN

j ; ηj) over the
posterior distribution of θj given the data and η̂(k). Due to the Gaussian noise and the param-
eter prior (6.12), it follows that the posterior distribution of the parameter also has a Gaussian
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distribution as
θj|wj ∼ N (Ĉ(k)

j wN
j , (Σ̂

(k)
j )−1).

Thus, the E-step can be finalized as

Q(ηj, η̂
(k)
j ) = Q1(σj, η̂(k)j ) +

L∑
i=1

Q2(λji, βji, η̂
(k)
j ) + constant, (6.21)

where

Q1(σj, η̂(k)j ) =− N log σj −
1

2σ2
j
M(k), (6.22)

Q2(λji, βji, η̂
(k)
j ) =− 1

2
log det[λjiK̄(βji)]−

1
2

tr[(λjiK̄(βji))
−1Δ̂

(k)
j [i]], (6.23)

where M(k) is formulated as shown in (6.17).
It can be found that Q is decomposed into two parts, including Q1 as a function of σj and

Q2 as a function of the parameters from the parameter prior. Thus, the optimization of Q can
be solved by considering Q1 and Q2 independently. The constant term in (6.21) will be ignored
because it does not influence the optimization result.

M-step: It can be found that (6.22) is maximized by (6.17) assuming that M(k) > 0.
To maximize Q2(λji, βji, η̂

(k)), set the derivative of (6.23) over λji to be zero, which leads to
the solution of λji as

λ∗
ji =

1
n

tr[K̄−1(βji)Δ̂
(k)
j [i]], (6.24)

which is a function of βji. Plugging (6.24) back into (6.23), one obtains that

Q2(λ∗
ji, βji, η

(k)) = −n
2

log[tr(K̄−1(βji)Δ̂
(k)
j [i])]− 1

2
log det K̄(βji) + constant,

which can be maximized by minimizing (6.18). After having β̂
(k+1)
ji , λ̂

(k+1)
ji can be found by

(6.19). Thus, Q1, Q2 have been optimized independently andM-step is proved.
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出其东门，有女如云。虽则如云，匪我思存。

诗经

At the great gate to the East. Mix crowds. Be girls like clouds. Who cloud
not my thought in the least.

Shijing; Translated by Ezra Pound

7
Topology identification of brain networks for

detecting the Mozart effect

7.1 Introduction

While the topology identification approachdeveloped inChapter 6 estimates the network topol-
ogy given a single data set, it is further extended in this chapter to consider a group of data sets.
This extension is of practical importance since there can be multiple data sets from the subjects
in experimental studies. More importantly, we will focus on applying the above method to a
study on brain networks, in order to reveal the topological changes in brain networks after the
subjects in the study listen toMozart’s music intensively.

In the last decade, the effects of music on the brain have been an active topic of research
[24, 77, 173]. In particular, one piece of classicalmusic,Mozart’s SonataK448, has been claimed
to have unique effects on the brain, besides the general effects caused by listening to music. One
of the original studies in [124] reported that listening to Mozart music increased spatial and
temporal reasoning skills in healthy subjects, but this effect did not last beyond a 15-minute
testing period. Moreover, a strong effect specific to Mozart music was unable to be replicated

Thematerial of this chapter is based on [156]. This chapter is a joint work with other coauthors, and the contribu-
tion of the author of this thesis to this chapter is specified in Section 1.6.

139



in repeated studies [115]. In another study, neural activity was measured through the spectral
analysis of electroencephalogram (EEG) data [161]. After listening toMozartmusic, an increase
in brain wave activity linked tomemory, cognition, and problem solving was observed in adults.

Besides these effects, listening to Mozart music was reported as being effective as a medicine.
First of all, the authors in [43] reported that the consistent exposure toMozartmusic for 15 days
caused a reduction in the frequency of epileptic seizures in children with epilepsy and in some
cases led to a complete recession of seizures. Furthermore, the effects persisted even after the
exposure to Mozart music was stopped. Another study [26] reported similar positive results in
adults with epilepsy. Finally, in a study of the influence ofMozart music therapy on schizophre-
nia patients [175], Mozart music was found to have effects on the functional connectivity of
patients, which was inferred from functional magnetic resonance imaging (fMRI) data.

However, no well-established theories exist on the neural dynamics in the brain that are re-
sponsible for the Mozart effect found in these studies. Moreover, research into the existence of
a Mozart effect does not focus on inferring effective connectivity between brain networks from
time series. Therefore, in this work, wewill focus onmethods that can infer how brain networks
are connected and interact, using fMRI blood-oxygen-level-dependent (BOLD) time series that
describe the dynamic neural activity of those brain networks.

The brain is a dynamic system; cognition and consciousness arise from not just the static cor-
relations between brain networks, i.e. functional connectivity, but also through the dynamic
behavior of the brain. Therefore, the inference of dynamic interactions of brain networks, i.e.
effective connectivity, is an important aspect in the analysis of the brain as it reveals how brain
networks dynamically influence each other. In this work, we focus on the inference of effective
connectivity using resting-state fMRI BOLD measurements. We could infer connectivity di-
rectly from voxel BOLDmeasurements [17] or from the mean BOLD signals in brain networks
defined by an atlas [129]. Instead, wewill follow an approach that uses independent component
analysis (ICA) [15, 72] to find active brain networks and their corresponding ICA time series.
These ICA time series are then used as indications of the dynamic behavior of the brain regions
[21, 49, 91, 125].

7.1.1 Literature review of related estimation methods

By far themost popularmethod for the inferenceof effective connectivity is theGranger-causality
analysis [61, 63]. While the method originated in the field of economics, it has been used in the
past for the inference of brain connectivity using EEG [12] and fMRI data of the brain [21]. Its
strength is the potential as an exploratory method to assess the effective connectivity between
a large number of brain networks of interest, as effective connectivity can be assessed pairwise
between brain networks. Despite the popularity of this method, it is not without flaws. Most
importantly, care must be taken when performing the Granger-causality analysis on fMRI data,
as the low sampling rate of fMRI measurements can make the method unreliable [136].
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The dynamic causal modeling (DCM) [55] is a modeling approach designed to model neu-
ral activity [30] and effective connectivity using specialized state-space models. For example, in
[94], excitatory and inhibitory states are used, which is in line with how populations of neu-
rons function in the brain. DCM allows for much more biologically accurate modeling of the
neural activity compared to Granger-causality analysis, but the estimation of an accurate DCM
model can be computationally expensive and is often limited to modeling the interactions be-
tween a small number of brain networks. In addition, DCM typically requires prior knowledge
regarding network connectivity, while this prior knowledge may not always be available [163].
For this reason, DCM is often not used as an exploratory method to assess effective connectivity
and is thus also problematic for inferring the existence of a Mozart effect, as we do not have the
prior knowledge about how and where the effective connectivity might be affected by listening
toMozart music.

The methods based on regularized regression [17, 165] penalize the model parameters of the
connections in the effective connectivity and force a subset of parameters to zero, which leads
to a sparse estimate of the effective connectivity. These methods estimate the effective connec-
tivity of the complete brain networks, instead of the pairwise approach of the Granger-causality
analysis. Although these methods scale very well with large dynamic networks, they often have
many tuning parameters thatmust be carefully chosen to achieve a good estimate of the effective
connectivity.

Furthermore, there exist non-parametric approaches, such as the method detailed in [96].
This method can potentially be used to estimate the effective connectivity pairwise between
brain networks. It calculates aWiener filter estimate of the dynamics of one connection to infer
whether the connection exists in the dynamic network. The Wiener filter requires a lot of data
to compute accurate estimates of effective connectivity. TheMozart study uses fMRI measure-
ments and the data length is relatively short. Thus, it is unlikely that we will get good Wiener
filter estimates given this short data length.

Finally, in this chapter we will consider the method in Chapter 6, which employs a Bayesian
model selection approach to estimate the connectivity of a dynamic network. The main advan-
tage of this approach is the ability to incorporate a prior probability distribution of the model,
and thus the Bayesian method performs well even when not a lot of data is available. This is
very useful in combination with fMRI data and the ICA procedure, where the data length is
short. The Bayesianmethod uses a non-parametric model, and unlike theWiener filter, it deter-
mines the effective connectivity of the complete network. By making use of Gaussian processes,
the model order can be increased beyond what is possible with parametrized models, like those
used by the Granger-causality analysis, without the risk of overfitting. This can lead to a more
accurate estimate of effective connectivity.
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7.1.2 Chapter structure

Our first research question is to investigate whether Bayesian topology identification in Chap-
ter 6 can be used as an alternative to the Granger-causality analysis for the inference of the ef-
fective connectivity using fMRI data. First, we investigate if there is a significant difference in
the performances of the two methods in a simulation setup. Then since the Bayesian method
was originally developed to infer the graph estimate of a single data set, we extend the Bayesian
method such that we can draw conclusions on the connectivity of groups of data sets, which is
beneficial in the inference of the Mozart effect.

After we extend the Bayesian approach, our second research question is to investigate the in-
fluence of listening to Mozart’s Sonata K448 on effective connectivity through fMRI data of
healthy adults. Both the Granger-causality analysis and the Bayesian approach are applied in the
Mozart effect study to consolidate the findings. Here, we put more emphasis on the results ob-
tained from the approach that performs better in the simulation study. Furthermore, we will
investigate if the length of time that subjects listened toMozart music leads to different conclu-
sions on the effective connectivity.

This chapter is structured as follows: first, a model is introduced to describe the dynamic
interactions between brain regions. Second, we describe the existing Granger-causality analysis
andhowwecan infer connectivity using fMRIdata. Third,wedetail theBayesian topology iden-
tificationmethod and extend it such that it can infer effective connectivity changes between two
groups of subjects. Then the performances of the Granger-causality analysis and the Bayesian
method are compared using simulated data. Finally, we will apply the two methods to fMRI
data and infer whether intensively listening to Mozart’s Sonata K448 has an effect on the effec-
tive connectivity of the subjects in the study.

7.2 Theory

To infer the brain effective connectivity using the fMRImeasurements of the neurodynamics of
the brain, we will first define a modeling framework wherein the dynamic interactions between
brain networks can be modeled appropriately.

7.2.1 Dynamic network model of brain network connectivity

The effective connectivity between brain networks, using fMRImeasurements to describe neu-
ral activity, can be described by linear models [136]. Furthermore, in general the causal relation-
ship between two brain networks can be described by an infinite impulse response (IIR) filter,
as long as the hemodynamics [109] can be considered as an invertible filter [136]. The neural
activity of brain networks is described by L time series wj(t), j = 1, . . . , L, i.e. one ICA time
series for each brain network found by an ICA decomposition of the fMRImeasurements from
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a subject. A brief introduction for the above ICA decomposition can be found in Section 7.3.2.
Then the dynamic interactions between brain networks can be modeled as in Chapter 6:

wj(t) =
∑
i∈I

Gji(q)wi(t) + ej(t), j ∈ I,

Gji(q) =
∞∑
k=1

θji,kq−k,

(7.1)

where q is the shift operator, i.e. q−1wj(t) = wj(t − 1), I = {1, . . . , L}, θji,k indicates one
coefficient ofGji(q) and ej(t) denotes the background noise of brain network j. The full model
is written in matrix form as:

w(t) = G(q)w(t) + e(t), (7.2)

where G(q) is an L× L matrix, and

w(t) = [w1(t), . . . ,wL(t)]T,

e(t) = [e1(t), . . . , eL(t)]T.

Note that G(q) is not hollow here, and thus (7.2) actually corresponds to the predictor model
in (6.6).

Some assumptions are made on the components of the model in (7.1):

1. Gji(q) is stable, i.e.
∑∞

k=1 |θji,k| <∞, for all j, i;

2. [I− G(q)]−1 is stable;

3. ej(t) is Gaussian distributed with zero mean and unknown variance σ2
j , and e(t) has a

diagonal covariance matrix.

Each IIR transfer operator Gji(q) can be approximated by a finite-order impulse response of
order m, and the approximation is written as an autoregressive (AR) model of order m:

wj(t) =
L∑

i=1

m∑
k=1

wi(t− k)θji,k + ej(t),

and written in matrix form as in (6.9) for the measurements up to time N:

wN
j =

∑
i∈I

Ajiθji + eN
j . (7.3)

Themodel (7.3)will be used in the inference ofGranger-causality and furthermore, will form
the modeling framework on which the Bayesian topology identification method relies.
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7.2.2 Directed graph

Wecan also define a graphic representation ofmodel (7.1) that encodes the effective connectivity
between brain networks. Since (7.2) has a simpler model structure than the general model in
(2.1) due to the absence of r signals and the simple noisemodel, the graphical representation can
be defined in a simpler way.

A directed graph of model (7.1) is denoted as G = (V, E), where V = {w1, · · · ,wL} is the
set of all nodes and E is the set of all directed edges in the graph. Node wj ∈ V in the graph
represents a particular brain network, defined by the ICA procedure, and its dynamic behavior
is described by the corresponding ICA times series wj(t). Thus the cardinality of V equals the
total number of ICA time series. A directed edge from wi to wj exists, denoted as (i, j) ∈ E or
(i, j) ∈ G, if and only if Gji(q) in (7.1), or θji in (7.3) equivalently, is non-zero, which indicates
a causal connection from nodewi towj. Note that the self loops of type (i, i)may be present in
G; however, we do not show these edges explicitly in figures, as they do not contain information
regarding interconnections among different brain networks.

In this chapter, we also denote the set of all incoming edges to wj asNj or Gj. Now, a graph
G indicates the effective connectivity between brain networks.

7.3 Materials

7.3.1 Simulation data generation

Before being applied to the fMRI data, which typically suffers from low sampling rates andmea-
surement noises, the methods for the inference of effective connectivity should at least show a
reasonable performance for the simulated data generated in an ideal setting, i.e. without the
above complexities. Since the data generationmodel is known in simulation, the goal of the sim-
ulation study is to test howwell the estimated connectivity of onemethod approximates the true
connectivity.

In this work, in order to evaluate the relative performances of the Granger-causality analysis
and the Bayesian topology identification, we test them in a controlled environment using the
simulated data, which is generated by models as defined in (7.1). Since the model (7.1) in this
chapter is the same as the model (6.1) in Chapter 6, we will use the same method as the one in
Section 6.6 to generate random networks and the simulation data. In the data generation pro-
cess, the node time series wj(t) are generated from a model (7.1), where some random directed
edges are chosen to form the ground-truth connectivity G0, and for each edge (i, j)which exists
in G0, its corresponding Gji(q) is a random transfer function such that the resulting dynamic
network adheres to the IIR model assumptions. The noise ej(t) in (7.1) is randomly sampled
from a Gaussian distribution for each node in the simulation model. More details of the data
generation can be found in Section 6.6 and Section 7.4.3.
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Figure 7.1: Flowchart of Mozart music experiment.
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Figure 7.2: Listening duration in hours of all 16 subjects ordered from the longest to shortest listening duration.

7.3.2 Mozart effect study

Sixteen volunteers (11 females, 5 males) without a medical history of neurological or psychiatric
diseases, aged 20-65 (mean 43.3), participated in the experiment. This number of subjects was
chosen to be comparable with the one in [43]. To prevent bias, subjects with a variety of tastes
in music were selected, and no subjects were selected who already consistently (2 hours or more
per day) listened toMozart music. Informed consent of the experiment and scans was obtained
from each subject. The scanning of healthy volunteers was approved by the Medical Ethical
Committee of the Academic Center for Epilepsy Kempenhaeghe (Heeze, The Netherlands).

Mozart’s Sonata K448 experiment

Four resting-state fMRI scans were collected for each subject in the study, and the experimental
procedure is summarized in Figure 7.1. Each of the four scans was taken one week apart in time.
In the week between scans 1 and 2, subjects were instructed not to listen to Mozart’s Sonata
K448 for any amount of time. Then, the subjects were instructed to listen for a minimum of 14
hours to Mozart’s Sonata K448 during the week between scans 2 and 3 and to listen for at least
2 hours each day unless this was not possible due to unavoidable circumstances. This listening
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duration was chosen to be consistent with the duration in [43]. The listening duration of each
subject during the week of music exposure was recorded by the subjects themselves. In Figure
7.2 we can see the spread of total listening duration across all 16 subjects. After the third scan
subjectswere once again instructed to stop listening toMozartmusic, and then the final scanwas
taken oneweek after the subjects stopped listening toMozart’s Sonata K448. From the first scan
to the fourth scan, subjects were also instructed to avoid listening to any othermusic, but limited
exposure to music in public places could in some cases not be avoided. Other auditory stimuli,
for example from entertainment on television or the internet, could also affect brain activity and
bias the results. However, the first two scans establish a baseline of the regular brain activity and
thus should rule out the effect of most regularly present auditory stimuli, when we compare the
baseline activity to the brain activity after the subjects listened toMozart music.

Acquisition

Imagingwas performed using a 3TPhilips AchievaMRI scanner. AT1-weighted reference scan
was recorded using a 3D spoiled gradient-echo sequence (T1TFE), TR/TE: 8.3/3.5ms. The
matrix size was 240 × 240 × 180 with isotropic voxels of 1mm3. Total T1 scan duration was
600s. Second, a multi-echo time fMRI scan was recorded using a gradient-echo EPI sequence
with TR/TE/ES: 2000/12/23ms. 26 slices with a width of 4.5mm (0mm gap) were recorded.
The data were acquired with 3.5×3.5mm in-plane resolution, final in-plane resolutionwas also
3.5 × 3.5mm (64 × 64). SENSE [118] acceleration was used with SENSE factor of 2.7 in the
read-out direction. The total multi-echo scan time was 608s.

During all the scans, the subjects were asked to remain still with their eyes open and to focus
on a projected dark-blue cross. Physiology data (heart and respiratory rate) were recorded using
a standard scanner setup.

Preprocessing

In preprocessing, the ICA decomposition [16] is an essential step and thus is first briefly ex-
plained here. The ICA decomposition is motivated by the hypothesis that a large amount of
fMRI data is generated by fewer unmeasured and independent source signals. The goal of the
ICA decomposition is to recover these unmeasured source signals from the fMRI data. Let X
be a data matrix consisting of a single fMRI data set, i.e. X =

[
x1 · · · xz

]
, where

xi =
[
xi(1) · · · x(N)

]⊤
contains themeasurements of the i-th voxel in the fMRI scan. The ICA procedure assumes that
the measured data matrix X can be represented by a matrix of ICA times series W ∈ RN×L with
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L components and L < z, a matrix of spatial processes S and a matrix of noise processes E :

X = WS + E, (7.4)

where the j-th column ofW contains the ICA time serieswj(t) from time 1 toN, and the j-th row
of S represents the spatialmap, i.e. the voxels in the fMRI scan, that corresponds towj(t). Under
the assumption that the rows of S are statistically independent, the ICA aims to estimateW and
S given the measured X, and the uniqueness of W and S can be guaranteed by some additional
assumptions on (7.4) [16]. The j-th column of the estimated W leads to the ICA time series
wj(t) used in model (7.3), and the significant entries in the j-th row of S show the spatial map,
i.e. the voxels, corresponding to wj(t).

In this study, non-BOLD signals of the fMRI data caused by physiological effects such as
movement, breathing, and pulse were first removed by multi-echo ICA [80]. Then, using FM-
RIB Software Library [15] (v5.0, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), all 64 data sets
were temporally concatenated and a group ICA was performed to identify 20 ICA time series
and the corresponding 20 independent spatial maps. The spatial maps are listed in Table 7.1
and are also visualized in Figure 7.3. Next, dual regression [15] was performed to obtain indi-
vidual spatial maps and time series for each fMRI scan of the subjects, where each ICA time
series consists of N = 300 data points.

Table 7.1: List of all brain networks found in the group ICA decomposition.

# Shorthand Description

1 DMN_ANT default mode network, anterior
2 MED_VISU medial visual cortex
3 OCC_LAT occipetal & lateral visual cortex
4 DAN dorsal attention network
5 FPR fronto-parietal right network
6 SM_LAT sensori-motor, lateral network
7 FPL fronto-parietal left network
8 VAN ventral attention network
9 LING_FUS lingual fusiform cortex
10 DMN_POS default mode network, posterior
11 N11 noise
12 SAL_AUDI salience auditory network
13 ANG angular gyrus
14 N14 White matter
15 SUPTEMP superior temporal gyrus
16 CEN central executive network
17 N17 noise
18 SM_SUP sensori motor medial superior
19 CEREB cerebellum
20 N20 borders and movements
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7.4 Methods

This section is divided into two parts. In the first part, we briefly discuss both the Granger-
causality analysis and the Bayesian topology identification fromChapter 6. Next, we detail how
we apply both methods to the simulation data. Then the Bayesian method is extended to incor-
porate multiple data sets. In the second part, we first validate the use of AR models to model
the ICA time series. Then we will apply the extended Bayesian topology identification and the
Granger-causality analysis to the ICA time series of the Mozart effect study.

7.4.1 Granger-causality analysis

Here we briefly describe the well-established Granger-causality analysis, which will be used as a
reference to compare with the Bayesian topology identification. The Granger-causality analysis
is based on the concept that if θji in (7.3) is significantly non-zero for given j and i, then setting
parameter vector θji to 0 will significantly increase the size of the residual ej(t), where with some
abuse of notation, ej(t) represents both the white noise in (7.3) and the residual signal of the
model (7.3). To relate this change in the residual to a real connection between two brain net-
works and not from a shared influence from other regions, we will infer connectivity only using
the conditional Granger-causality analysis.

The existence of a connection (i, j) is inferred by fitting two different ARmodels to themea-
surement data and comparing the residuals. The first AR model includes all L node time series
in the regression as in (7.3). In the second AR model, Aji corresponding to connection (i, j) is
excluded:

wN
j =

∑
k∈I\i

Ajk · θjk + ēN
j , (7.5)

where ēN
j denotes the residual vector of the above model. The model order m, i.e. the length of

parameter vectors θji, is selected by AIC [4] to model the data without overfitting, as overfitting
can make the Granger-causality analysis unreliable [11].

Then the Granger-valueFji corresponding to connection (i, j) is defined as the logarithm of
the ratio of the residuals’ variances:

Fji = log
var[ēj(t)]
var[ej(t)]

, (7.6)

where ēj(t) and ej(t) denote the residual signals in (7.5) and (7.3) respectively, with some abuse
of notation. TheGranger-valueFji is the degree to which the addition of connection (i, j) helps
predict wj and as such, a significantly non-zero Fji indicates the existence of connection (i, j).
Furthermore, Fji asymptotically follows a χ2 distribution as data length N → ∞, and thus
we can perform a statistical test to infer if Fji is significantly non-zero [11]. Furthermore, the
Granger-value is equivalent to the transfer entropy [10, 74, 134], a measurement of the rate of
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information transfer between two time series. As such,Fji can be interpreted as a measurement
of the connectivity strength. Therefore, a change in the Granger-value of a connection between
two fMRI scans of a subject indicates a difference in the connectivity strengthof that connection,
and we can use a paired t-test to test for differences in connectivity strength between two fMRI
scans.

For the simulation study, since the effective connectivity of the data-generation systems is
known, our goal is to quantify the quality of Fji as a measurement of connectivity. To be able
to compare the quality of the estimates of bothmethods on simulated data, we will use an F-test
to determine a graph estimate, because the Bayesianmethod also infers a graph estimate, and the
paired t-test cannot lead to a graph estimate. Even thoughwe consider the paired t-test on the ex-
perimental data instead of the F-test, the F-test in the simulation study still gives us an indication
of the reliability ofFji as a measurement of connectivity. As such, we will infer an estimate Ĝ of
the ground truth connectivity G0 by testing the significance ofFji for all connections (i, j) and
adding the connection to Ĝ if the statistical test is significant. To calculate the reduced regression
in (7.5), the Granger-values in (7.6) and the significance of the Granger-values, we will use the
MVGCMATLAB toolbox [11] (version 1.0, https://users.sussex.ac.uk/~lionelb/MVGC/).

7.4.2 Bayesian topology identification

The Bayesian method in Chapter 6 is a machine learning method that infers from node time
series data D = {w1(1), · · · ,w1(N), . . . ,wL(N)} an estimate Ĝ of G0, the connectivity of the
dynamic network. As shown in (6.5), this method aims to find the graph estimate Ĝ that maxi-
mizes the following marginal likelihood:

p(D|G) =
∫

p(D|θ,G)p(θ|G)dθ, (7.7)

where p(D|θ,G) is the likelihood under model parameters θ and a graph G, and p(θ|G) is the
prior distribution of θ given G.

In the context of this study, the parameter θ in the parameter prior p(θ|G) contains the set
of all θji of an AR model as defined in (7.3), where the parameter vectors θji are modeled as
Gaussian random vectors. The covariance matrices of these random vectors are parametrized
with some hyperparameters, which encode the assumption of stability. The hyperparameters
of random parameter vectors θji and the variance σ2

j of ej are estimated using the EM algorithm
[23] inChapter 6. Because the θjis aremodeled as randomvectors, we can simply setmodel order
m in (7.3) to some large number at most equal to the data length N, instead of determining an
optimal model order, as the estimated hyperparameters will determine the relevance of each of
the m parameters.

Now, under the assumption ofGaussian distributednoise, p(D|θ,G) canbe computedbased
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on (7.3):

p(D|θ,G) =
L∏

j=1

N

(∑
i∈C

Ajiθji, σ2
j IN

)
,

where C = {k|(k, j) ∈ G}. Given this parametrization, the integral in (7.7) has a closed form
solution as shown in Chapter 6, and thus we can avoid a numerical integration, which could be
computationally costly.

The graphG with themaximummarginal likelihood p(D|G) is chosen as the connectivity es-
timate Ĝ. Thismaximum can be found by comparison of themarginal likelihoods of all possible
graphs. To avoid the combinatorial problem of comparing all possible graphs, a greedy search
algorithm is employed that efficiently finds a graph estimate Ĝ, as shown in Chapter 6.

To perform the Bayesian topology identification, the implementation fromChapter 6 is used
(version 1.0, https://codeocean.com/capsule/3224411/tree/v1).

7.4.3 Evaluation of methods in simulation

To motivate the use of the Bayesian topology identification for the inference of brain network
connectivity, we will evaluate whether the Bayesian approach has any advantages over Granger-
causality analysis in the estimation of the connectivity using simulation data. Recall that the
true effective connectivity of the simulation model G0 is known. The graph estimates Ĝ of both
methods are compared toG0 and the quality of the estimate is quantified using the TPR and the
FPR:

TPR = TP /P,

FPR = FP /Z,
(7.8)

where recall from Chapter 6 that the TPR is the number of edges in Ĝ that also exist in G0,
denoted as TP, over the total number of edges in G0, denoted as P. The FPR is the number of
edges in Ĝ that do not exist inG0, denoted as FP, divided by the total number of edges that do not
exist inG0, denoted as Z. To avoid uncertainties in the conclusion on the relative performance of
the twomethods given certain design parameters for the simulation, i.e. a particular data length
N and certain network size in terms of number of nodes, 50 random simulation models with
random G0 are generated, and then TPR and FPR are calculated by averaging the results of the
50 estimates. The random simulation models are generated by selecting random parameters for
each transfer for which the connection exists in G0, such that the transfer is stable. This process
is repeated until (I− G(q))−1 is stable according to our modeling assumptions in (7.2).

The design parameters for the simulation are chosen as follows. First, to test how the perfor-
mances of bothmethods vary with the data length, we consider three different data lengths with
N ∈ {50, 300, 2000} for six-node dynamic networks. Second, to evaluate how the number of
nodes in the network affects the estimation performance, we compare the TPR and FPR of the
methods between six and twelve node networks, with N = 2000. Third, for each of the pre-
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vious evaluations, we will assess the performance of the Granger-causality analysis over a range
of thresholds, determined by a range of significance levels α ∈ {0.005, 0.05, . . . , 0.95} of
the F-test, which are corrected for multiple comparisons using the false discovery rate (FDR)
correction [70] in the MVGC MATLAB toolbox. This latter evaluation is performed to rule
out the differences in the performance of the methods caused by a specific choice of significance
threshold. Note that the Bayesian method requires no tuning threshold, and thus no such vari-
ation in threshold is needed. Finally, as mentioned in Section 7.4.2, the model order m of the
Bayesian method should be chosen to be some large number at most N. In practice we set it
to m ∈ {50, 100, 100} for N ∈ {50, 300, 2000} respectively, as higher m does not visibly
increase performance.

7.4.4 Bayesian group hypothesis test

The Bayesian topology identificationmethod is designed to obtain a graph estimate of the effec-
tive connectivity from a single fMRI scan, which can be used in simulation to compare with the
true connectivity. However, it is not directly applicable to theMozart effect study usingmultiple
data sets from groups of subjects. In theMozart effect study, there are 4 groups of data sets from
the subjects, where each group refers to one of the four scans in the four consecutive weeks. To
investigate theMozart effect, we want to infer how the overall brain network connectivity of the
subjects changes over the weeks. Using the Bayesian method, changes in effective connectivity
can be measured through a change in the presence of a connection in the graphs of the subjects.
For a group of subjects, we define for each connection separately the following hypotheses:

H1 : Connection (i, j) is present in the group.

H0 : Connection (i, j) is absent in the group.

To infer if changes in the overall brain network connectivity occurred over the four weeks, we
first find the most likely hypothesis for each week separately. If the hypotheses change between
the weekly scans, this indicates an overall change in the effective connectivity of this connection.

The procedure is summarized in Figure 7.4, and to find the more likely hypothesis for one
group (one scan as in Figure 7.1), the preliminary step is to compute the Bayesian selection fre-
quency of every connection, i.e. the number of subjects whose graph estimates include this con-
nection. It will first allow us to choose a small number of connections that are potentially of
interest, which is useful because the analysis of all the 380 possible connections in the Mozart
study can require weeks or months to complete, while many of those connections are actually
not be of interest. For a given group, if the selection frequency of one connection is close to 0, we
expect that themost likely hypothesis for this connection to beH0, i.e., this connection is absent
in the effective connectivity of all the subjects. However, if the selection frequency is close to 16,
i.e. the connection is present in almost all the subjects, we expect that the most likely hypothesis
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Figure 7.4: In this figure the procedure of the extended Bayesian method is summarized.

will beH1. The Bayesian selection frequency can be easily reported for every connection from
the graph estimates of each subject over the four weeks.

To evaluate which of the two hypotheses is actually more likely than the other for a given
connection in one week, we will calculate the likelihood of the two hypotheses:

p(D|H1) =
∏
k∈S

p(Dk|(i, j)),

p(D|H0) =
∏
k∈S

p(Dk|¬(i, j)),
(7.9)

where with some abuse of notation (i, j) indicates the existence of the connection, Dk indicates
the data from subject k, S is the index set of all subjects andD is defined as the collection of data
Dk from each subject in the group. The likelihoods p(Dk|(i, j)), p(Dk|¬(i, j)) in (7.9) of each
subject are not yet known and must be calculated from the marginal likelihood in (7.7), which
is calculated by the Bayesian method. The likelihoods in (7.9) can be calculated through the
marginalization of p(D|G) over all graphs for which the hypothesis is true. As an example we
use hypothesisH1 here, but the calculation is similar forH0:

p(Dk|(i, j)) =
∑
G∈P1

p(G)p(Dk|G), (7.10)

where
P1 = {G|(i, j) ∈ G},

P0 = {G|(i, j) /∈ G}.
(7.11)

This marginalization over graphs can be seen as averaging out the effects that other connections
have on the likelihood of the connection in the hypothesis. The calculation of p(Dk|(i, j)) in
(7.10) can be further simplified. The simplification of the marginalization is detailed in Sec-
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tion 7.8.1.
Then we can calculate the hypothesis likelihoods in (7.9) and find the optimal hypothesis by

comparison of the likelihoods of the two hypotheses:

BF = 2 log
p(D|H1)

p(D|H0)
. (7.12)

This log-likelihood ratio is the Bayes factor (BF) [75], which represents the strength of evidence
of one hypothesis against the other and can also be interpreted as the evidence of the edge (i, j)
in the data set. In [75], a scale for BF is proposed, which we will use to interpret the size of the
Bayes factor. If BF is larger than 0, the optimal hypothesis isH1, and thus connection (i, j) is
likely to be present in the group. If BF is smaller than 0, the alternative hypothesisH0 is more
likely, and thus the connection is likely to be absent in the group.

7.4.5 Validation of ICA time series ARmodels

Both the Granger-causality analysis and the Bayesian method rely on the assumption that the
data is approximately generated by an ARmodel as defined in (7.3). If the dynamics of the ICA
time series cannot be modeled by the ARmodel sufficiently well, the two methods become less
reliable for the inference of brain network connectivity. To assess the goodness of the model fit,
we estimate an AR model using all the 20 ICA time series from one fMRI scan for each of the
64 scans in the study. The model parameters are calculated using ordinary least squares. Then,
we perform a whiteness (auto-correlation) test [90] of the residuals of each VARmodel, to test
whether the ARmodels can sufficiently model the dynamics in the ICA time series. For model
order m = 3, 96.5% of the AR model residuals are white, which increases to 99.4% for m = 5.
Therefore, the results of the tests are satisfactory.

7.4.6 Inference of the existence of aMozart effect

In our search for a Mozart effect, we will first choose connections with potential effects using
the Bayesian selection frequency. Then we will apply the extended Bayesian method and the
Granger-causality analysis to the ICA time series of the chosen connections. Based on other
studies of the Mozart effect [26, 124, 161, 175], we hypothesize that there will be changes in
the connections of effective connectivity related to cognitive processing. Furthermore, due to
the exposure of the subjects to music, we expect to find changes in connectivity between brain
networks involved in auditory processing and possibly motor regions.

In the Mozart effect study, the scans in weeks 1 and 2 are used to infer the natural variability
in the brain network connectivity of the subjects. If a connection has a low variability in effec-
tive connectivity in these weeks, it is more likely that any change in the connectivity of subjects
between week 2 and week 3 is due to listening to Mozart music. Finally, for the connections
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of which the connectivity change between weeks 2 and 3, we can compare their connectivity of
weeks 3 and 4 to see if the effect lasts even into week 4 or if it was only of short duration.

Given the criteria described above, we illustrate for each method when a change in effective
connectivity is considered to take place as a result of listening toMozart music. For the Bayesian
hypothesis test, we determine the optimal hypothesis for eachweek, and a change in connectivity
is indicated if the optimal hypotheses over the four weeks have the following feature. For weeks
1 and 2, the optimal hypotheses should be the same for bothweeks. Then inweek 3, the optimal
hypothesis should be the opposite of weeks 1 and 2. The optimal hypothesis in week 4 indicates
whether the change between weeks 2 and 3 lasts into week 4. Finally, for the Granger-causality
analysis and if there is a change in the effective connectivity of one connection, a significant
difference in Granger-values of the connection should only be found between weeks 2 and 3,
and possibly between weeks 3 and 4, depending on if the change lasts into week 4.

7.4.7 Inference based on listening duration

We will perform one more analysis of the data, by dividing the subjects’ weekly scans into two
subgroups based on their listening duration of Mozart music between weeks 2 and 3. We rank
the subjects based on listening time and choose the 8 longest listeners as the first subgroup, and
the remaining 8 subjects form the second subgroup. The first subgroup of longer listeners lis-
tened for 27:14±7:07 hours on average toMozart music and the second subgroup 16:19±1:31
hours on average. We perform both the Bayesian hypothesis test and the paired t-test of the
Granger-values for both subgroups to assess if effects are influenced by the listening duration of
the subjects.

7.4.8 Data and code availability

The data supporting the findings of this study can bemade available upon request, with a formal
data-sharing agreement. The developed code and the simulation data of this study have been
made available online [155].

7.5 Results

In this section, we first evaluate the performance of the Bayesian topology identification against
Granger-causality analysis on simulation data. Then we apply bothmethods to theMozart mu-
sic ICA time series to infer changes in connectivity caused by listening toMozart music. Finally,
we apply our methods on two subgroups of 8 subjects, divided based on listening duration, to
assess if listening duration affects the possible detection of effects.
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Figure 7.5: Average FPR vs TPR of the Bayesian method and Granger‐causality analysis over 50 Monte Carlo experiments. One
blue cross indicates the TPR and FPR of the Granger‐causality analysis for a given threshold α. As α increases, the TPR and FPR
of the Granger‐causality analysis increases. The TPR and FPR of the Bayesian topology identification is indicated with a red circle.
Only a single circle exists in each figure as the Bayesian method does not rely on a threshold to determine the graph estimate.

7.5.1 Evaluation of methods in simulation

The optimal performance in Figures 7.5a-d is when TPR = 1 and FPR = 0, which implies
Ĝ = G0. The closer a (FPR,TPR) point to (0, 1) the better the performance of the method. In
Figures 7.5a-c, we see that the performance of the Bayesian method improves as the data length
increases. Note that the Bayesian method does not rely on thresholding, unlike the Granger
method. We can also observe that the performance of the Granger method improves as the data
length increases, where the optimal significance threshold differs over different data lengths. Fi-
nally, it is clearly visible that in Figures 7.5a-7.5c, the (FPR,TPR) of the Bayesian approach is
always closer to the optimal point than the Granger method.

From Figures 7.5a-c, we notice that the Bayesian method outperforms the Granger-causality
analysis for all three data lengths over all different thresholds. From Figures 7.5c to 7.5d, there
is barely any change in performance for the Bayesian method when the number of nodes in the
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dynamic network is increased, as the TPR stays the same and the FPR becomes only slightly
larger. However, for the Granger-causality analysis, the TPR of almost all thresholds decreases.
Furthermore, we also notice a clear increase in the FPR of the Granger-causality analysis for all
thresholds. Lastly, one more important detail is that in 7.5a-c for the Granger-causality analysis,
the optimal performance for each of the figures does not belong to the same threshold, instead,
it depends on the data length N. But based on the change in performance for each threshold as
N becomes large, it appears the 5% threshold will be the optimal threshold for large N.

7.5.2 Inference of theMozart effect

From the initial search for the Mozart effect using the Bayesian selection frequency of the con-
nections over the four weeks, we have chosen six connections, whose selection frequencies indi-
cate that there might be a change in the optimal hypothesis of these connections between weeks
2 and 3, i.e. before and after the subjects listened to Mozart music. The Bayesian selection fre-
quencies of these connections are reported in Figure 7.6.

In Figure 7.6a and 7.6b, we find two connections inbound to the fronto-parietal right net-
work, and in Figure 7.6f, we see the connection from the anterior default mode network to the
dorsal attention network. These connections are of interest because the default mode networks
and the fronto-parietal right network are involved in cognitive processing [93, 119]. In Figure
7.6c, we see the selection frequency of a connection that involves the central executive network,
which is also related to cognitive processing [101]. Then in Figure 7.6d, we show the selection
frequency of the connection from the sensori-motor, lateral network to the superior temporal
gyrus. Figure 7.6d is of special interest because first of all, it has the largest selection frequency
in week 3 among all the connections, with 12 out of 16 subjects showing positive evidence of
this connection. Furthermore, it has a relatively small drop in selection frequency in week 4 rel-
ative to week 3. Both of the brain networks involved in this connection are involved in auditory
processing in the brain [32, 77]. Finally, in Figure 7.6e, we show a connection from the dorsal
attention network to the angular gyrus. This connection is of interest because large selection
frequencies are detected in weeks 1 and 2 with low variability over these two weeks, which then
almost completely disappears in week 3 and does not increase in week 4. This could indicate
that effective connectivity of connections can decrease as a result of listening to Mozart music.
In summary, through our analysis of the selection frequency, we have found a small number
of connections that show potential Mozart effects. However, while we see some changes in the
selection frequencies between weeks 2 and 3, the effects are far from universal across all subjects.

Then for each week, we assess the optimal group hypothesis of the six connections in Figure
7.6. In Table 7.2, we report the optimal hypothesis and the associated Bayes Factor of each con-
nection for each week. Consider the connection from the posterior default mode network to
the fronto-parietal right network and the connection from the central executive network to the
sensori-motor superior network. For these two connections, the optimal hypotheses in weeks 1
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and 2 areH0, and the optimal hypothesis in week 3 becomesH1, indicating a change in effective
connectivity of these connections after the subjects listened to Mozart music. Furthermore, in
both connections, the changedidnot last intoweek4, as the optimal hypothesis is once againH0.
The brain networks involved in the above two connections, which undergo potential changes
after listing to Mozart music, have been visualized in Figure 7.7.

Next, we note in Table 7.2 that the connection from the sensori motor lateral network to the
superior temporal gyrus shows strong evidence in favor ofH1 in week 3, however, the optimal
hypotheses in weeks 1 and 2 change fromH0 toH1. Therefore, we conclude that the natural
variability of this connection before listening to Mozart music is too large to detect any change
in effective connectivity caused by the Mozart music. Finally, for the other three connections,
the optimal hypotheses for both weeks 1 and 2 do not change, but there is also no change in
optimal hypotheses between weeks 2 and 3, which implies that there is no significant change in
the effective connectivity of the connections for the 16 subjects.

Finally, for all the six connections in Figure 7.6, no significant difference is found inGranger-
values between weeks 1 and 2. Then the Granger-values of weeks 2 and 3 are compared, and the
significance of the paired t-test is found only for the connection from the anterior default mode
network to the dorsal attention network with p = 0.035. In addition, for this connection, no
significant difference of the Granger values between weeks 3 and 4 is found, indicating that the
effective connectivity change persists into week 4.

Inference based on listening duration

In our final test, the subjects are divided into two subgroups of 8 subjects. The subjects in group
1 listened for 27:14±7:07 hours on average toMozartmusic betweenweeks 2 and 3, and the sub-
jects in group 2 listened for 16:19±1:31 hours on average to Mozart music. Both the Bayesian
approach and the Granger-causality analysis are applied to the new subgroups.

Using the Bayesian hypothesis test on both subgroups, we find two connections that show
a change only for the subgroup with the longer listening duration. These two connections are
presented in Table 7.3. We only show the BF and optimal hypotheses for the subgroup with
the longer listening duration, as no change in optimal hypotheses is found between weeks 2
and 3 for the subgroup with the shorter listening duration. The other connections, which are
previously selected in Figure 7.6, are not favored by one of the subgroups and are therefore also
not presented here.

The first connection inTable 7.3, from the anterior defaultmode network to the dorsal atten-
tion network, shows no change in optimal hypotheses between weeks 2 and 3 for the complete
group of 16 subjects; however, it shows positive evidence in favor ofH1 in week 3 for the sub-
group of longer listeners. As such, there is a change in optimal hypotheses between weeks 2 and
3 for the longer listening subgroup. The change in optimal hypotheses between weeks 2 and 3
does not last in week 4, which implies that this effect is of short duration. The second connec-
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DMN_POS to FPR DMN_ANT to DAN CEN to SM_SUP

Figure 7.7: Brain networks in which the connections which were found to have the strongest evidence of a change in effective
connectivity after subjects (full group or long listening subgroup) listened to Mozart music (see row 1‐3 in Table 7.2 and in Table
7.3; Figure 7.6a, 7.6c and 7.6f). Here, the direction of the connection is from the red network to the blue network.

tion in Table 7.3, from the posterior default mode network to the fronto-parietal right, shows
a change in optimal hypotheses between weeks 2 and 3, with a strong evidence in favor of H1

in week 3 for the subgroup with the longer listening duration. Therefore, the change in opti-
mal hypotheses of this connection between weeks 2 and 3 in the full group of 16 subjects is also
predominantly caused by the subjects with the longer listening duration. Similar to the result
for the full group of 16 subjects, the change of this connection in optimal hypotheses between
weeks 2 and 3 does not last into week 4, and thus the effect is of short duration. A visualization
of the networks involved in these connections can be found in Figure 7.7.

Finally, no results are found for the significance of Granger-values for both groups. All com-
parisons between weeks for both long and short listeners do not show significant changes in the
effective connectivity of the selected connections in Figure 7.6.

7.6 Discussion

In this study, we illustrate, using simulation data, that the Bayesian approach outperforms the
Granger-causality analysis, especially when not much data is available. The Bayesian method is
extended to enable it to test hypotheses on the existence of a connection for eachweek separately.
The optimal hypotheses of different weeks are combined to draw conclusions on the changes
in the effective connectivity over the weeks in the Mozart study. Then we apply the extended
Bayesianmethod and theGranger-causality analysis to theMozart effect data and find a number
of connections with changes in effective connectivity after the subject listened toMozart music.
Finally, we split the subjects into two subgroups based on the listening duration and find that
for two connections, a change in effective connectivity can be detected in the subgroup with the
longer listening duration.
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7.6.1 Simulations

TheBayesian approach is comparedwith theGranger-causality analysis for the inference of brain
network connectivity. The methods are compared through their performance in estimating a
graph of the effective connectivity using simulated data with a known ground truth connectiv-
ity. The performance evaluations in Figure 7.5 show that the Bayesian method performs better
than the Granger-causality analysis for short data lengths. As the data length increases, the per-
formance of the Granger-causality analysis matches that of the Bayesian method more closely.
Thus, for the study of theMozart effect, where the data is limited due to the slow sampling rate,
it seems that the Bayesian method has a distinct advantage in the inference of brain network
connectivity over the Granger-causality analysis.

7.6.2 Mozart effect study

In the study of theMozart effect, we apply both the Bayesianmethod and the Granger-causality
analysis to the ICA time series of the subjects. Here, we focus on the Bayesian method as it
performs better than the Granger-causality analysis in simulation. First, using the Bayesian hy-
pothesis test, changes in the effective connectivity of multiple connections are observed after
subjects listened toMozart music intensively. For the full group of 16 subjects, we find a change
in the connection from the central executive network to the dorsal attention network, which is
of short duration. The central executive network is involved in maintaining and manipulating
working memory, and performing goal-oriented decision making [101]. Therefore, this change
in effective connectivity could be an indication of a change in cognition.

Then the connection from the posterior default mode network to the fronto-parietal right
network also shows an increase in effective connectivity after listening tomusic as reportedby the
Bayesianmethod, although the evidence is onlyweak. Whenwe split the subjects into subgroups
based on the listening duration, it becomes apparent that the effect predominantly occurs in sub-
jects with a longer listening duration and is also of short duration. The default mode network is
involved in emotional processing, self-referential mental activity, and the posterior defaultmode
network involves the recollection of past experiences [119]. The fronto-parietal right network
is involved in cognitive control [93]. This change in effective connectivity between the two net-
works involved in cognitive processing is an interesting result as it could indicate the existence of
the Mozart effect.

Finally, for the whole group of 16 subjects, the connection from the anterior default mode
network to the dorsal attention network is detected to have a significant change between weeks
2 and 3 by the Granger-causality analysis. For the Bayesian method, a change of this connec-
tion is detected for the subgroup of subjects with a longer listening duration. However, the
two methods disagree on whether the effect is of short duration, and thus we cannot draw any
strong conclusion on the duration of this change. We have mentioned the functionality of the
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default mode network already above. Furthermore, the dorsal attention network is involved in
the orientation of attention to external stimuli [164]. Thus the brain networks involved in this
connection are related to cognitive processing. The change of this connection caused byMozart
music, detected by both methods, could indicate the evidence of the Mozart effect.

7.6.3 Limitations and future work

Firstly, compared to theGranger value, which is ameasurement of connectivity strength and for
which statistical tests exist to infer a difference in this value, the extended Bayesian method can
only test binary hypotheses. In the future development of the Bayesianmethod, one of our goals
is to extend the Bayesianmethod to provide a quantitativemeasure of the connectivity strength.
This could help us draw conclusions on effective connectivity changes in the connection from
the sensori-motor lateral network to the superior temporal gyrus. Even if for this connection,
the optimal hypotheses areH1 in both weeks 2 and 3, a very large increase in BF is observed from
week 2 to week 3. However, with the current binary hypotheses on effective connectivity, we
cannot confirm if this indicates a change in effective connectivity.

Secondly, the listening duration of the subjects appears to be insufficient to cause changes in
the effective connectivity of all the subjects. The listening duration in another related study is
at least 2 hours per day for 15 days [43]. In [26], patients were exposed to Mozart music for a
year. Therefore, in future work, we would like to increase the minimum listening duration of
subjects, to verify whether the Mozart effects is more universal across subjects.

Finally, we consider this study to be exploratory, and potential future work can consider an
increased number of subjects, now that the insight of this work has been obtained.

7.7 Conclusions

This is an exploratory study of the Mozart effect by inferring changes in brain effective connec-
tivity using ICA time series from fMRI data. As far as we are aware, this study is the first of its
kind inmeasuring effective connectivity changes causedbyMozart’s SonataK448. Furthermore,
it is the first time that the Bayesian topology identification algorithm is applied to fMRI data.
We have found changes in cognitive processing in subjects, some of which are predominantly in
the subjects with a longer listening duration. More effects are hinted at by the Bayesian selection
frequencies in Figure 7.6, but can not ultimately be detected through the Bayesian hypothesis
test. We are hopeful that in future studies, with increased listening duration and more subjects,
more changes in the effective connectivity caused byMozart music will be found.
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7.8 Appendix

7.8.1 Simplification of likelihood marginalization

First of all, based on the definition of ourmodel in (7.3) andp(D|G) in (7.7), themarginalization
in (7.10) can be decomposed intoL separatemarginalizations. Thenwe only need tomarginalize
over Gj, i.e. the subgraph which contains connection (i, j):

p(Dk|(i, j)) ∝
∑

Gj∈Pj,1

p(Gj)p(Dk|Gj), (7.13)

where Pj,1 = {Gj|(i, j) ∈ Gj}. Note that p(Dk|(i, j)) is only proportional to the marginal-
ization, which will still result in the correct log-likelihood ratio since we use the proportional
marginals from (7.13) to calculate BF in (7.12).
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山重水复疑无路，柳暗花明又一村。

陆游（宋）

After endless mountains and rivers that leave doubt whether there is a
path out, amid the shade of willows and bright flowers a village appears.

You Lu (Song dynasty)

8
Conclusions and future work

8.1 Conclusions

This thesis has focused on the topological aspects of identifiability and identification in linear dy-
namic networks. In particular, the topological analysis and synthesis for network identifiability
have been addressed. Moreover, the problem of topology identification has been considered.

Since there are situations where different network models can generate the same data, the
concept of network identifiability was introduced in the literature as an ability to distinguish
different network models given the same data set. We have mainly focused on a particular ver-
sion of network identifiability, i.e. the so-called generic identifiability, since given the topological
information of the dynamic network, the concept of generic identifiability allows for the attrac-
tive graphical analysis of identifiability.

Graphical conditions on the topologyof dynamicnetworkshavebeendeveloped inChapter 3
to verify generic identifiability, in the special setting where all the node signals are measured. It
has been found that the generic identifiability of networkmodules depends on the interconnec-
tion structure of subsystems in the network, the correlation and the location of noise signals, and
the location ofmeasured excitation signals. Path-based conditions have been developed to verify
generic identifiability, and these conditions are less conservative than the existing ones since they
incorporate the presence of noises and possibly prior known components in the network. While
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the path-based conditions are sufficient for the generic identifiability of modules in parametric
model sets, it has been found that these conditions become also necessary when non-parametric,
i.e. infinite-dimensional, model sets are considered instead.

With the above path-based conditions, the synthesis problem, i.e. the question where to allo-
cate actuators and sensors to achieve the identifiability of networkmodules as formulated in sub-
question 2 of Chapter 1, has been considered in Chapter 4 for the situation where all the node
signals are measured. The goal is to develop synthesis approaches for excitation signal allocation
such that the generic identifiability of a subnetwork or a full network can be achieved. To this
end, it has been found that the path-based conditions can be reformulated into disconnecting-
set-based conditions and pseudotree-based conditions, which explicitly state which internal sig-
nals should be excited for generic identifiability. With these new graphical conditions, novel
synthesis procedures have been developed, where excitation signals are allocated according to
the computed disconnecting sets for the generic identifiability of a subnetwork or according to
the computed pseudotrees for the generic identifiability of a full network.

The above results for identifiability have also been generalized to a more flexible setting with
partial measurement and partial excitation in Chapter 5. Novel graphical conditions have been
developed in this chapter, which shows that disconnecting sets provide important information
regarding the question which signals should be measured or excited for generic identifiability.
These conditions also lead to new synthesis approaches, which can allocate sensors and actuators
to achieve identifiability, and novel indirect identificationmethods, which can estimate network
modules consistently.

The analysis and synthesis questions for network identifiability require the interconnection
structure of subsystems in dynamic networks. The problem of identifying this topological in-
formation from data has been investigated in Chapter 6. It has been found that the topology
identification problem can be formulated into a model selection problem. In order to take ad-
vantage of the available prior knowledge about the stability of network modules, the Bayesian
model selection approach has been employed to select the (local) optimal topology. Further-
more, the EM algorithm provides an efficient way to estimate the hyperparameters, such that
the final topology identification algorithm does not require any tuning effort from the user.
The developed method shows a promising performance, especially when the number of data is
limited compared to the network size.

While the Bayesian approach is developed to infer a topology estimate from a single data set,
it has been further extended in Chapter 7 to consider multiple data sets from groups of subjects.
With the above extension, the inference of the effective connectivity in brain networks has been
investigated, which has revealed new insights into the changes in brain networks caused by in-
tensively listening toMozart’s music, a topic that is of interest in the neuroscience community.

166



8.2 Future work

8.2.1 Synthesis for identifiability

Thedeveloped synthesis approaches inChapter 5 concern the allocationof actuators and sensors
such thatmodules in anetworkbecomegenerically identifiable. However, the approaches donot
take advantage of the initially present excitation signals andmeasured signals, and the r signals are
directly allocated at the disconnecting sets, while it is possible to allocate the r signals elsewhere
such that they have vertex disjoint paths to the disconnecting sets. The above limitations can be
addressed to obtain more advanced synthesis approaches.

In addition, in the situation of partialmeasurement and partial excitation, the focus ofChap-
ter 5 has been put on local modules in a network. While the pseudotree covering in Chapter 4
provides effectivemeans to achieve full network identifiability when all the node signals aremea-
sured, the extension of this approach to the setting with partial measurement and excitation is
still an open problem. Preliminary efforts have beenmade in [37] to address the above extension
for acyclic graphs.

Furthermore, the synthesis approaches for identifiability in this thesis concern only the allo-
cation of actuators and sensors. An interesting research direction is to investigate synthesis ap-
proaches that modify the network topology, e.g., via adding/deleting edges or removing nodes.
The last action is typically referred to as knockout experiments in the inference of biological
networks [151].

8.2.2 From identifiability to identification

In Section 5.8, it has been shown that identifiability results directly lead to generalized forms
of indirect identification methods that can estimate modules consistently. However, these indi-
rect methods rely on a strong presence of measured external excitation signals and thus require
more “expensive” experiments. Therefore, it is attractive to investigate whether the identifiabil-
ity results can also lead to direct identificationmethods, which typically impose less conservative
conditions on themeasured excitation signals than the indirectmethods [152]. The first step to-
wards this direction can be to investigate the connections between the identifiability results in
this thesis and the existing direct methods in, e.g., [48, 122, 123].

8.2.3 Analysis and error control in topology identification

The Bayesian search algorithm developed in Chapter 6 has shown a very good performance in
the extensive simulation study. However, little is known regarding its theoretical properties, for
example, the frequentist consistency. The consistency of Bayes factor and Bayesian model se-
lection has been extensively studied in the Bayesian statistics literature [39, 106, 110] for static
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models and data-independent priors. However, the analysis of the method in Chapter 6 re-
quires additional extensions of the existing theoretical results such that dynamic systems and
data-dependent priors can be addressed.

In addition, how to ensure an upper bound on the error of the topology estimate is still an
open question. The topology estimation problem is essentially a multiple hypothesis testing
problem, where we compare the following two hypotheses:

H0 : Gji(q) = 0 versusH1 : Gji(q) ̸= 0,

for all j and i. The typical error criterion considered for the above problem is the false discovery
rate (FDR), which is the expected ratio of the false discoveries (positives) over all the discoveries
[19]. The question how to bound the FDR in the topology identification problem, which is
also referred to as a variable selection problem, has been studied in statistics [99], but typically
for independent data. The FDR criterion and the corresponding error control procedure have
not yet been considered in the system identification community, where the data is generated by
dynamic systems and thus highly correlated.
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List of Symbols

G(q), G(z) Amatrix of transfer operators and its corresponding transfer matrix.

G(q)∗, G(z)∗ G⊤(q−1) and G⊤(z−1).

M, M(θ) A dynamic network model and a parameterized network model with the pa-
rameter θ.

P(x), p(x) Probability distribution and probability density function of a random vector
x.

Φv(z) Power spectral density matrix of the discrete-time signal v(t).

M A set of dynamic network models.

(wi,wj) A directed edge from vertex wi to vertex wj.

D A data set.

E(x) The expected value of a random variable x.

TW̄X̄ The mapping from the external signals in X̄ ⊆ X to the internal signals in
W̄ ⊆ W .

Π A set of subgraphs of a directed graph.

Υ(T ) The set of all the roots in a pseudotree T .

Ξv(τ) Auto-covariance function of signal v(t).

B(x, r) An open ball with center x and radius r.

C The set of all the measured internal signals.

D A disconnecting set in a directed graph.

E A set of directed edges in a directed graph.

G A directed graph.

H A hypothesis.

MΘ A set of parameterized network models with the parameter space Θ.

N+
i The set that contains the signals inW+

i and additionally the internal signals,
to which wi has known direct edges and that are not directly excited by the
vertices inX , whose out-degree is one and the only out-going edge is known.
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N−
j The set that contains the signals inW−

j and additionally all the unmeasured
internal signals that are in-neighbors of wj.

R The set of all the measured excitation signals.

Sin(G) The set of all the sinks in graph G.

Sou(G) The set of all the sources in graph G.

T A pseudotree.

V A set of vertices in a directed graph.

W The set of all the internal signals.

W+
i The set of internal signals to which wi has unknown directed edges.

W−
j The set of the internal signals that have unknown directed edges to wj.

X The set of all the external signals, including themeasured excitation signals and
the white noises.

Xj The set of external signals that do not have any unknown edge to wj.

Z The set of all the unmeasured internal signals.

∥ • ∥∞ H∞ norm.

bV1→V2 The maximum number of vertex disjoint paths from a vertex set V1 to a vertex
set V2 in a directed graph.
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List of Abbreviations

AEG Autonomous energy grid.

AIC Akaike information criterion.

AR Autoregressive.

BF Bayes factor.

BIC Bayesian information criterion.

BOLD Blood-oxygen-level-dependent.

BS Bayesian search.

DBN Dynamic Bayesian network.

DCM Dynamic causal modeling.

EEG Electroencephalography.

EM Expectation-maximization.

FDR False discovery rate.

fMRI Functional magnetic resonance imaging.

FP False positive.

FPR False positive rate.

GLasso Group least absolute shrinkage and selection operator.

ICA Independent component analysis.

IIR Infinite impulse response.

ITS Intelligent transportation system.

LHS Left-hand side.

MIMO Multiple-input-multiple-output.

MISO Multiple-input-single-output.

PEM Prediction-error method.

PGM Probabilistic graphical model.
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RHS Right-hand side.

ROC Receiver operating characteristic.

SEM Structural equation model.

SIMO Single-input-multiple-output.

TP True positive.

TPR True positive rate.

VAR Vector autoregressive.
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Due to advances in current technology, many engineering 
systems are becoming increasingly complex and encompass 
numerous sub-systems that are spatially interconnected. Such 
systems are typically referred to as dynamic networks. Modeling 
dynamic networks is an important task for designing, analyzing, 
and controlling these systems. Due to the ability for data 
collection from dynamic networks, this thesis focuses on the 
data-driven modeling of dynamic networks by exploiting the 
network topology and graph-theoretical analysis. Network 
identifiability is first addressed in this thesis, which reflects the 
ability to distinguish different network models based on data 
and thus is a prerequisite for the data-driven modeling of 
dynamic networks. To verify network identifiability, graph-
theoretical tools are developed to inspect the network topology 
and the locations of the excitation signals and the noises in the 
network. If a dynamic network is not identifiable, graphical 
synthesis approaches are also developed to allocate additional 
actuators and sensors such that network identifiability can be 
achieved, by exploiting the graphical concepts of disconnecting 
sets and pseudotrees. Furthermore, due to the importance of 
the topological information of dynamic networks, a novel 
Bayesian identification method is developed to estimate the 
network topology from data. This method is then applied to the 
inference of brain networks to investigate the effect of 
intensively listening to Mozart’s music on brain connectivity, a 
topic that is of interest in neuroscience.
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